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ABSTRACT
Sharing trajectories is beneficial for many real-world applications,

such as managing disease spread through contact tracing and tai-

loring public services to a population’s travel patterns. However,

public concern over privacy and data protection has limited the

extent to which this data is shared. Local differential privacy en-

ables data sharing in which users share a perturbed version of their

data, but existing mechanisms fail to incorporate user-independent

public knowledge (e.g., business locations and opening times, pub-

lic transport schedules, geo-located tweets). This limitation makes

mechanisms too restrictive, gives unrealistic outputs, and ultimately

leads to low practical utility. To address these concerns, we propose

a local differentially private mechanism that is based on perturb-

ing hierarchically-structured, overlapping 𝑛-grams (i.e., contiguous

subsequences of length 𝑛) of trajectory data. Our mechanism uses a

multi-dimensional hierarchy over publicly available external knowl-

edge of real-world places of interest to improve the realism and

utility of the perturbed, shared trajectories. Importantly, includ-

ing real-world public data does not negatively affect privacy or

efficiency. Our experiments, using real-world data and a range of

queries, each with real-world application analogues, demonstrate

the superiority of our approach over a range of competing methods.
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1 INTRODUCTION
Sharing trajectories has obvious benefits for many real-world appli-

cations, including managing disease spread through contact tracing,

and tailoring public services (such as bus routes) to a population’s

travel patterns. However, widespread public concern over privacy

and data protection has limited the extent to which this data is cur-

rently shared. Differential privacy (DP) is an increasingly popular

technique for publishing sensitive data with provable guarantees on
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individual privacy. In contrast to centralized DP, local differential

privacy (LDP) allows users to share a perturbed version of their

data, thus allaying fears of an untrusted data collector.

Although LDP provides a more practical setting and more attrac-

tive privacy properties, its mechanisms often have lower utility due

to its stronger privacy requirements. This is (in part) because exist-

ing mechanisms fail to incorporate the wide range of real-world

knowledge that is publicly available. This is a major shortcoming,

especially as a wealth of accessible, open source information about

the real world exists: detailed mapping data describing roads and

points of interest; transit schedules; business opening hours; and

unstructured user-generated data, in the form of reviews, check-ins,

photos, and videos. These provide a rich and detailed (if somewhat

non-uniform) description of the real world within which people

navigate their lives. Within this context, approaches to data sharing

that rely on crude abstractions, such as describing counts within

uniform grids, appear simplistic. Moreover, they lead to synthetic

data that fails to respect common sense: showing movement pat-

terns that cross a mountain range as if there was a highway through

it, or trajectories in which travelers visit a sports stadium in the

middle of the night. We argue that, to be of value, efforts to share

trajectories must more explicitly model the real world, and combine

the private data with public information. To better capture realistic

behavior, we propose solutions that include a wide range of external

knowledge in a utility-enhancing manner, and show empirically

that including real-world information greatly improves the utility

of the perturbed data.

External knowledge can be incorporated in two ways. The first

is a series of (hard) constraints that simply state whether one in-

stance is feasible or not (e.g., someone cannot be ‘located’ in the

sea). The second (probabilistic) approach is to make certain out-

puts more likely than others. Indeed, the second approach relates

to another limitation of existing LDP mechanisms, wherein many

assume equal sensitivity across data points. That is, with respect

to place A, they treat places B and C to be equally sensitive, even

if place A is much ‘closer’ to place B than to place C. Although a

number of existing approaches instead use non-uniform probabili-

ties in a utility-minded manner [1, 3, 4, 26], these works use relaxed

definitions of 𝜖-LDP, which is unsatisfying.

Our framework includes both of these approaches. First, a ’reach-

ability’ constraint ensures adjacent points in a trajectory can be

reached in the respective time gap. Second, we use amulti-attributed

distance function that ensures semantically similar locations are

more likely to be returned by a perturbation mechanism. However,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/459158062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.14778/3476249.3476280
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476280


privately perturbing trajectories in the local setting while incorpo-

rating real-world knowledge effectively is non-trivial. Furthermore,

we go further than existing methods by proposing a solution that

satisfies the strict requirements of 𝜖-LDP.

Our first mechanism – which models trajectories as individual

points in high-dimensional space – can be seen as the elegant,

‘global’ solution. However, its time and space complexity makes

it computationally infeasible in most scenarios, which leads us to

introduce our more efficient and scalable solution, based on perturb-

ing overlapping, hierarchically-structured 𝑛-grams (i.e., contiguous

subsequences of length 𝑛) of trajectory data. 𝑛-gram perturbation

allows us to capture the spatio-temporal relationship between adja-

cent points, while remaining computationally feasible. Moreover,

using overlapping 𝑛-grams allows us to capture more information

for each point, whilst continuing to satisfy LDP. Our semantic

distance function incorporates a rich set of public knowledge to

adjust the probability of certain perturbations in a utility-enhancing

manner. We also exploit the (publicly-known) hierarchies that are

inherent in space, time, and category classifications to structure

𝑛-grams in a multi-dimensional hierarchy, which has notable bene-

fits for utility. Exploiting a hierarchically-structured space in this

manner also reduces the scale of the problem, which ensures that

our solution is scalable for large urban datasets. Finally, we use

optimization techniques to reconstruct the optimal realistic output

trajectory from the set of perturbed 𝑛-grams.

We compare our mechanism to a number of alternative ap-

proaches by comparing the real and perturbed trajectory sets, and

answering a range of application-inspired queries. Our mechanism

produces perturbed trajectory sets that have high utility, preserves

each location’s category better than alternatives in all settings, and

also preserves the temporal location of hotspots at a range of gran-

ularities. Our solution scales well with city size (unlike some other

baselines), while remaining efficient and accurate.

In summary, the main contributions of our work are:

• an outline of the global solution, which we illustrate to be

computationally infeasible in most cases;

• a robust, scalable, and efficient mechanism for perturbing

spatio-temporal trajectory data in a way that satisfies 𝜖-LDP;

• amethod for integrating public knowledge into privatemech-

anisms to give significant utility improvements with no cost

to privacy; and

• extensive empirical analysis, including through a range of

queries, that indicate our work’s relevance in addressing

important data analytics problems in a private manner.

We consider related work (Section 2) before formally introducing

our problem and the guiding principles for our solution (Section 3).

We introduce key definitions that are integral to our solution in

Section 4. We begin Section 5 with the ‘global’ solution before

outlining our hierarchical, 𝑛-gram-based solution. We also outline

the semantic distance function and discuss the efficiency of our

mechanism. We set out our experiments in Section 6 and present

the results in Section 7. We discuss future work in Section 8.

2 RELATEDWORK
Differential privacy [20] has become the de facto privacy standard.

While centralized DP assumes data aggregators can be trusted, LDP

[19] assumes that aggregators cannot be trusted and relies on data

providers to perturb their own data. Many early LDP mechanisms

[e.g., 5, 23, 44] assume all data points have equal sensitivity (i.e., the

probability of any other data point being returned is equal), which

can be unrealistic in practical settings, especially for spatial data.

There have been a number of recent relaxations of (L)DP to allow

perturbation probabilities to be non-uniform across the domain. In

𝑑𝜒 -privacy [9], and its location-specific variant geoindistinguisha-

bility [4], the indistinguishability level between any two inputs is a

function of the distance between them. This concept has since been

generalized to any metric, and extended to the local setting to give

metric-LDP [3]. Context-aware LDP [1] goes further by allowing

an arbitrary (non-metric) measure of similarity between points,

and input-discriminative LDP [26] assigns each data point its own

privacy level. Other relaxations to LDP rely on the provision of

some additional information. For example, personalized LDP [11]

lets users specify a desired privacy level, whereas local information

privacy [30] utilizes knowledge of users’ priors.

Location data privacy (surveyed in [31]) has received a reason-

able degree of attention in both centralized and local DP studies,

(summarized in [24]). In addition to the aforementioned LDP re-

laxations, there have been some specific relaxations to LDP in the

location domain (summarized in [37]). Applying (L)DP techniques

to trajectory data, however, is less well-studied. Most early work

used trajectory data to answer common queries [e.g., 6, 10, 35],

which focus on returning summary level statistics, as opposed to

individual-level data, which gives end users more flexibility. More

recent DP-related work has focused on publishing and synthesizing

differentially private trajectories [e.g., 27–29].

There has been DP-related work that considers user-specific

context in which user priors are utilized [e.g., 30, 33, 36], and Des-

fontaines et al. [15] study the notion of DP with ‘partial knowledge’

for a user. Finally, Cunningham et al. [14] use publicly available

geographic knowledge to improve the quality of private synthetic

location data (in the centralized setting). However, we are the first

to explicitly use external domain knowledge (i.e., user-independent

prior information that is known to all, such as the locations, busi-

ness opening hours, etc.) in the local setting to enhance utility.

In summary, our work introduces a rigorous and unified LDP-

based and utility-mindedmechanism for publishing individual-level

trajectory data that incorporates a wide range of public knowledge.

3 PROBLEM MOTIVATION
Imagine a city in which each resident visits a number of places of

interest (POIs) each day. These POIs link together in a time-ordered

sequence to form a trajectory. The city’s governmentwishes to learn

aggregate information on where residents are traveling but, wary of

governmental oversight, many residents are unwilling to share their

entire trajectories truthfully. However, they are willing to share a

slightly perturbed version of their trajectory, especially if it came

with privacy guarantees. Hence, we wish to create a mechanism for

users to share their trajectories in a privacy-preserving way, whilst

ensuring that the shared trajectories preserve the major underlying

patterns and trends of the real data at the aggregate level. We now

describe the three principles that motivate and guide our solution:

protecting privacy, enhancing utility, and ensuring efficiency.



Protecting Privacy. Our primary aim is to protect the individual

privacy of each individual so that each individual has plausible

deniability within the dataset. We seek to achieve this by perturbing

each individual’s trajectory in order to satisfy the requirements of

DP. Specifically, we will use LDP wherein the data aggregator is

not trusted. We assume that each user shares one trajectory each,

and it is shared at the end of the data collection period. We discuss

the privacy implications of these assumptions in Section 5.7.

Enhancing Utility by Incorporating External Knowledge. Although
the primary aim of the mechanism is to preserve privacy, our prac-

tical goal is to ensure that the perturbed trajectories have high

utility. Information to preserve to ensure high utility can range

from hotspot information to co-location patterns and previous

travel history. We argue that an important way to boost utility is

to link the probability of perturbation from one location to any

other with the semantic distance between the two locations. That

is, one is more likely to be perturbed to another location if it is

more semantically similar to its current location.

Furthermore, traditional (L)DP models impose strong privacy

guarantees to protect against external information being used in

an adversarial attack. However, in real-world applications of (L)DP,

we argue that these protections can be too strong and can nega-

tively affect the utility of the output dataset. To improve utility,

we propose incorporating a range of publicly known external in-

formation to influence the output of our mechanisms. Examples

of this type of information include business opening hours, sports

teams schedules, and published maps. This knowledge can be used

to influence the likelihood of certain perturbations, with the aim of

boosting realism and utility. As this knowledge is publicly available,

it is assumed adversaries have access to it.

Ensuring Efficiency. As our solutions utilize a wide range of public
information from the real world, it is equally important that our

solution can be applied to real world settings, at scale. Consequently,

we complement our privacy and utility goals with the desire for

our solution to be efficient and scalable for large urban datasets.

Applications. Our work focuses on perturbing trajectories such that

aggregate statistics are preserved as much as possible, which leads

to many important end applications of our work. A notable (and

timely) one is the idea of societal contact tracing that seeks to iden-

tify the places and times in which large groups of people meet

(so-called ‘superspreading’ events), as opposed to chance encoun-

ters between individuals. Knowledge of such events can be used

for location-specific announcements and policy decisions. Other

applications include advertising and provision of public services.

For example, if a city council can identify popular trip chains among

residents, they can improve the public transport infrastructure that

links these popular places. Likewise, if a restaurant owner knows

that many museum-goers eat lunch out after visiting a museum,

she may consider advertising near museums.

4 DEFINITIONS
In this section, we introduce necessary notation and definitions;

commonly-used notation is summarized in Table 1. We denote a set

of POIs, as P, where an individual POI is denoted by 𝑝𝑖 . Each POI

𝑝𝑖 ∈ P has a number of attributes – 𝛼𝑖𝑡 , 𝛽𝑖𝑡 , etc. – associated with

it, which could represent the popularity, privacy level, category,

Table 1: Commonly-Used Notation

Notation Meaning

𝑝,P Point of interest (POI), and set of POIs

𝑔𝑡 , 𝑔𝑠 Time and space granularity

𝑡,𝑇 Timestep, and set of all timesteps

𝜏,T Trajectory, and set of trajectories

𝜒 Dimension subscript (e.g., 𝑡 for temporal dimension)

𝑟𝜒 ,R𝜒 STC region, and set of regions

𝑛 Length of trajectory fragment (i.e., 𝑛-gram)

𝑤,W𝑛 𝑛-gram, and set of (reachable) 𝑛-grams

𝜏 (𝑎, 𝑏) Trajectory fragment; covers 𝑎th to 𝑏th elements of 𝜏

\ Reachability threshold

𝑑𝜒 (·) Distance function for dimension 𝜒

𝜖 Privacy budget

etc. of the POI, and they can vary temporally. We quantize the time

domain into a series of timesteps 𝑡 , the size of which is controlled

by the time granularity, 𝑔𝑡 . For example, if 𝑔𝑡 = 5 minutes, the time

domain would be: 𝑇 = {...10:00, 10:05, 10:10,...}.
We define a trajectory, 𝜏 , at the POI level as a sequence of

POI-timestep pairs such that 𝜏 = {(𝑝1, 𝑡1), ...(𝑝𝑖 , 𝑡𝑖 ), ..., (𝑝 |𝜏 |, 𝑡 |𝜏 |)},
where |𝜏 | denotes the number of POI-timestep pairs in a trajectory

(i.e., its length). For each trajectory, we mandate that 𝑡𝑖+1 > 𝑡𝑖 (i.e.,

one cannot go back in time, or be in two places at once). Each

trajectory is part of a trajectory set, T . Perturbed trajectories and

trajectory sets are denoted as 𝜏 and T̂ , respectively.

We use combined space-time-category (STC) hierarchical parti-

tions in which we assign POIs to different STC regions. 𝑟𝜒 denotes

an individual region where 𝜒 denotes the dimension of the region

(i.e., 𝑠 for space, 𝑡 for time, etc.). Regions can be combined to form

STC regions 𝑟𝑠𝑡𝑐 and R𝜒 denotes region sets. A trajectory can be

represented on the region level as 𝜏 = {𝑟1, ...𝑟𝑖 , ..., 𝑟 |𝜏 |} whereby 𝑟𝑖
represents the 𝑖-th STC region in the trajectory. Consider the first

point in a trajectory being {Central Park, 10:54am}. This might give

𝑟𝑠 = {Upper Manhattan}, 𝑟𝑐 = {Park}, and 𝑟𝑡 = {10-11am}, leading to

𝑟𝑠𝑡𝑐 = 𝑟1 = {Upper Manhattan, 10-11am, Park}.

Chaining regions (or POIs) together forms 𝑛-grams, denoted as

𝑤𝑛
, whereby: 𝑤𝑛 = {𝑟𝑖 , . . . , 𝑟𝑖+𝑛−1}. W𝑛

is the set of all possible

𝑛-grams. We use 𝜏 (𝑎, 𝑏) to specify a sub-sequence of 𝜏 such that:

𝜏 (𝑎, 𝑏) = {𝑟𝑎, ..., 𝑟𝑖 , ...𝑟𝑏 }, where 𝑎 and 𝑏 are the indices of 𝜏 . For

example, 𝜏 (1, 3) denotes the first three STC regions (or POI-timestep

pairs) of 𝜏 . 𝑑𝑠 (𝑝𝑖 , 𝑝 𝑗 ) denotes the physical distance between 𝑝𝑖 and

𝑝 𝑗 , and 𝑑 (𝑟𝑖 , 𝑟 𝑗 ) denotes the distance between 𝑟𝑖 and 𝑟 𝑗 .

4.1 Reachability
The notion of reachability is needed to ensure realism in perturbed

trajectories. We begin by identifying the subset of POIs that can

be reached from any particular POI, based on the relative physical

distance between them. A threshold, \ , represents the maximum

distance that one can travel in a certain time period. \ can be

specified directly, or be a function of 𝑔𝑡 and a given travel speed.

Definition 4.1 (Reachability). A POI 𝑝𝑏 ∈ P is reachable from 𝑝𝑎
at time 𝑡 if 𝑑𝑠 (𝑎, 𝑏) ≤ \ (𝑡), where 𝑝𝑎 ∈ P.



Reachability prevents illogical trajectories from being produced.

For example, a trajectory of {New York City, Tokyo, London} would

be unrealistic if the time granularity was one hour. Alternatively,

imagine the trajectory: {Grand Central Station, Empire State Build-

ing, Central Park}. A realistic bigram to perturb to might be {Em-

pire State Building, Times Square} (i.e., the two locations can be

reached within one hour), whereas {Empire State Building, Mount

Rushmore} is unrealistic as it would not satisfy the reachability con-

straint. The definition of reachability accommodates time-varying

and asymmetric distances (e.g., caused by congestion and one-way

roads, respectively). For 𝑛-gram perturbations, W𝑛
is the set of all

𝑛-grams that satisfy the requirements of reachability. Formally, for

the 𝑛-gram 𝑤 = {𝑝𝑎, ...𝑝𝑖 , 𝑝𝑖+1, ..., 𝑝𝑏 }, the reachability constraint

requires 𝑝𝑖+1 to be reachable from 𝑝𝑖 at time 𝑡𝑖 for all 𝑎 ≤ 𝑖 < 𝑏.

4.2 Privacy Mechanisms
Definition 4.2 (𝜖-local differential privacy [19]). A randomized

mechanismM is 𝜖-local differentially private if, for any two inputs

𝑥, 𝑥 ′ and output 𝑦:

Pr[M(𝑥)=𝑦 ]
Pr[M(𝑥 ′)=𝑦 ] ≤ 𝑒𝜖 (1)

Whereas centralized DP allows the aggregator to add noise, LDP

ensures that noise is added to data before it is shared with an

aggregator. Like its centralized analogue, LDP possesses two funda-

mental properties that we use in our mechanism [13]. The first is

the composition theorem, which states that one can apply 𝑘 𝜖𝑖 -LDP

mechanisms, with the result satisfying 𝜖-LDP, where 𝜖 =
∑
𝑖 𝜖𝑖 . The

second property allows post-processing to be performed on private

outputs without affecting the privacy guarantee.

Definition 4.3 (Exponential Mechanism (EM) [39]). For an input

𝑥 and output 𝑦 ∈ Y, the result of mechanism M is 𝜖-differentially

private if one randomly selects 𝑦 such that:

Pr[M(𝑥) = 𝑦] = exp(𝜖𝑞 (𝑥,𝑦)/2Δ𝑞)∑
𝑦𝑖 ∈Y exp(𝜖𝑞 (𝑥,𝑦𝑖 )/2Δ𝑞) (2)

where, 𝑞(𝑥,𝑦) is a quality (or utility) function, and Δ𝑞 is the sensi-

tivity of the quality function, defined as max𝑦,𝑦′ |𝑞(𝑥,𝑦) −𝑞(𝑥,𝑦′) |.

The utility of the EM can be written as:

Pr

[
𝑞(𝑥,𝑦) ≤ 𝑂𝑃𝑇𝑞 − 2Δ𝑞

𝜖

(
ln

|Y |
|Y𝑂𝑃𝑇 | + Z

)]
≤ 𝑒−Z (3)

where 𝑂𝑃𝑇𝑞 is the maximum value of 𝑞(𝑥,𝑦), and Y𝑂𝑃𝑇 ⊆ Y is

the set of outputs where 𝑞(𝑥,𝑦) = 𝑂𝑃𝑇𝑞 [22].

Although more commonly used for centralized DP, the EM can

be applied in LDP, where we consider different inputs (for LDP) to

be equivalent to neighboring datasets of size 1 (for centralized DP).

By using the EM with a distance-based quality function, we achieve

𝜖-LDP (i.e., the probability ratio for any perturbation is upper-

bounded by 𝑒𝜖 ). This is in contrast to relaxations of LDP, such as

metric-LDP [3], context-aware LDP [1], or input-discriminative

LDP [25]. All of these have upper bounds for the probability ratio

of a perturbation of the form 𝑒 𝑓 (𝑥,𝑥
′)
, where 𝑓 is a function that

quantifies the distance between two inputs 𝑥 and 𝑥 ′. Note that our
setting is a specific (stricter) case in which 𝑓 (𝑥, 𝑥 ′) = 𝜖 for all 𝑥, 𝑥 ′.

5 TRAJECTORY PERTURBATION
In this section, we first present a global solution that perturbs

the whole trajectory (Section 5.1), before outlining our 𝑛-gram-

based mechanism that addresses the infeasible aspects of the global

solution (Sections 5.2–5.6).We provide theoretical analysis (Sections

5.7 and 5.8), a number of alternative approaches (Section 5.9), and

an outline of our multi-attributed distance function (Section 5.10).

5.1 Global Solution
In the global solution, we model entire trajectories as points in high-

dimensional space. Having instantiated all possible trajectories, we

determine the distance between these high-dimensional points and

the real trajectory, and use this distance to determine the probability

distribution. The probability of 𝜏 being perturbed to 𝜏 is:

Pr(𝜏 = 𝜏𝑖 ) =
exp(−𝜖𝑑𝜏 (𝜏,𝜏𝑖 )/2Δ𝑑𝜏 )∑

𝜏𝑖 ∈S exp(−𝜖𝑑𝜏 (𝜏,𝜏𝑖 )/2Δ𝑑𝜏 )
(4)

where, S is the set of all possible trajectories, and 𝑑𝜏 is the distance

function that represents the distance between trajectories (see Sec-

tion 5.10). We use the EM (2) to perturb trajectories. Proof that the

global solution satisfies 𝜖-LDP follows from (4) and Definition 4.3.

Theorem 5.1. The utility of the global solution is expressed as:

Pr

[
𝑑𝜏 (𝜏, 𝜏) ≤ − 2Δ𝑑𝜏

𝜖 (ln |S| + Z )
]
≤ 𝑒−Z (5)

Proof. The quality function is the distance function 𝑑𝜏 , and

its maximum value is obtained iff 𝜏 = 𝜏 . Hence, 𝑂𝑃𝑇𝑞 = 0 and

|Y𝑂𝑃𝑇 | = 1. Substituting this into (3) yields (5). □

To assess the feasibility of the global solution, we first analyze

its worst-case time complexity. The number of possible timestep

sequences is
|𝑇 |!

|𝜏 |!×( |𝑇 |− |𝜏 |)! where |𝑇 | is the number of timesteps,

which is a function of 𝑔𝑡 (in minutes): |𝑇 | = 24×60
𝑔𝑡

. The number of

possible POI sequences is |P | |𝜏 | . Hence, the maximum size of S is:

|S| = |P | |𝜏 |×|𝑇 |!
|𝜏 |!×( |𝑇 |− |𝜏 |)! The global solution requires instantiating all

trajectories in S, the size of which grows exponentially with |𝜏 |.
In reality, the reachability constraint reduces the number of pos-

sible trajectories. Assuming that (on average) `% of all POIs are

reachable between successive timesteps, the number of possible tra-

jectories is reduced by a factor of ` |𝜏 |−1. To illustrate this, imagine

a small-scale example where |𝜏 | = 5, 𝑔𝑡 = 15 minutes, |P | = 1,000,

and ` = 20%. Even under these settings, |S| ≈ 9.78 × 10
19
, which

means S remains computationally infeasible to compute and store.

Variants of the EM approach have been proposed, with the aim

of tackling the high cost of enumerating all possible outputs. The

subsampled exponential mechanism applies the EM to a sample

of possible outputs [34]. In our case, we would need the sampling

rate to be very small to make this approach computationally feasi-

ble. However, the highly skewed distribution of 𝑑𝜏 means that the

sampling rarely selects trajectories with low 𝑑𝜏 values, which ulti-

mately leads to poor utility in the perturbed dataset. The ‘Permute

and Flip’ approach [38] instead considers each output in a random

order, and performs a Bernoulli test to see if it can be output. How-

ever, the success probability, which is proportional to exp(−𝜖𝑑𝜏 ),
is generally low, meaning that efficiency gains are limited. Instead,

we look to alternative models to make our approach feasible.



5.2 n-gram Solution Overview
Instead of considering trajectories as high-dimensional points, we

propose using overlapping fragments of the trajectories to capture

spatio-temporal patterns with efficient privacy-preserving computa-

tions. Specifically, we consider a hierarchical 𝑛-gram-based solution

that aims to privately perturb trajectories more quickly. Using (over-

lapping) 𝑛-grams allows us to consider the spatio-temporal link

between any 𝑛 consecutive points, which is necessary to accurately

model trajectory data.

Our solution (summarized in Figure 1) has four main steps: hier-

archical decomposition, 𝑛-gram perturbation, optimal STC region-

level reconstruction, and POI-level trajectory reconstruction. Hi-

erarchical decomposition is a pre-processing step that only uses

public information, so it can be done a priori and without use of

the privacy budget. Similarly, both trajectory reconstruction steps

do not interact with private data, thus allowing us to invoke LDP’s

post-processing property without using the privacy budget.

5.3 Hierarchical Decomposition
As |P | increases, the number of feasible outputs for POI-level per-

turbation grows exponentially. To address this challenge, we utilize

hierarchical decomposition to divide POIs into STC regions.

STC Region Composition. We first divide the physical space into

𝑅𝑠 spatial regions. For each 𝑟𝑠 ∈ R𝑠 , we create 𝑅𝑐 regions – one

for each POI category. For each space-category region, we create

𝑅𝑡 regions, which represent coarse time intervals. POIs are then

assigned to STC regions, based upon their location, opening hours,

and category. POIs can appear in more than one STC region (e.g.,

they are open throughout the day and/or the POI has more than

one category). We remove all STC regions that have zero POIs

within them (e.g., 𝑟𝑠𝑡𝑐 = (top of mountain, 3am, church)), which
ensures that these regions will not be included inW𝑛

. As all this

information is public, it does not consume any privacy budget.

R𝑠 can be formed using any spatial decomposition technique,

such as uniform grids or clustering, or it can use known geography,

such as census tracts, blocks, or boroughs. We find that our mecha-

nism is robust to the choice of spatial decomposition technique. R𝑐

can be derived from known POI classification hierarchies, such as

those published by OpenStreetMap, etc. R𝑡 is most easily formed

by considering a number of coarse (e.g., hourly) time intervals.

STC Region Merging. Depending on the number of STC regions, and

the number of POIs within them, STC regions can be merged across

any (or all) of the three dimensions. For example, instead of 𝑟𝑠𝑡𝑐 =

(Main Street, 1am, Nightclub) and 𝑟𝑠𝑡𝑐 = (Main Street, 11pm, Bar),

they could be merged into 𝑟𝑠𝑡𝑐 = (Main Street, 11pm-2am, Nightlife),

which represents merging in the time and category dimensions.

Merging regions is done primarily for efficiency reasons as it

prevents many semantically similar, but sparsely populated, regions

from existing. Additional POI-specific information (e.g. popularity)

can be included into merging criteria to prevent significant negative

utility effects. For example, if the data aggregator wishes to preserve

large spatio-temporal hotspots, they will want to prevent merging

very popular POIs with semantically similar but less popular POIs.

For example, consider a conference center complex. Although all

conference halls are semantically similar, one hall might have a

large trade show, whereas the others may have small meetings. It is
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Figure 1: Solution Overview

important not to merge all halls in this case, as this might result in

less accurate responses to downstream data mining tasks. Hence,

we require that each STC region has^ POIs associated with it where

^ is a pre-defined function of POI attributes.

To further illustrate this, consider Figure 2a, which shows ten

POIs, divided in a 3 × 3 grid where larger circles indicate a more

popular POI. Figure 2b shows how regions might be merged if we

only consider geographic proximity, whereas Figure 2c shows the

resultant regions when merging accounts for perceived popularity.

We see more POIs in regions with less popular POIs, whereas very

popular POIs exist singly in a region. Deciding along which dimen-

sions to merge regions, as well as the priority and extent of merging,

depends ultimately on the utility goals of the data aggregator. For

example, if preserving the category of POIs is important, merging

in the time and space dimensions first would be preferable.

𝑛-gram Set Formation. As a final pre-processing step, we define

W𝑛
by first instantiating all possible 𝑛-gram combinations of STC

regions.We then remove all𝑛-gram combinations that do not satisfy

the reachability constraint. For the region level, we deem any 𝑟𝑎
and 𝑟𝑏 to be reachable if there is at least one 𝑝𝑖 ∈ 𝑟𝑎 and at least

one 𝑝 𝑗 ∈ 𝑟𝑏 that satisfy reachability.

5.4 n-gram Perturbation
Once W𝑛

has been defined, we convert each trajectory from a

sequence of POI-timestep pairs to a sequence of STC regions. The

next step is to perturb the STC regions of 𝜏 by using overlapping

𝑛-grams and the EM.

Notation.Wedefine𝑍 to be a set that holds all the perturbed𝑛-grams

of 𝜏 . We then use 𝑧 (𝑎, 𝑏) = {𝑟𝑎, ..., 𝑟𝑖 , ...𝑟𝑏 } to be the perturbed 𝑛-

gram, where𝑎 and𝑏 are the indices of 𝜏 and 𝑧 (𝑎, 𝑏) ∈ 𝑍 . Importantly,

there is a subtle difference between 𝜏 (𝑎, 𝑏) and 𝑧 (𝑎, 𝑏). In 𝑍 , for any
timestep, there are multiple possible regions associated with each

trajectory point, whereas 𝜏 is the final reconstructed trajectory and

so there is only one region for each trajectory point.

Main Perturbation. For each perturbation, we take W𝑛
and define

the probability that 𝜏 (𝑎, 𝑏) is perturbed to𝑤𝑖 ∈ W𝑛
as:

Pr(𝑧 (𝑎, 𝑏) = 𝑤𝑖 ) =
exp(−𝜖′𝑑𝑤 (𝜏 (𝑎,𝑏),𝑤𝑖 )/2Δ𝑑𝑤 )∑

𝑤∈W𝑛 exp(−𝜖′𝑑𝑤 (𝜏 (𝑎,𝑏),𝑤𝑖 )/2Δ𝑑𝑤 )
(6)

where 𝜖 ′ = 𝜖
|𝜏 |+𝑛−1 , and 𝑑𝑤 (𝜏 (𝑎, 𝑏),𝑤𝑖 ) is the function that quanti-

fies the distance between 𝑛-grams. To ensure that 𝑛-grams are per-

turbed, we specify the ranges of 𝑎 and 𝑏 such that 𝑎 = (1, |𝜏 | −𝑛+1)
and 𝑏 = (𝑛, |𝜏 |). Once these probabilities have been defined, we use
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Figure 2: Illustrative example of the STC region merging

the EM to sample from W𝑛
and we store 𝑧 (𝑎, 𝑏) in 𝑍 . We repeat

this for increasing values of 𝑎 and 𝑏 (see Figure 3).

Using overlapping 𝑛-grams gives better accuracy than using non-

overlapping 𝑛-grams or merely perturbing points independently. It

lets us repeatedly ‘query’ a point multiple times, meaning that we

gather more information about it while continuing to guarantee

LDP. Overlapping 𝑛-grams simultaneously allows us to query a

larger portion of the entire trajectory, which enables us to base

each perturbation upon a wider range of semantic information.

For example, 𝜏 (3) is determined based on information from 𝜏 (1, 3),
𝜏 (2, 4), and 𝜏 (3, 5), assuming 𝑛 = 3. Hence, 𝜏 (3) is ‘queried’ 𝑛 times,

neighboring points 𝑛−1 times, etc., in addition to using information

from 2𝑛 − 1 points to influence the perturbation of 𝜏 (3).
End Effects.When 𝑛 ≥ 2, the start and end regions in a trajectory

are not covered 𝑛 times. For example, when |𝜏 | = 4 and 𝑛 = 2, the

main perturbation step covers the first and last regions once only

(with 𝑧 (1, 2) and 𝑧 (3, 4), respectively). To ensure that all timesteps

have the same number of perturbed regions, we conduct extra per-

turbations with smaller 𝑛-grams. This supplementary perturbation

is performed in the same manner as (6), but with differentW𝑛
sets

and different bounds for 𝑎 and 𝑏. In our example, we would obtain

𝑧 (1, 1) and 𝑧 (4, 4) usingW1
(as illustrated in Figure 3).

Theoretical Utility. As the solution has multiple post-processing

stages, a theoretical utility guarantee for the entire mechanism

remains elusive. However, we can analyze the utility of the 𝑛-gram

perturbation step.

Theorem 5.2. The utility of the 𝑛-gram perturbation stage is:

Pr

[
𝑑𝑤 (𝜏 (𝑎, 𝑏),𝑤) ≤ − 2Δ𝑑𝑤

𝜖′ (ln |W𝑛 | + Z )
]
≤ 𝑒−Z (7)

Proof. The quality function is the distance function 𝑑𝑤 , and its

maximum value is obtained iff 𝑧 (𝑎, 𝑏) = 𝜏 (𝑎, 𝑏). Hence, 𝑂𝑃𝑇𝑑𝑤 = 0

and |W𝑛
𝑂𝑃𝑇

| = 1. Substituting this into (3) yields (7). □

Hence, the utility is dependent on the size of the feasible 𝑛-gram

set, which itself is influenced by 𝑛, the granularity of hierarchical

decomposition, and the strictness of the reachability constraint.

Utility is also affected by trajectory length, as 𝜖 ′ is a function of |𝜏 |.

5.5 Region-Level Trajectory Reconstruction
Given a collection of perturbed 𝑛-grams, we define an optimization

problem that reconstructs a trajectory between points in 𝜏 and the

perturbed 𝑛-grams in 𝑍 . This is post-processing of the LDP output,

and does not consume any privacy budget. We define two error

terms (illustrated in Figure 4) that measure the similarity of regions

t	=	1 2 3 4
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𝑧(2,3)

𝑧(3,4)
Main Perturbation

𝑧(1,1) 𝑧(4,4) Supplementary 
Perturbation

Real Trajectory

Figure 3: Main and supplementary perturbation mecha-
nisms; different colors indicate different STC regions

to the perturbed data. By perturbing each point in 𝜏 𝑛 times (by

using overlapping 𝑛-grams), we magnify this effect.

The first error term is the ‘region error’ 𝑒 (𝑟 𝑗 , 𝑖), which is the

distance between 𝑟 𝑗 and the perturbed 𝑛-grams in location 𝑖 in 𝑍 .

It is defined as:

𝑒 (𝑟 𝑗 , 𝑖) =
∑
𝑑 (𝑟 𝑗 , 𝑦𝑖 ) (8)

where 𝑦𝑖 is the region from 𝑧 (𝑎, 𝑏) ∈ 𝑍 iff 𝑎 ≤ 𝑖 ≤ 𝑏, where 𝑎, 𝑏,

and 𝑖 are trajectory indices. The second error term is the ‘bigram

error’, 𝑒 (𝑖,𝑤), which is the sum of the two relevant region error

terms. More formally, it is defined as:

𝑒 (𝑖,𝑤) = 𝑒 (𝑤 (1), 𝑖) + 𝑒 (𝑤 (2), 𝑖 + 1) (9)

where𝑤 is a region-level bigram inW2
, with𝑤 (1) and𝑤 (2) being

the first and second regions in𝑤 , respectively.

We now define the minimization problem as:

min

∑ |𝜏 |−1
𝑖=1

𝑥𝑤
𝑖
𝑒 (𝑖,𝑤) (10)

s.t. 𝑥𝑤
𝑖

· 𝑞(𝑤𝑖 ,𝑤𝑖+1) = 𝑥𝑤
𝑖+1 · 𝑞(𝑤𝑖 ,𝑤𝑖+1) ∀ 1 ≤ 𝑖 < |𝜏 | (11)

𝑞(𝑤𝑖 ,𝑤𝑖+1) =
{
1 if𝑤𝑖 (2) = 𝑤𝑖+1 (1)
0 otherwise

(12)∑ |𝜏 |−1
𝑖=1

𝑥𝑤
𝑖

= |𝜏 | − 1 (13)∑
𝑤∈W2 𝑥𝑤𝑖 = 1 ∀ 1 ≤ 𝑖 < |𝜏 | (14)

where, 𝑥𝑤
𝑖

is a binary variable encoding whether𝑤 is selected for

index 𝑖 . The objective (10) is to minimize the total bigram error

across the trajectory. (11) and (12) are continuity constraints that

ensure consecutive bigrams share a common region. (13) ensures

that the number of bigrams selected is correct, and (14) ensures

only one bigram is associated with each point in the trajectory.

Efficiency Discussion. Assuming that the space, time, and category

granularities are well-chosen such that |W2 | ≪ |R|2, the scale

of the optimization problem will generally be within the scope of

most linear programming solvers (see Section 5.8). Nevertheless, we

introduce a step to further limit the set of possible bigrams that can

appear in the reconstructed trajectory. Once 𝑛-gram perturbation

is complete, we obtain the minimum bounding rectangle (MBR)

defined by all 𝑟𝑠𝑡𝑐 ∈ 𝑍 . From this, we define P𝑚𝑏𝑟 ⊆ P, which

contains all the POIs in this MBR, and R𝑚𝑏𝑟 , which is the set of

STC regions that contain at least one POI in P𝑚𝑏𝑟 . From this, we

defineW2

𝑚𝑏𝑟
as the set of feasible bigrams formed from R𝑚𝑏𝑟 , and

we use this set in the reconstruction. Performing this step does not

prevent the optimal reconstructed trajectory from being found, as

the reconstruction seeks to minimize the error with respect to the

perturbed 𝑛-grams in 𝑍 , all of which are included in R𝑚𝑏𝑟 .
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5.6 POI-Level Trajectory Reconstruction
The final step is to express the output trajectories in the same for-

mat as the input trajectories. Whereas converting a trajectory from

POIs to STC regions is relatively straightforward, the converse

operation is non-trivial as there can be many possible POI-level

trajectories corresponding to a certain sequence of STC regions.

Furthermore, the reachability requirement means that some trajec-

tories are infeasible, and should not be published.

We expect most POI-level trajectories to be feasible as W𝑛
is

defined based on the reachability criterion. Hence, we generate

an individual trajectory at random and check that it satisfies the

reachability constraint. If it does, we output it; if not, we generate

another trajectory. We continue this until we generate a feasible tra-

jectory, reach a threshold (𝛾 ), or exhaust all possible combinations.

Experimentally, the threshold of 𝛾 = 50,000 was rarely reached.

When this trajectory sampling fails, it implies that the perturbed

region sequence does not correspond to a feasible trajectory. If so,

we randomly select a POI and time sequence and ‘smooth’ the times

such that they become feasible. For example, consider the region-

level trajectory: {(Restaurant, 9-10pm, Downtown), (Bar, 9-10pm,

Downtown), (Bar, 9-10pm, Suburb)}. Reachability may mean that

the suburban bar is only reachable from the downtown bar in 55

minutes, meaning that it is impossible to visit all three venues in an

hour. Accordingly, we smooth the timesteps such that either 𝜏 (1)
occurs between 8 and 9pm, or 𝜏 (3) occurs between 10 and 11pm.

5.7 Privacy Analysis
We now analyze the privacy of the 𝑛-gram-based solution through

a sketch proof, and discuss some possible adversarial attacks.

Theorem 5.3. The perturbation of trajectory 𝜏 satisfies 𝜖-LDP.

Proof. Each 𝑛-gram 𝜏 (𝑎, 𝑏) – where 𝑎 = (1, |𝜏 | − 𝑛 + 1) and
𝑏 = (𝑛, |𝜏 |) – is perturbed with privacy budget 𝜖 ′ using (6), and

the EM. This means each perturbation satisfies 𝜖 ′-DP, and there

are |𝜏 | − 𝑛 + 1 of these perturbations. Because of end effects, there

are an additional 2(𝑛 − 1) perturbations, each of which also satisfy

𝜖 ′-DP. Using sequential composition, the resultant output satisfies

( |𝜏 |+𝑛−1)𝜖 ′-DP. As 𝜖 ′ = 𝜖
( |𝜏 |+𝑛−1) , the overall mechanism therefore

satisfies 𝜖-DP. As the size of adjacent datasets is 1, 𝜖-DP results are

equivalent to 𝜖-LDP results. □

As we use publicly available external knowledge, we assume

that an adversary has access to all the same knowledge. However,

external knowledge is only used to enhance utility, whereas privacy

is provided through the application of the EM (which could be done

with no external knowledge). Hence, an adversary cannot use this

information to learn meaningful information with high probability.

As our solution is predicated on a ‘one user, one trajectory’ basis,

inference attacks based on repeated journeys from the same user

are prevented by definition. We can use sequential composition to

extend our solution to the multiple release setting; assuming each

of 𝑘 trajectories is assigned a privacy budget of 𝜖 , the resultant

release provides (𝑘𝜖)-LDP to each user. Finally, unlike in other

works that consider continuous data sharing [e.g. 2, 8, 21, 32], our

setting sees the user share all data at the end of their trajectory.

Hence, as we provide user-level 𝜖-LDP, the LDP privacy guarantee

protects against spatial and temporal correlation attacks.

5.8 Computational Cost
We now discuss the computational costs of the proposed 𝑛-gram-

based approach, which highlight how it is highly practical. Also, as

each perturbation can be done locally on a user’s device, the entire

data collection operation is inherently distributed and scalable.

Choice of 𝑛. PrecomputingW𝑛
requires O(|P|𝑛) space, which be-

comes infeasible for large cities and 𝑛 ≥ 3. If 𝑛 ≥ 3 and |P | is
large, feasible 𝑛-grams can be computed ‘on-the-fly’, although this

attracts a significant runtime cost. While these effects are partially

mitigated by using STC regions, we recommend choosing 𝑛 = 2

(bigrams) as 𝑛 ≥ 3 will be unrealistic in most practical settings.

Time Complexities. Converting a trajectory from the POI-level to

STC region level has time complexity O(|𝜏 |) and the perturbation

phase has time complexity O(𝑛 |𝜏 |). Converting trajectories from
the STC region level back to the POI level (assuming time smoothing

does not need to be performed) has a worst-case time complexity

of O(𝛾 ( |𝜏 | + |𝜏 − 1|)). This is because |𝜏 | POIs need to be selected,

and then reachability checks need to be performed on each link

(of which there are |𝜏 | − 1 in total). In the worst-case, this process

is repeated 𝛾 times, hence O(𝛾 ( |𝜏 | + |𝜏 − 1|)). We find that time

smoothing is needed for around 2% of trajectories on average, and

so we devote little focus to its runtime effects here.

Optimal Reconstruction Complexity. Section 5.5 presents the optimal

reconstruction phase, which uses integer linear programming. Here,

we briefly discuss the scale of the problem in terms of the number of

variables and constraints. Let 𝜙 = |R𝑚𝑏𝑟 |. The number of feasible

bigrams will be 𝜙2 in the worst case, although the reachability

constraint reduces this in practice. From the definition of 𝑥𝑤
𝑖
, we

see that there are 𝜙 ( |𝜏 | − 1) variables (i.e., one 𝑥𝑤
𝑖

per bigram, per

trajectory point). The continuity constraints – (11) and (12) – impart

𝜙 ( |𝜏 | − 1) constraints, and the capacity constraints – (13) and (14)

– impart |𝜏 | − 1 constraints. Hence, the optimization problem has

(𝜙 |𝜏 | + |𝜏 | − 𝜙 − 1) constraints in total. Closed-form expressions

for the expected runtime of optimization problems depend on the

exact solver chosen, and are typically fast in practice [see 12, 43].

5.9 Alternative Approaches
We compare our solution to other approaches, summarized here.

Using Physical Distance Only. The most basic distance-based pertur-

bation mechanism (called PhysDist) would ignore external knowl-

dge and only use the physical distance between POIs/regions.

POI-level n-Gram Perturbation. Our mechanism can be applied just

on the POI-level.NGramNoH perturbs the time and POI dimensions



separately in order to control the size ofW𝑛
. This requires splitting

the privacy budget more (i.e., 𝜖 ′ = 𝜖
2 |𝜏 |+𝑛−1 ).

Independent POI Perturbation. The simplest approach is to perturb

each POI independently of all others. We consider two variations

of this approach: one where the reachability constraint is con-

sidered during perturbation (IndReach), and one where it is not

(IndNoReach). To ensure that feasible trajectories are output when

using IndNoReach, we use post-processing to shift the perturbed

timesteps to ensure a ‘realistic’ output. While such methods make

less intensive use of the privacy budget, they fail to account for the

intrinsic relationship between consecutive points. However, when

temporal gaps between POIs are large, the reachability constraint

becomes less influential, making these methods more attractive.

Other LDP Relaxations. As discussed in Section 2, a number of

distance-based perturbation mechanisms that were inspired by

the principles of (L)DP exist. However, although these approaches

possess their own theoretical guarantees, they do not satisfy 𝜖-LDP,

which makes them incomparable with our mechanism.

5.10 Distance Function
We now outline the semantic distance functions used throughout

our work. Note that our mechanism is not reliant on any specific

distance/quality function – any other distance function can be used,

without needing to change the mechanism.

Physical Distance. We use 𝑑𝑠 (𝑝𝑎, 𝑝𝑏 , 𝑡) to denote the physical dis-

tance from 𝑝𝑎 to 𝑝𝑏 at time 𝑡 , which can be derived using any

distance measure (e.g., Euclidean, Haversine, road network). To

get the distances between STC regions, we obtain the distance be-

tween the centroids of the POIs in the two regions. We similarly

use 𝑑𝑠 (𝑟𝑎, 𝑟𝑏 ) to denote the physical distance between 𝑟𝑎 and 𝑟𝑏 .

Time Distance. The time distance between regions is defined as

the absolute time difference between two STC regions. That is,

𝑑𝑡 (𝑟𝑎, 𝑟𝑏 ) = |𝑡𝑎 − 𝑡𝑏 |. We limit time distances to ensure that no time

distance is greater than 12 hours. Where STC regions are merged

in the time dimension, we use the time difference between the

centroids of the merged time intervals. For example, if two regions

cover 2-4pm and 5-7pm, 𝑑𝑡 = |3 − 6| = 3 hours.

Category Distance. Category distance, 𝑑𝑐 , is quantified using a multi-

level hierarchy. (We use three, although any number of levels can

be used.) Figure 5 illustrates how 𝑑𝑐 varies across hierarchical lev-

els, relative to the leftmost level 3 (white) node. We define cat-

egory distance to be symmetric (i.e., 𝑑𝑐 (Shoe Shop, Shopping) =

𝑑𝑐 (Shopping, Shoe Shop). If two POIs or regions do not share a level
1 category, we deem them to be unrelated and 𝑑𝑐 = 10 (indicated

by the dotted line and purple node in Figure 5).

Combining Distances. Distance functions are combined as follows:

𝑑 (𝑟𝑎, 𝑟𝑏 ) =
(
𝑑𝑠 (𝑟𝑎, 𝑟𝑏 )2 + 𝑑𝑡 (𝑟𝑎, 𝑟𝑏 )2 + 𝑑𝑐 (𝑟𝑎, 𝑟𝑏 )2

)
1/2

(15)

To determine the ‘distance’ between two 𝑛-grams, we use element-

wise summation. For example, the distance between two bigrams—

𝑤𝑖 = {𝑖1, 𝑖2} and𝑤 𝑗 = { 𝑗1, 𝑗2}—is calculated as 𝑑 (𝑖1, 𝑗1) + 𝑑 (𝑖2, 𝑗2).
More generally, if𝑤1 and𝑤2 are two 𝑛-grams:

𝑑𝑤 (𝑤1,𝑤2) =
∑𝑛
𝑎=1 𝑑 (𝑖𝑎, 𝑗𝑎) (16)
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Figure 5: 𝒅𝒄 values, relative to left-most level 3 node

6 EXPERIMENTAL SET-UP
Our experiments seek to: a) analyze our mechanism and gather

insights from its behavior; b) compare our approach to compa-

rable alternatives; and c) demonstrate the practical utility of our

mechanism in the context of application-inspired queries.

6.1 Data
We use a range of real, synthetic, and semi-synthetic trajectory

datasets. There is a chronic lack of high quality, publicly available

POI sequence data. Hence, we augment existing real datasets to

make them suitable for a comprehensive evaluation.

6.1.1 Real Data. We combine Foursquare check-in [45] and his-

toric taxi trip [42] data, both from New York City. The set of POIs is

taken from all POIs that appear in the raw Foursquare dataset, from

which we take the |P | most popular as our set P. We concatenate

the pick-up and drop-off locations of each taxi driver’s daily trips

in order to protect their business-sensitive movements. We match

the co-ordinate data with the nearest POI. If no POIs within 100m

are found, we discard the point. We clean the data by removing

repeat points with the same venue ID or exact latitude-longitude

location. Where points occur less than 𝑔𝑡 minutes apart, we remove

all but one point at random. For category information, we use the

publicly available Foursquare category hierarchy [16] to assign a

single category to each POI. We manually specify opening hours

for each broad category (e.g., ‘Food’, ‘Arts and Entertainment’), and

set all POIs of that (parent) category to have those hours. However,

the mechanism is designed to allow POI-specific opening hours.

6.1.2 Semi-Synthetic Data. We use Safegraph’s Patterns and Places

data [41] to semi-synthetically generate trajectories. We randomly

determine trajectory length using a uniform distributionwith bounds

(3,8), and the start time using a uniform distribution with bounds

(6am, 10pm). The starting POI is selected at random from the popu-

larity distributions of the day/time in question. We sample from the

distribution of dwell times at each POI to determine the time spent

in one location, and we sample the time spent traveling to the next

POI uniformly from (0, 60) minutes. The next POI is sampled at

random, based on the popularity distribution at the expected arrival

time (based on the POIs that are ‘reachable’). This process continues

until a trajectory is generated. Safegraph uses the NAICS hierarchy

[7], and we use this system for the category hierarchy. Opening

hours information for POIs is sparse, and so we manually assign

general opening hours to categories, as in the Taxi-Foursquare data.

6.1.3 Campus Data. We generate trajectories based on the Univer-

sity of British Columbia campus [40]. The 262 campus buildings act



as POIs, and nine POI categories exist, such as ‘academic building’,

‘student residence’, etc. We determine trajectory length and start

time in the same way as for the Safegraph data. For each subsequent

timestep in the trajectory, we sample from a uniform distribution

with bounds (𝑔𝑡 , 120) minutes. The category of the first POI is cho-

sen at random, and the exact POI is chosen at random from all

POIs in the selected category. For each subsequent POI, the POI

is chosen from the set of reachable POIs based on the preceding

POI, the time gap, and the time of day. We artificially induce three

popular events into the synthetic trajectories by picking a point in

the trajectory, and controlling the time, POI, and category of the

trajectory point. The remainder of the trajectory is generated as

per the previously outlined method. The three popular events are:

500 people at Residence A at 8-10pm; 1000 people at Stadium A at

2-4pm; and 2000 people in some academic buildings at 9-11am.

6.1.4 External Knowledge Specification. Although we specify ex-

ternal knowledge manually, more scalable, operator-independent

methods are possible. For example, APIs of major location-based

services (e.g., Google Maps) can be used to query thousands of POIs

efficiently and cheaply. In the case of Google Maps, information

such as location, opening hours, category, price levels, etc. can be

obtained directly through their API. This information can be stored

in the POI-level database, with which the mechanism interacts.

6.1.5 Pre-Processing Costs. The pre-processing necessary for our

experiments is split into three parts: (a) POI processing, hierarchical

decomposition, and region specification; (b) trajectory composition;

and (c) trajectory filtering. Part (a) is a one-time operation that

creates the necessary data structures. The impact of specifying

external knowledge is negligible as the data structures (e.g., R,
W𝑛

) need to be created regardless. Figure 7 shows the runtime

costs for pre-processing step (a) for the two large-scale datasets. The

runtime is heavily dependent on the size of P, but less influenced by

the reachability constraint. It is independent of other variables, such

as trajectory length and privacy budget. Although it is a one-time

operation, localized updates can be performed to reflect changes

in the real world (e.g., changes in POI opening times, new roads

affecting reachable POIs). Despite the large runtime, we argue that

it is an acceptable cost, especially as it is a one-time process. Parts

(b) and (c) are only necessary as we are simulating the perturbation

of thousands of trajectories. In a practical setting, parts (b) and (c)

are negligible as the trajectory data is created by each user and, by

definition, a real trajectory should satisfy reachability and other

feasibility constraints. If there are infeasible aspects in a trajectory,

smoothing operations can be performed in sub-second time.

6.2 Experimental Settings
We set 𝑔𝑡 = 10 minutes, 𝑛 = 2 for all 𝑛-gram-based methods, and

|P | = 2,000. We set 𝜖 = 5, in line with other real-world deployments

of LDP by Apple [17] and Microsoft [18]. We assume all travel is

at 4km/hr (campus data) and 8km/hr (Taxi-Foursquare and Safe-

graph data). These speeds correspond to approximate walking and

public transport speeds in cities, once waiting times, etc. have been

included. We consider the effects of varying these parameters in

Section 7.2. We use Haversine distance throughout. We filter T to

remove trajectories that do not satisfy the reachability constraint

or where POIs are ‘visited’ when they are closed. In general, the

size of T (once filtered) is in the range of 5,000-10,000.

When creating STC regions, we divide the physical space using

a 𝑔𝑠 × 𝑔𝑠 uniform grid. The finest granularity we consider is 𝑔𝑠 = 4,

and we use coarser granularities (𝑔𝑠 = {1, 2}) when performing

spatial merging. We use the first three levels of the Foursquare and

NAICS category hierarchies (for the Taxi-Foursquare and Safegraph

data, respectively), and use the category distance function outlined

in Section 5.10. Using these levels ensures that𝑑𝑐 = 10 for POIs with

completely different categories. STC regions have a default time

granularity of one hour. By default, we perform spatial merging

first, followed by time merging, and category merging, and ^ = 10.

We do not find any suitable alternatives in the literature—all

existing work is based in the centralized DP domain, or uses re-

laxed definitions of LDP. Instead, we compare to the alternative

approaches outlined in Section 5.9.

6.3 Utility Measures
We assess the accuracy of our perturbed trajectories through a

range of measures. First, we examine the distance between the real

and perturbed trajectories. We normalize the distance values by |𝜏 |
and use the term ‘normalized error’ (NE) henceforth. For this, we

use the same distance definitions as outlined in Section 5.10.

6.3.1 Preservation RangeQueries. We also examine a set of ‘preser-

vation range queries’ (PRQs). That is, for each point in each tra-

jectory, we check to see whether the perturbed POI is within 𝛿

units of the true POI. For example, a location PRQ might examine

whether 𝑝𝑖 is within 50 meters of 𝑝𝑖 . We conduct PRQs in all three

dimensions, and define the utility metric 𝑃𝑅𝜒 as:

𝑃𝑅𝜒 = 1

|T |
∑
𝜏 ∈T

(
1

|𝜏 |
∑ |𝜏 |
𝑖=1

𝜋 (𝑝𝑖 , 𝑝 𝑗 , 𝛿𝜒 )
)
× 100% (17)

where 𝜋 (𝑝𝑖 , 𝑝 𝑗 , 𝛿) equals 1 if 𝑑𝜒 (𝑝𝑖 , 𝑝 𝑗 ) ≤ 𝛿 , and zero otherwise.

For time PRQs, 𝑡𝑖 and 𝑡𝑖 replace 𝑝𝑖 and 𝑝𝑖 , respectively.

6.3.2 Hotspot Preservation. For each POI, spatial region, or cat-

egory, we define a spatio-temporal hotspot as the time interval

during which the number of unique visitors is above a threshold

[. A hotspot is characterized by ℎ = {𝑡𝑠 , 𝑡𝑒 , 𝑝𝑖 , 𝑐}, where 𝑡𝑠 and 𝑡𝑒
are the start and end times, 𝑝𝑖 is the POI, and 𝑐 is the maximum

count reached in the interval. Note that multiple hotspots can be

associated with the same POI if popularity changes over time (e.g.,

a train station might have hotspots during the AM and PM peaks).

We consider three spatial granularities: POI-level, and spatial

regions defined by 4× 4 and 2× 2 grids, and [ = {20, 20, 50}, respec-
tively. We consider three category granularities (i.e., each hierarchi-

cal level), and [ = {50, 30, 20}, for levels {1, 2, 3} respectively. We

quantify hotspot preservation by calculating the ‘hotspot distance’

between the hotspots in the perturbed and real data. IfH and Ĥ
are the hotspot sets in the real and perturbed data respectively, the

average hotspot distance (AHD) between sets is:

𝐴𝐻𝐷 (H , Ĥ) = 1���Ĥ��� ∑ ˆℎ∈Ĥ minℎ∈H
(
|𝑡𝑠 − 𝑡𝑠 | + |𝑡𝑒 − 𝑡𝑒 |

)
(18)

Note that, for each perturbed hotspot, we calculate the hotspot

distance to each real hotspot (for the same space-category granu-

larity) and report the minimum value. This protects against cases
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Figure 7: Pre-processing runtime costs

Table 2: Mean NE between real and perturbed trajectory sets

Method Taxi-Foursquare Safegraph Campus
𝑑𝑡 𝑑𝑐 𝑑𝑠 𝑑𝑡 𝑑𝑐 𝑑𝑠 𝑑𝑡 𝑑𝑐 𝑑𝑠

IndNoReach 1.44 3.81 1.99 1.47 2.87 2.14 2.06 1.35 0.87

IndReach 1.43 3.80 2.03 1.50 2.94 2.31 2.03 1.39 0.89

PhysDist 1.61 8.74 1.85 1.62 8.38 2.10 2.16 3.04 0.90

NGramNoH 1.63 4.25 2.07 1.62 3.37 2.33 2.14 1.46 0.88

NGram 1.18 1.82 2.24 0.93 1.31 2.12 1.21 0.81 0.83

in which there is not a one-to-one relationship between real and

perturbed hotspots. We exclude hotspots in Ĥ for which there is no

corresponding hotspot inH . We also record the absolute difference

between 𝑐 and 𝑐 for each hotspot pair. When averaged across all

hotspots, we obtain the average count difference, ACD.

7 RESULTS
We compare our hierarchical solution to baseline methods in terms

of NE and runtime. We also vary experimental and mechanism

parameters, before evaluating on application-inspired queries.

7.1 Baseline Comparison
7.1.1 Normalized Error. Table 2 shows the distances between the

real perturbed trajectories in all three dimensions. NGram is gen-

erally the best performing method across all datasets. Comparison

with NGramNoH demonstrates that a hierarchical approach pro-

vides accuracy benefits as well as efficiency benefits (as we will see).

The importance of including external knowledge, such as category

information, is emphasized when comparing performance with

PhysDist, which performs worse than all other methods. Perfor-

mance gains are primarily achieved in minimizing the category

distance between real and perturbed trajectories.

NGram has lower 𝑑𝑐 and 𝑑𝑡 values than all other methods, al-

though it performs less well (comparatively) when analyzing 𝑑𝑠 .

This indicates that, although the category and time dimensions of

the STC region merging seem well-suited, the spatial merging may

be too coarse. Less merging in the spatial dimension would help

to minimize accuracy losses here, although a moderate decrease

in efficiency would have to be tolerated. Space limitations prohibit

deeper analysis of different STC region merging approaches.

7.1.2 Runtime Analysis. Table 3 shows the average runtime of each

perturbation method, including a breakdown of time spent on each

stage of the mechanism. The ‘Other’ column incorporates over-

heads and mechanism stages unique to one perturbation method

(e.g., time smoothing in IndNoReach and IndReach, or the POI-

level reconstruction in NGramH). As expected, IndNoReach and

IndReach are exceptionally quick as they rely solely on indexing

operations. For the remaining mechanisms, the majority of the run-

time is reserved for solving the optimization problem during the

trajectory reconstruction phase. All other phases are performed in

sub-second times. This demonstrates that even quicker results are

feasible if time is spent selecting the best LP solver and tuning the

optimization parameters – aspects of work that were beyond the

scope of this paper. Importantly, however, NGram complements its

accuracy superiority with efficiency prowess over NGramNoH and

PhysDist, being nearly two and four times faster on average, re-

spectively. The performance gain is primarily achieved from having

a smaller optimization problem as a result of STC region merging.

7.2 Parameter Variation
We now examine how performance is influenced by the trajec-

tory characteristics, and the mechanism or experiment parameters.

Figures 8 and 9 show the variation in NE and runtime, respectively.

7.2.1 Trajectory Length. Figures 8a and 8e show an increase in er-

ror as trajectory length increases. NGram consistently outperforms

other methods, which are broadly comparable in accuracy terms,

with the exception of PhysDist. This is because 𝜖 ′ decreases as |𝜏 |
increases, which decreases the likelihood that the true 𝑛-gram is

returned. Although the reconstruction stage seeks to minimize the

effects of this, the reconstruction error is defined with respect to the

perturbed 𝑛-grams (not the real 𝑛-grams), which limits the ability

for the mechanism to correct itself. An alternative privacy budget

distribution would be to assign a constant 𝜖 ′ value for each pertur-

bation, but this means trajectories experience a different amount

of privacy leakage (i.e., 𝜖 = (𝑛 + |𝜏 | − 1)𝜖 ′).
Figures 9a and 9e show how the runtime changes with trajec-

tory length. As expected, IndNoReach and IndReach show little

runtime variability. Of the optimization-based approaches, NGram

is consistently the fastest method, and its rate of increase as |𝜏 |
increases is lower than other approaches. Finally, as most trajecto-

ries were less than eight POIs in length, NGram produces output

trajectories in a reasonable time for the vast majority of trajectories.

7.2.2 Privacy Budget. Figures 8b and 8f show how NE is influenced

by 𝜖 . All methods produce expected error profiles—as 𝜖 increases,

the error decreases—although this behavior is less notable for Phys-

Dist. When 𝜖 < 1, the drop-off in utility is less pronounced. This

behavior is likely to be indicative of the DP noise overwhelming

the characteristics of the true data (i.e., the output data offers little

value due to the added noise). Hence, we recommend setting 𝜖 ≥ 1

as a ‘starting point’ in applications of our solution.

Importantly, Figures 9b and 9f show that the runtime of NGram

is relatively immune to the privacy budget, which indicates that

the scale of the optimization problem is unaffected by the privacy

budget. Most remaining methods also exhibit this immunity, al-

though PhysDist does not, which further emphasizes the benefits

of including external information in trajectory perturbation.



Table 3: Average runtime in seconds; breakdown by main mechanism stages; values of 0.000s indicate runtimes that are less
than 10-3s; sum of individual runtime stages may not equal ‘Total’ due to rounding

Method
Taxi-Foursquare Safegraph

Perturb Reconst. Optimal Other Total Perturb Reconst. Optimal Other TotalPrep. Reconst. Prep. Reconst.

IndNoReach 0.005 – – 0.714 0.720 0.006 – – 0.786 0.791

IndReach 0.005 – – 0.000 0.006 0.005 – – 0.000 0.006
PhysDist 0.449 0.497 67.618 0.000 68.564 0.431 0.473 60.561 0.000 61.464

NGramNoH 0.446 0.561 30.872 0.000 31.879 0.426 0.509 24.389 0.000 25.325

NGram 0.056 0.132 4.892 0.502 5.582 0.126 0.235 3.196 0.178 3.735
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Figure 8: Normalized error as experimental settings vary;
Figures 8a-8d use Taxi-Foursquare (T-F) data, Figures 8e-8h
use Safegraph (SG) data, and Figure 8i uses Campus data

7.2.3 Size of POI Set. Figures 8c and 8g show the effect that |P |
has on NE. We omit PhysDist and NGramNoH when |P | = 8,000,

owing to their high runtime. Interestingly, the error profiles are

relatively immune to the effects of changing |P |. This suggests that
the optimal reconstruction phase can effectively identify the best

trajectory from the perturbed 𝑛-grams. Figure 9c and 9g show a

moderate runtime increase forNGram, which still perturbs trajecto-

ries in a reasonable time, even for large POI sets. In all𝑛-gram-based
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Figure 9: Average runtime as experimental settings vary; Fig-
ures 9a-9d use Taxi-Foursquare (T-F) data, Figures 9e-9h use
Safegraph (SG) data, and Figure 9i uses Campus data

methods, at least 95% of runtime is spent during reconstruction, in-

dicating the area of focus if substantial time-savings are necessary.

7.2.4 Reachability Constraint. We experiment with assumed travel

speeds of {4, 8, 12, 16}km/hr, and we also consider imposing no

reachability constraint (i.e., \ = ∞). Error increases as the reacha-

bility constraint becomes less strict or is removed entirely (Figures

8d and 8h). This is because more 𝑛-grams are feasible and so the

likelihood of the true 𝑛-gram being returned is reduced. NGram
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Figure 10: Variation in 𝑷𝑹𝝌 values as 𝜹𝝌 changes

consistently outperforms all other methods in accuracy terms and,

in terms of runtime, it is relatively immune to changes in assumed

travel speed, unlike other 𝑛-gram approaches (Figures 9d and 9h).

Importantly, NGram is up to 31% better than other methods when

the reachability constraint is applied, and it remains up to 22% better

than other methods when the reachability constraint is omitted.

7.2.5 𝑛-gram Length. We consider 𝑛-grams of length {1, 2, 3} for
the three 𝑛-gram-based methods, using the Campus data. The NE

and runtime results are shown in Figures 8i and 9i, respectively.

NGram consistently outperforms other methods for all values of

𝑛, and, for NGram, 𝑛 = 2 offers the best results. This is to be

expected given the trade-off between capturing more information

between neighboring points (achieved with high 𝑛) and the division

of 𝜖 and sensitivity of the distance function (where low 𝑛 is good).

As expected and discussed in Section 5.8, runtime costs start to

become undesirable when 𝑛 = 3, supporting our recommendation

that bigrams should be used in most real-world applications.

7.3 Application-Inspired Queries
Figure 10 shows the results for the PRQs for each dimension. For

space and time PRQs, all methods perform similarly, although

NGram slightly outperforms the other methods in general. There is

a more notable difference in performance for category PRQs, with

NGram clearly superior for all 𝛿𝑐 values. Interestingly, there is an

evident step at 𝛿𝑐 = 3.5, which suggests strong preservation of

category within levels 2 and 3, which demonstrates robustness in

our solution. The ability to preserve the general category of POIs

indicates the solution’s suitability for societal contact tracing as

relevant agencies can, say, advise people who have recently visited

sports stadia to monitor their health. Table 4 shows the AHD and

ACD values under default settings (AHD is in hours, ACD has no

units). NGram is much better than other methods in preserving

the temporal location of hotspots. Again, PhysDist performs worst

of all and the remaining methods are broadly comparable. Inter-

estingly, NGram performs less well when considering ACD values.

This suggests that, while hotspots are broadly preserved in time,

they are ‘flatter’ in the perturbed trajectory sets. In practice, pre-

serving the spatio-temporal location of hotspots will probably be

more important to policy makers and researchers than preserving

the hotspot strength (i.e., the maximum number of unique visitors).

Based on these results and those in Section 7.2.2, we recommend

𝜖 ≥ 1 for most practical applications.

Table 4: AHD and ACD values for default trajectory sets

Method Taxi Safegraph Campus
AHD ACD AHD ACD AHD ACD

IndNoReach 1.58 8.21 2.52 13.07 2.36 15.72
IndReach 1.72 9.64 2.54 9.07 2.54 17.83

PhysDist 2.22 10.76 3.34 16.24 4.38 23.48

NGramNoH 1.71 9.36 2.81 11.25 3.29 18.23

NGram 1.49 13.53 2.01 16.30 2.03 18.74

8 FURTHERWORK
We have developed an efficient and scalable 𝑛-gram-based method

for perturbing trajectory data in accordance with LDP. However,

there are a number of areas in which our solution can be extended,

and these form the basis for future work for us and others. Although

the external knowledge we use is limited to the data that is widely

available, our framework can accommodate other data sources

without difficulty. For example, temporally-varying POI popularity

and POI-specific opening hours can be incorporated easily. Less-

structured data (e.g., inferred popularity from public comments)

could also be incorporated into the semantic distance function.

We anticipate that incorporating more, richer data sources would

further enhance utility, without negatively affecting efficiency. POI

attributes can also be extended to a personalized LDP setting (e.g.,

the privacy level of a hospital differs if one is a doctor or patient).

Whereas the focus of this paper has been on devising a general

approach for trajectory sharing, our solution can be adapted for

specific applications or to consider the setting where single location

points are shared continuously. Applications with specific utility

aims may necessitate tuning of parameters or distance functions

which is another direction of future work. Our problem framework

and solution can also be applied to any notion of trajectory in

space-time. To illustrate this, consider sharing shopping habits (e.g.,

credit card transactions). Here, P represents the set of purchasable

products, with attributes such as category, price, etc. We can exploit

intrinsic hierarchies such that R𝑐 represents the set of stores from

which products are purchased (which can be online or physical

stores). The reachability constraint remains to ensure that adjacent

stores in 𝜏 are reachable in the real world (as is currently done

to identify and prevent credit card fraud). Online stores would

always be ‘reachable’ given their non-physical presence. Other

concepts, such as utility-enhancing semantic distance functions

and the impossibility of some combinations (e.g., purchasing a car

from a florist), translate naturally. Hence, this framework can be

applied more generally.
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