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Introduction

Mathematical models are a powerful tool to describe and 
assess the body’s response to food intake in people with nor-
mal glucose tolerance as well as prediabetes and type 2 dia-
betes mellitus (T2DM). These models typically utilise 
glucose and insulin data after an oral glucose intake for 
parameter estimation. They have contributed significantly to 
the understanding of the metabolic processes responsible for 
the loss of glycaemic control.1-4 Despite this success, the 
application of any of the proposed models in clinical prac-
tice, that is, for the diagnosis or treatment of individuals with 
impaired glucose tolerance, has yet to be seen. This lack of 
clinical application can mainly be attributed to the high cost, 
unreliability and dependence on venous access of insulin 

measurements, prohibiting widespread clinical or ambula-
tory insulin data collection.5,6 This paper thus aims to develop 
a glucose-only model (GOM) that describes postprandial 
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Abstract
Background: Current mathematical models of postprandial glucose metabolism in people with normal and impaired glucose 
tolerance rely on insulin measurements and are therefore not applicable in clinical practice. This research aims to develop a 
model that only requires glucose data for parameter estimation while also providing useful information on insulin sensitivity, 
insulin dynamics and the meal-related glucose appearance (GA).

Methods: The proposed glucose-only model (GOM) is based on the oral minimal model (OMM) of glucose dynamics and 
substitutes the insulin dynamics with a novel function dependant on glucose levels and GA. A Bayesian method and glucose 
data from 22 subjects with normal glucose tolerance are utilised for parameter estimation. To validate the results of the GOM, 
a comparison to the results of the OMM, obtained by using glucose and insulin data from the same subjects is carried out.

Results: The proposed GOM describes the glucose dynamics with comparable precision to the OMM with an RMSE of 
5.1 ± 2.3 mg/dL and 5.3 ± 2.4 mg/dL, respectively and contains a parameter that is significantly correlated to the insulin 
sensitivity estimated by the OMM (r = 0.7) Furthermore, the dynamic properties of the time profiles of GA and insulin 
dynamics inferred by the GOM show high similarity to the corresponding results of the OMM.

Conclusions: The proposed GOM can be used to extract useful physiological information on glucose metabolism in subjects 
with normal glucose tolerance. The model can be further developed for clinical applications to patients with impaired glucose 
tolerance under the use of continuous glucose monitoring data.
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glucose dynamics and provides physiological information 
while only relying on glucose data for parameter estimation.

Excluding a vast number of GOMs for type 1 diabetes 
mellitus,7 where information on exogenous insulin adminis-
tration can be used during model identification, a compara-
tively small number of GOMs applied to subjects with 
normal and impaired glucose tolerance has been published. A 
subgroup of these GOMs is based on the description of a 
harmonic oscillator with an impulse input. While this signifi-
cantly limits their physiological interpretation, these GOMs 
have been shown to contain parameters that are dependent on 
glucose tolerance.8-11 Other GOMs are based on physiologi-
cal principles, but can only roughly approximate the post-
prandial glucose dynamics and have been applied to a very 
limited number of subjects.12,13 The main weakness of all 
mentioned GOMs, however, is that their results have not 
been validated against the results of a model known to pro-
vide accurate physiological information. Specifically, this 
pertains to insulin sensitivity, insulin dynamics and the meal-
related appearance of glucose (GA). To overcome this weak-
ness, this work will develop a new GOM based on and 
validated by the results of the oral minimal model (OMM) of 
glucose dynamics, identified from glucose and insulin data.14 
The OMM has been validated by gold-standard reference 
methods in the past and provides an estimation of insulin 
sensitivity and GA.15-17 By identifying the novel GOM and 
the OMM from data of the same subjects, it is possible to 
validate and compare both models, particularly with respect 
to the GOM’s ability to provide physiological information on 
insulin sensitivity, insulin dynamics and GA.

Methods

Data Description

The dataset used in this work was collected by Ahmed et al.18 
and Nuttall et al.19 and is publically accessible.20 It contains 
plasma glucose and insulin profiles from subjects with nor-
mal glucose tolerance (NGT) collected over 12 hours in a 
single day, where subjects consumed three identical meals 
four hours apart. Blood samples were collected at the same 
time in each subject after meal consumption at 0, 2, 5, 10, 20, 
30, 40, 50, 60 min, then every 15 min up to 120 min and then 
every 30 min up to 240 min. One additional fasting sample 
was collected before breakfast, that is, at −15 min.

In this work glucose and insulin profiles from 22 sub-
jects consuming two different meal types of standard 
(STAND) and high carbohydrate (HCHO) macronutrient 
composition are used, leading to a total of 66 recorded 
responses. The average glucose and insulin profiles are 
shown in Figure 1. The absolute amount of macronutrients 
provided was scaled according to the body weight and 
female subjects received 12.5% fewer calories per body 
weight. Details on the subjects and consumed meals are 
provided in Table 1.

Model Formulation

The GOM proposed in this work is based on the following 
generalised formulation of the OMM14:

Table 1.  Details on the Subject Characteristics and 
Different Meal Types Containing Standard (STAND) and High 
Carbohydrate (HCHO) Mixtures of Macronutrient Content.

STAND HCHO

Number of subjects 
(females)

12 (5) 10 (4)

Age 23 ± 1 25 ± 3
Body weight males  

(females) [kg]
76 ± 5 (59 ± 1) 77 ± 4 (59 ± 5)

Meal composition [% 
CHO/Fat/Protein]

40/49/11 63/27/10

CHO per meal (females)  
[g/kg body weight]

1.2 (1.1) 2 (1.8)

Calories per meal (females) 
[kcal/kg body weight]

13 (11) 13 (11)

The meal composition is given in percentage of calories contained in the respective 
macronutrient content. Data are given as mean ± standard error.

Figure 1.  Mean and standard deviation (shaded areas) of 
the glucose and insulin profiles above basal levels for the two 
meal types of (a) standard (STAND) and (b) high carbohydrate 
(HCHO) composition utilised in this paper. The basal level is 
calculated for each subject individually as the average of the −15, 
0, 2 and 5 min measurement points. The vertical dashed lines 
indicate the time of meal consumption.
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The glucose concentration, its basal level and initial condi-
tion are represented by G , Gb and G0  (mg/dL), respectively. 
Parameters p1 (min−1) and V  (dL/kg) represent the glucose 
effectiveness and distribution volume of glucose relative to 
body weight, respectively. The state X  (min−1) and its ini-
tial condition X 0 represent the insulin action in a remote 
compartment with parameter p2 (min−1) governing its decay 
dynamics and SI  (min−1 per mU/L) representing insulin 
sensitivity. The insulin concentration I  (mU/L) and its 
basal level Ib  are considered to be known, error-free inputs. 
The input function RaPL (mg/kg/min) describes the meal-
related, posthepatic GA and is described by a piecewise lin-
ear function with seven breakpoints at adjustable heights 
and a fixed area under the curve (AUC), calculated based 
on the carbohydrate content of the meal (Figure 2). The 
function Rap  represents the persisting GA originating from 
a previously consumed meal. The measurement process of 
the glucose levels is considered to be affected by an addi-
tive, normally distributed error with zero mean and a known 
standard deviation. The unknown parameters to be esti-
mated from glucose and insulin data are p1, p2, SI  and the 
adjustable heights of GA function RaPL. The details of the 
model and parameter estimation procedure have been 
described previously.14

To formulate a GOM based on the OMM, it is necessary 
to remove the measured insulin levels, that is, I  and Ib  as a 
known input. For that, the following model is proposed:
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where the GA function RaLN  is defined as follows:
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The process of observing the glucose levels is considered to 
be identical to the OMM (details in section 1.2 of the supple-
mentary information). Furthermore, the parameters p1, p2, Gb
, G0  and V  as well as the variables G and Rap  from expres-
sions (3) to (4) keep the same interpretation as in the OMM. 
Instead of the piecewise linear GA function RaPL , the GOM 
features the fully differentiable function RaLN  in expressions 
(6) to (7) that is based on two overlapping components 
defined by a modified structure of the log-normal distribution 
(Figure 2). The function has a total fixed AUC of A  (mg/kg) 
which is calculated from the carbohydrate content of the 
meals and has parameters T1  (min), T2  (min), W1 and W2 gov-
erning the peak times and general widths of the respective 
components. The parameter RH  is restricted to the range (0,1) 
which ensures positivity of RaLN  and determines the contri-
butions of each component to the total AUC. The function 
RaLN  has been suggested previously as a replacement for the 
piecewise linear function RaPL in the context of the OMM, 
where additional details on the function can be found.14

The main adaptation of the GOM (3) to (7) in comparison 
to the OMM (1) to (2) is the introduction of the variable  
Z  (mg/dL) in place of the insulin profile above baseline 

Figure 2.  Example of the piecewise linear GA function RaPL  
used in the oral minimal model (OMM) and the log-normally 
based GA function RaLN  used in the glucose-only model 
(GOM) with associated 95% confidence intervals (shaded area). 
The confidence intervals overlap for 75% (OL value) of the 
response duration of 240 min. The dashed lines indicate the two 
components of RaLN .
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I Ib− . This adaptation results in the fact that the state X  
(min−1) and its initial condition X 0 in expression (4) of the 
GOM no longer represent the active insulin. Instead, the state 
X  is interpreted as a general glucose-lowering effect and the 
parameter SG (min−1 per mg/dL) replaces the insulin param-
eter SI  in the OMM. It is thus expected that the parameter SG 
contains similar information as the insulin parameter SI .

The formulation of the variable Z  in expression (5) is 
based on the general similarity between glucose and insulin 
dynamics, especially during the initial rise of a meal response, 
as demonstrated in Figure 1. This similarity allows the 
assumption that the information contained in the insulin data 
can be partially recovered from the glucose data. A similar 
supposition is made in several models of insulin secre-
tion,21-24 where glucose levels are considered to be a known 
input and the primary driver of insulin secretion and there-
fore insulin levels. Despite the similarity between glucose 
and insulin dynamics, Figure 1 reveals two main differences 
that need to be considered by the GOM.

Firstly, it is far more prevalent for glucose levels to fall below 
the basal level Gb  than it is for insulin levels to fall below Ib . 
This effect is incorporated by using the function ZPOS  (mg/dL) 
in expression (5), shown in Figure 3. The function has an 
approximately linear relationship to its input G t( ) for 
G t Gb( ) > , but approaches zero for G t Gb( ) < , with the param-
eter α  (dL/mg) governing the shape of the transition (Figure 3). 
Secondly, the average glucose and insulin profiles above base-
line in Figure 1 indicate that, after a simultaneous rise, insulin 
levels often remain elevated for longer and decay slower toward 
the baseline levels in comparison to glucose levels. This is espe-
cially prominent in all responses to the STAND meal and after 
breakfast in the HCHO meal. The GOM accommodates this 
behaviour by including the GA function RaLN  in the description 
of Z . This allows the variable Z  to remain elevated even when 
glucose levels have reached basal levels and the contribution of 
ZPOS  vanishes. The parameter β  (min) acts as a unit conversion 
factor and adjusts the strength of the coupling between RaLN  
and the variable Z . A comparable feature is also included in the 
previously mentioned models of insulin secretion,22-24 where the 
rate of change of glucose levels, which is highly dependent on 
RaLN  as indicated by expression (3), is thought to affect insulin 
secretion and therefore its levels.

Parameter Estimation

The dataset contains three consecutive meal responses from 
each subject that are considered separately during parameter 
estimation in the GOM, that is, one set of unknown parame-
ters is estimated from every meal response. To incorporate 
the overlapping effects of consecutive meals, the parameter 
estimation procedure previously described for the OMM is 
utilised.14 The procedure adapts the initial conditions of the 
states, G0  and X 0 , as well as the persisting GA Rap  based 
on the time of meal consumption, while keeping the basal 
level of glucose Gb  constant throughout the day (details in 
section 1.1 of the supplementary information).

The following parameters of the GOM (3) to (7) are con-
sidered for estimation: system parameters p1, p2, SG  and β , 
and parameters T1, T2 , W1, W2 and RH  governing the log-nor-
mally based GA function RaLN . Using the observability rank 
criterion,25,26 it can be shown that these parameters are struc-
turally locally identifiable (details in section 1.3 of the sup-
plementary information). The shape parameter α  of ZPOS  is 
fixed to a value of 0.1 dL/mg as a stochastic sensitivity analy-
sis revealed that it is practically unidentifiable, that is, it can-
not be estimated with an acceptable level of precision (details 
in section 1.4 of the supplementary information). The value 
of 0.1 dL/mg is chosen as it approximates the relationship 
between glucose and insulin data suitably (Figure 3).

The parameter estimation is carried out using a variational 
Bayesian approach,27-29 which has been used previously to 
identify low dimensional models including the OMM.10,14,30-32 
This approach provides a probabilistic treatment of unknown 
parameters which allows the estimation of parameter uncer-
tainty and requires the specification of prior distributions 
over unknown parameters. All unknown parameters of the 
GOM are specified as log-normally distributed and charac-
terised by their median and coefficient of variation (CV) 
since the parameters are only physiologically plausible when 
positive. The exception to that is the parameter RH  which is 
restricted to the range (0,1). The details of the chosen prior 
distributions are provided in section 1.4 of the supplemen-
tary information. For the parameters p1 and p2 as well as the 
GA function parameters, the same prior distributions as in 
the OMM are used.14 For the newly introduced parameters 
SG  and β , a stochastic sensitivity analysis was carried out to 
ensure that the chosen prior distributions can capture the 
variabitly of response from the data (details in section 1.4 of 
the supplementary information). Here, it should be men-
tioned that due to the chosen GOM formulation, parameters 
β  and SG  show significant covariance, which leads to poor 
estimation precision when both parameters have wide prior 
distributions. Due to the importance of the parameter SG  for 

Figure 3.  Example of the function ZPOS  for varying values of the 
shape parameter α . Overlayed are the simulatenously measured 
glucose and insulin samples above baseline to illustrate their 
relationship approximated by the function ZPOS .
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carrying information on insulin sensitivity, its prior CV was 
chosen to be 50%, while simultaneously using a narrow prior 
distribution (CV of 10 %) for the parameter β .

Validation

The validity of the results produced by the GOM is assessed 
by comparing the corresponding results of the OMM 
obtained with the identical approach from the same dataset.14 
In particular, the following aspects are compared between 
the OMM and the GOM:

•• Model fit as assessed through the time profile of resid-
uals between the model-inferred and observed glu-
cose levels, weighted by the measurement error and 
the root mean squared residuals (RMSE).

•• Information on insulin sensitivity as assessed through 
correlation and comparison between the parameter SG  
of the GOM and parameter SI  of the OMM.

•• Agreement of the inferred time profiles of GA, that is, 
the piecewise-linear GA function RaPL  of the OMM 
and the log-normally based GA function RaLN . To 
quantify this agreement for every response, the confi-
dence interval (CI) associated with the individual GA 
profiles is inferred from the posterior distributions of 
the unknown parameters of RaPL  and RaLN . 
Subsequently, the time during which the 95 % CIs of 
RaPL  and RaLN  overlap (OL) is calculated and 
expressed as the share of the total response time of 
240 min (Figure 2). High OL percentages thus indi-
cate high similarity between RaPL  and RaLN .

•• Agreement of the time course of insulin dynamics 
represented by S I t II b( ) −   in expression (2) for the 
OMM, abbreviated as YOMM , and inferred by S Z tG ( )  
in expression (4) by the GOM, abbreviated as YGOM . 
As these quantities enter the description of the state X  
at the same position in both OMM and GOM, YGOM  
could carry information on insulin dynamics. 
Analogous to the GA profiles, the agreement of YOMM  
and YGOM  is quantified as the share of time during 
with the 95 % CIs overlap. To calculate the CI for 
YOMM , the reported insulin assay CV of 13 % is used.18

Results

The parameter estimation of the GOM was carried out in all 
66 recorded responses (22 subjects with 3 responses each), 
and the individual results are provided in section 2.1 of the 
supplementary information. The time profile of weighted 
residuals between model-inferred and observed glucose lev-
els is displayed in Figure 4. These results demonstrate that 
the model is capable of describing the glucose data well, as 
all average weighted residuals are contained within the 
−1/+1 range. Additionally, it is demonstrated that in com-
parison to the OMM results, the GOM shows a smaller error 
in the first 30 min of the responses. The RMSE values of the 

GOM are statistically equivalent to the RMSE values of the 
OMM, that is, 5.1 ± 2.3 mg/dL for the GOM and 5.3 ± 2.4 mg/
dL for the GOM (P = .73).

The comparison between parameter SG of the GOM and 
parameter SI  of the OMM are displayed in Figure 5. Firstly, 
the parameter SG  can be estimated with good precision as 

Figure 4.  Mean and standard deviation of weighted residuals 
between the model-inferred and observed glucose levels for the 
oral minimal model (OMM) and the glucose-only model (GOM) 
identified on the same dataset.

Figure 5.  Results of the parameter SG  from glucose-only model 
(GOM) and the corresponding insulin sensitivity parameter SI  
from oral minimal model (OMM). The results are compared 
between the meals of standard (STAND) and high carbohydrate 
(HCHO) composition. Plot (a) shows a correlation and linear 
regression analysis with the horizontal and vertical lines for each 
data point indicating the one-sigma range of the posterior log-
normal parameter distribution. Plots (b, c) show boxplots of SI  
and SG  separated by meal type and subject sex.
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indicated by a small posterior CV of 9.0 ± 2.5 % which is 
comparable to the posterior CV of SI  (6.8 ± 5.1 %). The val-
ues of SG  and SI  are significantly correlated with r = 0.59 
and r = 0.7 for the STAND and HCHO meals, respectively 
(Figure 5a). The posterior results of all parameters are pro-
vided in section 2.2 of the supplementary material.

GA profiles from the OMM (RaPL) and the GOM (RaLN ) 
are presented in Figure 6. The average profiles in plots (a) 
and (b) display similar dynamic properties, that is, the 
shoulder of GA in the STAND meal and secondary peak in 
the HCHO meal are correctly inferred by the GOM. There 

is, however, a larger difference in the first 30 min of the 
response due to the different mathematical formulations 
of the GA functions. The distribution of OL values in 
Figure 6c indicates no difference between meal types 
(P = .63) and shows that a majority of OL values lie above 
65 %, indicating a good agreement between inferred GA 
profiles.

Analogous to the GA profiles, the time courses of YOMM  
and YGOM  are compared in Figure 7. The average profiles in 
plots (a) and (b) show similar dynamic properties, e.g. a 
shoulder after the initial rise in the case of the HCHO meal. 

Figure 6.  Comparison between the glucose appearance (GA) 
profiles estimated by the piecewise linear function RaPL  in the 
oral minimal model (OMM) and the log-normally based function 
RaLN  in the glucose-only model (GOM). Plot (a) displays to the 
results from the meal of standard composition (STAND) and 
plot (b) to the meal of high carbohydrate composition (HCHO). 
The results are given as mean (solid line) and standard deviation 
(shaded area) of all responses. Plot (c) gives boxplots of the share 
of time during which the 95% confidence intervals (CIs) of RaPL  
and RaLN  overlap (OL values).

Figure 7.  Comparison between the estimated profiles of 
Y S I t IOMM I b= ( ) −  in the oral minimal model (OMM) and 
Y S Z tGOM G= ( ) in the glucose-only model (GOM). Plot (a) shows 
to the results from the meal of standard composition (STAND) 
and plot (b) to the meal of high carbohydrate composition 
(HCHO). The results are given as mean (solid line) and standard 
deviation (shaded area) of all responses. Plot (c) gives boxplots 
of the share of time during which the 95% confidences intervals 
(CIs) of YOMM  and YGOM overlap (OL values).
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This agreement is confirmed by the distribution of OL values 
in Figure 7c. Of note is that the OL values of the HCHO meal 
are increased in comparison to the STAND meal (P = .08), 
which could be connected to the increased correlation 
between SI  and SG  estimates in the HCHO meal.

Discussion

A glucose-based model to describe postprandial glucose 
responses from different meals in subjects with NGT is pre-
sented. This new GOM has been formulated and validated 
using the physiology-based OMM. Analysing the weighted 
residuals (Figure 4) and RMSE, it can be concluded that the 
GOM can describe the glucose data equally well and possess 
sufficient flexibility to account for the large variability in the 
responses (Figure 1).

The ability of the GOM to provide information on insulin 
sensitivity is indicated by a significant correlation between 
the parameters SG and SI  (Figure 5a). Especially for the 
HCHO meal, the correlation coefficient of 0.7 is comparable 
to commonly used surrogate indices of insulin sensitivity 
such as HOMA-IR and the Matsuda index, where correlation 
values of 0.65 and 0.73, respectively, against clamping 
results have been reported.33 Further evidence for the infor-
mative value of the parameter SG  is given by the fact that it 
displayes the same differences between male and female 
subjects for the different meal types, as the parameter SI  
(Figure 5b and 5c). In contrast, the interpretability of SG  
values across meal types is weakened by the fact that there is 
a significant difference between meal types (P = .04) that is 
not observed in SI  values (P = .45).

There are two inherent limitations in the approach to 
using only glucose data to assess insulin sensitivity. Firstly, it 
could be rarely the case that, the dynamic properties of glu-
cose and insulin levels, e.g. the timing and existence of 
peaks, can exhibit very little similarity, thus violating one of 
the modeling assumptions. The second limitation stems from 
the fact that absolute levels of insulin are not always corre-
lated to absolute glucose levels, even when the dynamical 
properties of both signals are identical. This means that two 
subjects could have quantitatively similar glucose profiles 
but exhibit vastly different absolute insulin levels and thus 
also have different insulin sensitivities. Detecting this differ-
ence using glucose data alone is thus an inherent limitation.

In terms of GA, the results show that average profiles 
inferred by the GOM and OMM show very similar dynamic 
properties, with a larger difference in the first 30 min of the 
response (Figure 6). As the weighted residuals of the GOM 
are closer to zero in that same period (Figure 4), a more real-
istic estimation of GA with the log-normally based function 
RaLN  and the GOM during this period is indicated. A very 
similar observation was made when RaLN  was used in con-
junction with the OMM.14

Similar to GA, the GOM’s ability to infer information on 
insulin dynamics is demonstrated by the similarity of aver-
age profiles of YOMM  and YGOM  (Figure 7). To assess the 
agreement between the individual results of GA and insulin 
dynamics, the OL value was introduced. The results of both 
GA and insulin dynamics indicate a satisfactory agreement 
but also exhibit high variability between responses (see 
Figures 6c and 7c as well as the individual results in the sup-
plementary information). This variability in OL values 
reflects the variability in overall glucose and insulin 
responses (Figure 1). The interpretability of GOM results is 
thus less reliable on an individual level.

A general weakness of the current study is the use of a 
dataset that only contains subjects with NGT. To assess the 
model’s applicability in patients with prediabetes and T2DM, 
further validation and adaptation with appropriate datasets, 
e.g. from Peter et al.34 is required.

While the dataset used in this research contained glucose 
data from blood sampling collected in a controlled clinical 
setting, it would also be possible to identify the proposed 
GOM from more easily obtainable, ambulatory datasets. For 
instance, glucose profiles recorded with continuous glucose 
monitoring (CGM) at home, where meals are typically con-
sumed at irregular intervals and contain varying amounts of 
carbohydrates, could be used. An application of the GOM to 
these types of datasets is in part possible as the GOM fea-
tures the differentiable input function RaLN  that is indepen-
dent of the considered response duration and easily adaptable 
to meals with greatly varying carbohydrate content.

Conclusion

This paper, for the first time, proposed a glucose-based 
model for the successful extraction of useful physiological 
information on glucose metabolism in subjects with NGT, 
thereby overcoming the weaknesses of existing GOM 
approaches.8-13 The model’s independence from insulin mea-
surements and exclusive use of easily accessible data enable 
further developments and its potential application in research 
and clinical practice to a large number of subjects. In particu-
lar, the proposed model could allow a more sophisticated 
physiological interpretation of CGM profiles collected under 
ambulatory conditions. It could thus support the design of 
personalised dietary interventions in prediabetes and T2DM 
or examine the glycaemic derangement in gestational diabe-
tes mellitus.
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