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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:More than 1.6 million Severe Acute Respiratory Syndrome Coronavirus 2 (SAU : PleasenotethatSARS � CoV � 2hasbeendefinedasSevereAcuteRespiratorySyndromeCoronavirus2insentencesMorethan1:6million:::andAsweawaitwidespreadaccessto::::Pleasecheckandcorrectifnecessary:ARS-CoV-2)

tests were administered daily in the United States at the peak of the epidemic, with a signifi-

cant focus on individual treatment. Here, we show that objective-driven, strategic sampling

designs and analyses can maximize information gain at the population level, which is neces-

sary to increase situational awareness and predict, prepare for, and respond to a pandemic,

while also continuing to inform individual treatment. By focusing on specific objectives such

as individual treatment or disease prediction and control (e.g., via the collection of popula-

tion-level statistics to inform lockdown measures or vaccine rollout) and drawing from the lit-

erature on capture–recapture methods to deal with nonrandom sampling and testing errors,

we illustrate how public health objectives can be achieved even with limited test availability

when testing programs are designed a priori to meet those objectives.

Introduction

“Did you lose the keys here? No, but the light is much better here.” (Streetlight metaphor, vari-

ous attributions)
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As we await widespread access to vaccines globally and manage delays in vaccine rollout

(e.g., [1,2]), testing—used in conjunction with contact tracing and isolation—is a critical tool

for controlling the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) [3], understanding the dynamics of more contagious variants [4], and planning for future

outbreaks [5]. While testing for the virus is key to limiting transmission by enabling the early

detection and control of local outbreaks and informing vaccination strategies by providing the

parameter estimates needed for epidemiological modeling (“population-level” objectives),

tests are still primarily used for individual treatment (“individual-level” objectives). Interna-

tionally, there are some examples of testing efforts to inform population-level objectives (e.g.,

[6]). Despite widespread agreement on the need for more, and more coordinated, testing [7,8],

such efforts at the national scale appear to be lacking in the US, especially testing to inform

population-level objectives critical to pandemic vaccine rollout. With a limited, albeit growing,

number of tests, we must carefully consider who, when, where, and how often to test for virus

presence and how to interpret results to inform differing public health objectives (Table 1)

[9,10]. In this paper, we argue that current testing approaches could be further strengthened

with the strategic allocation of relatively few additional tests and symptom-based surveys. We

also argue that this approach is critical to the development of targeted disease monitoring for

national programs such as the proposed National Center for Epidemic Forecasting and Out-

break Analytics [5]. We focus on testing within the US public health system in particular but

expect the proposed approach to apply more broadly.

Objective-driven sampling

We use the “streetlight effect” metaphor (of searching where convenient) to suggest potential

problems with our use of collected statistics on Coronavirus Disease 2019 (CAU : PleasenotethatCOVID � 19hasbeendefinedasCoronavirusDisease2019inthesentenceWeusethestreetlighteffectmetaphor::::Pleasecheckandcorrectifnecessary:OVID-19) cases

for all of the various decisions requiring data. These kinds of problems extend beyond the

Table 1. Examples of objective-driven sampling strategies and their utility for individual-level versus population-level inferences.

Objective Test utility Sampling design

Individual level
Therapeutic Determine infection status and appropriate medical treatment for a

symptomatic individual

Test symptomatic individuals who self-report or individuals in

high-risk categories

Contact tracing Trigger the process of identifying persons with whom a known infected

individual has been in recent contact to test and/or quarantine contacts who

may have been infected and limit spread

Test (typically) symptomatic individuals, with subsequent tests

allocated to individuals with whom the focal individuals have had

contact

Prophylactic Determine infection status to inform entry permission (e.g., to a workplace,

airline flight, school, or event space) and decrease risk of transmission to others

in the specified group or location; determine precautions for healthcare

professionals (e.g., PPE)

Test all individuals associated with the focal location or group and

repeat periodically (e.g., for workplaces, schools, or recurring

events)

Population level
Epidemiological Estimate key epidemiological parameters (e.g., prevalence, mortality ratea, and

infection ratea) to investigate disease dynamics and parameterize projection

models

Select a random or representative subset from the population to

test (or nonrepresentative subsets and estimate sampling

probabilities)

Decision-

making

Determine effective vaccine distribution within and between populations,

assess risk for hospital planning and resource allocation (e.g., beds, ventilators,

and PPE), or evaluate the effectiveness of a public health policy aimed at

reducing transmission (e.g., mask wearing, distancing, nonessential business

closures, etc.) based on context-dependent epidemiological parameters (e.g.,

prevalence, mortality ratea, and infection ratea)

Select a random or representative subset from the population to

test (or nonrepresentative subsets and estimate sampling

probabilities)

aInference requires follow-up testing of sampled individuals.

PAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutTable1:Pleaseverifythatallentriesarecorrect:PE, personal protective equipment.

https://doi.org/10.1371/journal.pbio.3001307.t001
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current pandemic to a variety of disciplines and issues for which omnibus monitoring pro-

grams are used to meet all potential monitoring needs. We advocate an alternative approach

that focuses sample design and parameter estimation (including error correction) on meeting

specific objectives (see Fig 1). The proposed approach does not preclude the use of such tar-

geted data for secondary objectives, when appropriate, but instead seeks to ensure that at least

the primary objective(s) can be met. Further, this approach does not necessarily require the

collection of more data, but the targeted, more efficient collection of data for specified objec-

tives. The importance of tailoring sampling strategies to the question or parameter of interest

Fig 1. Objective-driven testing framework. Testing strategy design, “sampling strategy,” is part of a multistep

framework, including error correction and analysis to inform individual- or population-level public health objectives.

https://doi.org/10.1371/journal.pbio.3001307.g001
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has been demonstrated previously (e.g., for ecological monitoring as in [11–13], for human

disease prevalence as in [14], and for optimal livestock disease control as in [15]). Given that

testing for SARS-CoV-2 lacks clear guidelines, we believe there is a need for increased focus on

designing test allocation strategies based on the individual-level and population-level objective

(s) they are meant to inform (Table 1).

Location-specific numbers of COVID-19 cases and deaths, and inferred quantities such as

test positivity rates and death rates, are reported daily. Such reports dominate websites and

newsfeeds and are often interpreted as providing comparable information about the pandem-

ic’s trajectory across locations. However, the interpretation and utility of these numbers

depend on how individuals are selected for testing and on test result accuracy [9]. For example,

comparison of positivity rates or numbers of confirmed cases at 2 locations that use different

testing strategies (e.g., testing symptomatic individuals only versus symptomatic and asymp-

tomatic individuals) would likely yield differences that reflect a complicated confounding of

true differences in COVID-19 prevalence and artifactual differences due to testing strategy

(“Numerical example of misleading testing statistics” in S1 Text) and classification errors

(“Conditional probabilities of infection” and “Dealing with errors in population-level infer-

ence” in S1 Text). To meet a public health objective requiring such comparisons, we need

inference methods that properly account for differences in testing strategy and classification

errors.

We propose a strategic framework for thinking about testing in which (1) different objec-

tives of testing are clearly articulated; and (2) sampling design and subsequent data analysis are

tailored a priori to achieve these objectives, while accounting for sampling constraints and

measurement errors (Fig 1). Our focus is on the use of strategic testing for targeted disease

monitoring, in which sampling is designed to provide information used to make treatment or

control decisions. We contrast this approach with ad hoc testing, which provides a form of

convenience sampling. We illustrate how statistical methods developed primarily in wildlife

ecology can be applied to sample design and parameter estimation to meet specified objectives

for the current pandemic.

We first discuss a few representative testing objectives relevant to the monitoring of

COVID-19 in the pandemic phase. We categorize these objectives as individual- and popula-

tion-level inferences based on the decisions that test results are intended to inform (Table 1,

Fig 1). We focus on the relationship between stated objectives, how individuals are selected for

testing (“sampling”), and how errors are handled.

Inferences about individual parameters

Individual-level inferences entail efforts to assess whether a specific individual is infected with

a pathogen (Table 1). Such inferences inform decisions made about the tested individual (e.g.,

treatment, isolation, etc.). A key concern for these inferences is acting on incorrect results

given imperfect diagnostic tests. To account for imperfect tests, decisions can be based on not

just the test result (infected or not), but also on conditional probabilities of the result being

true or false. Conditional probabilities of test result accuracy (positive or negative predictive

values of a test) depend not only on test sensitivity (true positive rate) and specificity (true neg-

ative rate), but also on the population-level parameter, prevalence [16,17] (Fig 1 in [18]; “Con-

ditional probabilities of infection” in S1 Text), estimates of which depend on sampling strategy

and inference method. If readily measured individual covariates such as symptoms are associ-

ated with the probability that an individual is infected, then we model that infection probabil-

ity as a function of the covariates (see next section) and use it in place of an overall prevalence

parameter in the expressions of “Conditional probabilities of infection” in S1 Text.
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Conditional probabilities of infection, given either a positive or negative test result, are use-

ful when considering the reasons for seeking individual-level inferences: treatment of the focal

individual, quarantine and isolation decisions, safety of attending healthcare workers, or iden-

tifying prior contacts of the focal individual. If the computed probabilities admit more uncer-

tainty than desired, then error probabilities often can be reduced with additional information

provided by replicating tests on the individual (“Conditional probabilities of infection” in

S1 Text).

Inferences about population parameters

The focus of population-level inference is not on individual test results, but rather on how test

results can inform parameter estimates that characterize the entire population (e.g., preva-

lence, infection rate by age or other characteristics, reproduction number, or disease-specific

mortality rate). These estimates are needed to inform epidemiological models and evaluate

population-level decisions (e.g., to determine vaccine distribution strategies). Sampling entails

the selection of subsets of individuals for testing, and different sampling designs are required

for inferences about different population-level parameters such as prevalence (“Inferences

about population parameters” in S1 Text).

Prevalence is often defined as the proportion of individuals in a population infected at a

given point in time. The only COVID-19 surveillance data available in many countries at pres-

ent are based on sampling of symptomatic individuals. However, inferences about prevalence

and other population-level parameters are not readily extracted from such data [19,20].

When testing resources are limited, prevalence is best estimated by selecting a random or

representative (defined with respect to factors influencing the likelihood that an individual is

infected) sample of individuals for testing. The fraction of individuals testing positive provides

an estimate of prevalence (see “Inferences about population parameters” in S1 Text). But sam-

pling individuals in a random or representative manner is not typical of many standard sur-

veillance programs, and, sometimes, may not be possible at large scales. For example, much of

the current information about numbers of COVID-19 cases comes from sampling programs

in which symptomatic individuals are tested with much higher probability than asymptomatic

individuals.

An alternative approach is to select small groups of individuals in a nonrepresentative way

and to estimate the probabilities that a randomly sampled individual would appear in these

groups (e.g., using symptom-based surveys). These sampling probabilities can be incorporated

directly into inference models, permitting approximately unbiased inference despite nonrepre-

sentative sampling (Fig 2C and 2D) and can be achieved through coordination of existing tar-

geted sampling efforts or the addition of a few, targeted sampling efforts. This approach (see

“Inferences about population parameters” in S1 Text) can be viewed as a variant of “capture–

recapture” modeling (“Capture–recapture inference” in S1 Text) and has a limited history of

use in epidemiology.

As an example, consider the estimation of prevalence. The primary data source for

COVID-19 in many locations is testing of self-reported symptomatic individuals. These data

permit direct estimation of the probability that a symptomatic individual is infected. However,

tests of asymptomatic individuals will typically be too few and nonrepresentative for useful

inference. A targeted random sample can be conducted to estimate the proportion of individu-

als in the focal population that belongs to each of these 2 groups, symptomatic and asymptom-

atic individuals. Note that this step requires no additional testing, only a survey of externally

detectable symptoms (e.g., temperature readings). The individuals presenting as asymptomatic

(or a random subset of them) in this sample can then be tested to estimate infection probability

PLOS BIOLOGY
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Fig 2. The importance of objective-driven sampling strategy design. The “iceberg” problem is illustrated for 2 different sampling strategies: testing for an objective of

inference about whether or not an individual is infected to inform treatment or initiate contact tracing, etc., (sampling strategy I) and testing for an objective of

inference about population parameters such as prevalence to inform decision-making about a population-level intervention (sampling strategy II). In both strategies,

individuals above the blue “water” line are tested, and those below go untested. We attempt to estimate the prevalence or proportion of individuals infected as the

proportion infected for our sample. The total number of infected individuals in both icebergs is the same; however, the proportion infected differs substantially between

samples based on the 2 strategies. We illustrate 2 assumptions about test accuracy with the following 4 figure panels: (A) Sampling given perfect tests (i.e., the probability

of a true positive, p11, is 1, and the probability of a false positive, p10, is 0) and (B) sampling given imperfect tests. (C) We illustrate a third sampling strategy (strategy II

with capture–recapture and stratified sampling) and compare it to sampling strategy I (symptomatic individuals only) and II (symptomatic individuals + random

sample of asymptomatic individuals). Capture–recapture methods permit approximately unbiased inference in the face of false-negative and positive errors and are

combined with stratified sampling to deal with nonrandom sampling. Finally, in (D), we compare the observed proportion infected in the samples based on all 3

strategies to the actual infected proportion of the population (under both scenarios of perfect testing (as in A) and imperfect testing (as in B)). The application of

capture–recapture methods and stratification to strategy II (purple bars) provides the most accurate estimate of the true population prevalence (black bars).

https://doi.org/10.1371/journal.pbio.3001307.g002
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for this group. Estimates of these 3 parameters can be used to estimate prevalence as a derived

parameter, or all 3 data sets can be combined within a joint likelihood to estimate the preva-

lence parameter directly (“Inferences about population parameters” in S1 Text).

Even after dealing with nonrepresentative sampling, counts of individual test results are still

influenced by the diagnostic uncertainties of false-positive and negative results. The kind of

thinking that underlies the conditional probabilities of infection for individual tests can be

incorporated into models for estimating population-level parameters. Replicate testing can be

used to deal with diagnostic errors in 2 approaches developed for studying animal populations:

occupancy modeling [17] and multi-event capture–recapture modeling [21]. These approaches

permit estimation of prevalence, for example, in the face of classification errors. If assessment

of symptoms or quantitative measurements of infection status [22] are obtained, they can be

incorporated into the modeling as covariates. Elaborations of these modeling frameworks per-

mit error rate parameters to vary temporally or across individuals (see “Dealing with errors in

population-level inference” in S1 Text). The occupancy and capture–recapture approaches

treat both error rates and focal population parameters as unknown parameters in a single joint

likelihood, properly incorporating the various sources of uncertainty in estimates of focal

parameters and their variances. Variance estimates of focal parameters are important to deci-

sion-making and can be incorporated directly into formal optimization methods designed to

deal with such uncertainty.

Prevalence is one parameter of interest, but a central point of this commentary is that sample

designs and analysis methods must be tailored to a specified set of focal parameters. Inferences

about other key population parameters, such as mortality and infection rates, require repeat

testing of the same individuals over time (e.g., as currently done in vaccine trials). Periodic test-

ing is used to assess death or recovery of initially infected individuals and death and infection

state for individuals not initially infected. Multi-event capture–recapture models [21] can be

used with data on individuals obtained at multiple assessment points, t, t+1, etc. (e.g., weekly

and monthly). At each assessment point, each individual still living from the original sample is

tested, and the observed state (e.g., uninfected and infected or susceptible, infected, and recov-

ered) is recorded. The state space can be expanded to include other characteristics of individuals

that are relevant to sampling (e.g., symptomatic infected, symptomatic uninfected, asymptom-

atic infected, and asymptomatic uninfected). The multi-event capture–recapture framework

admits state misclassification and provides estimates of the probability of an individual being in

a specific state, as well as the state-specific probabilities of death during each interval (e.g., t to t
+1) and making state transitions (e.g., becoming infected or moving to the recovered state).

In the event that all individuals from the initial sample cannot be located to be tested at

each assessment point, the modeling approach includes state-specific detection probabilities,

recognizing that (1) on some occasions, disease state cannot be assessed for every individual;

and (2) state misclassification may occur for individuals that are tested. Detection history data

consist of information for each potential assessment or testing period on whether the individ-

ual was tested or not, and, if so, what the test outcome was (to what observation state was the

individual assigned for that sample period). The data are then modeled as a function of param-

eters that include detection probabilities, survival probabilities, state transition probabilities,

and state classification probabilities. If the initial sample of individuals to be followed is not

random or representative, then parameter estimates corresponding to the entire population

can be obtained as a weighted sum of estimated probabilities as in expression F in S1 Text. The

need to track individuals over time necessitates consideration of patient data protection, as for

other COVID-19 processes such as contact tracing. Sampling design and corresponding ana-

lytic methods again depend on the objectives of the testing program, which include the focal

parameter(s) required to meet population-level objectives.
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Conclusions

Testing thus informs both individual- and population-level control decisions, but different

objectives necessitate different sampling strategies—from administering tests to symptomatic

individuals appearing at healthcare facilities to preemptively testing and surveying individuals

according to a priori designs without regard to presence of symptoms or appearance in the

healthcare system. Limited resources require decisions about allocation of tests to inform indi-

vidual treatment and also public health decision-making. The keys to successful testing strat-

egies are (1) to clearly specify the objectives of the testing efforts; and (2) to tailor

sampling and analytic approaches to those objectives. Importantly, data produced by testing

for one objective may not be useful for other objectives without specific supporting data and

associated analytic approaches. Currently, individual-level objectives are prioritized, and test-

ing data are later repurposed to estimate epidemiological parameters and inform public health

objectives. In order to accurately estimate population-level parameters, we need to supplement

existing testing efforts with small, but coordinated sampling efforts designed with population-

level objectives in mind. Data from relatively few tests, when allocated in a coordinated and

efficient manner and combined with tailored inference methods, can carry a high value of

information, with direct applicability not only to epidemiological model parameterization, but

also to decision-making about the pandemic. Clear thinking about test allocation to popula-

tion-level objectives will be especially important for epidemiological modeling and control of

new variants of COVID-19 and for making decisions about vaccine allocation and efficacy

globally. Certainly, we are not claiming that such clear thinking does not exist in specific pro-

grams and studies being carried out in the US, but rather that we need more of it, especially at

a coordinated national level.

Allocation of tests to specific monitoring objectives can be based on current assessments of

the relative value of information to the different decisions that the data are intended to inform

and the relative importance of these decisions to overall COVID-19 control for individuals

and populations. Sampling designs and analyses of resulting data can then be tailored to each

objective. Although COVID-19 has brought this issue into stark relief, lack of resources and

support for targeted disease monitoring and evaluation programs has been a limitation to the

assessment and design of vaccine programs the world over. In much the same way that we

should shine new light where we expect our missing keys and not just search where there is

available light, we could strengthen current testing approaches in order to better support con-

tainment during pandemic vaccine rollout with the strategic allocation of relatively few addi-

tional tests and symptom-based surveys.

Supporting information

S1 Text. Supporting manuscript text including (1) A numerical example of misleading
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tion-level inference.
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