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Learning-Based 6-DOF Control for Autonomous
Proximity Operations under Motion Constraints

Qinglei Hu, Senior Member, IEEE, Haoyang Yang, Hongyang Dong, and Xiaowei Zhao

Abstract—This paper proposes a reinforcement learning (RL)-
based six-degree-of-freedom (6-DOF) control scheme for the final-
phase proximity operations of spacecraft. The main novelty
of the proposed method are from two aspects: 1) the closed-
loop performance can be improved in real-time through the
RL technique, achieving an online approximate optimal control
subject to the full 6-DOF nonlinear dynamics of spacecraft;
2) Nontrivial motion constraints of proximity operations are
considered and strictly obeyed during the whole control pro-
cess. As a stepping stone, the dual-quaternion formalism is
employed to characterize the 6-DOF dynamics model and motion
constraints. Then, an RL-based control scheme is developed
under the dual-quaternion algebraic framework to approximate
the optimal control solution subject to a cost function and
a Hamilton-Jacobi-Bellman equation. In addition, a specially
designed barrier function is embedded in the reward function to
avoid motion constraint violations. The Lyapunov-based stability
analysis guarantees the ultimate boundedness of state errors
and the weight of NN estimation errors. Besides, we also show
that a PD-like controller under dual-quaternion formulation
can be employed as the initial control policy to trigger the
online learning process. The boundedness of it is proved by a
special Lyapunov strictification method. Simulation results of
prototypical spacecraft missions with proximity operations are
provided to illustrate the effectiveness of the proposed method.

Index Terms—Spacecraft Proximity Operations; Constrained
6-DOF Control; Reinforcement Learning; Approximate Optimal
Control.

I. INTRODUCTION

UTONOMOUS spacecraft proximity operations (SPO) is

an essential technology for a broad range of space mis-
sions, such as docking, servicing, inspection, sample retrieval,
active debris removal, and asteroids exploration [1]-[7]. As
the primary requirement of these missions, flying safety must
be guaranteed during all proximity operations. This requires
the spacecraft to obey multiple complex motion constraints.
The two most important types of constraints are referred as
approach corridors and field-of-view constraints in literature:
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the approach corridor aims to restrict the translational motion
trajectory of the spacecraft, such that the potential collision
between the components of spacecraft can be avoided [8];
the field-of-view constraint is arising from the requirement of
autonomous rendezvous and capture sensor system (ARCSS)
[9], the target must be kept in the detectable zone of ARCSS
to provide the essential information for GNC systems.

Due to the practical significance of SPO, guidance and
control methods for SPO with the ability to handle complex
motion constraints have aroused extensive attention. Various
approaches have been investigated, such as artificial potential
function (APF) [10]-[15], inverse dynamics in the virtual
domain (IDVD) [16], optimization based method [17], [18],
and model predictive control (MPC) [16], [19], [20]. These
methods can be categorized into two types: optimization-based
methods and APF-based methods. The APF-based methods
usually establish virtual high-potential areas for obstacles
forbidden zones that produce repulsive forces to prevent vio-
lations of constraints. Ref. [10] proposed a dual-quaternion-
based APF to solve the constrained six-degree-of-freedom
(6-DOF) maneuvers, and the local minimum problem was
addressed by the selection of control parameters that satisfies a
mild condition. Zappulla et al. [14] employed an adaptive APF
approach on hardware-in-loop SPO experiments and achieved
collision-free SPO. Huang et al. [11] designed a finite-time
control law with full-state constraints by incorporating the
tan-type barrier Lyapunov function. We note that APF-based
methods have shown their capability of handling constraints.
However, these results usually lack optimizing abilities. They
cannot make the balance between the control performance and
control cost, resulting in potentially high control costs that
are unacceptable for on-orbit SPO missions. In this context,
constrained optimal control (COC) is a promising alternative
solution. A second order cone programming (SOCP) based
method was presented in [17] for the rendezvous and docking
with corridor constraints. However, this method is open-loop
which cannot deal with real-time feedback. Although an MPC-
based COC approach was proposed in [20] with the capability
of feedback control, the receding-horizon characteristic of
MPC makes solving a COC for SPO in real-time become
a computationally burdensome task, especially for onboard
computers which only have very limited computing resources.
Thus, it is of significant importance to design a new con-
strained optimal control scheme for SPO that can efficiently
address the 6-DOF optimal tracking control problems while
strictly obey underlying motion constraints.

Theoretically speaking, the optimal control of nonlinear
systems usually requires to solve the Hamilton-Jacobi-Bellman



(HJB) equation. This is a challenging task and even an accurate
numerical solution is hard to be obtained [21]. Besides, the
highly nonlinear and coupled model of the 6-DOF dynamics
of spacecraft also increase significant difficulties for this
nontrivial task. The reinforcement learning (RL) technique
is a promising new tool to address this challenge. RL-based
control, which is commonly referred as approximate/adaptive
dynamic programming (ADP) [22]-[24] in the literature, is a
powerful data-driven method to solve the optimal control prob-
lems of nonlinear systems. The basic idea of RL-based control
or ADP is employing special approximators (such as neural
networks) to approximate the cost function as well as the
optimal control scheme, and measurement data is implemented
in the training process of these approximators. There are many
pioneering theoretical works that have emerged based on the
ADP framework for the optimal control of various systems
[25]-[27]. However, the state constraint handling abilities of
these notable results are still immature [28]. They cannot be
straightforwardly extended to solve the COC problems for the
proximity operations of spacecraft.

Motivated by these facts, a novel RL-based controller with
constraint handling abilities is developed in this paper for
the autonomous proximity operations of spacecraft. 6-DOF
motion constraints are considered during the whole control
process, including both the approach corridor and the field-
of-view constraint. Compared with other traditional 6-DOF
modeling methods of spacecraft motion [2], [11], [29], [30],
dual quaternion can accurately represent the 6-DOF dynamics
while considering the coupling between the rotational mo-
tion and transitional motion. Therefore, the dual quaternion
formalism is employed to describe the 6-DOF motion of
spacecraft. Then, a special dual quaternion based reward
function is designed, which not only represents a trade-off
between control performance and control cost but also can
encode the constraint information into the controller. Besides,
by making full use of the underlying properties of dual
quaternion to the 6-DOF coupling motion description, an RL-
based online learning algorithm is proposed to approximate the
optimal control policy, improving the closed-loop performance
while strictly complying with underlying motion constraints.
The Lyapunov-based analysis ensures the stability of the
closed-loop system. To the best knowledge of the authors,
this is the first time an RL-based controller is proposed
under the dual-quaternion formalism and applied to the 6-
DOF constrained optimal control problem of spacecraft. The
advantages of the proposed control scheme include: 1) First,
the proposed method is capable of simultaneously dealing with
motion constraints, control performance, and computational
efficiency. 2) Second, the utilization of the dual quaternion to
accurately modeling the 6-DOF dynamics in a compact form,
the algorithm design can be more compact. Meanwhile, the
feasibility and applicability of our model-based method can be
significantly improved. 3) Finally, our method is able to rapidly
endow a traditional and easy-to-implement controller with the
capabilities of optimization and motion constraints handling
by online tuning the weight. We also show that an easy-to-
implement controller under dual-quaternion formulation can
be employed as the initial control policy to trigger the learning

process, and the boundedness of it is proved by a special
Lyapunov strictification method.

The rest of this paper is organized as follows. In Sec. II, the
concept and operations of the dual quaternion are introduced,
and the SPO control problem is introduced based on the dual-
quaternion 6-DOF model. Subsequently, Sec. III gives the
design of the reward function and the development of the RL-
based control scheme and the initial control policy. Numerical
simulations and analysis for illustrating the superiority of the
proposed method are presented in Sec. IV. Finally, the paper
offers some concluding remarks in Sec. V.

Notation: Throughout the paper, R™*" denotes the set
of n x m real matrix and R"*™ denotes the corresponding
dimensional dual matrix. Post superscript (-)* denotes the
skew-symmetric matrices of three dimensional vectors, and
(1) indicates the corresponding vector expressed in frame
F 4. The n-dimensional identity matrix represented as I,,, and
0,,xm 1S n X m zero matrix, 1, «,, denotes n X m one matrix.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, a brief background of dual quaternion based
dynamics and motion constraints will be discussed. More
details of dual quaternions can be found in [31]-[33].

A. Definition of Coordinate Frames

As illustrated in Fig. 1, the reference frames employed
in this paper include the target coordinate frame Fr =
{Or,X7,Yr,Z7}, the inertial coordinate frame Fy =
{On,XN,Yn,ZN}, and the body-fixed frame Fp =
{OpB,Xp,Yp,Zg}. For arbitrary vector a € R? can be
described as a

b at, and a” in Fg, Fr and Fy, respectively.

Zp
YB L

Figure 1. Illustration of coordinate frames.

B. Quaternions and Dual Quaternions

The unit quaternion is widely adopted to represent the
relative attitude between two different coordinate frames. A

. . T
unit quaternion is defined as q = [qo,qv] € Q (the set
of unit quaternion, Q = {q € R® x R | ||q|| = 1}), which is
composed of the vector part g, = [q1, qg,qg]T = sin gn and
the scalar part gy = cos g. The eigen-rotation axis is denoted
by n and 0 € (—m, 7] is the rotation angle around this axis.

The relative attitude between Fp and Fr denoted by qp.



Then some important operations of unit quaternions are given
as follows:

T
4oPo — 4y Pv N
= L 1
qp { qoPv + Poqu + qu X Dy :| [CI]@,I) (1)
where
0 —a @
T
q0 —q «
[q]®:{ ‘g }’q =| & 0 -q
+ qol v
9v 9, qdol3 — “ 0
* T "
q :[qo,—qf] ,and ¢* R qRp=7p )

for all g,p € Q. Also, for a € R? and q € Q, define the
multiplication:

q®a2q®[0,a”]" 3)

The coordinate transformation of any vector a € R? from
frame Fr to frame Fp, can be represented by the following
equation:

a’ =gy ®a' @ qu )

The concept of dual quaternions was developed by Clifford
and Study [34], [35]. Before introducing the dual quaternions,
the definitions of dual numbers and dual vectors should be
given first.

A dual vector (or number) defined as a = a,- + a4, where
a,, ag € R™ (m = 1 in number case) denote the real part
and the dual part, respectively. In addition, € is called the dual
unit, satisfying ¢ # 0 but €2 = 0. The swap operation of a
dual vector defined as: a® = a4 + ca,..

Dual quaternions can be regarded as the combination of dual
numbers and regular quaternions comprised of two quater-
nions: real part and dual part. The dual quaternion @p; € @
(set of dual quaternions) of frame Fr with respect to frame
Fp is defined as:

X 1 1
Got = Qot +e=qu @To, = qu +e-rh, @aw  (5)

2 2

where %, and 7, are the relative position vector of Fp
with respect to Fr and expressed in frames Fp and Fr
respectlvely A dual quaternion can also be defined as ¢ =
[qo,qv] € Q. Similar to quaternion, g, € R and ¢, € R3
called the scalar part and the vector part of g, respectively.

Corresponding to the operation of quaternion, some neces-
sary operations of dual quaternion (or matrix) are introduced
as follows:

A A /\T A
qopPo — q'u Pov

e T M PR
ar {QOPv‘FPoqv-i-qEva} [dgp  ©)

where & = [do,47]" ,p = [po,p?]" € Q, and

CjO *(jT 0 _43 liz
[él](g) = |: ~ AN A :| 7qA>< = 43 0 741
v v + I v ~ A
9 q qols —G @ 0
J. ~ 11T s ~ o ~

G =[do,—d.] ., and " @GR p=7p @)
vec(q) = gy ®)
Gop =g pr+9qipa ©)

AT =a,T, +caqxy (10)
A 0 0

where V € R and £ € R®

C. Kinematics and Dynamics

The target can be regarded as a stationary target during the
SPO. Then, according to the dual quaternion formulation, the
6-DOF motion kinematics and dynamics of frame Fp with
respect to frame JFr are given as follows:

(12)

2 1, b
qvt = §th & Wy

wabt = _wbt (wabt) +1a (13)

where @}, = w?, + ev?, is the relative dual angular velocity
between the target and chaser, then w?,,v?, denote angular
velocity and translational velocity between target and chaser
represented in Fp, respectively. Furthermore, @ = f° + 7
is called the total dual control input applied to the spacecraft,
and here f°, 7% € R? are the force and the torque applied to
the chaser spacecraft, respectively. Jp is the dual inertia of the
spacecraft, with the definition:

. d

Jy =mpls— + ey (14)

de

where m;, € R is the mass of spacecraft and J, € R3*3
represent the inertial tensor of spacecraft. Then the inverse of
jb is defined as follows:

1 d

1
—1I
d<€+€ 3

gyt =gy (15)

D. Motion Constraints

During the approaching stage, the chaser spacecraft should
comply with both the approach corridor and field-of-view
constraints. In this part, the aforementioned constraints are
discussed in detail.

1) Field-of-View Constraint: The field-of-view constraint is
caused by the limit field-of-view of the optical instruments. To
ensure the target can be captured by the chaser spacecraft dur-
ing the mission, the angle of line-of-sight should be restricted
[36]. Then the field-of-view constraint can be defined as a cone
around the line-of-sight in the body frame, as shown in Fig. 2.
In the illustration, unit vector c,;4n¢ denotes the central line-
of-sight of the vision sensor system in the body frame, and
Qusight Tepresents the maximum allowable line-of-sight angle.
To satisfy this constraint, the angle between cg;gn; and —ry;
should never greater than «, formulating as follows:

(DT
Mcsight > COS Qgight (16)
(75l
Aided by the property of quaternions, one has:
(ro) T Csignt = (b, @ que) ™ (Csight @ qut) (17)
then Eq.(16) can be further reformulated as:
~ (:)Si ~
e 2 _M — COS (gight > 0 (18)

12 © g,



_ Xp

Figure 2. Illustration of field-of-view constraint

0 Csigh A
ght
where Oggnt = x |, and Ogigpy =
csight - (csight)
T d i
@sightE + €O@yignt. Thus, when ¢; > 0 the field-of-view

constraint can be guaranteed.

2) Approach Corridor Constraint: In the actual missions,
the chaser spacecraft should keep in the designated zone to
avoid obscuring the sightline of observing docking port, as
well as collisions with the components of the target. For
avoiding this problem, the chaser spacecraft should approach
the docking port from a direction. The approach corridor
constraint is defined as a cone around the central axis (denoted
as Cpqep) of docking port that lies in the frame Fr, as shown
in Fig. 3. The half-angle of cone represented by cqin. To
satisfy this constraint, one has:

Figure 3. TIllustration of approach corridor constraint

()"
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Similar to the process in Sec. II-D1, Eq.(20) can be guaranteed
by the following inequation:

Cpath > o8 Qpath (19)

o Qut © (épathdbt)

co = — €OS Qpqtn, = 0 (20)

12 © g5,
0 N
where epath Cpath % |, and gpath =
cpath - (Cpath)

T d
epath de + Egpath

E. Control Objective

The objective is to develop an online learning control
scheme to achieve the control law evolution for performance
optimization in the SPO mission, in the presence of approach
corridor and orientation constraints.

III. CONTROLLER DESIGN

A. State Reward Function Design

Before proceeding, we first discuss the reward function.
The reward function is the feedback of the environment while
agents are implementing the corresponding action. The use of
a reward signal to formalize the idea of a goal is one of the
most distinctive features of reinforcement learning [22]. The
basic idea of the reward function design is that giving a high
reward (present as a small value herein) to desired states and
a low reward to undesired states (a large value).

Further, according to the analysis in Sec. II-D, the reward
function associated with the undesired state is designed as:

~ R A A ~ C1
Tsight = —51(th—QI)°(Qq(th—QI))log (lcosasight>
@2n

C2

Ypath = —B2(qve —qr) o (Qq (Gt —qr)) log (1_Cos%ath
2

where §; = q; + €04x1, qr = [1,0,0,0]T is identity
quaternion, and (;, (B2 are the scale factors interpreted as
the ’level’ of reward, Qq = qu% + Q) is the dual weight
matrix. Note that, when the highest reward is meeting the
target is at the center of the spacecraft’s field view. Contrarily,
the reward will rapid decline when the target close to the
edge of the spacecraft’s field view. Similarly, the center of
the approach corridor corresponds to the high reward and the
edge corresponds to the low reward.

The desired states are set as the target’s states, the relevant
reward function defined by the form of error dual quaternion
and dual angular velocity given by:

Ytate = (Gor — 1) 0 (Qq(dor — dr)) + (@F) 0 (Quil,) (23)

where Qw = Qwi + Q. is also dual weight matrix.
The balance between the reward of dual quaternion and dual
angular velocity can be adjusted by tuning the dual weight
matrix Qq, Qw. Evidently, according to (23) the distance from
target’s states relate to the level of this reward.

Remark 1. It is noteworthy that, although the design ideas of
reward functions is given a high “penalty” in the prohibited
area, it is distinct from the APF-based method (e.g., [10],
[14]), the control signal not only related to the current
“penalty”, but also to the throughout the whole process’s
“penalty”, which will be reflected in the next part. Further-
more, the factors (—1 + cos agignt) and (—1 + cos apain)
are introduced in (21) and (22), respectively, for adjusting
the logarithm operation maps into [0, +00). Thus, there is no
penalty at the most desired state (that is Y gigne\path = 0).

Summing up the above analysis, the reward functions are
constructed by (24), considering both desired and undesired
states during the SPO mission by mapping the states into the
corresponding value.

T = Tstate + Tpath + Tsight 24)
~—— ——

desired states undesired states



B. Optimal Control Solution Analysis

After designing the reward functions, the optimal control
solution analysis will be discussed in this part. To formalize the
optimal control problem, the model of spacecraft Eqs.(12),(13)
are rewritten as the compact form:

& =F+Ga (25)

. T
where & = [éT,(deabt)T} is motion state, with é =
Vec(qgy, — q7), and

e[ - [

In space missions, control cost is also a considerable factor due
to the high cost of the energy. The control cost and state error
should be both considered in policy design. Therefore, the cost
function of the optimal control V() is defined as the integral
of the non-negative reward function r(&,4) = Y(&) + 4o @
will be discussed in the following part.

V(&) = /toc r(&,a)dt

The optimal control policy is @* (if exist), thus the correspond-
ing cost function is denoted by V*(&). Then 4* satisfies

3Vec(dy ® wp,)*
—wp, X (Jywpy)

(26)

H (:i:,a*,mv*) -0 27)
where the Hamilton equation is defined by
H (m @, %V*) =VaV* o (F+Ga) +r(&,a*) (28)

Further taking partial differential for (28), the closed-form of
4* can be deduced as:

1 ~
= —gGTV@V* (29)
Then substituting (29) back into (28) leads to the following
HIJB equation:

VaV*o F 47T — i(GT@@V*) o (GTVLV*)=0 (30)

Note that, the high nonlinearity of the system model (25)
increases the intractability of analytically solving the HIB
equation (30). Hence, an RL-based online controller will
be designed to approximate the optimal solution u* in the
following part.

C. Online Learning Control Algorithm

As aforementioned, such a high nonlinearity of the cost
function (26) makes the HJB equation (30) hard to solve.
Approximation emerges as a way to deal with it. According to
the Weierstrass Approximation theorem [25], [37] a NN that
contains a sufficient set of basis functions can be employed to

approximate the optimal cost function (26), given by
V(&) = wlo(&) + e(&) 31

for & € X, where ¥ C RS isa compact set. The basis function
vector, denoted by o (&) =

[01(&),02(2),...,0,(&)]" € R, satisfies that:

i(06x1) =
di(0gx1) =0’
The weight vector of basis function w is a unknown constant

vector, and €(&) € R is the reconstruction error. Then Eq.(29)
can be equivalently rewritten by

i=1,2,...,p

. 1 - . 2
o = —§GT(V@a($)w + Vze(Z)) (32)

Based on the RL technique, the function of actor-critic is to
online approximate the weigh vector w € RP. Then a weight
estimation vector w,.; was employed to construct the estimate
the cost function and control policy:

V (&, West) = wl,o (&) (33)
1 N
o= —§GTV@awest (34)

Subsequently, further consider the following Bellman error:

8 = V&V o (F + Ga) + r(&,4) (35)
Recalling (30), the Bellman error can be rewritten as fol-
lows:

8y =0y — H (a: @, %V*)

(36)
=w" Y+ €

where ¥ = Vgzo o (1:" + G) is defined for expressing
simplicity; w = w.s; — w is the weight error, and €5 denotes
the induced reconstruction error.

It can be noticed that Eq.(36) contains the information of
w, it has been commonly employed to design the learning law
of the estimated weight w.;. Specially, not only the real-time
information of d; but also the past measurements are utilized in
this paper. Before proceeding further, we make the following
assumptions.

Assumption 1. For © € X, there exist positive constants
bo, by, and be,, such that, ||o|| < b,, [|Vzo| < by,, and
€5 < be,.

Assumption 2. Introduce an auxiliary variable defined by nn =
9/ (9T 9+1), it satisfies a finite excitation (FE) condition [38],
i.e., there exist tp1, tro, Yw With 0 < tp1 < tro <t and 7y,
such that Ltkklz n(r)nT (7)dr > vl

Note that, Assumption 1 is a standard assumption. As-
sumption 2 is much weaker than the conventional persistent
excitation PE assumptions in online RL-based controllers in
[39].

Afterward, we introduced an auxiliary variable ¥ here to
utilize the online data designed as follows:

W(t,tho, tr1) = Y1 (the, trr ) West + P2 (tra, th1) 37
with )

Y1t te) = —kP1(t, 1) + @1 (t) (38)

Po(t,trr) = —kta(t, tr1) + @a(t) (39



where Y1 (tg1) = Opxp, Pa(tr1) = Opx1, 1 = mn7,
w3 =n/(0TY9 + 1), s = res, and & is a positive constant.
According to (37)-(39), one has

tra
WUM%@Z/ HT12) (1 (T)west + pa(r))dr

tr1
=Y (tpo, tr1)W + €y
(40)
where Y (tpo,tp1) = tikf e"7=t2) o d7 is an informa-
tion matrix, which “stores” the information of 7 through-
out the time interval [tg1,txs] and the residual error vec-
tor is denoted by ey = tikf (T t2)es9 /(979 + 1)2dr.
Furthermore, under Assumption 2, one has Y (txo,tx1) >
67K(tk27tk1)7w1m, = ’Y\I/Im
Introducing the above auxiliary variable (40) into the learn-
ing law of w.s; is significantly beneficial to improve learning
efficiency. Nevertheless, considering Y (¢x2,tx1) is positive-
define only one has sufficient online data is collected, it is
necessary to ensure the boundedness of state first. With regard
to this, the following theorem is given as a solution.

Theorem 1. Consider the system defined in (25), and the
policy described in (34). With Assumption 2, design the
learning law of Wwes; as:

West = —Y10603 — V2 W (L, th2, th1) 41

where v, and 7o are positive constants. Then, the estimated

weight w, the state Qy: — q; and Wy are ultimately bounded,

if the condition (44) is satisfied.

Proof. Consider the following storage function:
L=V"+ %w% 42)

where a; > 0 is a constant. Then taking the time derivative
of (42) along (26) and (41) yield:
L=V3iVo(F+Ga)+aw'w

1 1 .
=—r— ~w'Tw-—-wTw+ab w+e

2 1 (43)
—r+ inrw + awlw + e

IN

< —r— T MW+ €3

where ¢ = —0.5(GTVze) o (GTVgow) + 0.25(GTVze) o
(GT@QG), € = O.B(GT@@E) ) (GT@QG), €3 = € +
0.5a17270€3 + 0.5a171€2/(979 + 1) is a bounded value,
I = (GTVsz0) o (GTVz0), M = 0.5(-T + ayyinn” +
a1v2ywIm). Recall the Assumption 1, it can be deduced that
[l < 3 and ||T'|| < br, where br is the a positive constant.
Thus, by adjusting 1, 2 and a; to satisfy

br
ap > —F————— (44)
T+ e
one has M > 0. Then Eq.(43) indicates the w is ultimately
bounded, as well as §p: — qr and wp;. O

Remark 2. Note that, constant a is a coefficient of W' w
which is employed just for convergence analysis purpose.
Therefore, we do not need to set a value to it. As long as
there is an ay that satisfies the condition (44), a function then

can be constructed to guarantee the convergence of the entire
system. Hence, in practical applications, parameters v, and
Yo can be chosen by an empirical way according to the actual
situation.

D. Initial Control Policy Design

An initial control policy is required to ensure the system
states to a compact set X, and it must be represented by
the basis functions o (&). For the spacecraft SPO problem
considered herein, the initial policy designed in (45) has the
capability of meeting the requirement.

Uinit = kp © € — kq © (@h)* (45)

Coefficients of PD controller are positive constants denoted by

l%p = kpr +ckpa, I%d = kg +¢kgq. This PD-like controller can

guarantee the asymptotic convergence of system states (though

it lacks optimizing and constraint handling abilities). What’s

more, it can be reconstructed by the following subset:
T T ( b)T7( b)T]T

o,d(2) = [e, , ey, (Vi Wht (46)

Thus the corresponding weights are set to be wp,q =
[kprLix3, kpalixs, karlix3, kaalixs]”, with e, and ey rep-
resent the real part and dual part of é, respectively.

Remark 3. The initial controller is designed based on the
dual-quaternion framework. It is distinct to the PD-like control
scheme proposed in [10], [40], in which the dual-quaternion
error term is denoted by vec(qy, @ (Qu — qr)*®). Thus, this
term is not suit for the initial policy in this framework (this
point will be mention in the Remark 5 ). To deal with that, we
redesigned the PD-like initial controller and give the proof by
employing a special Lyapunov strictification method.

Theorem 2. Given the system defined in (12) and (13),
consider the initial policy designed in (45). Then it can be
guaranteed that lim;_, o Gpe(t) = ¢ and lim;_, o d;gt(t) =
GSXI-

Proof. Before proving above theorem, some properties about
dual quaternions are listed as follows:
a,beR?

a® o (ax b) = 0s, (47)

d10(G2®4:) = 45063 ® (41)], d1,d2,4: €Q  (48)
The detailed proofs of these properties are given in [41]. To
analyze the stability of the closed-loop system, consider the

following Lyapunov-like function candidate:

Vi = 0k, © (Goe — d1) o (Gor — qr) + g(‘:’gt)s o (Jy@p,) + N

) (49)
where N; = [2e vec(G}, @ (Gor — G1)*)] o [e(Jph,)] is a cross
term for prove purpose. By applying Binet—Cauchy identity
of cross product along with Cauchy—Schwarz inequality, one
has:

1
Vi >20kpa(1 — qo) + igkdd(wft)Twaft
(50)
kpr m m
(@ =Tt 2+ oy — D)y



Setting ¢ > max {2m/k,,, 1}, Eq.(50) guarantees V; > 0,
and V; = 0 only when gy = ¢; and d)é’t = 03y1. Therefore,
V1 can be regarded as a valid Lyapunov-like function candi-
date. Then employing the above properties (47) and (48) and
substituting (12) and (13) into (45), the time derivative of V
can be written as:

Vr =0(@p,)" o [~k§(@h)" + (1 — go) Is + )75, + €031
— Kprqol| 75 |1* — kar(75,) "
= — (okar = D)mllvg|* = okaallwpe||® = kpraollree ||

+ (ri) " [(0 — 040 — kar) I3 + 0qf Vg,

b b
Uyt +mHvbt”2

K
< - ded”‘-"’gt”2 — (omkgy —m — N )H'Ull;tH2
o
— (kyrao — 555 |12

(51)
with s = || (0 — 0g0 — kar)Is + 0q||- Thus, by adjusting o,
l%p and ky to satisfy:k,,.qo— 3% > 0 and omkq, —m—1% > 0,
one has V; < 0, and V; = 0 only when G = Gr, &%, = 0351.
Based on Barbalat’s lemma [42], it can be guaranteed that
limy s o0 Gor (t) = Gr and lim;_, o0 WP, (1) = 03x1. O

Remark 4. The initial policy is given as a PD-like controller
for its simplicity and effectiveness, moreover, it’s easy to be
reconstructed by a set of simple basis functions. But the initial
policy is not limited to the PD-like controller, and the basis
is not limited to the simple polynomial-type basis functions.
As long as an appropriate set of basis function is designed
for reconstructing a given controller, it can evolve into the
(sub)optimal controller during the control processing.

Remark 5. Reconstructing the initial control policy is tricky
work, the basis functions are chosen according to the initial
controller design, because it needs states are bounded at the
initial stage. So the elements of the basis function should
contain the element of the initial controller (such as the terms
of PD). The initial controller (45) allows us to select the
basis functions more convenient. We can employ the terms of
the initial controller as a part of basis functions. Then, some
other basis functions can be appropriately added to improve
the performance of learning. Note that, it is not recommended
to use the terms independent of cb,}jt as basis functions here,
which will vanish after multiply by G.

According to the above analyses, the proposed method in
this paper can be intuitively summarized by diagram as shown
in Fig. 4.

IV. SIMULATION STUDY

In this section, numerical simulation examples are demon-
strated to illustrate the efficacy and superiority of the proposed
method. The control objective is to drive the chaser space-
craft to the desired pose concerning the target spacecraft. In
the simulation scenarios, the mass and inertia of the chaser
spacecraft are m = 15 kg, J = diag [20.8,21.1,32.6] kg - m?,
respectively. The structure of the NN is employed as (46).

A. Casel: Point to Point Maneuver without Constraints

The first case assumes that the chaser spacecraft need
to maneuver to the desired position and attitude. In

Critic <
V Eq.(33)
*West 5
Update law Reward
> Eqan [ Eqs.24)35) [

N

* West
- \ System
Eqs.(12-13)

Control Policy
Eq.(34)

<
=>

A

Aj

' init
M

Initial Policy
Eq.(45)

Figure 4. Structure of the system.

this study, the initial relative quaternion and position are
Qo = [0.8772,0.3426,-0.2764,0.1918]" and r{, , =

[500, —185,163]" m. The desired final relative attitude and
position are qu;/ges = [I,O,O,O]T and Irét/des = [O7O,O]Tm,
which renders Gu;/ges = [1,0,0,0]" + £[0,0,0,0]". Fur-
thermore, the initial relative dual angular velocity of the
chaser is assumed to Wy /9 = [O,O,O]T + E[O,O,O]T,and
the target is considered to be stationary. The cost function
chosen as: (Got, W, @) = (dor — 1) © (Qq(dor — 1)) +
(@) o (Qu&l,) + @ o @, where Q, = IL + 221 and
Q. =5IL + <101

The parameters of initial PD controller are set as: l%p =
0.1+¢0.1, kg = 5+ 5. For comparison purpose, the PD-like
controller is employed in this case. The initial control scheme
is the same as the PD-like controller for fair comparison
and demonstrating the learning result. Time responses of the
relative translation and rotation state under initial controller
and proposed controller are depicted in Figs. 7-8. These figures
show that both control methods successfully achieve control
objectives. It can be seen that under the proposed controller,
the relative attitude and position converge faster than the
initial controller. In particular, the performance cost of the
proposed method is improved by online learning. This fact is
also confirmed by the comparison of control cost under two
controllers in Fig. 5.

Then, the learning process is analyzed in Fig. 6. It can been
seen that the weight estimation vector w.s; changes quickly
in the first 30s, and stabilizes after 60s. This result can be
explained in the time response of Bellman error §,, which
tends to O at about 60s, that means the controller tends to an
optimal controller.

B. Case2: Docking to Target with Constraints

The second case assumes that the target spacecraft is
relatively stationary with Fx during the mission, and the
chaser spacecraft should be at the same motion state when
close to the target with satisfying the approach corridor
and field of view constraints. In this case, in order to
trigger the constraints, the initial states of chaser set to
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be g0 = [0.8999,—0.1544,0.0234, —0.4071)", =t =
[500, —140,250]" m, vy = [-0.5,-20, —1.0]" m/s and

wp o = [0,0,0]" rad/s. The states of target set to be g, =
[1,0,0,0)", 7t = [0,0,0]" m, w! = [0,0,0]" rad/s, and
vl = 0,0, O}T m/s. The motion constraints parameters are set
ast Csight = [713030]7: Cpath = [170,0]Tv Apath = Asight =
7 /6rad.

The parameters of initial controller set to be l%p =0.2+4¢1,
I%d = 5 + £2. The simulation result of states, chaser’s control
input and learning process under the proposed method are
shown in Fig. 9. It’s shown that the proposed method achieves
the control object under the motion constraints. To clearly

show the relative motion between the target and chaser, the
3D figure drawn upon the Fr is given in Fig. 10. The
instantaneous positions and attitude of the chaser at different
simulation times are intuitively provided by the craft models,
and the cone of sight and approach corridor are also drawn
here.

To further demonstrate the performance of the proposed
method, we added the proposed method without considering
constraints, APF-based method in [10], and initial control
method (abbreviated as ADPF, APF, and PD, respectively,
and proposed method abbreviated as ADPC in figures) into
comparison. It should be emphasized that Ref. [10], to some
degree, addresses a very similar problem as in this paper.
It employed APF to deal with the motion constraints under
the dual quaternion mechanism. However, this method shows
its ability of avoiding constraints but it can not deal with
performance optimization. Therefore, our method presents
better control performance and task completion ability. Related
comparisons results between our method and the APF-based
method in Ref. [10] are shown as follows. Fig. 11 intuitively
presents the translational trajectories of chaser spacecraft
during the proximity operations, and the corridor approach
presented by the green cone. In Figs. 12-13, the time respond
of (18) and (20) are shown under 4 different methods. It can
be seen from Figs. 11-13, under the PD method and ADPF
method, the chaser spacecraft flies out of the cone and loses the
target in its field of view. In contrast, the proposed method and
APF method can guarantee that the target is always in the field
of view and satisfy its translational trajectories constraints.

Both the proposed method and APF method are shown
their ability of constraints handling according to above result.
Then the following control effort comparison, given in Fig. 14,
shows the superiority in control performance of the proposed
method. Define energy consume function of force and torque
as Hy = [||f°||?dt and H, = [ ||7°||dt, respectively. The
results show that the APF method pay more control effort for
avoiding constraints violation at the first stage. The proposed
method saves more of energy consumption compared to APF
method.

C. Monte-Carlo Simulations

To further verify the comprehensive insight into the per-
formance of the proposed method, a 500-run Monte-Carlo
simulations are presented in this part. To this end, the initial
states are randomly selected in the ranges listed in Table 1. In
the simulation, the PWPF modulators [43] are employed for
pulse modulation. The parameters of interest are the prefilter
coefficients are chosen as K,,, = 0.8, T},, = 0.1, the Schmidt
Trigger parameters set as 0o, = 0.45,d0¢ = 0.15, and the
thrust magnitude 4, = 20N.

The results of the Monte-Carlo simulations can be sum-
marized in Figs. 15-16. Fig. 15 presents the overall of the
500-run simulations, from which we can visually see that
the trajectories are converged. It can been seen from the
subfigure of Fig. 15 that the results terminal error ||rf,(500)||
of each single run is lower than 10~%°m, which is admissible
in practice. The distributions of the maximum field-of-view
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*(Tgt)T
. 5,
arccos (%cmth (drawn on the corresponding y—z planes)
of every single run are given in Fig. 16. These figures indicate
that the proposed method still completes the mission under
variable initial states without any constraint violations. As it
is well known that the characteristics of the actuator, such
as the minimum impulse bit and saturation inevitably lead to
degradation in performance and precision. But the result of
the Monte-Carlo simulations is acceptable.

angle arccos ( csight) and approaching corridor angle

To sum up, simulation results demonstrate the effectiveness
of the proposed method. Compared with conventional meth-
ods, the proposed ADP control scheme not only achieves the

precise convergence of motion errors with better performance,
but also has the ability to handle the constraints.

V. CONCLUSION

A reinforcement learning (RL)-based six-degree-of-freedom
(6-DOF) control method was developed in this paper for the
spacecraft proximity operations. In conjunction with the dual-
quaternion algebraic framework, a specially designed barrier
function was embedded in the reward function to cope with
the nontrivial motion constraints of proximity operations.
Subsequently, an RL-based control scheme was presented,
achieving online approximate the optimal control subject to
the 6-DOF nonlinear dynamics and motion constraints. The
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Table I
RANGES OF INITIAL STATES.

Parameter Values/Ranges

Tme, M (0, 300)

Ome, rad (=7, m)

r5:(0), m [500, e €O Bume, e S0 O]

vg,(0), m/s
w?,(0), rad/s
av¢(0)

(_1’1) X (_171) X (_13 1)

(—0.01,0.01) x (—0.01,0.01) x (—0.01,0.01)
Euler angle(y-x-z):(—m/6,7/6) X (—7/6,7/6) X (—m/6,7/6)
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Maximum approach corridor angle of Monte-Carlo simulations

ultimate boundedness of state errors and the weight of NN
estimation errors in the closed-loop system was guaranteed by
the Lyapunov-based method. The efficacy and effectiveness of
the proposed method were carefully evaluated through a set
of numerical simulations. Further work will aim at RL-based
control with the uncertainties of the model.
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