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ABSTRACT
Sharing sensitive data is vital in enabling many modern data anal-
ysis and machine learning tasks. However, current methods for
data release are insufficiently accurate or granular to provide mean-
ingful utility, and they carry a high risk of deanonymization or
membership inference attacks. In this paper, we propose a differen-
tially private synthetic data generation solution with a focus on the
compelling domain of location data. We present two methods with
high practical utility for generating synthetic location data from
real locations, both of which protect the existence and true location
of each individual in the original dataset. Our first, partitioning-
based approach introduces a novel method for privately generating
point data using kernel density estimation, in addition to employ-
ing private adaptations of classic statistical techniques, such as
clustering, for private partitioning. Our second, network-based ap-
proach incorporates public geographic information, such as the
road network of a city, to constrain the bounds of synthetic data
points and hence improve the accuracy of the synthetic data. Both
methods satisfy the requirements of differential privacy, while also
enabling accurate generation of synthetic data that aims to pre-
serve the distribution of the real locations. We conduct experiments
using three large-scale location datasets to show that the proposed
solutions generate synthetic location data with high utility and
strong similarity to the real datasets. We highlight some practical
applications for our work by applying our synthetic data to a range
of location analytics queries, and we demonstrate that our synthetic
data produces near-identical answers to the same queries compared
to when real data is used. Our results show that the proposed ap-
proaches are practical solutions for sharing and analyzing sensitive
location data privately.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; Data an-
alytics; • Security and privacy→ Privacy protections.
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1 INTRODUCTION
People’s locations are collected at a large scale by a wide range
of entities (e.g., Uber and Google Maps), typically through mobile
technologies. Such data is extremely private, for numerous per-
sonal, social, and financial reasons. However, being able to analyze
and model location patterns is highly valuable to other businesses
and researchers (and society as a whole) to enable a vast range
of location-based applications, from tracking disease spread to re-
ducing traffic congestion. The exponential growth in popularity of
(open) data science has seen an ever-growing demand for the publi-
cation of a variety of location datasets (e.g., geotagged Tweets, taxi
journey origins and destinations, social media check-ins). However,
the risks concerning the violation of individuals’ privacy present
a major impediment to the free sharing of such data. Instead, the
raw data has to be significantly sanitized before it can be published.
This can involve aggregation into predefined regions, location per-
turbation, or truncation of longitude-latitude data. In this setting,
the sanitization operation is controlled and performed by the data
owner, whose primary concern is to minimize the privacy risk to
the data subjects and their consequent liability. In many cases, this
considerably limits the utility of the published data.

In contrast to crude sanitization, releasing a synthetic dataset in
the same format as the original data can give more flexibility in how
clients can use the published data. In many practical scenarios, the
recipient of a dataset will want to use their in-house data analytics
tools without any restrictions from the data provider on the way
in which the data can be used, or the type of queries that can be
asked. In this paper, we develop approaches for generating realistic
synthetic data from real location data, while also satisfying the strict
requirements of differential privacy (DP). The aim is to maximize
the similarity between the original and synthetic datasets, whilst
protecting the existence and location of any individual.

Existing approaches to synthetic location data generation (sur-
veyed in Section 2) are unsatisfying for a number of reasons. They
tend to adopt relatively simplistic ways to represent the data, such
as fixed grids, and only materialize the population of cells within
such grids. They make crude uniformity assumptions within such
basic regions that do not capture realistic location distribution pat-
terns. They also tend to be oblivious of real-world conditions, such
as straits of water or uninhabitable terrain, leading to nonsensical
outputs that ‘locate’ people in the middle of the ocean. In this paper,
we propose novel solutions that overcome these limitations.
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Our first approach for synthetic data generation (SDG) targets
the first of these weaknesses, by considering a richer set of ways
with which to model the input location data. We introduce a dif-
ferentially private partitioning-based framework in which we re-
strict SDG to be within small private regions. We introduce grid-
and clustering-based methods, where we generate synthetic points
within private regions using a novel adaptation of kernel density
estimation that is specifically suited to our setting of multiple point
generation and maintains privacy. In all steps, privacy is provided
by using DPmechanisms to add noise to counts, and it is maintained
through the post-processing properties of DP.

In our second approach, we incorporate ‘common knowledge’
about the world within the data generation process. Traditionally,
DP approaches make very restrictive assumptions regarding what
outside knowledge is known beyond the data itself (e.g., provenance,
structure, or hierarchy). However, it is common for a dataset to be
strongly restricted or influenced by an underlying structure – the
nature or behavior of which is known to all. For example, location
data is heavily influenced by the underlying road network, which
is public knowledge. Our work is the first, to our knowledge, to
exploit this underlying structure in order to generate differentially
private synthetic location data. We first match the data to the given
features (e.g., road segments) and materialize summary statistics
using DP mechanisms. From this, we generate synthetic points
along each segment using privacy-preserving micro-histograms to
maintain the underlying distribution.

We perform an extensive set of experiments using real datasets
with varying degrees of underlying structure. Our solutions per-
form significantly better than alternative approaches (up to 28x
more accurate, and 3.7x faster). The proposed partitioning-based
approach is preferred when the data is less well-aligned with the
underlying network, or when network data is unavailable. The
proposed network-based approach is extremely effective, especially
when the location data is well-aligned with the underlying road net-
work. It is also up to 37x faster than partitioning-based approaches.

Our methods further improve the real-life accuracy and utility
of the generated data by incorporating public knowledge, such as
streets, coastlines, and rivers. We also evaluate the practical utility
of the synthetic data in answering range, hotspot, and facility loca-
tion queries. The experimental results show that the synthetic data
produces high quality results for these queries, thus highlighting
both the strength of our approaches and the potential for wide-
spread, real-world deployment of DP. Visualization of the real and
synthetic data also improves explainability and trust in DP results.

A summary of our main contributions are:

• a novel methodology and two robust methods for generating
private synthetic location data with excellent performance
in a range of location analytics tasks;

• a new approach of incorporating public graph data (e.g., the
road network) to enhance utility of private synthetic data;

• a novel mechanism for differentially private kernel density
estimation that is designed for multiple point sampling for
synthetic data generation; and

• an extensive evaluation of privacy-preserving data genera-
tion yielding several practical insights.

The rest of the paper is organized as follows. After reviewing the
literature (Section 2), Section 3 introduces the problem, discusses its
privacy and utility trade-off, and gives a brief overview of DP and
its properties. We explain our synthetic data generation solutions
in Sections 4 and 5, and evaluate them in Section 6. In Section 6,
we also use the generated data to answer various location analytics
queries. We conclude our work with Section 7.

2 RELATEDWORK
Since DP has become the state-of-the-art privacy model, it has
been applied to many domains, including medical, financial, and
social network data. Using DP for spatial data is a continued area
of focus given the significance and sensitivity of location data. For
example, previous work has developed differentially private spatial
decompositions [5], released spatial histograms [10], and protected
temporally correlated location data [24].

There is an increasingly large body of work on private trajectory
publication [e.g., 11] and synthesis [e.g., 12, 14]. Although these
appear to be complex variants of the location privacy problem, the
solutions therein all produce outputs that correspond to arbitrary
grid cells (which is not concordant with the format of the original
data), whereas we generate co-ordinate data (i.e., the same form as
the input data). While one could extend these solutions to generate
individual points (e.g., by using uniform sampling), we show in
our work that achieving high-quality results by synthesizing exact
locations (while preserving the underlying characteristics of the
real data) is a significant challenge. Furthermore, almost all existing
works fail to fully utilize publicly-known information to boost util-
ity at no cost to privacy. Although the work of Naghizade et al. [17]
is ‘context-aware’, it lacks privacy guarantees, and there remains a
high risk of reidentification. Other context-aware work [e.g., 1, 4]
uses the local setting of DP, as well as relaxed privacy definitions,
which makes them incompatible with our objectives.

Notwithstanding the above differences, the problem we study
is a core issue of spatial data publication with many important
applications, such as advertising and better provision of public ser-
vices. Our methodology addresses several practical challenges for
real-life use of DP and private location data generation that are not
considered in (or the focus of) previous works. Our work uniquely
combines all of the following: a) satisfying the strict requirements
of DP under all circumstances; b) generating synthetic datasets in
the same format as the input datasets; c) contextualizing in the real
world by incorporating real-world knowledge (e.g., road networks);
and d) evaluating the methods with popular location analytics tasks.

3 PROBLEM SETTING
Given a dataset containing the real locations of individuals, we
aim to generate synthetic spatial point data that satisfies ϵ-DP, and
preserves as much as of the underlying distribution of the real
data as possible. Specifically, our objective is to protect the existence
and location of each individual in the dataset by using differential
privacy. We use p and s to denote real and synthetic locations (in co-
ordinate form), and P and S to denote the sets of real and synthetic
locations, respectively. In this section, we outline how we seek to
balance privacy and utility. We also briefly outline the setting of
our problem with respect to adversaries and assumed knowledge.
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3.1 Privacy
Even when a strong social motivation for data sharing or release
exists (e.g., in contact tracing to help track disease spread), there
remains a need for strong privacy protections. The absence of a
sufficiently strong privacy model can result in deanonymization
[22] or inference attacks [16]. We use DP as it provides a strong
level of protection, through a guarantee of plausible deniability, to
all members of a dataset.

Definition 1 (ϵ-differential privacy [6, 7]). A randomized
mechanism A is ϵ-differentially private if, for any two datasets D
and D ′ differing by one element, and for all y ∈ Range(A), we have:

Pr[A(D) = y]

Pr[A(D ′) = y]
≤ eϵ (1)

In other words, a mechanism that satisfies ϵ-DP should return
approximately similar results, even if a tuple, t , is added or removed
from a dataset (i.e., D ′ = D ± t ). The Laplace mechanism is used to
release the values of numeric functions of data [7]. For a function
f acting on D, it adds random noise to the value of f (D) such that:

Af = f (D) + Lap
(
∆f

ϵ

)
(2)

where, Lap(·) denotes the Laplace distribution, and the scale of the
noise is set by the sensitivity of f , ∆f = maxD,D′ | f (D) − f (D ′)|.

The privacy properties of multiple mechanisms can be analyzed
via a composition theorem [8]. Multiple mechanismsAi , each with
a privacy parameter ϵi , can be combined to form one ϵ-differentially
privatemechanismwith ϵ =

∑
i ϵi . Thus, we refer to ϵ as the privacy

budget for a specific task (i.e., synthetic location data generation),
and apportion it into pieces. In our work, we add noise in at most
three places and divide our privacy budget across these steps, where
each step has a privacy budget of ϵi . That is, ϵ = ϵ1 + ϵ2 + ϵ3.

Another property of DP is its robustness to post-processing [8].
That is, we can transform the output from a DP mechanism without
further privacy loss, unless we use extra knowledge about the
input. When we use the Laplace mechanism for a count query, post-
processing permits rounding all values to the nearest integer, and
all negative values to zero, with no adverse privacy implications.

3.2 Utility
Our aim is to generate synthetic data that maximizes utility, while
meeting the above privacy guarantees. We initially assess this
through two measures: normalized cell error (NCE) and mean edge
distance difference (MEDD).

For NCE, we divide the region into L cells (giving the set L), and
obtain creall and csynthl – the number of points in each cell for the
real and synthetic datasets, respectively. NCE is then defined as:

NCE =
1
|P |

∑
l ∈L

|creall − c
synth
l | (3)

While NCE quantifies the error between just the synthetic and
real datasets, MEDD quantifies the error between the two datasets
with respect to a graph – here, the road network. We use MEDD to
quantify the preservation of network alignment of the synthetic
points. We define d(p, ep ) to be the shortest distance from a point p

to its nearest edge ep (explained more in Section 5). MEDD is hence
defined as:

MEDD =

������ 1
|P |

∑
p∈P

d(p, ep ) −
1
|S|

∑
s ∈S

d(s, es )

������ (4)

As we seek to establish practical data sharing mechanisms, we also
assess utility through a range of location analytics tasks like range,
hotspot, and facility location queries. These utility measures are
described more in Section 6.

3.3 Adversaries and Assumed Knowledge
We assume that the aim of an adversary is to identify the true
location of a certain individual. As our proposed methods make
use of external knowledge (e.g., the road network), which is public
knowledge, we assume it can also be utilized by any adversary. Given
this aim, there are two primary adversary targets: membership
inference and location identification. To provide protection in both
regards, we use differential privacy – a widely-used, ‘road-tested’
technique with strong, demonstrable privacy guarantees. Through
its definition (see Definition 1), each individual has a degree of
plausible deniability with respect to their inclusion in the synthetic
dataset (governed by a probabilistic bound; see Equation 1). This
assures us that the output S does not provide the adversary with an
advantage in determining the true location of an individual in the
input. Adopting synthesis of location data (as opposed to publication)
further weakens the relationship between real and synthetic points.

As we treat each point independently, each point has its own
(composable) DP guarantee. As such, our methods can be applied
to trajectory data without adverse downstream consequences. That
is, it would not be possible to link individual points in the synthetic
data and re-identify a real trajectory.

4 PARTITIONING-BASED DATA
GENERATION

This section details our two-stage partitioning-based approach. We
first restrict data generation to be within small regions, and then
generate a noisy number of points, while preserving a distributional
measure of the real data. We propose a private version of kernel
density estimation (KDE) to obtain representative probability dis-
tributions of point data. For the kernel function to be well-defined,
it requires access to points in the database, which makes satisfying
DP requirements difficult while maintaining high utility. Privatizing
KDE is further complicated by our need to repeatedly sample from
the private KDE to generate multiple synthetic points, a process
that would potentially lead to high levels of privacy leakage ordi-
narily. Hence, we develop a kernel density estimate that satisfies
ϵ-DP, achieves high utility, and is robust to multiple sampling.

4.1 Private Data Partitioning
Before introducing our solution for generating data, we outline
how we partition our space by using differentially private grid- and
clustering-based approaches from the literature.

4.1.1 Grid-Based Partitioning. A simple method to privately parti-
tion data is to use a uniform grid (UGrid) that is independent of the
data, thus maintaining privacy. Choosing the correct granularity,



SSTD ’21, August 23–25, 2021, virtual, USA Cunningham, et al.

however, is important as too coarse or too fine a grid can lead to
poor results. Consequently, to determine the dimensions of the grid,
we utilize a guideline proposed in Qardaji et al. [19]. For anm ×m
uniform grid, we set the number of cells in each direction to be:

m =

⌈√
Nϵ

10

⌉
(5)

where, N is the number of points in the real dataset, P, and ϵ1 is the
privacy budget assigned to this task. This ensures that the average
number of points per cell is suitably larger than the noisemagnitude,
and it follows the composition property of DP introduced in Section
3.1. Consequently, the total number of cells, or regions, into which
the data is partitioned is K = m2 ≈

N ϵ1
10 . We add noise to the

number of points ni in each region Ri using the Laplace mechanism
to obtain: n′i = ni + Lap(

1
ϵ1 ).

In many situations (e.g., non-uniform distribution of points), a
uniform grid would be unsuitable as it would likely fail to capture
the distribution accurately and/or add noise to the dataset in a
biased manner. Therefore, we also implement an adaptive grid
(AGrid) method (from Qardaji et al. [19]) whereby denser regions
have more grid cells, and sparser regions have fewer cells. We
follow their recommendation by first dividing the data region into
anm1 ×m1 uniform grid where:

m1 = max

(
10,

1
4

⌈√
Nϵ1
10

⌉)
(6)

We add Laplace noise, controlled by ϵ1, to the count in each cell
and then divide each cell i into anmi

2 ×mi
2 grid where:

mi
2 =


√
n′iϵ2

5

 (7)

We conclude the partitioning phase by adding Laplace noise, con-
trolled by ϵ2, to the count in each of the new smaller cells.

4.1.2 Cluster-Based Partitioning. We also implement a private
clustering-based approach to generate regions. We adapt the ex-
panded uniform grid K-means (EUGKM) method [20, 21], which
has been shown to perform well while satisfying ϵ-DP.

In short, EUGKM consists of two steps: initial cluster centroid
generation and K-means-style clustering. To generate the locations
of an initial set of K centroids, EUGKM uses the concept of sphere
packing to randomly generate points within the bounds of the
dataset that ensures that all centroids are evenly (but not necessarily
equally) spaced across the data space. The main advantage of this
method is that it can be done without access to individual data
records, thus maintaining privacy. A uniform grid is then generated
using Equation 5, and ϵ1 is used to control the grid size. Data points
are assigned to a grid cell, the total number for each cell is calculated,
and Laplace noise of Lap( 1

ϵ1 ) is added to the count in each cell. Grid
cells are then ‘allocated’ to their nearest centroid and a weighted
K-means style procedure for optimization is initiated, where the
cell-centroid distances are weighted by the (noisy) number of points
in each cell. We use these centroid locations to generate K Voronoi
regions to which each real data point is assigned. For each cluster
region, we obtain the number of points and, as we have interacted
with the real data again, we need to add noise to each Voronoi

region’s count. Hence, our final step is to add Laplace noise to get
a noisy count: n′i = ni + Lap(

1
ϵ2 ). Once again, this is in accordance

with DP’s composition property (Section 3.1).
In summary, the main difference between the two partitioning

methods is that clustering is (in theory) more sensitive to non-
uniform point distributions (i.e., using Voronoi regions allows small
clusters to form easily in dense regions). We examine this empiri-
cally in our experiments.

4.2 Private Data Generation
Generating synthetic data from a domain without imposing any
constraints can be done in many ways. For example, sampling from
a uniform distribution over the entire domain will maximize the
entropy. However, we aim to generate synthetic data that preserves
some underlying characteristics or properties of the real data. Our
task is mademore difficult as we try tomatchmore complex features
of the data while imposing the strict requirements of ϵ-DP.

In this section, we introduce differentially private SDG methods
for use in conjunction with any partitioning method. Note that,
when generating synthetic points with any method, we can ensure
that points are not generated in regions that are unlikely to contain
points, such as seas and rivers. We do this by specifying ‘out-of-
bounds’ regions from which we filter any synthetic data points that
lay within these regions. More explanation of this process is given
in Section 6.1.

4.2.1 Uniform Distribution. As private partitioning already ap-
proximately captures an overall distribution of the points, a simple
method for synthetic point generation is to sample at random from
a uniform distribution. As uniform random sampling is data in-
dependent, no further noise is needed at this stage to preserve
privacy (i.e., ϵ3 = 0). We further reduce the size of the region by
dividing each region into triangles where each triangle consists of
the region’s centroid and two adjacent vertices of the region. We
generate points randomly within each triangle in proportion to
each triangle’s area, using the triangle point picking method [23].

4.2.2 Weighted Uniform Distribution. A more nuanced approach is
to use information from neighboring regions to define the point dis-
tribution. The weighted uniform distribution (WUD) approach sub-
divides each region and distributes points uniformly across each
sub-region. The number of points in each sub-region is influenced
by characteristics of the sub-region and neighboring region [25].

We split each region Ri into J sub-regions. The number of points
n′i, j in sub-region Ri, j is based on its area and the noisy number of
points in the neighboring region. It is defined as:

n′i, j = n
′
i

(
ω
Ai, j

Ai
+ (1 − ω)

x ′i, j

x ′i

)
(8)

where, Ai, j and Ai are the areas of Ri, j and Ri , respectively; x ′i, j
and x ′i are the noisy number of points in the neighboring region(s)
to Ri, j and Ri , respectively; and 0 ≤ ω ≤ 1 is a weighting factor.
By definition, x ′i =

∑
j x

′
i, j . We set ω = 0.5 to give equal weight be-

tween the areas and populations of (sub-)regions. Once the number
of points in each sub-region is determined, we generate points us-
ing the triangle method (Section 4.2.1). As the boundary regions are
private (due to the partitioning method) and we only ever use the
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noisy number of points in any region, the post-processing property
of DP negates further noise addition. Hence, ϵ3 = 0 here.

4.2.3 Kernel Density Estimation. Kernel density estimation is a
statistical approach to estimate the density function of a distribu-
tion. Using KDE as a basis for synthetic data generation can better
preserve the underlying characteristics of the original data. The
kernel density estimator, f̂ (x), is defined as:

f̂ (x) =
1
N

N∑
j=1

ϕ(x − xj ) (9)

where, x is a two-dimensional vector consisting of x- and y-co-
ordinates, N is the number of points in the dataset (that is the basis
for the kernel), and ϕ is the kernel function.
Kernel Density Estimator Construction.While there have been nu-
merous attempts to privatize KDE [2, 13, 15], these methods are
not well-suited to our setting (i.e., sampling multiple times from a
private KDE). Prior efforts adopt relaxed privacy definitions, such as
(ϵ,δ )-DP [13], or perform post-hoc testing of KDE samples for pri-
vacy [15]. Aldà and Rubinstein [2] use the Gaussian kernel, which
results in oversmoothing in our setting, leading to poor quality
synthetic data.

We instead use a two-dimensional Laplace kernel, owing to the
widespread use of its one-dimensional counterpart in other DP
work. Specifically, we use the polar Laplace distribution, which has
the probability density function:

ϕ(x − xj ) ≡ ϕ(r ,θ ) =
exp(−r/h)

2πh
(10)

where r = ∥x − xj ∥, θ is the angle between x and xj , and h is a
normalization (or smoothing) factor. To ensure we obtain a differen-
tially private kernel for region Ri , it is necessary to tune the kernel
function in each region Ri such that the probability ratio between
the two most distal points in Ri is no more than eϵ , as required by
Definition 1. Hence, we set the smoothing parameter for Ri to be:

hi =
∥Ri ∥

ϵ∗
(11)

where ∥Ri ∥ is the maximum distance between any two locations
(not necessarily in P) in Ri . Consequently, proving that this kernel
function satisfies DP can be easily done by examining the probabil-
ity ratio between ϕ(0,θ ) and ϕ(∥Ri ∥,θ ).
Synthetic Data Generation. We now outline how to generate a syn-
thetic point s . To do so, we utilize a convenient property of kernel
density estimation: sampling from the full KDE is equivalent to
first sampling one of the n points xj , then sampling from the kernel
around xj . From Equation 10, we see that r and θ can be sampled
independently – that is,ϕ(r ,θ ) = ϕ(r )ϕ(θ ). To this end, we first sam-
ple from ϕ(r ) = h−1 exp(−r/h) , and then sample from ϕ(θ ) = 1/2π
(equivalent to sampling randomly from the uniform distribution
with bounds (0, 2π ]). Once we obtain values for r and θ , we convert
to Cartesian co-ordinates and add this displacement to the sampled
real point to give s (i.e., xs = xp + r cosθ ,ys = yp + r sinθ ).

There is a risk that real points are sampled many times, which
would lead to privacy leakage that could reveal the true location
of an individual. To avoid this, we modify the sample procedure
slightly. We set ϵ∗ = ϵ3/λ, which allows each real point to be
sampled at most λ times (using sequential composition), meaning

we achieve our target level of privacy protection. If we reach this
limit, or if ni = 0 and n′i > 0, we simply generate a point uniformly
at random, which has no negative privacy consequences. We set
λ = 2 as n′i ≤ 2ni in most cases. We repeat this sampling process
until n′i points are generated in each region Ri . Finally, as a sample
generated this way has the same distribution as the KDE and the
KDE satisfies DP, it follows that the synthetic data satisfies DP.

5 ROAD NETWORK- AND
GEOGRAPHY-AWARE DATA GENERATION

The methods presented thus far follow the common assumption
that there is limited knowledge of the underlying geography. In
many cases, however, more significant information is available both
to the data owner and to the public. For example, for a dataset of
vehicle trajectories, it is reasonable to assume that all points in the
dataset will correspond to points on (or very close to) segments
of a city’s road network. Therefore, when generating points, one
should ensure that all synthetic points are similarly aligned to road
segments. We can also use outside knowledge to infer where indi-
viduals may be unlikely to be located (e.g., in seas, rivers, military
bases). Importantly, enforcing these constraints does not use any
information not already in the public domain, and can therefore
be done without using any of the privacy budget. For example, the
location of roads and boundaries of seas are available (often to a
high level of detail) through a range of mapping platforms and
government open data repositories.

Notation. Consider the graphG(E,V ) that represents the road net-
work. E and V represent the road segments and road intersections,
respectively. For each individual locationp ∈ P, there exists an edge
ep ∈ E that is the closest edge (distance-wise) to p. Two distance
functions help us map p onto ep (see Figure 1). The first, d(p, ep )
gives the perpendicular distance from p to ep . The projection of p
onto ep is denoted by π (p, ep ). The second function, l(p, ep ), gives
the distance along ep between vepi and π (p, ep ).

Noise Addition. If the real data points are not perfectly aligned
with the assumed road network, it is necessary to map-match them
to edges in the graph (i.e., obtain ep for all p ∈ P). We count the
number of points for which that edge is the nearest, and denote it as
ne . We now use this count to determine the noisy number of points
that will be generated along each edge by first adding Laplace noise
tone . The privacy budget is represented as ϵ1, using the composition
property of DP (see Section 3.1). A simple approach would be to use
these values as the noisy counts. However, this would result in a
large amount of additional noise throughout the dataset, especially
when a large proportion of edges have low/zero counts. Therefore,
we reduce the influence of the noise by denoting this ‘intermediate’
count as n∗e , and performing a post-processing step to obtain n′e =
N×n∗

e
N ∗ , where N ∗ =

∑
e n

∗
e , the sum of intermediate noisy counts

for all edges. Furthermore, we set n′e = 0 for all edges where n′e ≤ θ ,
where θ is a threshold value. Imposing this threshold also reduces
the impact of the added Laplace noise. DP is still satisfied as these
are post-processing operations.

Determining the threshold value. The value of θ can impact the
quality of the synthetic data and may vary dynamically with ϵ1 (as
the magnitude of added noise depends on ϵ1). The optimal value for
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Figure 1: Diagram showing p, ep, d(p, ep), and l(p, ep)

θ will balance the number of points added to edges where ne = 0,
and the number of points ‘lost’ for edges where n′e ≤ θ and ne , 0.
However, trying to find this equilibrium directly requires knowing
the true number of points on each edge, which would violate DP. To
obtain a good approximation for θ , we use the inverse cumulative
distribution function of the Laplace distribution, defined as:

Q =

{
µ + ln(2F )

ϵ1 if F ≤ 0.5
µ + −ln(2−2F )

ϵ1 if F ≥ 0.5
(12)

where, Q is the quantile of the Laplace distribution, µ is the mean
of the distribution (i.e., ne ), and F is the value of the cumulative
distribution function. The intuition is that setting θ = Q95 seeks to
remove approximately 95% of the added noise, for example. When
ne = 0, then µ = ne = 0 and so Q = 0 when F ≤ 0.5 (disbarring
negative counts), so we only need the second term. Furthermore,
when ϵ1 is very small, the above term can be very large, which also
causes adverse distortion to the dataset. Thus, we impose an upper
limit on the value θ can take, which we set to be 10. Hence, θ is
defined as:

θ = min
(
−ln(2 − 2F )

ϵ1
, 10

)
(13)

Experimentally, we find F = 0.9 (i.e., removing about 90% of the
noise) to be satisfactory, so this is our default choice.
Synthetic Data Generation. To generate a synthetic point s along an
edge, we must fix (i) the distance along e that s is, (ii) the perpendic-
ular distance from e that s is, and (iii) the ‘side’ of the edge that s is
in relation to e . For (i), we could assign a distance at random from
a uniform distribution. However, for very long roads, this could
result in synthetic points being far from the real point locations,
which would possibly reduce the synthetic data’s utility. Instead,
we summarize each edge with a micro-histogram. For each edge,
we create a histogram (with α bins) using the values of l(·, ep ) and,
to preserve privacy, we add noise (= Lap( 1

ϵ2 )) to the count of each
bin. We sample from this noisy histogram to determine the bin
in which s lies, and the exact value for l(s, es ) is determined by
sampling from a uniform distribution with bounds corresponding
to the bounds of the histogram bin. We sample from the histogram
n′e times to generate the necessary values for l(s, es ) – note that
es ≡ ep . A pictorial example of this process is shown in Figure 2.

For (ii), we use the same approach to determine the values of
d(s, es ), with ϵ3 as the privacy budget when adding noise to the
histogram. When the values for d(s, es ) and l(s, es ) are set, there are
two possible locations for s . For (iii), we select between these two
locations with equal probability to determine the final location of s .
When ne = 0, we define the range of histogram values such that

Add noise to 
counts

2 4 1

Create 
histogram

Real points

3 3 1

Sample from 
noisy 

histogram

Synthetic points

Figure 2: Example for generating the values for l(s, es)

d(s, es ) takes a value in the range (0, 10) meters and l(s, es ) takes
a value in the range (0, |es |), where |es | is the length of es . This
process is applied to all edges in E where n′e > 0 until the entire
synthetic dataset, S, is created.
Histogram bin choice.Wenowdiscuss how to chooseα , which affects
the downstream utility of the synthetic data. We aim to balance the
amount of overall noise added to an edge with the location accuracy
along an edge. For example, having a high number of bins will be
beneficial for describing locations accurately, but will involve high
noise addition, which will negatively affect the accuracy during the
histogram sampling stage. The converse is true for low α .

Theorem 1. The optimal value of α is O
(√

ϵN
)
.

Proof. Consider a road segment with N points that is divided
into α histogram bins. Suppose we have a range count query that
covers a proportion q of the road (i.e. qα bins). The error in answer-
ing a range query has two components: privacy noise error and
non-uniformity error. Knowing that the expected magnitude of the
ϵ-DP noise error per bin is

√
2/ϵ , we know that the noise error will

be proportional to
√
2qα
ϵ . There are, on average, Nα points in each

bucket. When answering a query that partially intersects a bin, we
do not know whether points in a bin will be included in the query
response (owing to non-uniformity of the data distribution), and
this uncertainty is nj , the number of points in the jth bin. Summing
over queries touching each of α bins, the total error is given by:∑α
j=1 j

√
2
ϵ +nj =

α (α+1)
√
2

2ϵ +N . We minimize this error by equating

the two terms, yielding α = O

(√
ϵN

)
. □

In this proof, N corresponds to n′e , the noisy count of the edge;
and ϵ corresponds to either ϵ2 or ϵ3. The value for ϵ can be chosen
empirically and we find that setting α =

√
N gives effective results,

as demonstrated in the experiments.

6 EXPERIMENTAL EVALUATION
In this section, we assess the accuracy and efficiency of our methods
using the utility measures from Section 3.2. We also evaluate our
synthetic datasets for a range of common location analytics tasks.
We outline our experiments in Section 6.1, before comparing our
synthetic data generation methods in Section 6.2. We then consider
our application-focused queries: range and hotspots queries in
Section 6.3, and facility location queries in Section 6.4. We finish
the section with discussion and recommendations (Section 6.5).
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Table 1: Dataset Information

City Data Type Number of Number of Boundaries Ref.Points Edges North South West East

New York, USA 311 Calls 163,220 8,161 Manhattan Island [18]
Beijing, China Taxi Trajectories 158,260 7,913 39.954 39.862 116.330 116.450 [26, 27]
Porto, Portugal Taxi Trajectories 79,360 3,968 41.168 41.123 -8.635 -8.576 [9]

(a) Real Points (b) UGrid-KDE (c) AGrid-KDE (d) Clust-KDE (e) Road

Figure 3: Plots of real and synthetic data for data generation methods (Beijing)

6.1 Experiment Outline

Datasets. We generate synthetic data using real location data from
three cities with different topographies and sizes, detailed in Table 1.

We extract only the longitude-latitude pairs of each record. Al-
though taxi trajectory points are correlated, we consider each point
to represent an independent individual in the dataset. We ignore
any temporal information connected to the experiment data. We
extract coastline data from OpenStreetMap and use this to define
‘out-of-bounds’ regions that represent major bodies of water, such
as seas and rivers. We remove any points in the original data located
in these out-of-bounds regions, and ensure that no synthetic points
are created in these regions. The same technique can be used to
add further geographical restrictions (e.g., forests, military bases)
on the presence of real or synthetic individuals.

We extract the ‘driveable’ road network data as a graph from
OpenStreetMap, using the osmnx Python package [3], with bound-
aries matching those detailed in Table 1. As pre-processing steps, we
map-match each point in the cleaned datasets to the corresponding
road network, remove any edges that are within the out-of-bounds
areas, and calculate the values d(p, ep ) and l(p, ep ) for each point.
The final number of points and edges for each city is shown in
Table 1. To examine the real-world suitability of our methods, we
do not correct the map-matched data to enforce alignment with the
road network; we discuss this more in Section 6.2.3.
Baselines. As discussed in Section 2, most existing work only pub-
lishes count data for grid cells/clusters, as opposed to generating co-
ordinate data. Such data can be generated in these partitions using
simple uniform sampling (Section 4.2.1) and so we use these exten-
sions of existingmethods as baselines.We use the terms ‘UGrid-Uni’,
‘AGrid-Uni’, and ‘Clust-Uni’ to refer to the extension of the uniform
grid, adaptive grid, and clustering-based partitioning methods.
Parameter Selection. For each dataset, we set the number of data
points, N = 20|E |, where |E | is the number of edges. We do this so
that the number of grid cells is approximately equal to the number of

edges for the road network-based solution. (We refer to this method
simply as ‘Road’.) This allows for a fairer comparison between the
methods as the amount of added noise will be more comparable.
However, for clustering-based methods, having K ≈ |E | would
result in the regions exhibiting a grid-like structure, and so we set
K = 1,000. By default, ϵ = 1, but we evaluate the impact of varying
and splitting the privacy budget in Section 6.2.2.

Utility Measures.We use the two measures detailed in Section 3.2:
normalized cell error (NCE) and mean edge distance difference
(MEDD). To calculate the NCE, we divide the entire region into
a uniform grid where each individual grid cell has approximate
real-life dimensions of 100m × 100m.

6.2 Comparison of Methods
6.2.1 Summary. Figure 3 shows the visual similarity between the
real and synthetic data. Although all methods preserve the underly-
ing structure to some degree, we see that utilizing the geographical
constraints explicitly in the SDG stage produces synthetic data
that has much stronger visual similarity to the real data than the
partitioning-based methods. Quantitatively, Table 2 shows the NCE
and MEDD values for the four SDG methods, as well as the three
approaches for generating synthetic data points within defined
regions (Section 4.2) and the runtimes for each.

Adopting KDE for grid-based partitioning methods improves
data quality, compared to extensions of existing methods. As KDE
almost always outperforms WUD in accuracy terms, we adopt it as
the default choice for data generation. AGrid performs similarly to
UGrid, unless the city’s network is more structured (e.g., New York)
in which case it is markedly better. We note that it (generally) takes
longer to run, which may make UGrid preferable. For clustering-
based partitioning, KDE offers notable improvements compared
to other approaches, although it fails to match the grid-based ap-
proaches in accuracy terms. This is primarily because larger regions
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Table 2: NCE, MEDD, and runtime values for default settings; baselines denoted by asterisks (*)

Data Generation Beijing Porto New York City
Method NCE MEDD Time NCE MEDD Time NCE MEDD Time

UGrid
Uniform* 0.360 10.64 64.25 0.165 6.46 62.58 0.374 15.36 91.44
WUD 0.332 8.59 295.97 0.152 5.36 131.62 0.366 15.04 233.39
KDE 0.297 8.62 39.89 0.160 5.22 99.63 0.309 12.86 749.28

AGrid
Uniform* 0.379 11.83 55.92 0.188 6.23 65.33 0.310 14.99 159.19
WUD 0.362 10.02 1336.85 0.180 5.20 399.73 0.307 14.63 1469.85
KDE 0.285 8.84 63.82 0.160 4.76 265.71 0.259 11.34 1876.09

Cluster
Uniform* 0.876 27.83 10.81 0.407 13.00 17.51 0.610 19.48 25.17
WUD 0.866 26.19 28.88 0.391 12.38 32.50 0.591 18.63 29.11
KDE 0.616 19.23 8.23 0.272 8.85 85.93 0.463 16.41 842.54

Road 0.316 1.97 29.09 0.184 0.94 16.87 0.200 0.70 51.40

lead to flatter kernels due to the requirements of DP (i.e, ∥Ri ∥ is
larger, meaning h is larger).

Using Road offers even greater improvements, as we observe
improvements of up to 28x over the baselines (vs. Clust-Uni, MEDD,
New York). Furthermore, Road is up to 3.9x faster than the baselines
(vs. AGrid-Uni, Porto), and up to 37x faster than KDE approaches (vs.
AGrid-KDE, New York). This highlights its suitability for generating
large city-scale synthetic datasets of high utility.

In Porto and Beijing, where many points are not closely aligned
with the road network and the road network is less ordered, grid-
based approaches are generally superior in accuracy terms. In New
York, however, the real data adheres more tightly to the road net-
work, which means Road is much better at creating high quality
synthetic data and it achieves better MEDD values.

6.2.2 Varying Parameters. We also examine the effects that varying
the key parameters have on the quality of the data. Owing to space
limitations, we omit some corresponding plots.

Privacy Budget. Figure 4 shows the effect of changing ϵ on the NCE
and runtime (for Porto, although other cities exhibit similar profiles).
In terms of accuracy, all methods behave as expected: accuracy
decreases as ϵ decreases, due to the increase in the amount of added
noise. For low ϵ , runtime is higher for partitioning-basedmethods as
it is more likely that generated points are ‘out-of-bounds’ or outside
the boundaries of Ri . Runtimes for grid-based methods increase as
ϵ increases beyond 5 as the number of cells grows in proportion to
ϵ (cf. Equations 5-7). The runtimes for Road are consistently low
for all ϵ , which further highlights its general suitability.

Privacy Budget Distribution. To examine the effect of varying the
distribution of ϵ , we consider the following apportionments. First,
note that, for all UGrid methods, ϵ2 = 0 as noise is only added
once during the partitioning phase. Likewise, for data generation
methods that do not use KDE, recall that ϵ3 = 0. Hence, for UGrid
methods that do not use KDE, ϵ1 = ϵ . For UGrid methods with
KDE-based data generation, we consider the following percentage
splits between ϵ1 and ϵ3: 10–90; 20–80; 30–70; 40–60; 50–50 and
their reverses. We find that, empirically, the best privacy budget
split is to set ϵ1 = 0.6ϵ and ϵ3 = 0.4ϵ . This is intuitive as it achieves
approximate balance in noise addition between the partitioning
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Figure 4: Variation in NCE and CPU time with ϵ (Porto)

and data generation phases. For AGrid partitioning, we follow the
guidance in Qardaji et al. [19] and set ϵ1 = ϵ2. For KDE-based
generation with AGrid partitioning, we consider the following
percentage splits: 12.5–12.5–75; 20–20–60; 25–25–50; 33–33–33;
and 40–40–20. We find that ϵ1 = ϵ2 = 0.4ϵ and ϵ3 = 0.2ϵ gives good
results. For cluster-based partitioning without KDE, we find that
ϵ1 = 2ϵ2 is the best setting. For cluster-based partitioning with KDE,
we find that setting ϵ3 = 0.25ϵ is best, which leaves ϵ1 = 0.25ϵ and
ϵ2 = 0.5ϵ . As noted previously, cluster-based partitioning generally
leads to flatter kernels as regions tend to be larger, and so a slightly
higher ϵ3 value helps to keep h at a value that prevents the kernel
from becoming too flat. For Road, equal division of ϵ balances noise
added to edges with noise added to the micro-histograms. We use
these allocations as the default settings throughout.
Number of Clusters. When Clust-KDE is used, NCE values decrease
as the number of initial clusters increases. This is intuitive as regions
are smaller, which allows the kernel density estimate to be better
tailored to the characteristics of the regions.

6.2.3 Real World Considerations. We next evaluate how well our
methods model characteristics of real world data, which is often
messy and can exhibit high non-uniformity or skew.
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Road Network Alignment. For Road, we assume that data points are
well-aligned with the underlying road network. However, this is
not always the case with real datasets, and there can be high error
when map-matching raw data points to edges in the road network.
This may be due to GPS sampling errors, map projection errors,
and multi-lane roads being modeled as single lines of zero width.

Whereas we use ‘uncorrected’ data in the main experiments, we
now perform experiments where we use the map-matched data as
the input datasets (i.e., d(p, ep ) = 0). In this new setting, we find
that Road is far superior to the other methods, which perform up
to 18% worse. Hence, when the data is corrected, Road is up to 10%,
10%, and 120% more accurate than UGrid-KDE, AGrid-KDE, and
Clust-KDE, respectively.
Uneven Population Densities. Population density in cities is rarely
uniform, either across an area, or along individual roads. In the
urban centers, point density may be somewhat uniform along edges,
while rural and suburban areas may experience more varied densi-
ties. To examine how our methods are affected by uneven densities,
we create a dataset focused on a larger area of Beijing, which in-
cludes more suburban areas. We set the expanded bounds of the
studied region to the bounding box between (116.33, 39.97) and
(116.48, 39.85). In the new road network, |E | = 13,862 and so we set
N = 20|E | = 277,240. We find that both UGrid-KDE and Road are
relatively robust, but AGrid-KDE and Clust-KDE perform worse.

6.3 Range and Hotspot Queries
6.3.1 Range Queries. Range queries are important in location ana-
lytics to quickly assess how many customers are potentially avail-
able to a business, measure accessibility to key services within a
certain time, etc. To assess this, we specify a set, L, of 100 arbitrary
locations in each city (selected from the set of nodes in each city’s
road network), and specify a circular region defined by the radius,
r . To quantify the error, we use mean absolute error (MAE), in
which creall and csynthl respectively denote the number of real and
synthetic points within r meters of location l , and:

MAE =
1
|L|

∑
l ∈L

���creall − c
synth
l

��� (14)

Figure 5 shows how the radius of the range query influences the
error, for each method and city. For small r , all partitioning-based
methods outperform their respective baselines. Interestingly, al-
though Clust-KDE is generally less competitive, it performs better
in the less-ordered Porto. Road is a viable alternative when r is
small; although, as r increases, its error increases rapidly. Likewise,
AGrid methods perform notably worse for large r values. However,
when one considers the error in relation to the dataset size, as well
as the proportion of the query range to the entire dataset domain,
this behavior is acceptable. Despite this, UGrid methods offer strong
alternatives, depending on the degree of road network alignment.

6.3.2 Hotspot Queries. Hotspot queries are also fundamental in
location analytics for businesses to identify popular regions for
advertising, for city agencies to help manage congestion and traffic
flow, etc. Here, we obtain kernel density estimates for the real and
synthetic datasets, at varying granularities. We use a Gaussian ker-
nel over a д × д uniform grid, where д denotes the grid granularity;
we use granularities: д = {26, 27, 28, 29, 210}. Note that our kernel
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Figure 5: Variation in MAE of range queries as r varies

function can be non-private (i.e., the kernel is tuned to the data)
here as we are simply assessing the utility of the output data. We
define hotspots to be locations with a density greater than the 95th
percentile. To assess query response similarity between the two
datasets, we use the Sørensen-Dice coefficient (SDC), defined as:

SDC =
2
��H real ⋂H synth����H real

�� + ��H synth
�� (15)

whereH is the set of hotspots.
Figure 6 shows similarity decrease as granularity increases, as

the kernel density estimates are more sensitive to small changes in
the location of individual points. All partitioning-based methods
outperform their respective baselines, and Road performs especially
well when the original data is well-aligned with the road network
(e.g., New York, Figure 6c). However, Road performs less well with
dense road networks or poorly aligned data (e.g., Porto, Figure 6b).
Conversely, grid-based methods perform better in less-structured
environments, but perform worse when data is well-aligned with
the roads.

6.4 Facility Location Queries
Facility location is a common analytics task for which individual
location data is necessary and is one possible application for our
methods. Given a set F of existing facilities and a set C of candidate
facilities, a facility location query (FLQ) aims to find the best B
locations that satisfy a stated objective function. We consider the
two most common FLQ variants. In theMax-Inf case, we seek to
identify the most influential candidate facilities, where influence
is commonly defined as the total number of customers that the
facilities attract. In the Min-Dist case, we find the facilities that
minimize the total distance between customers and the facilities.

6.4.1 Outline. Consider the case where a food stand company
wishes to locate a number of outlets in the center of Beijing. We
intuit that a lot of business would be generated if the outlets were
located at the intersections of busy roads and so we use the location
set, L, (from Section 6.3.1) where each l ∈ L now represents a
candidate facility. For the real dataset, we use those from Section 6
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Figure 6: Variation in SDC as the hotspot granularity varies

and, for the synthetic datasets, we use those generated in Section 6
under the default conditions. We assume that there are no existing
facilities currently in the city (i.e., F = Ø). We also define Breal

and Bsynth to be the sets of selected facilities when the real and
synthetic datasets are used, respectively. We use the SDC to assess
accuracy of FLQs when using synthetic data. In this setting, the
SDC will capture the extent to which synthetic data identifies the
same top-B facilities as the real data. We use Breal and Bsynth in
place of H real andH synth from Equation 15.

6.4.2 Results. Table 3 shows the SDC values (when B = 20) for
both FLQs. We see that, irrespective of the data generation method,
both variants of FLQs are answered almost identically compared
to when the real data is used. This is because the optimal locations
are quite robust to the noise added to achieve DP. The SDC values
indicate that at least 19 of ‘true’ top 20 candidate facilities are
selected when using the synthetic data, which further highlights
its suitability for answering FLQs. We also explore the effect that
changing B has on the SDC values. Our methods are robust and
perform equally well for all values of B. In particular, they produce
optimal results to theMin-Dist FLQ for all values of B.

There may be some cases in which using synthetic data does not
obtain similar results to FLQs. For example, when candidate facili-
ties are close to each other, customers may be assigned to different
facilities if their location is perturbed a little. Another example is in
the capacitated facility location problem (when capacity constraints
are strict) when ‘additional’ customers generated through additive
noise cannot be accommodated at their nearest facility. However,
overall our methods generate synthetic data that exhibit high levels
of accuracy for FLQs compared to using real data. In reality, this
means that researchers and companies do not need use real data for
facility location. Instead, private synthetic data can be used without
compromising on the accuracy of the facility location analysis.

6.5 Discussion
While both partitioning-based and road network-based approaches
are effective in practice, different methods are more appropriate for
different circumstances. We summarize our findings here.

Table 3: Sørensen-Dice Coefficients (B = 20) for FLQs

Data Gen. UGrid AGrid Clust RoadMethod Uni KDE Uni KDE Uni KDE

Max-Inf 1.00 1.00 1.00 1.00 0.95 0.95 0.95
Min-Dist 1.00 1.00 1.00 1.00 1.00 1.00 1.00

All methods scale well in accuracy terms. In particular, Road
accommodates large datasets easily, and the error decreases with in-
put size. Hence, Road should be the default data generation method,
especially when the raw data is well-aligned with the road network.
Where road network data is unavailable or the data is poorly aligned
with the road network, partitioning-based approaches should be
considered. UGrid-KDE and AGrid-KDE are generally comparable,
although AGrid methods are particularly strong in more structured
environments. For very large datasets, the difference in runtime
costs between clustering- and grid-basedmethods is larger (cf. Equa-
tion 5 and Figure 4b – N and ϵ have similar effects on runtime),
and so clustering-based methods should be considered in this case.

For facility location analytics tasks, all methods perform very
well and all methods can be recommended as a general purpose so-
lution. For range queries, all methods are highly effective especially
when the range query radius is small. If the range query radius is
large, UGrid approaches are recommended (with consideration of
the degree of network alignment). For hotspot queries, we advise
using Road for datasets that are well-aligned with the road network,
which is the case for most applications. UGrid-KDE and AGrid-KDE
are more effective when the datasets are less well-aligned, or when
the road network is less well-structured.

7 CONCLUSION
In this paper, we introduced novel approaches for generating syn-
thetic location data that satisfy the requirements of ϵ-differential
privacy. The proposed methods ensure that the generated data
preserves the underlying characteristics of the real data, while en-
suring that the existence and location of all individuals remains
private. An extensive series of experiments confirms that the gen-
erated synthetic data has a high degree of similarity with the real
data upon which it is based. We achieve further practical utility by
incorporating public knowledge, such as road networks, coastlines,
and rivers, within our methods. We have also applied our data gen-
eration methods to a range of location analytics queries and shown
that the synthetic data obtains excellent results compared to the
results obtained with real data. These strong results pave the way
for everyday practical use of differential privacy in the real world.
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