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List of Figures

Preface

1. Connections between publications covered by chapters of this thesis. An arrow from chapter x

to chapter y indicates that results covered by chapter y depend on results covered by chapter x.

Labels indicate types of research outputs associated with each chapter, and total connections

to and from chapters.

Chapter 1 Review: Deep Learning in Electron Microscopy

1. Example applications of a noise-removal DNN to instances of Poisson noise applied to

512×512 crops from TEM images. Enlarged 64×64 regions from the top left of each crop

are shown to ease comparison. This figure is adapted from our earlier work under a Creative

Commons Attribution 4.0 license.

2. Example applications of DNNs to restore 512×512 STEM images from sparse signals.

Training as part of a generative adversarial network yields more realistic outputs than training

a single DNN with mean squared errors. Enlarged 64×64 regions from the top left of each

crop are shown to ease comparison. a) Input is a Gaussian blurred 1/20 coverage spiral. b)

Input is a 1/25 coverage grid. This figure is adapted from our earlier works under Creative

Commons Attribution 4.0 licenses.

3. Example applications of a semantic segmentation DNN to STEM images of steel to classify

dislocation locations. Yellow arrows mark uncommon dislocation lines with weak contrast,

and red arrows indicate that fixed widths used for dislocation lines are sometimes too

narrow to cover defects. This figure is adapted with permission under a Creative Commons

Attribution 4.0 license.

4. Example applications of a DNN to reconstruct phases of exit wavefunction from intensities

of single TEM images. Phases in [−π, π) rad are depicted on a linear greyscale from black to
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white, and Miller indices label projection directions. This figure is adapted from our earlier

work under a Creative Commons Attribution 4.0 license.

5. Reciprocity of TEM and STEM electron optics.

6. Numbers of results per year returned by Dimensions.ai abstract searches for SEM, TEM,

STEM, STM and REM qualitate their popularities. The number of results for 2020 is

extrapolated using the mean rate before 14th July 2020.

7. Visual comparison of various normalization methods highlighting regions that they normalize.

Regions can be normalized across batch, feature and other dimensions, such as height and

width.

8. Visualization of convolutional layers. a) Traditional convolutional layer where output chan-

nels are sums of biases and convolutions of weights with input channels. b) Depthwise

separable convolutional layer where depthwise convolutions compute one convolution with

weights for each input channel. Output channels are sums of biases and pointwise convolu-

tions weights with depthwise channels.

9. Two 96×96 electron micrographs a) unchanged, and filtered by b) a 5×5 symmetric Gaussian

kernel with a 2.5 px standard deviation, c) a 3×3 horizontal Sobel kernel, and d) a 3×3

vertical Sobel kernel. Intensities in a) and b) are in [0, 1], whereas intensities in c) and d) are

in [-1, 1].

10. Residual blocks where a) one, b) two, and c) three convolutional layers are skipped. Typically,

convolutional layers are followed by batch normalization then activation.

11. Actor-critic architecture. An actor outputs actions based on input states. A critic then

evaluates action-state pairs to predict losses.

12. Generative adversarial network architecture. A generator learns to produce outputs that look

realistic to a discriminator, which learns to predict whether examples are real or generated.

13. Architectures of recurrent neural networks with a) long short-term memory (LSTM) cells,

and b) gated recurrent units (GRUs).

14. Architectures of autoencoders where an encoder maps an input to a latent space and a decoder

learns to reconstruct the input from the latent space. a) An autoencoder encodes an input in a

ix



deterministic latent space, whereas a b) traditional variational autoencoder encodes an input

as means, µ, and standard deviations, σ, of Gaussian multivariates, µ+ σ · ε, where ε is a

standard normal multivariate.

15. Gradient descent. a) Arrows depict steps across one dimension of a loss landscape as a

model is optimized by gradient descent. In this example, the optimizer traverses a small local

minimum; however, it then gets trapped in a larger sub-optimal local minimum, rather than

reaching the global minimum. b) Experimental DNN loss surface for two random directions

in parameter space showing many local minima. The image in part b) is reproduced with

permission under an MIT license.

16. Inputs that maximally activate channels in GoogLeNet after training on ImageNet. Neurons

in layers near the start have small receptive fields and discern local features. Middle layers

discern semantics recognisable by humans, such as dogs and wheels. Finally, layers at the end

of the DNN, near its logits, discern combinations of semantics that are useful for labelling.

This figure is adapted with permission under a Creative Commons Attribution 4.0 license.

Chapter 2 Warwick Electron Microscopy Datasets

1. Simplified VAE architecture. a) An encoder outputs means, µ, and standard deviations, σ, to

parameterize multivariate normal distributions, z ∼ N(µ,σ). b) A generator predicts input

images from z.

2. Images at 500 randomly selected points in two-dimensional tSNE visualizations of 19769

96×96 crops from STEM images for various embedding methods. Clustering is best in a)

and gets worse in order a)→b)→c)→d).

3. Two-dimensional tSNE visualization of 64-dimensional VAE latent spaces for 19769 STEM

images that have been downsampled to 96×96. The same grid is used to show a) map points

and b) images at 500 randomly selected points.

4. Two-dimensional tSNE visualization of 64-dimensional VAE latent spaces for 17266 TEM

images that have been downsampled to 96×96. The same grid is used to show a) map points

and b) images at 500 randomly selected points.

Chapter 2 Supplementary Information: Warwick Electron Microscopy Datasets
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S1. Two-dimensional tSNE visualization of the first 50 principal components of 19769 STEM

images that have been downsampled to 96×96. The same grid is used to show a) map points

and b) images at 500 randomly selected points.

S2. Two-dimensional tSNE visualization of the first 50 principal components of 19769 96×96

crops from STEM images. The same grid is used to show a) map points and b) images at 500

randomly selected points.

S3. Two-dimensional tSNE visualization of the first 50 principal components of 17266 TEM

images that have been downsampled to 96×96. The same grid is used to show a) map points

and b) images at 500 randomly selected points.

S4. Two-dimensional tSNE visualization of the first 50 principal components of 36324 exit

wavefunctions that have been downsampled to 96×96. Wavefunctions were simulated for

thousands of materials and a large range of physical hyperparameters. The same grid is used

to show a) map points and b) wavefunctions at 500 randomly selected points. Red and blue

colour channels show real and imaginary components, respectively.

S5. Two-dimensional tSNE visualization of the first 50 principal components of 11870 exit

wavefunctions that have been downsampled to 96×96. Wavefunctions were simulated for

thousands of materials and a small range of physical hyperparameters. The same grid is used

to show a) map points and b) wavefunctions at 500 randomly selected points. Red and blue

colour channels show real and imaginary components, respectively.

S6. Two-dimensional tSNE visualization of the first 50 principal components of 4825 exit

wavefunctions that have been downsampled to 96×96. Wavefunctions were simulated for

thousands of materials and a small range of physical hyperparameters. The same grid is used

to show a) map points and b) wavefunctions at 500 randomly selected points. Red and blue

colour channels show real and imaginary components, respectively.

S7. Two-dimensional tSNE visualization of means parameterized by 64-dimensional VAE latent

spaces for 19769 STEM images that have been downsampled to 96×96. The same grid is

used to show a) map points and b) images at 500 randomly selected points.

S8. Two-dimensional tSNE visualization of means parameterized by 64-dimensional VAE latent

spaces for 19769 96×96 crops from STEM images. The same grid is used to show a) map
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points and b) images at 500 randomly selected points.

S9. Two-dimensional tSNE visualization of means parameterized by 64-dimensional VAE latent

spaces for 19769 TEM images that have been downsampled to 96×96. The same grid is used

to show a) map points and b) images at 500 randomly selected points.

S10. Two-dimensional tSNE visualization of means and standard deviations parameterized by

64-dimensional VAE latent spaces for 19769 96×96 crops from STEM images. The same

grid is used to show a) map points and b) images at 500 randomly selected points.

S11. Two-dimensional uniformly separated tSNE visualization of 64-dimensional VAE latent

spaces for 19769 96×96 crops from STEM images.

S12. Two-dimensional uniformly separated tSNE visualization of 64-dimensional VAE latent

spaces for 19769 STEM images that have been downsampled to 96×96.

S13. Two-dimensional uniformly separated tSNE visualization of 64-dimensional VAE latent

spaces for 17266 TEM images that have been downsampled to 96×96.

S14. Examples of top-5 search results for 96×96 TEM images. Euclidean distances between µ

encoded for search inputs and results are smaller for more similar images.

S15. Examples of top-5 search results for 96×96 STEM images. Euclidean distances between µ

encoded for search inputs and results are smaller for more similar images.

Chapter 3 Adaptive Learning Rate Clipping Stabilizes Learning

1. Unclipped learning curves for 2× CIFAR-10 supersampling with batch sizes 1, 4, 16 and

64 with and without adaptive learning rate clipping of losses to 3 standard deviations above

their running means. Training is more stable for squared errors than quartic errors. Learning

curves are 500 iteration boxcar averaged.

2. Unclipped learning curves for 2× CIFAR-10 supersampling with ADAM and SGD optimizers

at stable and unstably high learning rates, η. Adaptive learning rate clipping prevents loss

spikes and decreases errors at unstably high learning rates. Learning curves are 500 iteration

boxcar averaged.

3. Neural network completions of 512×512 scanning transmission electron microscopy images

from 1/20 coverage blurred spiral scans.
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4. Outer generator losses show that ALRC and Huberization stabilize learning. ALRC lowers

final mean squared error (MSE) and Huberized MSE losses and accelerates convergence.

Learning curves are 2500 iteration boxcar averaged.

5. Convolutional image 2× supersampling network with three skip-2 residual blocks.

6. Two-stage generator that completes 512×512 micrographs from partial scans. A dashed line

indicates that the same image is input to the inner and outer generator. Large scale features

developed by the inner generator are locally enhanced by the outer generator and turned into

images. An auxiliary inner generator trainer restores images from inner generator features to

provide direct feedback.

Chapter 4 Partial Scanning Transmission Electron Microscopy with Deep Learning

1. Examples of Archimedes spiral (top) and jittered gridlike (bottom) 512×512 partial scan

paths for 1/10, 1/20, 1/40, and 1/100 px coverage.

2. Simplified multiscale generative adversarial network. An inner generator produces large-scale

features from inputs. These are mapped to half-size completions by a trainer network and

recombined with the input to generate full-size completions by an outer generator. Multiple

discriminators assess multiscale crops from input images and full-size completions. This

figure was created with Inkscape.

3. Adversarial and non-adversarial completions for 512×512 test set 1/20 px coverage blurred

spiral scan inputs. Adversarial completions have realistic noise characteristics and structure

whereas non-adversarial completions are blurry. The bottom row shows a failure case where

detail is too fine for the generator to resolve. Enlarged 64×64 regions from the top left of

each image are inset to ease comparison, and the bottom two rows show non-adversarial

generators outputting more detailed features nearer scan paths.

4. Non-adversarial generator outputs for 512×512 1/20 px coverage blurred spiral and gridlike

scan inputs. Images with predictable patterns or structure are accurately completed. Circles

accentuate that generators cannot reliably complete unpredictable images where there is no

information. This figure was created with Inkscape.

5. Generator mean squared errors (MSEs) at each output pixel for 20000 512×512 1/20 px

coverage test set images. Systematic errors are lower near spiral paths for variants of MSE
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training, and are less structured for adversarial training. Means, µ, and standard deviations, σ,

of all pixels in each image are much higher for adversarial outputs. Enlarged 64×64 regions

from the top left of each image are inset to ease comparison, and to show that systematic

errors for MSE training are higher near output edges.

6. Test set root mean squared (RMS) intensity errors for spiral scans in [0, 1] selected with

binary masks. a) RMS errors decrease with increasing electron probe coverage, and are

higher than deep learning supersampling (DLSS) errors. b) Frequency distributions of 20000

test set RMS errors for 100 bins in [0, 0.224] and scan coverages in the legend.

Chapter 4 Supplementary Information: Partial Scanning Transmission Electron Microscopy with

Deep Learning

S1. Discriminators examine random w×w crops to predict whether complete scans are real or

generated. Generators are trained by multiple discriminators with different w. This figure

was created with Inkscape.

S2. Two-stage generator that completes 512×512 micrographs from partial scans. A dashed line

indicates that the same image is input to the inner and outer generator. Large scale features

developed by the inner generator are locally enhanced by the outer generator and turned

into images. An auxiliary trainer network restores images from inner generator features to

provide direct feedback. This figure was created with Inkscape.

S3. Learning curves. a) Training with an auxiliary inner generator trainer stabilizes training, and

converges to lower than two-stage training with fine tuning. b) Concatenating beam path

information to inputs decreases losses. Adding symmetric residual connections between

strided inner generator convolutions and transpositional convolutions increases losses. c)

Increasing sizes of the first inner and outer generator convolutional kernels does not decrease

losses. d) Losses are lower after more interations, and a learning rate (LR) of 0.0004; rather

than 0.0002. Labels indicate inner generator iterations - outer generator iterations - fine

tuning iterations, and k denotes multiplication by 1000 e) Adaptive learning rate clipped

quartic validation losses have not diverged from training losses after 106 iterations. f) Losses

are lower for outputs in [0, 1] than for outputs in [-1, 1] if leaky ReLU activation is applied

to generator outputs.
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S4. Learning curves. a) Making all convolutional kernels 3×3, and not applying leaky ReLU

activation to generator outputs does not increase losses. b) Nearest neighbour infilling

decreases losses. Noise was not added to low duration path segments for this experiment.

c) Losses are similar whether or not extra noise is added to low-duration path segments. d)

Learning is more stable and converges to lower errors at lower learning rates (LRs). Losses

are lower for spirals than grid-like paths, and lowest when no noise is added to low-intensity

path segments. e) Adaptive momentum-based optimizers, ADAM and RMSProp, outperform

non-adaptive momentum optimizers, including Nesterov-accelerated momentum. ADAM

outperforms RMSProp; however, training hyperparameters and learning protocols were tuned

for ADAM. Momentum values were 0.9. f) Increasing partial scan pixel coverages listed in

the legend decreases losses.

S5. Adaptive learning rate clipping stabilizes learning, accelerates convergence and results in

lower errors than Huberisation. Weighting pixel errors with their running or final mean errors

is ineffective.

S6. Non-adversarial 512×512 outputs and blurred true images for 1/17.9 px coverage spiral

scans selected with binary masks.

S7. Non-adversarial 512×512 outputs and blurred true images for 1/27.3 px coverage spiral

scans selected with binary masks.

S8. Non-adversarial 512×512 outputs and blurred true images for 1/38.2 px coverage spiral

scans selected with binary masks.

S9. Non-adversarial 512×512 outputs and blurred true images for 1/50.0 px coverage spiral

scans selected with binary masks.

S10. Non-adversarial 512×512 outputs and blurred true images for 1/60.5 px coverage spiral

scans selected with binary masks.

S11. Non-adversarial 512×512 outputs and blurred true images for 1/73.7 px coverage spiral

scans selected with binary masks.

S12. Non-adversarial 512×512 outputs and blurred true images for 1/87.0 px coverage spiral

scans selected with binary masks.
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Chapter 5 Adaptive Partial Scanning Transmission Electron Microscopy with Reinforcement

Learning

1. Simplified scan system. a) An example 8×8 partial scan with T = 5 straight path segments.

Each segment in this example has 3 probing positions separated by d = 21/2 px, and their

starts are labelled by step numbers, t. Partial scans are selected from STEM images by

sampling image pixels nearest probing positions, even if a nominal probing position is

outside an imaging region. b) An actor RNN uses its previous state, action, and an observed

path segment to choose the next action at each step. c) A partial scan constructed from

actions and observed path segments is completed by a generator CNN.

2. Examples of test set 1/23.04 px coverage partial scans, target outputs and generated partial

scan completions for 96×96 crops from STEM images. The top four rows show adaptive

scans, and the bottom row shows spiral scans. Input partial scans are noisy, whereas target

outputs are blurred.

3. Learning curves for a)-b) adaptive scan paths chosen by an LSTM or GRU, and fixed spiral

and other fixed paths, c) adaptive paths chosen by an LSTM or DNC, d) a range of replay

buffer sizes, e) a range of penalties for trying to sample at probing positions over image edges,

and f) with and without normalizing or clipping generator losses used for critic training.

All learning curves are 2500 iteration boxcar averaged and results in different plots are not

directly comparable due to varying experiment settings. Means and standard deviations of

test set errors, “Test: Mean, Std Dev”, are at the ends of labels in graph legends.

Chapter 5 Supplementary Information: Adaptive Partial Scanning Transmission Electron Mi-

croscopy with Reinforcement Learning

S1. Actor, critic and generator architecture. a) An actor outputs action vectors whereas a critic

predicts losses. Dashed lines are for extra components in a DNC. b) A convolutional generator

completes partial scans.

S2. Learning curves for a) exponentially decayed and exponentially decayed cyclic learning rate

schedules, b) actor training with differentiation w.r.t. live or replayed actions, c) images

downsampled or cropped from full images to 96×96 with and without additional Sobel

losses, d) mean squared error and maximum regional mean squared error loss functions,
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e) supervision throughout training, supervision only at the start, and no supervision, and

f) projection from 128 to 64 hidden units or no projection. All learning curves are 2500

iteration boxcar averaged, and results in different plots are not directly comparable due to

varying experiment settings. Means and standard deviations of test set errors, “Test: Mean,

Std Dev”, are at the ends of graph labels.

S3. Learning rate optimization. a) Learning rates are increased from 10−6.5 to 100.5 for ADAM

and SGD optimization. At the start, convergence is fast for both optimizers. Learning with

SGD becomes unstable at learning rates around 2.2×10−5, and numerically unstable near

5.8×10−4, whereas ADAM becomes unstable around 2.5×10−2. b) Training with ADAM

optimization for learning rates listed in the legend. Learning is visibly unstable at learning

rates of 2.5×10−2.5 and 2.5×10−2, and the lowest inset validation loss is for a learning

rate of 2.5×10−3.5. Learning curves in (b) are 1000 iteration boxcar averaged. Means and

standard deviations of test set errors, “Test: Mean, Std Dev”, are at the ends of graph labels.

S4. Test set 1/23.04 px coverage adaptive partial scans, target outputs, and generated partial scan

completions for 96×96 crops from STEM images.

S5. Test set 1/23.04 px coverage adaptive partial scans, target outputs, and generated partial scan

completions for 96×96 crops from STEM images.

S6. Test set 1/23.04 px coverage spiral partial scans, target outputs, and generated partial scan

completions for 96×96 crops from STEM images.

Chapter 6 Improving Electron Micrograph Signal-to-Noise with an Atrous Convolutional

Encoder-Decoder

1. Simplified network showing how features produced by an Xception backbone are processed.

Complex high-level features flow into an atrous spatial pyramid pooling module that produces

rich semantic information. This is combined with simple low-level features in a multi-stage

decoder to resolve denoised micrographs.

2. Mean squared error (MSE) losses of our neural network during training on low dose (� 300

counts ppx) and fine-tuning for high doses (200-2500 counts ppx). Learning rates (LRs) and

the freezing of batch normalization are annotated. Validation losses were calculated using

one validation example after every five training batches.

xvii



3. Gaussian kernel density estimated (KDE) MSE and SSIM probability density functions

(PDFs) for the denoising methods in table 1. Only the starts of MSE PDFs are shown. MSE

and SSIM performances were divided into 200 equispaced bins in [0.0, 1.2] × 10−3 and [0.0,

1.0], respectively, for both low and high doses. KDE bandwidths were found using Scott’s

Rule.

4. Mean absolute errors of our low and high dose networks’ 512×512 outputs for 20000

instances of Poisson noise. Contrast limited adaptive histogram equalization has been used

to massively increase contrast, revealing grid-like error variation. Subplots show the top-left

16×16 pixels’ mean absolute errors unadjusted. Variations are small and errors are close to

the minimum everywhere, except at the edges where they are higher. Low dose errors are in

[0.0169, 0.0320]; high dose errors are in [0.0098, 0.0272].

5. Example applications of the noise-removal network to instances of Poisson noise applied to

512×512 crops from high-quality micrographs. Enlarged 64×64 regions from the top left of

each crop are shown to ease comparison.

6. Architecture of our deep convolutional encoder-decoder for electron micrograph denoising.

The entry and middle flows develop high-level features that are sampled at multiple scales by

the atrous spatial pyramid pooling module. This produces rich semantic information that is

concatenated with low-level entry flow features and resolved into denoised micrographs by

the decoder.

Chapter 7 Exit Wavefunction Reconstruction from Single Transmission Electron Micrographs

with Deep Learning

1. Wavefunction propagation. a) An incident wavefunction is perturbed by a projected potential

of a material. b) Fourier transforms (FTs) can describe a wavefunction being focused by an

objective lens through an objective aperture to a focal plane.

2. Crystal structure of In1.7K2Se8Sn2.28 projected along Miller zone axis [001]. A square

outlines a unit cell.

3. A convolutional neural network generates w×w×2 channelwise concatenations of wavefunc-

tion components from their amplitudes. Training MSEs are calculated for phase components,

before multiplication by input amplitudes.
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4. A discriminator predicts whether wavefunction components were generated by a neural

network.

5. Frequency distributions show 19992 validation set mean absolute errors for neural networks

trained to reconstruct wavefunctions simulated for multiple materials, multiple materials with

restricted simulation hyperparameters, and In1.7K2Se8Sn2.28. Networks for In1.7K2Se8Sn2.28

were trained to predict phase components directly; minimising squared errors, and as part

of generative adversarial networks. To demonstrate robustness to simulation physics, some

validation set errors are shown for n = 1 and n = 3 simulation physics. We used up to three

validation sets, which cumulatively quantify the ability of a network to generalize to unseen

transforms consisting of flips, rotations and translations; simulation hyperparameters, such

as thickness and voltage; and materials. A vertical dashed line indicates an expected error of

0.75 for random phases, and frequencies are distributed across 100 bins.

6. Training mean absolute errors are similar with and without adaptive learning rate clipping

(ALRC). Learning curves are 2500 iteration boxcar averaged.

7. Exit wavefunction reconstruction for unseen NaCl, B3BeLaO7, PbZr0.45Ti0.5503, CdTe, and

Si input amplitudes, and corresponding crystal structures. Phases in [−π, π) rad are depicted

on a linear greyscale from black to white, and show that output phases are close to true

phases. Wavefunctions are cyclically periodic functions of phase so distances between black

and white pixels are small. Si is a failure case where phase information is not accurately

recovered. Miller indices label projection directions.

Chapter 7 Supplementary Information: Exit Wavefunction Reconstruction from Single Transmis-

sion Electron Micrographs with Deep Learning

S1. Input amplitudes, target phases and output phases of 224×224 multiple material training set

wavefunctions for unseen flips, rotations and translations, and n = 1 simulation physics.

S2. Input amplitudes, target phases and output phases of 224×224 multiple material validation set

wavefunctions for seen materials, unseen simulation hyperparameters, and n = 1 simulation

physics.

S3. Input amplitudes, target phases and output phases of 224×224 multiple material validation

set wavefunctions for unseen materials, unseen simulation hyperparameters, and n = 1

simulation physics.
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S4. Input amplitudes, target phases and output phases of 224×224 multiple material training set

wavefunctions for unseen flips, rotations and translations, and n = 3 simulation physics.

S5. Input amplitudes, target phases and output phases of 224×224 multiple material validation set

wavefunctions for seen materials, unseen simulation hyperparameters, and n = 3 simulation

physics.

S6. Input amplitudes, target phases and output phases of 224×224 multiple material validation

set wavefunctions for unseen materials, unseen simulation hyperparameters are unseen, and

n = 3 simulation physics.

S7. Input amplitudes, target phases and output phases of 224×224 validation set wavefunctions

for restricted simulation hyperparameters, and n = 3 simulation physics.

S8. Input amplitudes, target phases and output phases of 224×224 validation set wavefunctions

for restricted simulation hyperparameters, and n = 3 simulation physics.

S9. Input amplitudes, target phases and output phases of 224×224 In1.7K2Se8Sn2.28 training set

wavefunctions for unseen flips, rotations and translations, and n = 1 simulation physics.

S10. Input amplitudes, target phases and output phases of 224×224 In1.7K2Se8Sn2.28 validation

set wavefunctions for unseen simulation hyperparameters, and n = 1 simulation physics.

S11. Input amplitudes, target phases and output phases of 224×224 validation set wavefunctions

for unseen simulation hyperparameters and materials, and n = 1 simulation physics. The

generator was trained with In1.7K2Se8Sn2.28 wavefunctions.

S12. Input amplitudes, target phases and output phases of 224×224 In1.7K2Se8Sn2.28 training set

wavefunctions for unseen flips, rotations and translations, and n = 1 simulation physics.

S13. Input amplitudes, target phases and output phases of 224×224 In1.7K2Se8Sn2.28 validation

set wavefunctions for unseen simulation hyperparameters, and n = 3 simulation physics.

S14. Input amplitudes, target phases and output phases of 224×224 validation set wavefunctions

for unseen simulation hyperparameters and materials, and n = 3 simulation physics. The

generator was trained with In1.7K2Se8Sn2.28 wavefunctions.
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S15. GAN input amplitudes, target phases and output phases of 144×144 In1.7K2Se8Sn2.28

validation set wavefunctions for unseen flips, rotations and translations, and n = 1 simulation

physics.

S16. GAN input amplitudes, target phases and output phases of 144×144 In1.7K2Se8Sn2.28

validation set wavefunctions for unseen simulation hyperparameters, and n = 1 simulation

physics.

S17. GAN input amplitudes, target phases and output phases of 144×144 In1.7K2Se8Sn2.28

validation set wavefunctions for unseen flips, rotations and translations, and n = 3 simulation

physics.

S18. GAN input amplitudes, target phases and output phases of 144×144 In1.7K2Se8Sn2.28

validation set wavefunctions for unseen simulation hyperparameters, and n = 3 simulation

physics.
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Research Training

This thesis presents a substantial original investigation of deep learning in electron microscopy. The

only researcher in my research group or building with machine learning expertise was myself. This

meant that I led the design, implementation, evaluation, and publication of experiments covered by

my thesis. Where experiments were collaborative, I both proposed and led the collaboration.
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Abstract

Following decades of exponential increases in computational capability and widespread data

availability, deep learning is readily enabling new science and technology. This thesis starts with

a review of deep learning in electron microscopy, which offers a practical perspective aimed at

developers with limited familiarity. To help electron microscopists get started with started with

deep learning, large new electron microscopy datasets are introduced for machine learning. Further,

new approaches to variational autoencoding are introduced to embed datasets in low-dimensional

latent spaces, which are used as the basis of electron microscopy search engines. Encodings are

also used to investigate electron microscopy data visualization by t-distributed stochastic neighbour

embedding. Neural networks that process large electron microscopy images may need to be trained

with small batch sizes to fit them into computer memory. Consequently, adaptive learning rate

clipping is introduced to prevent learning being destabilized by loss spikes associated with small

batch sizes.

This thesis presents three applications of deep learning to electron microscopy. Firstly, electron

beam exposure can damage some specimens, so generative adversarial networks were developed

to complete realistic images from sparse spiral, gridlike, and uniformly spaced scans. Further,

recurrent neural networks were trained by reinforcement learning to dynamically adapt sparse

scans to specimens. Sparse scans can decrease electron beam exposure and scan time by 10-100×
with minimal information loss. Secondly, a large encoder-decoder was developed to improve

transmission electron micrograph signal-to-noise. Thirdly, conditional generative adversarial

networks were developed to recover exit wavefunction phases from single images. Phase recovery

with deep learning overcomes existing limitations as it is suitable for live applications and does not

require microscope modification. To encourage further investigation, scientific publications and

their source files, source code, pretrained models, datasets, and other research outputs covered by

this thesis are openly accessible.
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Preface

This thesis covers a subset of my scientific papers on advances in electron microscopy with deep

learning. The papers were prepared while I was a PhD student at the University of Warwick in

support of my application for the degree of PhD in Physics. This thesis reflects on my research,

unifies covered publications, and discusses future research directions. My papers are available as

part of chapters of this thesis, or from their original publication venues with hypertext and other

enhancements. This preface covers my initial motivation to investigate deep learning in electron

microscopy, structure and content of my thesis, and relationships between included publications.

Traditionally, physics PhD theses submitted to the University of Warwick are formatted for physical

printing and binding. However, I have also formatted a copy of my thesis for online dissemination

to improve readability1.

I Initial Motivation

When I started my PhD in October 2017, we were unsure if or how machine learning could

be applied to electron microscopy. My PhD was funded by EPSRC Studentship 191738238

titled “Application of Novel Computing and Data Analysis Methods in Electron Microscopy”,

which is associated with EPSRC grant EP/N035437/139 titled “ADEPT – Advanced Devices by

ElectroPlaTing”. As part of the grant, our initial plan was for me to spend a couple of days per

week using electron microscopes to analyse specimens sent to the University of Warwick from the

University of Southampton, and to invest remaining time developing new computational techniques

to help with analysis. However, an additional scientist was not needed to analyse specimens,

so it was difficult for me to get electron microscopy training. While waiting for training, I was

tasked with automating analysis of digital large angle convergent beam electron diffraction40

(D-LACBED) patterns. However, we did not have a compelling use case for my D-LACBED

software27,41. Further, a more senior PhD student at the University of Warwick, Alexander Hubert,
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was already investigating convergent beam electron diffraction40,42 (CBED).

My first machine learning research began five months after I started my PhD. Without a clear

research direction or specimens to study, I decided to develop artificial neural networks (ANNs)

to generate artwork. My dubious plan was to create image processing pipelines for the artwork,

which I would replace with electron micrographs when I got specimens to study. However, after

investigating artwork generation with randomly initialized multilayer perceptrons43,44, then by

style transfer45,46, and then by fast style transfer47, there were still no specimens for me to study.

Subsequently, I was inspired by NVIDIA’s research on semantic segmentation48 to investigate

semantic segmentation with DeepLabv3+49. However, I decided that it was unrealistic for me to

label a large new electron microscopy dataset for semantic segmentation by myself. Fortunately, I

had read about using deep neural networks (DNNs) to reduce image compression artefacts50, so I

wondered if a similar approach based on DeepLabv3+ could improve electron micrograph signal-to-

noise. Encouragingly, it would not require time-consuming image labelling. Following a successful

investigation into improving signal-to-noise, my first scientific paper7 (ch. 6) was submitted a few

months later, and my experience with deep learning enabled subsequent investigations.

II Thesis Structure

An overview of the first seven chapters in this thesis is presented in fig. 1. The first chapter is

introductory and covers a review of deep learning in electron microscopy, which offers a practical

perspective aimed at developers with limited familiarity. The next two chapters are ancillary and

cover new datasets and an optimization algorithm used in later chapters. The final four chapters

before conclusions cover investigations of deep learning in electron microscopy. Each of the first

seven chapter covers a combination of journal papers, preprints, and ancillary outputs such as

source code, datasets, and pretrained models, and supplementary information.

At the University of Warwick, physics PhD theses that cover publications51,52 are unusual.

Instead, most theses are scientific monographs. However, declining impact of monographic theses

is long-established53, and I felt that scientific publishing would push me to produce higher-quality

research. Moreover, I think that publishing is an essential part of scientific investigation, and

external peer reviews54–58 often helped me to improve my papers. Open access to PhD theses

increases visibility59,60 and enables their use as data mining resources60,61, so digital copies of

physics PhD theses are archived by the University of Warwick62. However, archived theses are
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Figure 1: Connections between publications covered by chapters of this thesis. An arrow from
chapter x to chapter y indicates that results covered by chapter y depend on results covered
by chapter x. Labels indicate types of research outputs associated with each chapter, and total
connections to and from chapters.

usually formatted for physical printing and binding. To improve readability, I have also formatted a

copy of my thesis for online dissemination1, which is published in the arXiv63,64 with its Latex65–67

source files.

All my papers were first published as arXiv preprints under Creative Commons Attribution

4.068 licenses, then submitted to journals. As discussed in my review2 (ch. 1), advantages of

preprint archives69–71 include ensuring that research is openly accessible72, increasing discovery

and citations73–77, inviting timely scientific discussion, and raising awareness to reduce unnecessary

duplication of research. Empirically, there are no significant textual differences between arXiv

preprints and corresponding journal papers78. However, journal papers appear to be slightly higher

quality than biomedical preprints78,79, suggesting that formatting and copyediting practices vary
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between scientific disciplines. Overall, I think that a lack of differences between journal papers

and preprints may be a result of publishers separating language editing into premium services80–83,

rather than including extensive language editing in their usual publication processes. Increasing

textual quality is correlated with increasing likelihood that an article will be published84. However,

most authors appear to be performing copyediting themselves to avoid extra fees.

A secondary benefit of posting arXiv preprints is that their metadata, an article in portable

document format85,86 (PDF), and any Latex source files are openly accessible. This makes arXiv

files easy to reuse, especially if they are published under permissive licenses87. For example,

open accessibility enabled arXiv files to be curated into a large dataset88 that was used to predict

future research trends89. Further, although there is no requirement for preprints to peer reviewed,

preprints can enable early access to papers that have been peer reviewed. As a case in point, all

preprints covered by my thesis have been peer reviewed. Further, the arXiv implicitly supports peer

review by providing contact details of authors, and I have both given and received feedback about

arXiv papers. In addition, open peer review platforms90, such as OpenReview91,92, can be used to

explicitly seek peer review. There is also interest in integrating peer review with the arXiv, so a

conceptual peer review model has been proposed93.

Description Words in Text Words in Figures Words in Algorithms Total Words
Review paper in chapter 1 15156 2680 74 17910
Ancillary paper in chapter 2 4243 1360 0 5603
Ancillary paper in chapter 3 2448 680 344 3472
Paper in chapter 4 3864 1300 0 5164
Paper in chapter 5 3399 900 440 4739
Paper in chapter 6 2933 1100 0 4033
Paper in chapter 7 4396 1240 0 5636
Remainder of the thesis 7950 280 0 8230
Complete thesis 44389 9540 858 54787

Table 1: Word counts for papers included in thesis chapters, the remainder of the thesis, and the
complete thesis.

This thesis covers a selection of my interconnected scientific papers. Word counts for my

papers and covering text are tabulated in table 1. Figures are included in word counts by adding

products of nominal word densities and figure areas. However, acknowledgements, references,

tables, supplementary information, and similar contents are not included as they do not count

towards my thesis length limit of 70000 words. For details, notes on my word counting procedure

are openly accessible29. Associated research outputs, such as source code and datasets, are not

directly included in my thesis due to format restrictions. Nevertheless, my source code is openly

accessible from GitHub94, and archived releases of my source code are openly accessible from

xxxix



Zenodo95. In addition, links to openly accessible pretrained models are provided in my source

code documentation. Finally, links to openly accessible datasets are in my papers, source code

documentation, and datasets paper3 (ch. 2).

III Connections

Connections between publications covered by my thesis are shown in fig. 1. The most connected

chapter covers my review paper2 (ch. 1). All my papers are connected to my review paper as

literature reviews informed their introductions, methodologies, and discussions. My review paper

also discusses and builds upon the results of my earlier publications. For example, images published

in my earlier papers are reused in my review paper to showcase applications of deep learning in

electron microscopy. In addition, my review paper covers Warwick Electron Microscopy Datasets3

(WEMD, ch. 2), adaptive learning rate clipping4 (ALRC, ch. 3), sparse scans for compressed

sensing in STEM5 (ch. 4), improving electron microscope signal-to-noise7 (ch. 6), and EWR8

(ch. 7). Finally, compressed sensing with dynamic scan paths that adapt to specimens6 (ch. 5)

motivated my review paper sections on recurrent neural networks (RNNs) and reinforcement

learning (RL).

The second most connected chapter, ch. 2, is ancillary and covers WEMD3, which include

large new datasets of experimental transmission electron microscopy (TEM) images, experimental

STEM images, and simulated exit wavefunctions. The TEM images were curated to train an ANN

to improve signal-to-noise7 (ch. 6) and motivated the proposition of a new approach to EWR8

(ch. 7). The STEM images were curated to train ANNs for compressed sensing5 (ch. 4). Training

our ANNs with full-size images was impractical with our limited computational resources, so I

created dataset variants containing 512×512 crops from full-size images for both the TEM and

STEM datasets. However, 512×512 STEM crops were too large to efficiently train RNNs to adapt

scan paths6 (ch. 5), so I also created 96×96 variants of datasets for rapid initial development.

Finally, datasets of exit wavefunctions were simulated as part of our initial investigation into EWR

from single TEM images with deep learning8 (ch. 7).

The other ancillary chapter, ch. 3, covers ALRC4, which was originally published as an

appendix in the first version of our partial STEM preprint19 (ch. 4). The algorithm was developed

to stabilize learning of ANNs being developed for partial STEM, which were destabilized by

loss spikes when training with a batch size of 1. My aim was to make experiments11 easier to
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compare by preventing learning destabilized by large loss spikes from complicating comparisons.

However, ALRC was so effective that I continued to investigate it, increasing the size of the partial

STEM appendix. Eventually, the appendix became so large that I decided to turn it into a short

paper. To stabilize training with small batch sizes, ALRC was also applied to ANN training for

uniformly spaced scans5,20 (ch. 4). In addition, ALRC inspired adaptive loss clipping to stabilize

RNN training for adaptive scans6 (ch. 5). Finally, I investigated applying ALRC to ANN training

for EWR8 (ch. 7). However, ALRC did not improve EWR as training with a batch size of 32 was

not destabilized by loss spikes.

My experiments with compressed sensing showed that ANN performance varies for different

scan paths5 (ch. 4). This motivated the investigation of scan shapes that adapt to specimens as they

are scanned6 (ch. 5). I had found that ANNs for TEM denoising7 (ch. 6) and uniformly spaced

sparse scan completion20 exhibit significant structured systematic error variation, where errors are

higher near output edges. Subsequently, I investigated average partial STEM output errors and

found that errors increase with increasing distance from scan paths5 (ch. 4). In part, structured

systematic error variation in partial STEM5 (ch. 4) motivated my investigation of adaptive scans6

(ch. 5) as I reasoned that being able to more closely scan regions where errors would otherwise be

highest could decrease mean errors.

Most of my publications are connected by their source code as it was partially reused in

successive experiments. Source code includes scripts to develop ANNs, plot graphs, create images

for papers, and typeset with Latex. Following my publication chronology, I partially reused source

code created to improve signal-to-noise7 (ch. 6) for partial STEM5 (ch. 4). My partial STEM

source code was then partially reused for my other investigations. Many of my publications are also

connected because datasets curated for my first investigations were reused in my later investigations.

For example, improving signal-to-noise7 (ch. 6) is connected to EWR8 (ch. 7) as the availability of

my large dataset of TEM images prompted the proposition of, and may enable, a new approach to

EWR. Similarly, partial STEM5 (ch. 4) is connected to adaptive scans6 (ch. 5) as my large dataset

of STEM images was used to derive smaller datasets used to rapidly develop adaptive scan systems.
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Chapter 1

Review: Deep Learning in Electron
Microscopy

1.1 Scientific Paper

This chapter covers the following paper2.

J. M. Ede. Review: Deep Learning in Electron Microscopy. arXiv preprint arXiv:2009.08328

(accepted by Machine Learning: Science and Technology – https://doi.org/

10.1088/2632-2153/abd614), 2020

1
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1.2 Reflection

This introductory chapter covers my review paper96 titled “Review: Deep Learning in Electron

Microscopy”2. It is the first in-depth review of deep learning in electron microscopy and offers a

practical perspective that is aimed at developers with limited familiarity. My review was crafted

to be covered by the introductory chapter of my PhD thesis, so focus is placed on my research

methodology. Going through its sections in order of appearance, “Introduction” covers and show-

cases my earlier research, “Resources” introduces resources that enabled my research, “Electron

Microscopy” covers how I simulated exit wavefunctions and integrated ANNs with electron micro-

scopes, “Components” introduces functions used to construct my ANNs, “Architecture” details

ANN archetypes used in my research, “Optimization” covers how my ANNs were trained, and

“Discussion” offers my perspective on deep learning in electron microscopy.

There are many review papers on deep learning. Some reviews of deep learning focus on

computer science97–101, whereas others focus on specific applications such as computational

imaging102, materials science103–105, and the physical sciences106. As a result, I anticipated that

another author might review deep learning in electron microscopy. To avoid my review being easily

surpassed, I leveraged my experience to offer practical perspectives and comparative discussions to

address common causes of confusion. In addition, content is justified by extensive references to

make it easy to use as a starting point for future research. Finally, I was concerned that information

about how to get started with deep learning in electron microscopy was fragmented and unclear to

unfamiliar developers. This was often problematic when I was asked about getting started with

machine learning, and I was especially conscious of it as my friend, Rajesh Patel, asked me for

advice when I started writing my review. Consequently, I included a section that introduces useful

resources for deep learning in electron microscopy.
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Chapter 2

Warwick Electron Microscopy Datasets

2.1 Scientific Paper

This paper covers the following paper3 and its supplementary information10.

J. M. Ede. Warwick Electron Microscopy Datasets. Machine Learning: Science and

Technology, 1(4):045003, 2020

J. M. Ede. Supplementary Information: Warwick Electron Microscopy Datasets.

Zenodo, Online: https://doi.org/10.5281/zenodo.3899740, 2020
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2.2 Amendments and Corrections

There are amendments or corrections to the paper3 covered by this chapter.

Location: Page 4, caption of fig. 2.

Change: “...at 500 randomly selected images...” should say “...at 500 randomly selected data

points...”.

2.3 Reflection

This ancillary chapter covers my paper titled “Warwick Electron Microscopy Datasets”3 and asso-

ciated research outputs10,14–16. My paper presents visualizations for large new electron microscopy

datasets published with our earlier papers. There are 17266 TEM images curated to train our

denoiser7 (ch. 6), 98340 STEM images curated to train generative adversarial networks (GANs) for

compressed sensing5,20 (ch. 4), and 98340 TEM exit wavefunctions simulated to investigate EWR8

(ch. 7), and derived datasets containing smaller TEM and STEM images that I created to rapidly

prototype of ANNs for adaptive partial STEM6 (ch. 5). To improve visualizations, I developed

new regularization mechanisms for variational autoencoders107–109 (VAEs), which were trained

to embed high-dimensional electron micrographs in low-dimensional latent spaces. In addition, I

demonstrate that VAEs can be used as the basis of electron micrograph search engines. Finally, I

provide extensions to t-distributed stochastic neighbour embedding110–114 (tSNE) and interactive

dataset visualizations.

Making our large machine learning datasets openly accessible enables our research to be re-

produced115, standardization of performance comparisons, and dataset reuse in future research.

Dissemination of large datasets is enabled by the internet116,117, for example, through fibre op-

tic118 broadband119,120 or satellite121,122 connections. Subsequently, there are millions of open

access datasets123,124 that can be used for machine learning125,126. Performance of ANNs usually

increases with increasing training dataset size125, so some machine learning datasets have millions

of examples. Examples of datasets with millions of examples include DeepMind Kinetics127,

ImageNet128, and YouTube 8M129. Nevertheless, our datasets containing tens of thousands of

examples are more than sufficient for initial exploration of deep learning in electron microscopy.

For reference, some datasets used for initial explorations of deep learning for Coronavirus Disease

2019130–132 (COVID-19) diagnosis are 10× smaller133 than WEMD.

There are many data clustering algorithms134–140 that can group data for visualization. However,

tSNE is a de facto default as it often outperforms other algorithms110. For context, tSNE is a

variant of stochastic neighbour embedding141 (SNE) where a heavy-tailed Student’s t-distribution

is used to measure distances between embedded data points. Applications of tSNE include bioin-

formatics142,143, forensic science144,145, medical signal processing146–148, particle physics149,150,

smart electricity metering151, and sound synthesis152. Before tSNE, data is often embedded in a

low-dimensional space to reduce computation, suppress noise, and prevent Euclidean distances
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used in tSNE optimization being afflicted by the curse of dimensionality153. For example, the

original tSNE paper suggests using principal component analysis154–157 (PCA) to reduce data

dimensionality to 30 before applying tSNE110.

Extensions of tSNE can improve clustering. For example, graphical processing unit accelerated

implementations of tSNE158,159 can speedup clustering 50-700×. Alternatively, approximate

tSNE160 (A-tSNE) can trade accuracy for decreased computation time. Our tSNE visualizations

took a couple of hours to optimize on an Intel i7-6700 central processing unit (CPU) as we used

10000 iterations to ensure that clusters stabilized. It follows that accelerated tSNE implementations

may be preferable to reduce computation time. Another extension is to adjust distances used for

tSNE optimization with a power transform based on the intrinsic dimension of each point. This can

alleviate the curse of dimensionality for high-dimensional data153; however, it was not necessary

for our data as I used VAEs to reduce image dimensionality to 64 before tSNE. Finally, tSNE

early exaggeration (EE), where probabilities modelling distances in a high-dimensional space

are increased, and number of iterations can be automatically tuned with opt-tSNE161. Tuning

can significantly improve visualizations, especially for large datasets with millions of examples.

However, I doubt that opt-tSNE would result in large improvements to clustering as our datasets

contain tens of thousands of examples, where tSNE is effective. Nevertheless, I expect that opt-tSNE

could have improved clustering if I had been aware of it.

Further extensions to tSNE are proposed in my paper3,10. I think that the most useful extension

uniformly separates clustered points based clustering density. Uniformly separated tSNE (US-tSNE)

can often double whitespace utilization, which could make tSNE visualizations more suitable for

journals, websites, and other media where space is limited. However, the increased whitespace

utilization comes at the cost of removing information about the structure of clusters. Further,

my preliminary implementation of US-tSNE is limited insofar that Clough-Tocher cubic Bezier

interpolation162 used to map tSNE points to a uniform map is only applied to points within their

convex hull. I also proposed a tSNE extension that uses standard deviations encoded by VAEs to

inform clustering as this appeared to slightly improve clustering. However, I later found that using

standard deviations appears to decrease similarity of nearest neighbours in tSNE visualizations.

As a result, I think that how extra information encoded in standard deviations is used to inform

clustering may merit further investigation.

To improve VAE encodings for tSNE, I applied a variant of batch normalization to their latent

spaces. This avoids needing to tune a hyperparameter to balance VAE decoder and Kullback-Leibler

(KL) losses, which is architecture-specific and can be complicated by relative sizes of their gradients

varying throughout training. I also considered adaptive gradient balancing163,164 of losses; however,

that would require separate backpropagation through the VAE generator for each loss, increasing

computation. To increase image realism, I added Sobel losses to mean squared errors (MSEs).

Sobel losses often improve realism as human vision is sensitive to edges165. In addition, Sobel

losses require less computation than VAE training with GAN166 or perceptual167 losses. Another

computationally inexpensive approach to improve generated image realism is to train with structural
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similarity index measures168 (SSIMs) instead of MSEs169.

My VAEs are used as the basis of my openly accessible electron microscopy search engines. I

observe that top-5 search results are usually successful insofar that they contain images that are

similar to input images. However, they often contain some images that are not similar, possibly

due to there not being many similar images in our datasets. Thus, I expect that search results could

be improved by increasing dataset size. Increasing input image size from 96×96 to a couple of

hundred pixels and increasing training iterations could also improve performance. Further, training

could be modified to encode binary latent variables for efficient hashing170–175. Finally, I think

that an interesting research direction is to create a web interface for an electron microscopy search

engine that indexes institutional electron microscopy data servers. Such a search engine could

enhance collaboration by making it easier to find electron microscopists working on interesting

projects.

An application of my VAEs that is omitted from my paper is that VAE generators could function

as portable electron microscopy image generators. For example, to create training data for machine

learning. For comparison, my VAE generators require roughly 0.1% of the storage space needed for

my image datasets to store their trainable parameters. However, I was concerned that a distribution

of generated images might be biased by catastrophic forgetting176. Further, a distribution of

generated images could be sensitive to ANN architecture and learning policy, including when

training is stopped177,178. Nevertheless, I expect that data generated from by VAEs could be used

for pretraining to improve ANN robustness179. Overall, I think it will become increasingly practical

to use VAEs or GANs as high-quality data generators as ANN architectures and learning policies

are improved.

Perhaps the main limitation of my paper is that I did not introduce my preferred abbreviation,

“WEMD”, for “Warwick Electron Microscopy Datasets”. Further, I did not define “WEMD” in my

WEMD preprint14. Subsequently, I introduced my preferred abbreviation in my review of deep

learning in electron microscopy2 (ch. 1). I also defined an abbreviation, “WLEMD”, for “Warwick

Large Electron Microscopy Datasets” in the first version of the partial STEM preprint19 (ch. 4).

Another limitation is that my paper only details datasets that had already been published, or that

were derived from the published datasets. For example, Richard Beanland and I successfully co-

authored an application for funding to simulate tens of thousands of CBED patterns with Felix180,

which are not detailed in my paper. The CBED dataset requires a couple of terabytes of storage and

has not been processed for dissemination. Nevertheless, Richard Beanland1 may be able to provide

the CBED dataset upon request.

1Email:
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Chapter 3

Adaptive Learning Rate Clipping
Stabilizes Learning

3.1 Scientific Paper

This chapter covers the following paper4.

J. M. Ede and R. Beanland. Adaptive Learning Rate Clipping Stabilizes Learning.

Machine Learning: Science and Technology, 1:015011, 2020
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3.2 Amendments and Corrections

There are amendments or corrections to the paper4 covered by this chapter.

Location: Page 3, image in fig. 1.

Change: A title above the top two graphs is cut off. The missing title said “With Adaptive Learning

Rate Clipping”, and is visible in our preprint17.

Location: Last paragraph starting on page 7.

Change: “...inexpensive alternative to gradient clipping in high batch size training where...” should

say “...inexpensive alternative to gradient clipping where...”.

3.3 Reflection

This ancillary chapter covers my paper titled “Adaptive Learning Rate Clipping Stabilizes Learn-

ing”4 and associated research outputs17,18. The ALRC algorithm was developed to prevent loss

spikes destabilizing training of DNNs for partial STEM5 (ch. 4). To fit the partial STEM ANN in

GPU memory, it was trained with a batch size of 1. However, using a small batch size results in

occasional loss spikes, which meant that it was sometimes necessary to repeat training to compare

performance with earlier experiments where learning had not been destabilized by loss spikes. I

expected that I could adjust training hyperparameters to stabilize learning; however, I had optimized

the hyperparameters and training was usually fine. Thus, I developed ALRC to prevent loss spikes

from destabilizing learning. Initially, ALRC was included as an appendix in the first version of

the partial STEM preprint19. However, ALRC was so effective that I continued to investigate.

Eventually, there were too many ALRC experiments to comfortably fit in an appendix of the partial

STEM paper, so I separated ALRC into its own paper.

There are variety of alternatives to ALRC that can stabilize learning. A popular alternative is

training with Huberized losses181,182,

Huber(L) = min(L, (λL)1/2) , (3.1)

where L is a loss and λ is a training hyperparameter. However, I found that Huberized learning

continued to be destabilized by loss spikes. I also considered gradient clipping183–185. However, my

DNNs for partial STEM have many millions of trainable parameters, so computational requirements

for gradient clipping are millions of times higher than applying ALRC to losses. Similarly, rectified

ADAM186 (RADAM), can stabilize learning by decreasing trainable parameter learning rates if

adaptive learning rates of an ADAM187 optimizer have high variance. However, computational

requirements of RADAM are also often millions of times higher than ALRC as RADAM adapts

adaptive learning rates for every trainable parameter.

Overall, I think that ALRC merits further investigation. ALRC is computationally inexpensive,

can be applied to any loss function, and appears to either stabilize learning or have no significant

effect. Further, ALRC can often readily improve ANN training that would otherwise be destabilized
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loss spikes. However, I suspect that ALRC may slightly decrease performance where learning

is not destabilized by loss spikes as ALRC modifies training losses. In addition, I have only

investigated applications of ALRC to mean square and quartic errors per training example of

deep convolutional neural networks (CNNs). Applying ALRC to losses for individual pixels of

CNN outputs or to losses at each step of a recurrent neural network (RNN) may further improve

performance. Encouragingly, my initial experiments with ALRC variants4 show that a variety

approaches improve training that would otherwise be destabilized by loss spikes.
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Chapter 4

Partial Scanning Transmission Electron
Microscopy with Deep Learning

4.1 Scientific Paper

This chapter covers the following paper5 and its supplementary information11.

J. M. Ede and R. Beanland. Partial Scanning transmission Electron Microscopy with

Deep Learning. Scientific Reports, 10(1):1–10, 2020

J. M. Ede. Supplementary Information: Partial Scanning Transmission Electron Mi-

croscopy with Deep Learning. Online: https://static-content.springe

r.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObject

s/41598 2020 65261 MOESM1 ESM.pdf, 2020
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4.2 Amendments and Corrections

There are amendments or corrections to the paper5 covered by this chapter.

Location: Reference 13 in the bibliography.

Change: “Sang, X. et al. Dynamic Scan Control in STEM: Spiral Scans. Adv. Struct. Chem.

Imaging 2, 6 (2017)” should say “Sang, X. et al. Dynamic Scan Control in STEM: Spiral Scans.

Adv. Struct. Chem. Imaging 2, 1–8 (2016)”.

4.3 Reflection

This chapter covers our paper titled “Partial Scanning Transmission Electron Microscopy with

Deep Learning”5 and associated research outputs11,16,19–22,188, which were summarized by Bethany

Connolly189. Our paper presents some of my investigations into compressed sensing of STEM

images. Specifically, it combines results from two of my arXiv papers about compressed sensing

with contiguous paths19 and uniformly spaced grids20 of probing locations. A third investigation

into compressed sensing with a fixed random grid of probing locations was not published as I

think that uniformly spaced grid scans are easier to implement on most scan systems. Further,

reconstruction errors were usually similar for uniformly spaced and fixed random grids with the

same coverage. Nevertheless, a paper I drafted on fixed random grids is openly accessible190.

Overall, I think that compressed sensing with DNNs is a promising approach to reduce electron

beam damage and scan time by 10-100× with minimal information loss.

My comparison of spiral and uniformly spaced grid scans with the same ANN architecture,

learning policy and training data indicates that errors are lower for uniformly spaced grids. However,

the comparison is not conclusive as ANNs were trained for a few days, rather than until validation

errors plateaued. Further, a fair comparison is difficult as suitability of architectures and learning

policies may vary for different scan paths. Higher performance of uniformly spaced grids can be

explained by content at the focus of most electron micrographs being imaged at 5-10× its Nyquist

rate3 (ch. 2). It follows that high-frequency information that is accessible from neighbouring pixels

in contiguous scans is often almost redundant. Overall, I think the best approach may combine

both contiguous and uniform spaced grid scans. For example, a contiguous scan ANN could

exploit high-frequency information to complete an image, which could then be mapped to a higher

resolution image by an ANN for uniformly spaced scans. Indeed, functionality for contiguous and

uniformly spaced grid scans could be combined into a single ANN.

Most STEM scan systems can raster uniformly spaced grids of probing locations. However, scan

systems often have to be modified to perform spiral or other custom scans191,192. Modification is not

difficult for skilled programmers. For example, Jonathan Peters1 created a custom scan controller

prototype based on my field programmable gate array193 (FPGA) within one day. Custom scans

are often more distorted than raster scans. However, distortions can be minimized by careful choice
1Email:
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of custom scan speed and path shape191. Alternatively, ANNs can correct electron microscope

scan distortions194,195. We planned to use my FPGA to develop an openly accessible custom scan

controller near the end of my PhD; however, progress was stalled by COVID-19 national lockdowns

in the United Kingdom196. As a result, I invested time that we had planned to use for FPGA

deployment to review deep learning in electron microscopy2 (ch. 1).

To complete realistic images, generators were trained with MSEs or as part of GANs. However,

GANs can introduce uncertainty into scientific investigation as they can generate realistic outputs,

even if scan coverage is too low to reliably complete a region5. Consequently, I investigated

reducing uncertainty by adapting scan coverage6 to imaging regions (ch. 5). Alternatively, there

are a variety of methods to quantify DNN uncertainty197–203. For example, uncertainty can be

predicted by ANNs204,205, Bayesian uncertainty approximation206–209, or from variance of bootstrap

aggregated210 (bagged) model outputs. To address uncertainty, we present mean errors for 20000

test images, showing that errors are higher further away from scan paths. However, we do not

provide an approach to quantify uncertainty of individual images, which could be critical to make

scientific conclusions. Overall, I think that further investigation of uncertainty may be necessary

before DNNs are integrated into default operating configurations of electron microscopes.

A GAN could learn to generate any realistic STEM images, rather than outputs that correspond

to inputs. To train GANs to generate outputs that correspond to inputs, I added MSEs between

blurred input and output images to generator losses. Blurring prevented MSEs from strongly

suppressing high-frequency noise characteristics. I also investigated adding distances between

features output by discriminator layers for real and generated images to generator losses48. However,

feature distances require more computation than MSEs, and both feature distances and MSEs result

in similar SSIMs190 between completed and true scans. As a result, I do not think that other

computationally inexpensive additional losses, such as SSIMs or mean absolute errors, would

substantially improve performance. Finally, I considered training generators to minimize perceptual

losses211. However, most pretrained models used for feature extraction are not trained on electron

micrographs or scientific images. Consequently, I was concerned that pretrained models might not

clearly perceive characteristics specific to electron micrographs, such as noise.
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Chapter 5

Adaptive Partial Scanning Transmission
Electron Microscopy with
Reinforcement Learning

5.1 Scientific Paper

This chapter covers the following paper6 and its supplementary information12.

J. M. Ede. Adaptive Partial Scanning Transmission Electron Microscopy with Re-

inforcement Learning. arXiv preprint arXiv:2004.02786 (under review by Machine

Learning: Science and Technology), 2020

J. M. Ede. Supplementary Information: Adaptive Partial Scanning Transmission

Electron Microscopy with Reinforcement Learning. Zenodo, Online: https://do

i.org/10.5281/zenodo.4384708, 2020

178

https://doi.org/10.5281/zenodo.4384708
https://doi.org/10.5281/zenodo.4384708


5.2 Reflection

This chapter covers my paper titled “Adaptive Partial Scanning Transmission Electron Microscopy

with Reinforcement Learning”6 and associated research outputs16,23. It presents an initial investiga-

tion into STEM compressed sensing with contiguous scans that are piecewise adapted to specimens.

Adaptive scanning is a finite-horizon partially observed Markov decision process212,213 (POMDP)

with continuous actions and sparse rewards: Scan directions are chosen at each step based on

previously observed path segments and a sparse reward is given by correctness completed sparse

scans. Scan directions are decided by an actor RNN that cooperates with a generator CNN that

completes full scans from sparse scans. Generator losses are not differentiable with respect to actor

actions, so I introduced a differentiable critic RNN to predict generator losses from actor actions

and observations. The actor and critic are trained by reinforcement learning with a new extension

of recurrent deterministic policy gradients214, and the generator is trained by supervised learning.

This preliminary investigation was unsuccessful insofar that my prototype dynamic scan system

does not convincingly outperform static scan systems. However, I believe that it is important

to report my progress, despite publication bias against negative results215–221, as it establishes

starting points for further investigation. The main limitation of my scan system is that generator

performance is much lower when it is trained for a variety of adaptive scan paths than when it

is trained for a single static scan path. For an actor to learn an optimal policy, the generator

should ideally be trained until convergence to the highest possible performance for every scan path.

However, my generator architecture and learning policy was limited by available computational

resources and development time. I also suspect that performance might be improved by replacing

RNNs with transformers222,223 as transformers often achieve similar or higher performance than

RNNs224,225.

There are a variety of additional refinements that could improve training. As an example, RNN

computation is delayed by calling a Python function to observe each path segment. Delay could be

reduced by more efficient sampling e.g. by using a parallelized routine coded in C/C++; by selecting

several possible path segments in advance and selecting the segment that most closely corresponds

to an action; or by choosing actions at least one step in advance rather than at each step. In

addition, it may help if the generator undergoes additional training iterations in parallel to actor and

critic training as improving the generator is critical to improving performance. Finally, increasing

generator training iterations may result in overfitting, so it may help to train generators as part of a

GAN or introduce other regularization mechanisms. For context, I find that adversarial training can

reduce validation divergence8 (ch. 7) and produce more realistic partial scan completions5 (ch. 4).
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Chapter 6

Improving Electron Micrograph
Signal-to-Noise with an Atrous
Convolutional Encoder-Decoder

6.1 Scientific Paper

This chapter covers the following paper7.

J. M. Ede and R. Beanland. Improving Electron Micrograph Signal-to-Noise with an

Atrous Convolutional Encoder-Decoder. Ultramicroscopy, 202:18–25, 2019
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6.2 Amendments and Corrections

There are amendments or corrections to the paper7 covered by this chapter.

Location: Page 19, text following eqn 1.

Change: “...to only 25 e−2 for a camera...” should say “...to only 25 eÅ
−2

for a camera...”.

Location: Page 21, first paragraph of performance section.

Change: “...structural similarity index (SSIM)...” should say “...structural similarity index measure

(SSIM)...”.

6.3 Reflection

This chapter covers our paper titled “Improving Electron Micrograph Signal-to-Noise with an Atrous

Convolutional Encoder-Decoder”7 and associated research outputs16,24,25. Our paper presents a

DNN based on Deeplabv3+ that is trained to remove Poisson noise from TEM images. My DNN

is affectionately named “Fluffles” and it is the only DNN that I have named. Pretrained models

and performance characterizations are provided for DNNs trained for low and high electron doses.

We also show that my DNN has lower MSEs, lower MSE variance, higher SSIMs, and lower or

similar SSIM variance to other popular algorithms. We also provide MSE and SSIM distributions,

and visualize errors for each output pixel.

Due to limited available computational resources, DNN training was stopped after it surpassed

the performance of a variety of popular denoising algorithms. However, there are many other

denoising algorithms226–228 that might achieve higher performance, some of which were developed

for electron microscopy2. For example, we did not compare our DNN against block-matching

and 3D filtering229,230 (BM3D), which often achieves high-performance. However, an extensive

comparison is complicated by source code not being available for some algorithms. In addition, we

expect that further training would improve performance as validation errors did not diverge from

training errors. For comparison, our DNN was trained for about ten days on two Nvidia GTX 1080

Ti GPUs whereas Xception231, which is randomly initialized as part of our DNN, was trained for

one month on 60 Nvidia K80 GPUs for ImageNet232 image classification. Indeed, I suspect that

restarting DNN training with a pretrained Xception backbone may more quickly achieve much

higher performance than continuing training from my pretrained models. Finally, sufficiently deep

and wide ANNs are universal approximators233–241, so denoising DNNs can always outperform or

match the accuracy of other methods developed by humans.

A few aspects of my DNN architecture and optimization are peculiar as our paper presents

some of my earliest experiments with deep learning. For example, learning rates were stepwise

decayed at irregular “wall clock” times. Further, large decreases in errors when learning rates were

decreased may indicate that learning rates were too high. Another issue is that ReLU6242 activation

does not significantly outperform ReLU243,244 activation, so ReLU is preferable as it requires less

computation. Finally, I think that my DNN is too large for electron micrograph denoising. We
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justified that training can be continued and provide pretrained models; however, I doubt that training

on the scale of Xception is practical insofar that most electron microscopists do not readily have

access to more than a few GPUs for DNN training. I investigated smaller DNNs, which achieved

lower performance. However, I expect that their performance could have been improved by further

optimization of their training and architecture. In any case, I think that future DNNs for TEM

denoising should be developed with automatic machine learning245–249 (AutoML) as AutoML can

balance accuracy and training time, and can often outperform human developers250,251.

My denoiser has higher errors near output image edges. Higher errors near image edges were

also observed for compressed sensing with spiral5 and uniformly spaced grid20 scans (ch. 4).

Indeed, the structured systematic errors of my denoiser partially motivated my investigations of

structured systematic errors in compressed sensing. To avoid higher errors at output edges, I overlap

parts of images that my denoiser is applied to so that edges of outputs where errors are higher can

be discarded. However, discarding parts of denoiser outputs is computationally inefficient. To

reduce structured systematic errors, I tried weighting contributions of output pixel errors to training

losses by multiplying pixel errors by their exponential moving averages5. However, weighting

errors did not have a significant effect. Nevertheless, I expect that higher variation of pixel weights

could reduce systematic errors. Moreover, I propose that weights for output pixel errors could be

optimized during DNN training to minimize structured systematic errors.
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Chapter 7

Exit Wavefunction Reconstruction from
Single Transmission Electron
Micrographs with Deep Learning

7.1 Scientific Paper

This chapter covers the following paper8 and its supplementary information13.

J. M. Ede, J. J. P. Peters, J. Sloan, and R. Beanland. Exit Wavefunction Reconstruction

from Single Transmission Electron Micrographs with Deep Learning. arXiv preprint

arXiv:2001.10938 (under review by Ultramicroscopy), 2020

J. M. Ede, J. J. P. Peters, J. Sloan, and R. Beanland. Supplementary Information: Exit

Wavefunction Reconstruction from Single Transmission Electron Micrographs with

Deep Learning. Zenodo, Online: https://doi.org/10.5281/zenodo.427

7357, 2020

214

https://doi.org/10.5281/zenodo.4277357
https://doi.org/10.5281/zenodo.4277357


7.2 Reflection

This chapter covers our paper titled “Exit Wavefunction Reconstruction from Single Transmission

Electron Micrographs with Deep Learning”8 and associated research outputs16,26. At the University

of Warwick, EWR is usually based on iterative focal and tilt series reconstruction (FTSR), so a

previous PhD student, Mark Dyson, GPU-accelerated FTSR252. However, both recording a series

of electron micrographs and FTSR usually take several seconds, so FTSR is unsuitable for live

EWR. We have an electrostatic biprism that can be used for live in-line holography253–255; however,

it is not used as we find that in-line holography is more difficult than FTSR. In addition, in-line

holography can require expensive microscope modification if a microscope is not already equipped

for it. Thus, I was inspired by applications of DNNs to predict missing information for low-light

vision256,257 to investigate live application of DNNs to predict missing phases of exit wavefunctions

from single TEM images.

A couple of years ago, it was shown that DNNs can recover phases of exit wavefunctions

from single optical micrographs if wavefunctions are constrained by limiting input variety258–260.

Similarly, electron propagation can be described by wave optics261, and optical and electron

microscopes have similar arrangements of optical and electromagnetic lenses, respectively262.

Thus, it might be expected that DNNs can recover phases of exit wavefunctions from single TEM

images. However, earlier experiments with optical micrographs were unbeknownst to us when we

started our investigation. Thus, whether DNNs could reconstruct phase information from single

TEM images was contentions as there are infinite possible phases for a given amplitude. Further,

previous non-iterative approaches to TEM EWR were limited to defocused images in the Fresnel

regime263 or non-planar incident wavefunctions in the Fraunhofer regime264.

We were not aware of any large openly accessible datasets containing experimental TEM exit

wavefunctions. Consequently, we simulated exit wavefunctions with clTEM252,265 for a preliminary

investigation. Similar to optical EWR258–260, we found that DNNs can recover the phases of TEM

exit wavefunctions if wavefunction variety is restricted. Limitingly, our simulations are unrealistic

insofar they do not include aberrations, specimen drift, statistical noise, and higher-order simulation

physics. However, we have demonstrated that DNNs can learn to remove noise7 (ch. 6), specimen

drifted can be reduced by sample holders266, and aberrations can be minimized by aberration

correctors261,267–269. Moreover, our results present lower bounds for performance as our inputs

were far less restricted than possible in practice.

Curating a dataset of experimental exit wavefunctions to train DNNs to recover their phases

is time-consuming and expensive. Further, data curation became impractical due to a COVID-19

national lockdown in the United Kingdom196. Instead, we propose a new approach to EWR that

uses metadata to inform DNN training with single images. Our TEM (ch. 6) and STEM (ch. 4)

images in WEMD3 are provided as a possible resource to investigate our proposal. However,

metadata is not included in WEMD, which is problematic as performance is expected to increase

with increasing metadata as increasing metadata increasingly restricts probable exit wavefunctions.

Nevertheless, DNNs can reconstruct some metadata from unlabelled electron micrographs270.
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Another issue is that experimental WEMD contain images for a range of electron microscope

configurations, which would complicate DNN training. For example, experimental TEM images

include bright field, dark field, diffraction and CBED images. However, data clustering could

be applied to partially automate labelling of electron microscope configurations. For example, I

provide pretrained VAEs to embed images for tSNE3 (ch. 2).
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Chapter 8

Conclusions

This thesis covers a subset of my papers on advances in electron microscopy with deep learning. My

review paper (ch. 1) offers a substantial introduction that sets my work in context. Ancillary chapters

then introduce new machine learning datasets for electron microscopy (ch. 2) and an algorithm

to prevent learning instabilty when training large neural networks with limited computational

resources (ch. 3). Finally, we report applications of deep learning to compressed sensing in STEM

with static (ch. 4) and dynamic (ch. 5) scans, improving TEM signal-to-noise (ch. 6), and TEM exit

wavefunction reconstruction (ch. 7). This thesis therefore presents a substantial original contribution

to knowledge which is, in practice, worthy of peer-reviewed publication. This thesis adds to my

existing papers by presenting their relationships, reflections, and holistic conclusions. To encourage

further investigation, source code, pretrained models, datasets, and other research outputs associated

with this thesis are openly accessible.

Experiments presented in this thesis are based on unlabelled electron microscopy image data.

Thus, this thesis demonstrates that large machine learning datasets can be valuable without needing

to add enhancements, such as image-level or pixel-level labels, to data. Indeed, this thesis can be

characterized as an investigation into applications of large unlabelled electron microscopy datasets.

However, I expect that tSNE clustering based on my pretrained VAE encodings3 (ch. 2) could ease

image-level labelling for future investigations. Most areas of science are facing a reproducibility

crisis115, including artificial intelligence271, which I think is partly due to a perceived lack of value

in archiving data that has not been enhanced. However, this thesis demonstrates that unlabelled

data can readily enable new applications of deep learning in electron microscopy. Thus, I hope that

my research will encourage more extensive data archiving by the electron microscopy community.

My DNNs were developed with TensorFlow272,273 and Python. In addition, recent versions of

Gatan Microscopy Suite (GMS) software274, which is often used to drive electron microscopes,

support Python275. Thus, my pretrained models and source code can be readily integrated into

existing GMS software. If a microscope is operated by alternative software or an older version of

GMS that does not support Python, TensorFlow supports many other programming languages2

which can also interface with my pretrained models, and which may be more readily integrated.

Alternatively, Python code can often be readily embedded in or executed by other programming
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languages. To be clear, my DNNs were developed as part of an initial investigation of deep learning

in electron microscopy. Thus, this thesis presents lower bounds for performance that may be

improved upon by refining ANN architecture and learning policy. Nevertheless, my pretrained

models can be the initial basis of deep learning software for electron microscopy.

This thesis includes a variety of experiments to refine ANN architecture and learning policy.

As AutoML245–249 has improved since the start of my PhD, I expect that human involvement

can be reduced in future investigations of standard architecture and learning policy variations.

However, AutoML is yet to be able to routinely develop new approaches to machine learning, such

as VAE encoding normalization and regularization3 (ch. 2) and ALRC4 (ch. 3). Most machine

learning experts do not think that a technological singularity, where machines outrightly surpasses

human developers, is likely for at least a couple of decades276. Nonetheless, our increasingly

creative machines are already automating some aspects of software development277,278 and can

programmatically describe ANNs279. Subsequently, I encourage adoption of creative software, like

AutoML, to ease development.

Perhaps the most exciting aspect of ANNs is their scalability280,281. Once an ANN has been

trained, clones of the ANN and supporting software can be deployed on many electron microscopes

at little or no additional cost to the developer. All machine learning software comes with technical

debt282,283; however, software maintenance costs are usually far lower than the cost of electron

microscopes. Thus, machine learning may be a promising means to cheaply enhance electron

microscopes. As an example, my experiments indicate that compressed sensing ANNs5 (ch. 4) can

increase STEM and other electron microscopy resolution by up to 10× with minimal information

loss. Such a resolution increase could greatly reduce the cost of electron microscopes while

maintaining similar capability. Further, I anticipate that multiple ANNs offering a variety of

functionality can be combined into a single- or multiple-ANN system that simultaneously offers

a variety of enhancements, including increased resolution, decreased noise7 (ch. 6), and phase

information8 (ch. 6).

I think the main limitation of this thesis, and deep learning, is that it is difficult to fairly compare

different approaches to DNN development. As an example, I found that STEM compressed sensing

with regularly spaced scans outperforms contiguous scans for the same ANN architecture and

learning policy5 (ch. 4). However, such a performance comparison is complicated by sensitivity of

performance to training data, architecture, and learning policy. As a case in point, I argued that

contiguous scans could outperform spiral scans if STEM images were not oversampled5, which

could be the case if partial STEM ANNs are also trained to increase image resolution. In part,

I think ANN development is an art: Most ANN architecture and learning policy is guided by

heuristics, and best approaches to maximize performance are chosen by natural selection284. Due

to the complicated nature of most data, maximum performances that can be achieved with deep

learning are not known. However, it follows from the universal approximator theorem233–241 that

minimum errors can, in principle, be achieved by DNNs.

Applying an ANN to a full image usually requires less computation than applying an ANN
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to multiple image crops. Processing full images avoids repeated calculations if crops overlap7

(ch. 6) or lower performance near crop edges where there is less information5,7,20 (ch. 4 and ch. 6).

However, it is usually impractical to train large DNNs to process full electron microscopy images,

which are often 1024×1024 or larger, due to limited memory in most GPUs. This was problematic

as one of my original agreements about my research was that I would demonstrate that DNNs could

be applied to large electron microscopy images, which Richard Beanland and I decided were at

least 512×512. As a result, most of my DNNs were developed for 512×512 crops from electron

micrographs, especially near the start of my PhD. The combination of large input images and

limited available GPU memory restricted training batch sizes to few examples for large ANNs, so I

often trained ANNs with a batch size of 1 and either weight285 or spectral286 normalization, rather

than batch normalization287.

Most of my DNNs leverage an understanding of physics to add extra information to electron

microscopy images. Overt examples include predicting unknown pixels for compressed sensing

with static5 (ch. 4) or adaptive6 (ch. 5) sparse scans, and unknown phase information from image

intensities8 (ch. 7). More subtly, improving image signal-to-noise with an DNN7 (ch. 6) is akin

to improving signal-to-noise by increasing numbers of intensity measurements. Arguably, even

search engines based on VAEs3 (ch. 2) add information to images insofar that VAE encodings

can be compared to quantify semantic similarities between images. Ultimately, my DNNs add

information to data that could already be understood from physical laws and observations. However,

high-dimensional datasets can be difficult to utilize. Deep learning offers an effective and timely

means to both understand high-dimensional data and leverage that understanding to produce results

in a useable format. Thus, I both anticipate and encourage further investigation of deep learning in

electron microscopy.

243



References

[1] J. M. Ede. Advances in Electron Microscopy with Deep Learning. arXiv preprint

arXiv:2101.01178, 2021.

[2] J. M. Ede. Review: Deep Learning in Electron Microscopy. arXiv preprint arXiv:2009.08328

(accepted by Machine Learning: Science and Technology – https://doi.org/10.1

088/2632-2153/abd614), 2020.

[3] J. M. Ede. Warwick Electron Microscopy Datasets. Machine Learning: Science and

Technology, 1(4):045003, 2020.

[4] J. M. Ede and R. Beanland. Adaptive Learning Rate Clipping Stabilizes Learning. Machine

Learning: Science and Technology, 1:015011, 2020.

[5] J. M. Ede and R. Beanland. Partial Scanning transmission Electron Microscopy with Deep

Learning. Scientific Reports, 10(1):1–10, 2020.

[6] J. M. Ede. Adaptive Partial Scanning Transmission Electron Microscopy with Reinforcement

Learning. arXiv preprint arXiv:2004.02786 (under review by Machine Learning: Science

and Technology), 2020.

[7] J. M. Ede and R. Beanland. Improving Electron Micrograph Signal-to-Noise with an Atrous

Convolutional Encoder-Decoder. Ultramicroscopy, 202:18–25, 2019.

[8] J. M. Ede, J. J. P. Peters, J. Sloan, and R. Beanland. Exit Wavefunction Reconstruc-

tion from Single Transmission Electron Micrographs with Deep Learning. arXiv preprint

arXiv:2001.10938 (under review by Ultramicroscopy), 2020.

[9] J. M. Ede. Resume of Jeffrey Mark Ede. Zenodo, Online: https://doi.org/10.528

1/zenodo.4429077, 2021.

[10] J. M. Ede. Supplementary Information: Warwick Electron Microscopy Datasets. Zenodo,

Online: https://doi.org/10.5281/zenodo.3899740, 2020.

[11] J. M. Ede. Supplementary Information: Partial Scanning Transmission Electron Microscopy

with Deep Learning. Online: https://static-content.springer.com/esm/

244

https://doi.org/10.1088/2632-2153/abd614
https://doi.org/10.1088/2632-2153/abd614
https://doi.org/10.5281/zenodo.4429077
https://doi.org/10.5281/zenodo.4429077
https://doi.org/10.5281/zenodo.3899740
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598_2020_65261_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598_2020_65261_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598_2020_65261_MOESM1_ESM.pdf


art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598 2020 6

5261 MOESM1 ESM.pdf, 2020.

[12] J. M. Ede. Supplementary Information: Adaptive Partial Scanning Transmission Electron

Microscopy with Reinforcement Learning. Zenodo, Online: https://doi.org/10.5

281/zenodo.4384708, 2020.

[13] J. M. Ede, J. J. P. Peters, J. Sloan, and R. Beanland. Supplementary Information: Exit

Wavefunction Reconstruction from Single Transmission Electron Micrographs with Deep

Learning. Zenodo, Online: https://doi.org/10.5281/zenodo.4277357, 2020.

[14] J. M. Ede. Warwick Electron Microscopy Datasets. arXiv preprint arXiv:2003.01113, 2020.

[15] J. M. Ede. Source Code for Warwick Electron Microscopy Datasets. Online: https:

//github.com/Jeffrey-Ede/datasets, 2020.

[16] J. M. Ede. Warwick Electron Microscopy Datasets Archive. Online: https://github

.com/Jeffrey-Ede/datasets/wiki, 2020.

[17] J. M. Ede and R. Beanland. Adaptive Learning Rate Clipping Stabilizes Learning. arXiv

preprint arXiv:1906.09060, 2019.

[18] J. M. Ede. Source Code for Adaptive Learning Rate Clipping Stabilizes Learning. Online:

https://github.com/Jeffrey-Ede/ALRC, 2020.

[19] J. M. Ede and R. Beanland. Partial Scanning Transmission Electron Microscopy with Deep

Learning. arXiv preprint arXiv:1910.10467, 2020.

[20] J. M. Ede. Deep Learning Supersampled Scanning Transmission Electron Microscopy. arXiv

preprint arXiv:1910.10467, 2019.

[21] J. M. Ede. Source Code for Partial Scanning Transmission Electron Microscopy. Online:

https://github.com/Jeffrey-Ede/partial-STEM, 2019.

[22] J. M. Ede. Source Code for Deep Learning Supersampled Scanning Transmission Electron

Microscopy. Online: https://github.com/Jeffrey-Ede/DLSS-STEM, 2019.

[23] J. M. Ede. Source Code for Adaptive Partial Scanning Transmission Electron Microscopy

with Reinforcement Learning. Online: https://github.com/Jeffrey-Ede/ada

ptive-scans, 2020.

[24] J. M. Ede. Improving Electron Micrograph Signal-to-Noise with an Atrous Convolutional

Encoder-Decoder. arXiv preprint arXiv:1807.11234, 2018.

[25] J. M. Ede. Source Code for Improving Electron Micrograph Signal-to-Noise with an Atrous

Convolutional Encoder-Decoder. Online: https://github.com/Jeffrey-Ede/E

lectron-Micrograph-Denoiser, 2019.

245

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598_2020_65261_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598_2020_65261_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598_2020_65261_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-65261-0/MediaObjects/41598_2020_65261_MOESM1_ESM.pdf
https://doi.org/10.5281/zenodo.4384708
https://doi.org/10.5281/zenodo.4384708
https://doi.org/10.5281/zenodo.4277357
https://github.com/Jeffrey-Ede/datasets
https://github.com/Jeffrey-Ede/datasets
https://github.com/Jeffrey-Ede/datasets/wiki
https://github.com/Jeffrey-Ede/datasets/wiki
https://github.com/Jeffrey-Ede/ALRC
https://github.com/Jeffrey-Ede/partial-STEM
https://github.com/Jeffrey-Ede/DLSS-STEM
https://github.com/Jeffrey-Ede/adaptive-scans
https://github.com/Jeffrey-Ede/adaptive-scans
https://github.com/Jeffrey-Ede/Electron-Micrograph-Denoiser
https://github.com/Jeffrey-Ede/Electron-Micrograph-Denoiser


[26] J. M. Ede. Source Code for Exit Wavefunction Reconstruction from Single Transmission

Electron Micrographs with Deep Learning. Online: https://github.com/Jeffrey

-Ede/one-shot, 2019.

[27] J. M. Ede. Progress Reports of Jeffrey Mark Ede: 0.5 Year Progress Report. Zenodo, Online:

https://doi.org/10.5281/zenodo.4094750, 2020.

[28] J. M. Ede. Source Code for Beanland Atlas. Online: https://github.com/Jeffr

ey-Ede/Beanland-Atlas, 2018.

[29] J. M. Ede. Thesis Word Counting. Zenodo, Online: https://doi.org/10.5281/ze

nodo.4321429, 2020.

[30] J. M. Ede. Posters and Presentations. Zenodo, Online: https://doi.org/10.5281/

zenodo.4041574, 2020.

[31] J. M. Ede. Autoencoders, Kernels, and Multilayer Perceptrons for Electron Micrograph

Restoration and Compression. arXiv preprint arXiv:1808.09916, 2018.

[32] J. M. Ede. Source Code for Autoencoders, Kernels, and Multilayer Perceptrons for Electron

Micrograph Restoration and Compression. Online: https://github.com/Jeffrey

-Ede/Denoising-Kernels-MLPs-Autoencoders, 2018.

[33] J. M. Ede. Source Code for Simple Webserver. Online: https://github.com/Jef

frey-Ede/simple-webserver, 2019.

[34] Guide to Examinations for Higher Degrees by Research. University of Warwick Doctoral

College, Online: https://warwick.ac.uk/services/dc/pgrassessments

/gtehdr, 2020.

[35] Regulation 38: Research Degrees. University of Warwick Calendar, Online: https:

//warwick.ac.uk/services/gov/calendar/section2/regulations/r

eg38pgr, 2020.

[36] Thesis Writing and Submission. University of Warwick Department of Physics, Online:

https://warwick.ac.uk/fac/sci/physics/current/postgraduate/r

egs/thesis, 2020.

[37] A Warwick Thesis Template. University of Warwick Department of Physics, Online: https:

//warwick.ac.uk/fac/sci/physics/staff/academic/mhadley/wthes

is, 2020.

[38] EPSRC Studentship 1917382: Application of Novel Computing and Data Analysis Methods

in Electron Microscopy. UK Research and Innovation, Online: https://gtr.ukri.o

rg/projects?ref=studentship-1917382, 2020.

246

https://github.com/Jeffrey-Ede/one-shot
https://github.com/Jeffrey-Ede/one-shot
https://doi.org/10.5281/zenodo.4094750
https://github.com/Jeffrey-Ede/Beanland-Atlas
https://github.com/Jeffrey-Ede/Beanland-Atlas
https://doi.org/10.5281/zenodo.4321429
https://doi.org/10.5281/zenodo.4321429
https://doi.org/10.5281/zenodo.4041574
https://doi.org/10.5281/zenodo.4041574
https://github.com/Jeffrey-Ede/Denoising-Kernels-MLPs-Autoencoders
https://github.com/Jeffrey-Ede/Denoising-Kernels-MLPs-Autoencoders
https://github.com/Jeffrey-Ede/simple-webserver
https://github.com/Jeffrey-Ede/simple-webserver
https://warwick.ac.uk/services/dc/pgrassessments/gtehdr
https://warwick.ac.uk/services/dc/pgrassessments/gtehdr
https://warwick.ac.uk/services/gov/calendar/section2/regulations/reg38pgr
https://warwick.ac.uk/services/gov/calendar/section2/regulations/reg38pgr
https://warwick.ac.uk/services/gov/calendar/section2/regulations/reg38pgr
https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/thesis
https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/thesis
https://warwick.ac.uk/fac/sci/physics/staff/academic/mhadley/wthesis
https://warwick.ac.uk/fac/sci/physics/staff/academic/mhadley/wthesis
https://warwick.ac.uk/fac/sci/physics/staff/academic/mhadley/wthesis
https://gtr.ukri.org/projects?ref=studentship-1917382
https://gtr.ukri.org/projects?ref=studentship-1917382


[39] EPSRC Grant EP/N035437/1: ADEPT – Advanced Devices by ElectroPlaTing. EPSRC,

Online: https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=

EP/N035437/1, 2016.
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