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Abstract

In this thesis the author examines geometric properties of (Poisson) loop
soups generated from loop measures with varying weights. The framework
incorporates the Markovian loop measure, see [LJ11], as well as the Bosonic
loop measure, see [AV20]. The author characterises certain geometric features

of the loop soup, such as its percolative properties and correlation structure.
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Figure 1: Different realisations of a two-dimensional random walk loop soup, with
increasing intensity.



Chapter 1
Introduction

Statistical mechanics is a branch of physics which aims to make a connection
between the macroscopic and the microscopic properties of a system. Often
cited examples of macroscopic properties include temperature, magnetisation,
and viscosity. The strength of molecular bonds or other interatomic forces are
examples of microscopic properties of a system. As systems typically consid-
ered in statistical mechanics consist of a large number of interacting micro-
scopic atoms (or agents), simplified probabilistic models are brought forward,

with the hope that the qualitative behaviour is accurately rendered.

1.1 Loop models and loop soups

There are many models in statistical mechanics describing different physical
systems. Our investigation is motivated by the fact that many have a (partial)
representation in terms of a loop model or loop soup. We first clarify what we
mean by a loop model or loop soup and then introduce some examples from
the literature where a loop representation exists. As this is purely to motivate
the study, the list will be far from exhaustive.

Given an at most countably infinite graph G = (V, E), we say that a loop w
is a function from [0,¢] — V (for some ¢ > 0) which is continuous from the

right, has left limits, jumps across edges only and satisfies

w(0) = w(t). (1.1.1)



We say that ¢ is the length of the loop w. Let I" be the space of all such loops
(of any finite length). In our setting, we define a loop model to be a probability
measure on (No)''. For o € (Ng)'', we interpret o, = k € N as the loop w being
sampled k-times and o, = 0 as the loop being absent. The multiset, where
loop w is present o,-times, is then referred to as the loop soup and denoted
by U. It is trivial to see that both viewpoints are equivalent: specifying the
law of the random multiset I/ of I' is equivalent to fixing the distribution of o.
A statistical mechanics model has a loop representation if certain features of
the system can be computed in terms of a loop soup U. Instead of giving a

strict mathematical definition, we present an in-depth description of two cases.

1.1.1 Markovian loop soups and Gaussian fields

One of the most studied models in statistical mechanics and probability theory
is the Gaussian (free) field: given a finite collection of vertices V and Q € RV*V
a positive definite, symmetric matrix over V, let Ny be the Gaussian measure
on R with covariance matrix Q'. That is, N is a probability measure on
RY with density

dNg(¥) = %exp <— Z wal,,y@/)y> dv, for p € RV, (1.1.2)

z,yeV

where Z is the normalising constant and dv is the Lebesgue measure on RY. In
many cases it is possible to define a Gaussian measure on an infinite graph by
taking weak limits of the above measures. For the purpose of this introduction,
we restrict ourselves to finite graphs.

It is well-known that for a Gaussian field its covariance can be represented
in terms of the local time of a continuous-time random walk, we refer the
reader to [Fun05, Chapter 3] for a reference. Let G(z,y) = Ng[¢.1,] be the
correlation function for z,y € V. Enrich G with an additional symbol f, often
referred to as graveyard. Let (Xs)s>0 be the continuous-time random walk

with semi-group (eSQ)S>O. For any = € V, set the weight of going from z to

IWe restrict ourselves to mean zero Gaussian measures.



to be Q(z,z) — >, ., Q(x,y). We have that

Glr,y) = E, [ [ y}} | (1.1.3)

where T is an absorbing state and 7 is the hitting time of 7.

Building on the works of Symanzik (see e.g. [Sym68]), more powerful random
walk representations (of Gaussian measures) have been found, such as the
Dynkin Isomorphism (see [Dyn83] and [LJO§|), the Eisenbaum Isomorphism
(see [Eis95]), the Ray-Knight theorems (see |Kni63| and [Ray63]) and the
representations in [BFS82], to name a few. The above results are of the form
that some functional of both the Gaussian field and the random walk is equal
(in distribution) to a different functional applied to the Gaussian field alone.
For an account of these representations together with their implications, we
refer the reader to [Sznl2] or [FFS13|. As we are primarily interested in
representations of the Gaussian field in terms of loops, we do not examine the
aforementioned results in greater detail.

In the works of Le Jan (see for example [LJ10]) a representation of the square
of the Gaussian field in terms of the accrued local time of a loop soup is given.
As the result is important to our work, we give a brief description: let () be
positive definite and symmetric, as above. Let (X;)s>0 be the continuous-
time random walk induced by @), with measure P,. This means that the
random walk starts at € V and then evolves according to (e°?),>, as above.
For t > 0, let P, . the measure PP, restricted (not conditioned) to the event

{X; = z}. Let M be the following measure on the space of loops I':

M = Z/ —IP’t (1.1.4)

zeV

Let Py be the Poisson point process (PPP) on I' with intensity measure AM
for A > 0. A sample from P, is a realisation of what we call the Markovian
loop soup. We define the occupation field L as the combined sum of all the
local times of the loops: let L, = L,(w) be defined as f(f 1{ws = x}ds, where



t is the length of the loop w. Given a realisation of the loop soup U, let

Lo=) Ly(w). (1.1.5)

wel

It then holds that:

Theorem 1.1.1. [LJ10] The occupation field (L)zey under Py with A = 1/2
has the same distribution as the square of the Gaussian field. This means in

particular that for any continuous and bounded function F: [0,00)" — R,
Eijs [F(L)] = No [F(¥?)] (1.1.6)

where (¢¥?), = (V3)* for allz € V.

There exist several extensions of the above theorem: in |[Lupl6a,Cam15,
LST19] the isomorphism is generalised to the whole field (¢;),.,. The intu-
ition is that one can first sample (¢2),cyv and then sample the sign of 1, by
an Ising type weight depending on (¢?),cy. These results are restricted to
the cases where @) is symmetric. For asymmetric random walks, one has to
consider complex valued Gaussian measures and replace 1?2 by [1,|?. This is
done in [AV20]. In the same publication an isomorphism for the full complex-
valued field is given. For a discussion for more general spaces, we refer the
reader to [LJMR17].

The above results have the following consequence: a measure N which has a
density with respect to Ng can be represented it in terms of a loop soup “with

interaction”. This is made precise in the following corollary.

Corollary 1.1.2. Let f: [0,00)V — R be a continuous and bounded. Suppose
that AN o f(¢?)dNg. Let E be the expectation with respect to the measure P
which satisfies AP oc f(L)dP. Then

E[F(L)] = N[F(¥*)]. (1.1.7)

An important example of such a field A is the Phi-4 model, see [FFS13].
To summarise, in this subsection we have seen that the Gaussian field can be

represented as the occupation field of a random walk loop soup. A more



general framework, which can be seen as generalisation of the above, is given
in Theorem 3.3

For more properties of the Markovian loop measure, we refer the reader to
[LJ10,Szn12, Law1§].

Recently, a number of new isomorphisms for non-Markovian random walks
have been found, connecting their local time to spin systems in spherical or

hyperbolic geometries. For more on that, we refer the reader to [BHS19].

1.1.2 Bosonic loop soups

Loop soups can also be used to describe a system of (non-)interacting Bosons.
The following introduction into Bosonic particle systems is paraphrased from
[AV20] Section 3]:

In quantum mechanics particles can either be Bosons or Fermions. Consider a
system of (interacting) Bosons on some finite box A C Z%: a single particle can
be described as a function in the one-particle Hilbert space H, = R (with the
Euclidean inner product). The N-particle Hilbert space is given by the tensor
product %}’?N . The Hamilton operator Hy : fofN — fH%N for N particles is

N
Hy=-Y AN+ Y o2’ —2)), (1.1.8)
1

i= 1<i<i<N

where A{™ is the discrete Laplacian operator on A with Dirichlet boundary
conditiond]| giving the kinetic energy for particle i. The distance |z — 27|
between two points 2%, 27 is the usual Euclidean norm. Thus, the interaction
depends only on the distance of particle 7 at * € A and particle j at 27 € A
and the function v. We assume that the particle number is only known in
expectation, and thus the thermodynamic equilibrium is given by the grand

canonical ensemble. This means that we have to work with the Hilbert space

F=H", (1.1.9)
N=0

2equivalently, the generator of the simple symmetric random walk killed upon entering
the complement of A.



also called the Fock space.

States of identical and indistinguishable Bosons are described by symmetric
functions: for N Bosons, their possible states are given by all symmetric func-
tions in the tensor product H{Y. Here, symmetry refers to the exchangeability
of arguments, i.e. if f(z,y) = f(y,x) for all z,y € A, we would say f is sym-
metric (N = 2). This symmetry is the unique distinguishing feature of Bosons.

Note that we can project from H$Y onto its subspace of symmetric function
HIY by

ceGN
where Gy is the symmetric group of N elements and f o o(zy,...,2xN) is

given by f(@sq),...,Tony). Write Fy for the Fock space of all symmetric
functions. At thermodynamic equilibrium with inverse temperature S and
chemical potential p, the grand canonical partition function (which is the

trace over the symmetrised Fock space) is given by
Zaw(B, 1) = Trp, (e 7U71), (1.1.11)

where H is the quantised Hamilton operator having projection Hy on the
subspace H%N , N is the number operator in A taking the value N on the
space S{%N , and Trz,_ is the trace operator on F. Using the Feynman-Kac
formula (see e.g. [Sznl2]), one can derive the following representation of the

grand canonical partition function

ZAUBN“ Z

eﬁu

E E ® Z1<”<Nfo o(|X{— XJ|)dt]
3717330() ’

A el i=1

o (1.1.12)
where Gy is the set of all permutations of N elements, and the right-hand
side can be interpreted as a system of N random walks (X})i>0,2 =1,..., N
(see [ADOS| for details). Following |Gin71] and [ACK11], one can employ cycle-
expansion to simplify the above expression: define the Bosonic loop measure
Mﬁu,ﬁ as

ML, 5= ZZ—IEW . (1.1.13)

zeN j>1



Using the definition of the Bosonic loop measure one obtains

00 N
Zau(B1) =D 5 ® B 5(dw®) [emVE D] (1.1.14)
N=0 =1

where the interaction energy of N loops is the given by

[b(w)=1]/8  [(w)-1]/B

V(w®, .., w™) Z Z

1<1 JSN m=0

B .
1{(i,k) # (j.m)} / oW (kB + 1) — WD (m + 1)) dt

Here we write £(w®) for the length of the i-th loop. The derivation of the above
representation of the partition function is non-trivial and is achieved through
a series of combinatorial identities and the concatenation of paths (from x;
to x,(;y) of length 3 to form loops with lengths in SN. We refer the reader
to [Gin71] for the lengthy derivation. In [AV20], we show that the (quantum)
correlation functions can also be represented in terms of the Bosonic loop soup.
To summarise, we have defined a model of Bose particles and outlined how
several of its characteristics, such as the partition function and the correlation
functions, can be expressed in terms of a system of loops governed by the
Bosonic loop measure (with an additional interaction term).

Previous work has been focused on the distribution of the loop lengths (cycle
statistics), see [Lew86, Owel5,/AD18|. In our work we are interested in more
geometric properties of the Bose gas, such as connectivity properties and cor-

relation functions, continuing the work from [AV20].

1.2 Loop percolation

Loop percolation generally refers to the connected components induced by a
loop soup. Previous results are restricted to the Markovian loop soup, defined
by the measure M from Equation (1.1.4). Assume that the underlying random
walk is the simple symmetric random walk on Z¢. A sample of the loop soup

induces a bond-percolation model on Z%, where we declare a bond as open if



there is at least one loop traversing through it. Let Cy be the set of all open
bonds connected to the origin through other open bonds only. Note that in
this formulation constant loops (i.e. loops which only visit one vertex) do
not play any role. By considering the Poisson point process with intensity
measure AM, we obtain a one-parameter percolation model (as A > 0 varies).
We explain here some of the past results in loop percolation, all of which are for
the Markovian loop soup. After introducing the main references and results,
we give a brief summary at the end of this section.

In [LJL13| percolation for the Markovian loop soup is introduced and then
first results are given. The authors introduced an additional parameter x > 0
which corresponds to the rate the random walk is killed. To be more precise,
with probability 1/(1 + ) the random walk chooses one of its neighbouring
sites uniformly for the next step and with probability /(1 + &) it moves to the
absorbing state {. The authors then showed the following: given any A > 0,
Co is finite almost surely for x sufficiently large. Conversely for any x > 0,
by making A sufficiently large one has that the cluster of open bonds at the
origin Cy is infinite with positive probability. For the first claim, they use
a path counting argument, like it is done for Bernoulli percolation (see for
example |Gri89, Chapter 1]). For the second statement, they use that loop
percolation can be bounded from below by Bernoulli bond percolation.

In [Lem13], the same model is studied on the complete graph, with the killing-
parameter k proportional to the total number of vertices.

For Z¢ with d > 3, a number of new results are given in [CS16]. All results
in this paper are for kK = 0. The most important result is that Cy is finite
almost surely for A > 0 small enough. This implies (together with the results
from [LJL13]) that the critical parameter A\, (which is the smallest A for which
Co being infinite with positive probability) is strictly between 0 and infinity.
Another result is that for d > 5, they were able to show that there exists
two constants Cy,Cy > 0 such that the probability P (Cy N B;, # @) can be

sandwiched in the following way

Cin*™* <Py (CoN BE # @) < Cyn*™?, (1.2.1)



where B, is the ball centred at 0 with radius n and one has to assume that
0 < A < A\, where A\, is positive and bounded from above by A.. Note their
other results include bounds on whether a point x is contained in Cy, bounds
on the tails of the size of Cy and more. Most of their results are limited to the
case A < \,.

The regime where A > A, (also called supercritical phase) is studied in [Chal7].
Here, the author gives heat kernel bounds for the random walk on the infinite
connected component. Contrary to the behaviour of the subcritical phase, the
behaviour of the loop soup for A > A. is similar to simpler percolation models.
In the important work [Lupl6aj, the author uses a novel coupling with the
Gaussian free field to show that A. > 1/2 in the cases: for d > 3 and k = 0,
and for G = Z x N (the half space) with killing at the boundary Z x {0}.
In |[Lupl6b], the author shows that for the latter case one has A\, = 1/2. For
this, previous results on conformal loop ensembles are used.

In |AS19], the authors study the vacant set, i.e. those bonds which have not
been traversed by any loop. Decoupling inequalities for local functions on the

vacant sets were proven.

To summarise: loop percolation has been studied for several years by now.
While for several parameter regimes, such as A\ > \. and A\ < \,, detailed es-
timates are available, there are open questions: Are the decay estimates from
Equation valid for all A < A.? What does the structure of large clusters
look like? Does the Bosonic loop soup percolate in a different way than the
Markovian one? In this thesis, we provide (partial) answers to these questions.
In this section we have introduced loop percolation and given an overview over
results from the literature. In the next section we will introduce sharpness and

the recently developed framework of randomised algorithms.

1.3 Sharpness and random algorithms

It is common in percolation theory that, at first, certain decay estimates can
only be proven for a parameter range [0, A,) with A, < A.. This is also true
for loop percolation, see Equation [1.2.1}]

We compare this to the case of Bernoulli bond percolation PP, with parameter



p € [0,1]: for many decades it was known (see [Gri89, Chapter 1]) that for

every p < ¢; ' (where ¢4 is the connective constant of Z?) one has that
P, (CoN By, # @) <e %", (1.3.1)

for some ¢, > 0. The question is whether this exponential decay continues to
hold for every p € [0, p.), where p, is the critical parameter of Bernoulli bond
percolation. An affirmative answer to that question is often referred to as
sharpness (of the phase transition). In both [AB87] and |[Men86], it is shown
that for Bernoulli bond percolation sharpness holdsﬂ While their proofs differ,
in both references a system of differential inequalities is used together with an
iteration scheme. In [DCT16|, the authors utilise the relatively new OSSS in-
equality (named after O’Donnell, Saks, Schramm and Servedio, see [OSSS05])
to give a new and short proof of sharpness for Bernoulli percolation and the
Ising model. The OSSS inequality can be seen as a generalisation of the
Poincaré inequality in the sense that it gives an upper bound on the variance
of functions. The strategy used in [DCT16] has the advantage of being flexible
enough to be adaptable to various other settings: in [DCRT19b] sharpness
for the random-cluster model is established, in [DCRT19a] for Voronoi per-
colation, in [BH19] for inhomogeneous percolation on quasi-transitive graphs,
in [DCRT18] for Poisson-Boolean percolation, in [MV20] for Gaussian fields
and in [DH18| for the Widom-Rowlinson model.

In this thesis we use the framework laid out in [DCT16| to show the validity

of various decay bounds for loop percolation in the whole subcritical regime.

1.4 Main results and outline

In this section we briefly summarise the key results of this thesis.

The main novelty presented in this work is the development of a method
which allows us to characterise various features and geometric properties of
loop soups uniformly over a wide range of loop measures and the employment

of that method. As giving the precise statements of the individual results needs

3This took almost 30 years to prove, exponential decay for parts of the subcritical regime
was first shown in [BH57).

10



further notation, we only give rough characterisations and refer the reader to

the respective chapters of the thesis for more details.

(Geometric) Properties of the loop soup

Property Chapter and Remarks
Occurrence of long loops through a "
. Chapter 4
point —
Occurrence of long loops through an T
) ) ) ) Chapter |4
annuls with diverging radius —
Derivation of the two-point function Chapter |5
Derivation of the cumulant function Chapter |5
Distribution of the occupation field Chapter |3| and Chapter [5|
Occurance of vacant sets Chapter |5
Existence/Absence of infinite clusters | Chapter [6
Chapter (6}, strong decay assump-

Decay of the one-arm connectivity . .
tion on the weights.

. Chapter @, strong decay assump-
Occurrence of long loops in clusters i ]
tion on the weights.

Equivalence of critical parameters/ | Chapter @, strong decay assump-

Sharpness tion on the weights.

We now give a brief description of the content of each chapter of the thesis.

In Chapter [2] we fix notation and specify the class of admissible random walks.
We also prove lemmas regarding hitting time estimates for the random walk.
In Chapter [3| we define the loop measures and the induced loop soups used in
this thesis. We use the following approach: instead of proving statements sepa-
rately for different loop measures, we develop proofs which hold uniformly over
a wide range of loop measures. The results for Bosonic and Markovian loop
measure follow as special cases. This has the advantage that we no longer rely
on the closed form expressions which exists for the Markovian loop measure
(due to its connection to the Gaussian free field) only. We restrict ourselves
mainly to weights decaying at a polynomial speed, as in that case the loop
soup exhibits long-range correlations. In Chapter [3| we also generalise the
work from [AV20], which illuminates the intricate relation between Bosonic

and Markovian loop measures. We also show how the characterisation of the

11



distribution of the occupation field is equivalent to solving a measure-valued
differential equation.

In Chapter |4] we give various decay estimates for loop measures. This is done
via representing quantities in terms of the range of the random walk bridge
and then using concentration estimates for the range.

In Chapter 5| we characterise different (geometric) properties of the loop soup.
We use the same strategy as employed in the previous chapter, to obtain novel
results for a wide class of loop measures.

In Chapter [6] we study the behaviour of the connected component of the loop
soup intersecting the origin. We employ the results from the previous chap-
ters to show that (given certain decay assumptions on the weights) different
critical parameters for loop percolation are equal. We use some standard tools
from percolation theory, such as the FKG-inequality or Russo’s formula, as
well as the recently developed framework of randomised algorithms and the
OSSS-inequality, see [OSSS05,DCRT'18]. We also provide some finer estimates
on the structure of the cluster in the subcritical phase.

In Chapter [7} we direct the reader’s attention to potential uses of the tech-
niques developed in this thesis and speculate how technical restrictions could
be loosened. We give a number of conjectures we plan to verify in future stud-
ies.

In the Appendix we give several technical lemmas which we use throughout
the text.

At the end of the thesis we provide an index which lists the symbols used
throughout the text (not including the introduction) together with a number
referencing the page where they are defined. Notation restricted to a small

section of the thesis (such as a short proof) is not listed.

12



Chapter 2
Random walk path measures

In this chapter we introduce notation, the set-up, and prove various technical
lemmas. We first define path spaces and then give the class of random walks
used in this thesis. We then prove a coupling result with the Brownian bridge.
In the last section of this chapter we establish several results on hitting times:
computing the (sharp) asymptotics of hitting a single point and the boundary

of a sphere.

2.1 Notation and set-up

7

We begin with a technical remark: in this work, we do not use the ":=
notation when it comes to defining new mathematical objects. Instead we use

b 7

the 7=" symbol. It will be clear from the context when ”=" refers to the

7

equality between two (predefined) mathematical objects and when ”=" refers
to a notational assignment. Furthermore, all equations in this thesis have been
labelled to facilitate referencing.

We present a list of conventions used in this work.

I. Constants: usually denoted by C' and may change value from line to line.
Constants with sub/super-scripts are fixed and, unless stated otherwise,

only depend on the underlying random walk and the dimension.

I1. Rounding: given a real number ¢ > 0, we define Zj:t ... as Zj:m -

13



I1I.

IV.

VL

VIL

where ¢t — |t] is the floor function. If we split a sum, we set

t [t]

Z...—i—i...tobeequaltoz...—l—i..., (2.1.1)
j=t

7j=1 J=1 j:|'t‘|
if t ¢ N, where ¢t — [t] is the ceiling function.

Integration: given a measure space (£2, .4, m) and a measurable function

f: Q2 — C, we denote the integral of f with respect to m by

m[f] :/fdm:/ﬂf(w)dm(w). (2.1.2)

If n is absolutely continuous with respect to m and the Radon—Nikodym
derivative is given by g, we then write dn(w) = g(w)dm(w). If m is the
Lebesgue measure (on R?) and the integration variable is given by z, we
simply write dz instead of dm(x).

The delta measure on a set/point A is denoted by d4. The indicator
function on a set A is denoted by 14 or 1{A}.

Conditioning: given an event A and a probability measure P, we write
P(BJA) for the conditional probability of B given A. This extends to
events of measure 0, using regular conditional distributions, see [Klel3].

If f is a real-valued function, we sometimes write E[f, A] as a shorthand
for E[f14].

Cardinalities: given a countable set I, we denote its cardinality by |I|.

Asymptotic Fquality: given two real-valued sequences (z.). and (y.)e,
depending on some sets of parameters €, we write x. ~ . if there exist

two positive constants C7, Cy such that
Ve: Cho, <y. < Cox, . (2.1.3)

Unless stated otherwise C7, Cs only depend on the dimension of the space

and the underlying random walk.

Derivatives: for functions of multiple arguments, we use the notation

O, f(x) for the derivative of f with respect to  (where x is a coordinate

14



of ). If a function g only depends on one argument, we write dg for the

derivative.

VIII. Gamma function: the Gamma function is denoted by I'(s), s > 0. The
upper incomplete Gamma function is denoted by I'(s, z) = fxoo ts~le~tdt.
The lower incomplete Gamma function is y(s,z) = fom ts~te7'dt. Note
[(s) =T(s,z) + (s, z).

IX. Norms: we denote the Euclidean norm on R? by |-|. When we refer
to the p-norm (for p € [1,00]), we write |-|,, where |-]o = |-|. For the
distance between a set and a point, write dist(z, A) = infyc 4|z — y| and
for two sets dist(B, A) = inf,cp dist(x, A). We see Z¢ as a subset of R?

and thus the same notation is used on the lattice.

X. Landau Symbols: given two R? valued functions f and g and a point
y, we write f = o(g) if for all ¢ > 0 we have |f(x)| < ¢|g(x)] in a
neighbourhood of y. We write f = O(g) if limsup,_,,|f(z)|/[g(z)] < C

for some C' > 0. We use the same notation for the limit |z| — +o0.

For spheres we use the following notation: for z € R? and r > 0 we write
B, (z)={y R |z —y| <7}. (2.1.4)

If x = 0, we omit it from the notation, i.e. B,(0) = B,. If we are working
on Z* we use the same notation: in that case B,(z) is understood as {y €
74: |x —y| < r}. Note that care must be taken when considering the discrete

ball in Z%: it is no longer rotationally invariant, see Figure .

2.1.1 Path spaces

For a metric space E (assumed to be separable and complete) with metric d
(think of Z% or R? equipped with the Euclidean distance |-|), we define various
path spaces on which our stochastic processes live. We add an extra symbol
to E, denoted by f, and set d(z, 1) = 1{z # f}. For any ¢t > 0 let

Dy(E) = {w:[0,t] = E U{{}, with w right continuous with left limits}.
(2.1.5)
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Figure 2.1: The points in the discrete ball By C Z? in red. Note the missing
rotational invariance.

If the space E is apparent from the context, we omit it from the notation
and simply write D;. The same applies to all subsequently defined spaces.
Following Section 12], we define a metric d; on D; by first introducing a
functional F'. The functional F' acts on non-decreasing functions g, satisfying

g(0) =t —g(t) =0, with

F(g)= sup 10gd<g<82)’g(51)) : (2.1.6)

0<s1<s2<t S2 — 81

Thus, F' takes values in (0, 4+00]. We define our metric

di(wr, ws) = iIglf max{F(g), Oiligt d(wy(s),wa09(s))}, (2.1.7)

where the infimum is taken over those functions ¢ for which we previously
defined F'. Denote furthermore

D ={w: [0,00) = EU{T}, such that w is right continuous with left limits} .
(2.1.8)
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Define for wy,ws € D,
doo (Wi, w2) = Y 27" dpy (w1, w2) - (2.1.9)
m=1

By |Bil68, Theorem 12.2 and 16.3] we have that D, is separable and complete
under d;. The same applies to D under d,,. Denote the topology generated
by d; and d, by 7(D;) and 7(D) respectively. These topologies are usually
referred to as Skorokhod topologies. Let o(D;) and (D) be the associated
Borel sigma-algebras. We write t— for the left limit and ¢+ for the limit from
the right, ¢ € R. Let

I't = {w € D; such that w(0) = w(t—) and w(s) # T, Vs € [0,t]} C Dy,
(2.1.10)
the space of loops of length t. We denote the subspace topology by 7(I';) and
the (sub) sigma-algebra by o(T';). Define

r=Jr. (2.1.11)

For w € I', define the length [(w) as the unique ¢ > 0 such that w € TI';.

Furthermore, we denote a loop’s maximal diameter by

|lwl| = sup d(w(t),w(s)) . (2.1.12)
0<s,t<I(w)

We can embed T" into D by setting w(t) = t for ¢t > l(w). Write z € w if there
exists ¢t < [(w) such that w(t) = z. Henceforth one (unless stated otherwise)
identifies I' with its embedding into D. Denote the topology and the sigma-
algebra on I' generated by this embedding by 7(I') and o(T).
We also define the family of coordinate projections (X;)x>o in the canonical
way: Xi(w) = w(t), for w € D. We also use the letters B and S instead of
X, depending on the reference measure. This will be made clear in the next

section.
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2.1.2 Random walks on the lattice

In this section, we introduce the reader to the class of random walks used in
this text. For this section, we consider the case E = Z¢ (only in Chapter (3| we
will have to consider E # Z< or E # R?).

A generator matrix ¢: Z2U{t} x Z4U {1} — R induces a random walk. It has

the following properties:
I gq(z,y) >0forall x £y e ZU {1}.

1. For all x € Z4U {t}

00 > Z q(z,y) = —q(z,x). (2.1.13)

yeZdu{t}

L lgllee = sup,ezaugiylg(e; 2)| < oo

Set p = ||q|=tq + I, the (one-step) transition matrix. Henceforth assume that
q(z,x) is constant with respect to x. Apart from the space-time random
walk to be defined in the next chapter, we always assume that ||¢||.c = 1.
By [Klel3, Theorem 17.25], the matrix ¢ uniquely defines a continuous-time
Markov process whose coordinate projections we denote by X;, ¢t > 0. We
refer to (X3); as continuous-time random walk. Its transition kernel is denoted
by p,(z,y) for x,y € Z*U {1}, t > 0, and satisfies

oz, y)|  =q(z,y). (2.1.14)

t=0

Since we are going to think of { as a cemetery state, we require that —q(f,y) =

1{y = t}. The next assumption is key and therefore stated separately.
Assumption 2.1.1. Suppose that there exist p™V: 7 — [0, 1] such that
L Summability: Y., p"(z) = 1.
II. Symmetry: pM(z) = pM(—2).
1II. Interval-like support: let

I={zecZ:pY@)>0}=(a—1,—a+1)NZ, (2.1.15)
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for some a € {—1,-2,...} U{—o0}.
Alternatively to the interval-like support, we may assume that p™™(—1) =
pM(1) =1/2.

IV. Square-exponential decay:

() =0 (e—clﬁ‘z) , (2.1.16)
for some ¢ > 0 as |x| — 0.

V. If the support of pV) is non-compact, we require
PP () > pW(z — 1)pW(z +1), (2.1.17)

for any x € Z (this is equivalent to the distribution being strongly uni-
modal, see [DW19]). Furthermore, assume t — > p1(x)e!® is lower

semi-continuous.

Letey, ..., eq € Z% be the standard basis vectors in Z¢ (over Z) and denote (x);
the i-th coordinate of v € Z2 (i.e. the projection of x onto the space spanned
by e;). We assume that for x # y € 72,

()
1) = a0

{(x —y); = 0 for all but at most one i},
(2.1.18)
and q(z,x) = 1 otherwise. In words, at each step the random walk chooses a

direction i € {1,...,d} uniformly at random and then moves in that direction
distributed accordingly to p™. For an illustration, see Figure .

Remark 2.1.2. 1. Note that the above assumptions imply that the jump
chain induced by q is aperiodic over Z¢ (unless pM(—1) = pM(1) =
1/2). Indeed, the interval-like support ensures that p™) is aperiodic and
Equation implies that this carries over to q(x,y).

II. The "independence” assumption (i.e. Equation (2.1.18)) is only due to

19



Figure 2.2: Two possibilities for the support of ¢(z,y) (in red) on Z2.

the fact that the recently proved KMT couplindl| for the random walk
bridge (see ([DW19]) has not been generalised to higher dimensions yet.

We expect the results in this work to hold for all random walks with finite

exponential moments.

The measure associated to (X3);>o starting at x € Z% is denoted by P,.
The jump-chainf] associated to (X;)i>o is denoted by (S,)nen. The kernel of
the jump-chain is denoted by p,(z,y) for x,y € Z* U {1}, n € N. We denote

the measure governing the discrete jump-chain started in = by P,.

Let t € [0,00) and j € N. We define for G € o(D) and z,y € Z? the bridge

measures in continuous and discrete time

=t
z,Y

P,,(G) =P.(GN{X; =y})

and P (G)=P,(GN{S;=y}). (2.1.19)

We furthermore denote the normalised version of the above measures as

t

B

x?y

(G) =Po(G|X: = y)

and Bl (G) =P, (G|S; =y).

(2.1.20)

LA coupling which produces an error at scale log(n) over a time horizon n, named after
Komlés—Major-Tusnddy, see [KMTT75].

2The discrete time random walk induced by p.
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We also write A €@ Z% if A C Z% and contains finitely many points.

For a set A C Z¢, we define the inner boundary
0;A={re€ A: Jy ¢ Awith |z —y| =1}. (2.1.21)

If A C RY we write OA for its boundary in the topological sense (with respect
to any norm on R%).

We use the Brownian motion and its kernel. Denote a standard Brownian
motion (in d dimensions, with the same covariance as the random walk) by
(Bi)¢>o and write P, for its distribution (started at x € R?). The transition
kernel of the Brownian motion is denoted by p;(x,y). As the kernel p,(z,y) is
translation invariant, we occasionally write p;(x —y) for p;(y, x). For r > 0 we
occasionally write p;(r) instead of p;(z,.), where z, is any point in R? satisfying
|z.| = r. The measure of the Brownian bridge transitioning from z to y in
time ¢ > 0 is denoted by B;)y. We also use the unnormalised bridge measure:
Py, =m(z,y)B;,.

As a rule of thumb, boldface notation refers to discrete objects whereas stan-
dard and fraktur typeface indicates continuous processes.

A word on densities: for continuous (on R?) processes (such as the Brownian
motion/bridge) we denote densities by adding the letter d before the measure,

i.e. dP,(B; = y) is understood as the unique function satisfying

Py(Br € A) = / dP,(B; = y)dy, (2.1.22)
A

for every measurable A C R¢.

2.2 Hitting time estimates

This section is devoted to estimating the distribution of certain hitting times
of our random walk. These technical estimates will be of importance in later
chapters, in particular Chapter 4] and Chapter [5] We first prove a coupling
between the random walk bridge and the Brownian bridge. We then use this
to show that the distribution of the hitting times for the random walk is

close to those of the Brownian bridge. In this section we always assume that
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q(z, 1) = 0.
The hitting time H4 of a set A C Z? is defined in the following way

Hy=inf{k>1: S, € A}. (2.2.1)

For the continuous time random walk (X;); and the Brownian (B;);, we define
the hitting time analogously: replace £ > 1 with £ > 0 in the above equation.
We use the superscript "B” when we refer to the hitting time of a set with
respect to the Brownian motion, e.g. H% (instead of Hy). If A = {z}, we
write H, instead of Hy,. If A = B,,, we use the following convention: if the
random walk is started from B,, \ 0;B,,, we set H,, to be the first time we
hit B{,. If the random walk is started from any other point, we set H,, the
first hitting time of B,,. This means that if the random walk is started from
inside the sphere, H,, is the first time it exits it. If the random walk is started
from outside, H,, is the first time we hit the sphere. This simplifies notation
in later chapters.

We begin by stating a coupling result, a consequence of the one-dimensional
version established in [DW19).

Lemma 2.2.1. For every o > 0, there exists ¢, > 0 such that for n € N (if
the underlying random walk is the simple random walk, we need to assume n
even) one can construct a coupling b" between By, (the random walk bridge of

n steps) and By, (Brownian bridge of duration n) satisfying

b" ( sup |S; — By| > ¢q logz(n)> <O (n™?). (2.2.2)

0<t<n

The same holds for the continuous-time random walk bridge.

Proof of Lemma [2.2.1] We prove the result for the discrete-time random
walk, the continuous-time case follows analogously.

First the main ideas: let M, (i) be the number of times the random walk has
chosen direction e;. We begin by sampling (M, (i))?_, first. We then couple
each one-dimensional bridge of time-horizon M,, (i) with a Brownian bridge of
time-horizon dM,, (i) (to adjust for covariance). We then use a large deviation-

type bound to show that dM, (i) = n + small. In the final step, we perform
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a time change to get a Brownian bridge of time-horizon n and then use a
continuity estimate to control the error.

We assume without loss of generality that the random walk has the identity

[] [ ] “® L) L) L] [} L] [] [} [ [ [} L)
.
. ‘4 LR
[ ] (] 1 L] ! [} [ ] L] [} [ ]
P \ dML[1)
A ni )
U (3 7 '
T
‘ V v [ [y o
. ’ ’ . ’
g [y "
[] [ [ ] [} [} L) . [} [ ] [] eV o L] [}
.
[ ] [ ] [} [} [ [ L] o [ [ [} ° [ ° °

Figure 2.3: The coupling from Lemma [2.2.1; the random walk bridge in black,
the continuous approximation in blue, with the time changed version in dashed
style.

as covariance matrix. We begin by rewriting our random walk (.S,,),, as

d
S — Zeisﬁyn(i) : (2.2.3)
i=1

where the S(’s are independent one-dimensional random walks (distributed
with respect to p")). Furthermore, M, € N (the coordinate process) is defined

in the following way

M,=> Dj, (2.2.4)
j=1

where D; are i.i.d. uniform on the standard basis {e;}¢ ;. For C > 0, let A,

be the event that the coordinate process is behaving atypically, i.e.
A, ={Fie{l,...,d}: M,(i) ¢ [n/d— Clog(n),n/d+ Clog(n)]}. (2.2.5)

A standard large deviation estimate shows that for any a > 0, there is C; > 0
large enough, such that P(A,) = o(n™). Thus, we can now assume that we
are on the event A .

Note that since the e;’s form a basis, we have that

Sp=0<=Vie{l,. ...d}: S} , =0 (2.2.6)
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By [DW19, Theorem 1.2] (or [CD18, Theorem 8.1] in the case of the simple
random walk), conditioned on S,, = 0, we can couple each of the S](\Z (i)’s with
BY"M 4 one-dimensional bridge of time-horizon dM,, (i), such that on an event

of mass at least 1 — o (n™%), the error is at most ¢, log M,,(i). Write

d

By = Z e B (2.2.7)

=1

Note that by the scaling invariance of the Brownian motion we have that

Z 6” I dMn(z) ) (228)

is distributed like a Brownian bridge on [0,n]. Since we conditioned to be on

A¢ | we have that

log(n)
n

- 1‘ < (2.2.9)

dM,(
From continuity estimates (see e.g. [MP10, Chapter 1]) it then follows that,

outside a set of probability o(n~%), we have

sup |8 — By| < log*(n). (2.2.10)

t=0,1,....n

Indeed, by the Markov inequality, we have that the probability that a cen-
tred Gaussian random variable with variance O(n~"logn) exceeds log®(n) is
bounded by O (e*”bg " ) As there are at most 2C dn log( ) choices, the
probability of the complement of the event in Equation (2.2.10]) decays at an
exponential scale.

Together with the triangle inequality the result follows. O

2.2.1 Hitting of a single point

The main result of is a technical estimate on the time it takes a random walk

bridge to hit a distant point.

Lemma 2.2.2. We have that for
lz] =0 ((j — k)3/4) and |z| = o(K*/?) (2.2.11)
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that it holds for any € > 0 and some constants cq > 0,

ek () (4 o) + o]55) d=1,
= q 21D ()i (2) (1 + 0(1)) + K log ™ (K)o(1 A KY2|a| ™) d =2,
capr(@)pj—k(x)(1 + o(1)) d =3,

(2.2.12)

where in the case d > 3 we additionally require the existence of an M > 1 such
that 0 < |z| < MVk.

For the cumulative distribution function in one variable, we have for M > 0
fized, d > 3 and Mj > |z|*

Bl (o < ) s % [ (517 e (/7)1 000

1M (2.2.13)
+0 ( d+1/ i (x/\/j) D1k (m/ﬂ) dk) ,
0
where kg = Po(Hy = 00).
In the case d = 2, we have that for every p € (0,2),
; 4ml 1
P, (Hy < j) =8l P (/) Dok (1Y) gy 1. o)
J [2[2/10g(|2[2-) log® (k)
|z[? /5 log(||>~*)
+0 (jl/ i (x/\/;) D1k (x/\/5> dk) .
0
(2.2.14)
For d > 2, we also have the following bound
Bl , (Ho < j) < Cla|*"T (d/2 — 1,4|z[%7") . (2.2.15)

Proof of Lemma [2.2.2]  Use the strong Markov property to write

Pi, (Ho = k) = P, (Ho = k) p;_4() . (2.2.16)
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The first part of the lemma follows immediately from [Uchl1l, Theorem 1.2,
1.4, 1.7]. Indeed, in that reference it is shown that

1V log|z|

(ﬂ{d>3}+ g*(k)

1{d =2} + |z|k ' 1{d = 1}) pr(z) (1 +E),

(2.2.17)

where E are the Landau-symbols from Equation (2.2.12)). Due to the assump-
tions we made on the decay of the tails of the random walk, we can em-
ploy [LL10, Theorem 2.3.11] to approximate p;_(z) by p;—r(z) (1 + o(1)).

We now prove the second part of the lemma. Let us begin with d > 3. We

expand

J
P) (Ho < j) = P.(Hy = k)pj_k(). (2.2.18)
k=1

In the case that k > |z|?/M = j, for some M > 1, we expand

Z Po(Ho = k)pj—i(z) = ra (14 O(|z[>~7)) Z pe(x)pj—k(z),  (2.2.19)

k=jo k=30

by [Uchll, Theorem 1.7]. We can approximate the sum by an integral and
thus

S (@) a(x) = (1+0(1)) / g ()P (2)dk

k=jo 70 (2.2.20)

= (o) [ :M o (2/v/5) pios (2/V/7) d.

Indeed, in the proof of Proposition the approximation of a sum by an
integral at cost of (1 + o(1)) is shown in a more general setting by computing
second derivatives and using the approximation result [LL10, Lemma A.1.1].
Bounding P, (Hy = k) < pr(x), we can estimate using Lemma to bound

26



the sum by an integral and a change of variables k — kj

iPx(Ho = k)pj-i(x) < Cj7H /O " pr (x/ \/3) P1ok (:c/ \/3) dk .

k=1
(2.2.21)

Combining the two previous equations finishes the proof in the d > 3 case.
In the case that d = 2, we have for |z| < /3kloglog(k) = p(k) that by [Uch11,
Theorem 1.4],

N 21og(|z]) _ju2/con 1
P,(Hy = k) = T () 21"/ (2k) (1 +0 <W)> : (2.2.22)

Let g(z) be the inverse function of p(k). Plugging in the above then gives us
J

S Bu(Ho = k)pyoile) = (1+ O (r(2)) Y

k=q(x) k=q(x)

4 log(|x|)

10g2(k') pk(k)pj—k(z) )

(2.2.23)
where 7(z) = log™"*(|z|). Note the bound ¢(z) < 3|z|>/8loglog(|z|). We
can use |[Uchll, Theorem 1.5] in conjunction with [Uchl5, Theorem 2] to get
approximations on P,(Hy = k) for k < g(x): by the first theorem, there exists
an explicit constant ry > 0, depending on the distribution of random walk,
such that

P.(Hy = k) =dP,(H = k)+ O (m) : (2.2.24)

By the calculation done in [Uchl5, Corollary 4], we have for p > 0 small
enough and |z|?/(log|z|* *) < k < q(z) that

dP,(H? = k) = mpk(@ (1 +0 (L» . (2.2.25)

log||

Inspecting the error term in Equation ([2.2.24)) reveals that

Po(Hy = 1) = o pe() (1 o (1og1|x|)>
_ %ﬁ’j‘pk(@ (1 +0 (@)) :

27
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for k’s satisfying the above bounds. From there on can approximate the sum
by an integral and proceed as in the case d > 3.

Bound: we now prove the last claim of this lemma. Let d > 2 and bound

j ! i 2/3—¢ J
Pl (Ho<j) <> Pl (Sk=0)<C (e—clxl Py / pt(a:)pl_t(x)dt> ,
k=1 0

(2.2.27)
where we use Lemma in conjunction with Lemma to approximate
the sum by an integral and [LL10, Proposition 2.1.2] to bound the summand
for small values of 7. We apply a change of variables t — jt to get

2
=]

J 1
jd/2/ pt(x)pl_t(x)dt:j_d/2+1/ 421 — )2 5 () de. (2.2.28)
0 0

We bound the integral (using symmetry around the midpoint)
1 ol (1, 1 1/2 P
/ 1421 — 1)~ 5 () g < 24/ / 26w A, (2.2.29)
0 0

After performing a change of variables ¢ — t~!|z|?j !, we recognise the above
as the incomplete Gamma function. Combining this with the previous esti-

mates, we get that
Bl (Ho < j) < C (72" 4 a2 (/2 - 1, 402571) ), (22:30)

from which the desired estimate follows. O

2.2.2 Hitting a sphere from inside

In this section we approximate the distribution of the time H, it takes the
random walk bridge, started at 0, to leave a ball of radius n. We use a clas-
sical result on the first hitting time of Bessel processes and the coupling from
Lemmal2.2.1] As (for certain indices) Bessel processes have the same distribu-
tion as the Euclidean norm of Brownian motions, their appearance is natural
here.

Before stating the next lemma, we recall the following fact from [LL10, Propo-
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sition 2.4.5]: there exists a C' > 0 such that for all j > 0
Po(H, < j) + Py (HP < j) < C7le Cn/i, (2.2.31)

If one applies this for j = n?/clog(n), the right-hand side of the equation

above decays at polynomial speed, depending on c.

Lemma 2.2.3. I. Forn? > j > n3? there exists C > 0,
B o(H, < j) < C~le /1. (2.2.32)
2

II. For every M >0, T >0,S5 € (0,1),n* % >35> ety and n € N large

enough, the Brownian approrimation reads as follows

B o(H, < j) = Bl o(H? < j) (1+0(n7?) + 0 (n™")
j ] :v+1 *]3 kt/(2n2)
pj_i(n) Z Jog €77

: dt(1+O niS/Q +0 nfT :
o Pi(0) = 2T+ 1) (u) ( ( ) (n™")

(2.2.33)

where J,(x) is the Bessel function (of the first kind) of v—th order with
Juk its strictly positive zeros, in increasing order (here, v = d/2 —1).
Note that summation and integration are not exchangeable here, this is

shown in the proof.

II1. Furthermore, for any € > 0 and n large enough, we have

inf B} o(H, < j)>0. (2.2.34)

j>en?

Proof of Lemma [2.2.3]
Proof of I: by [LL10, Proposition 2.4.5], we can bound

Py(H, < k) < min {ce_r(”z/k), 1} , (2.2.35)
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for some r,c > 0 and k£ € N. We expand using the local central limit theorem

j—nA/3
B o(Hy < j) ~ j** Z Po(H, = k) pj—x(nei), (2.2.36)
k=n4/3 —
=p;—k(n)
where e, is the unit vector into the first direction. We excluded k’sin {1, ... ,n*?3}
and {j —n*3 ... j}, as they contribute at most an exponential factor. We

bound the above using integration by parts from Lemma (8.2.3

4/3

ji—n
1S Bo(H, = K)py-aln)
k=n4/3
. (2.2.37)
< > Po(Hy < k) [pj—i(n) — pj—p—1(n)] + E,
k=n4/3-1

with

E = j4? [P.(H, < ni/? — D)pj_pass(n) = Po(H, < j — n4/3)pn4/3(n)] .

(2.2.38)
Note that by the mean value theorem for k € {n*/3 ..., j —n?3}, we can find
a C' > 0 such that
[pj—r(n) = pj—r-1(n)] ~ —COps(n) i (2.2.39)
For k € {n*3,...,j —n*3}, we can find a C, ¢ > 0 such that
e—cn’/(i—k)

Using Lemma [8.2.1| and [8.2.2 to bound the sum by an integral, we bound

g—nt/? q—en?/(j—k)

Bfo(Ha < j) < E + Ojd”/ R g (2.2.41)

/3 (] _ k)d/?-‘rle

We simplify this further by changing variables k — kj and altering the bound-
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aries of integration

j—nt/3  —en?/(j—k) L —en?/j(1-k)
/2 L g < / &gk, (2.2.42
! /n4/3 (4 — k)d/Q‘He ~Jo (1— k’)d/2+1e - (22.42)

Expand for € > 0

1 —en2/i(l—E 1 —cen?/j(1—k)+en?/j
e ¢ /i( ) e—T(n2/jk)dk _ e—8n2/j e ¢ /3( )+en?/j e_r(nQ/jk)dk
o (1—k)d/2+t o (1—Fk)¥2H ‘

(2.2.43)

Now observe that for € > 0 small enough

vexp (=% (5 +§ - 2))
dk < 2.2.44
p/ (1= Ry ” (2240

where the supremum is over all j,n’s with j2 > n. The boundary term E is
of exponential order and can be absorbed into the main contribution. This
concludes proof of the statement I.

Proof of II: for the second claim we use the coupling from Lemma in
conjunction with the explicit formula for the hitting time of Bessel processes.
Several approximations will be necessary: since the coupling induces an error
in space, we have to show that this error remains negligible for contributing
loop of lengths j.

Let Pé,o be a coupling between Bé,o and B&O such that

4 c
Pho( max|Si - Bl > alog’(j)) < il (2.2.45)

with ¢; > 0 increasing in ¢ > (0. We rewrite
Bg,o(Hf+ <j) < Bg,()(Hn <j)+0 (jft) < B(j)',o(Hff <Jj)- (2.2.46)

Next, we will show that in the above formula, n~ can be replaced by n at
negligible cost. For this, we need to exclude certain atypical events.

Using the Markov property and the rotational invariance of the Brownian
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motion we get that

) J
Blo(HP <j)= (27rj)d/ dPy(HE =7r)p;_.(n")dr. (2.2.47)
0
The Brownian motion needs time of order ~ n? to reach the complement of
B,, and thus, for some d; > 0 large enough, the integral over atypical times is

of order
(27Tj)d/ dPRy(HE = 1)pj—r(n )dr =0 (57') , (2.2.48)
[0,n1]N[j—n1,n1]

where n; = n?/(d; log(n)).
By [HM13| we have that for z,r > 0 and v = d/2 — 1

o] 41

jl/k —j2 2
APy(HE = 1) = IS 2.2.49
o ) ; 222°T(v + 1) Jys1 (Juk) ( )

Note that we have that by [Zwil8| 6.15.12.1]

o = 7+ (/2= 147 = ‘_‘: 4;_1 5=+ O2). (2.2.50)
and for z > 0
Jo(x) ~\/2/(7z) [cos (x — mv/2 — 7/4) + O(z71)] . (2.2.51)

This implies that

Jo1(jui) = <—1)’€“\/% (1+0(™) . (2.2.52)

For » > ny, we can bound

cp+1

’ Z ]u,k : e—jzykr/(Qn_%
P n22'T (v 4+ 1) Ju1(Ju )

< C(TL) Z k3/2+ue—k2/(d1 log(n)) ’
k>1

(2.2.53)

where C'(n) depends on n but not r. Thus, by dominated convergence, we can
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rewrite

j—n1 e8] .]V-]tl
ARy (Hy- = 1)pj—( : :
/n1 " Zl nZQVF V + 1)‘]V+1(]V,k) (2.2.54>

j—m _
y / e Iokr/(2n )pj_r(n)dr (1+ O (log(n)/n)) ,

1

since r € [ny,j — ni1]. We used that, by the definition of the heat kernel,

i (1) = by (n)(1 + O (log(n)/n) for 7 € [y, j — ).
Using the asymptotics for j,; from Equation (2.2.50]), we get that

9 4
e d2ar/(@n7%) _ (=i2 it/ (2n?) (1 + 0 (M)) _ (2.2.55)
n

We now show that large k’s are negligible and thus the above O-term is suffi-
ciently small for contributing k’s. First note that for k& < n%/4/log'/?(n) = k,

and r € [ny,j — ny], we have that

k*rlog*(n) _
@) (T) =0 (n"?), (2.2.56)
and thus
e diar/Cn ) _ /) (14 0 (n577)) (2.2.57)

Recall that I'(a, z) is the upper incomplete Gamma function (with index a and

argument ) and that v = d/2 — 1. We can estimate the error term

v+l v+1/2
‘ Z jyk‘ : e—jikr/(Q ‘ C Z k / _kr/n
= n?2vT 1) Jys1 (k) el n?
V+1/2 —kr/n? d+5 S/2 —CnS/4
gc/ dkk IS OR i (L e AN
. n rd/2+3/2 2 log(n) rd/2+3/2
(2.2.58)

Integrating the above from n; to j — ny is of order O <e_0”5/8 , which is
negligible. This implies that we can neglect k’s in Equation ([2.2.54]) with
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k > k, and thus

j—n1 kn 41
— Juk
/ APy (H,- = r)pjp(n”)dr = — : .
vl 1)J, v
ni k=1 n (V + ) +1(.] Ji?) (2259)

Jj—n1
[ e e (14 0o £ 0 (7).

1

since for k < k,, we have e Iour/ (7Y =it/ (2n?) up to a multiplicative
(1 +0 (n*S/Z)) term.

By arguments similar to the ones above, we can reintroduce terms with £ > k,
(this time with the correct n instead of n~ in the exponent) and adjust the

areas of integration. This gives us

j—n1 kn j—ny1 X J >
[ Saouns [T Sacous [T e
=1 Mo k=1 0 k=1
with
gutt S 2
Q= vk e Ina /B (n)dr (14 O(n™52)) . (2.2.61)

n22'T(v + 1) Jys1(Juk)

To summarise (as we could have carried out the above computations using n*

instead of n~ with no changes), we have shown that
Bfo(Ha < 5) = Bjo(HY < j) (1+0(n™5?) + 0 (57') . (2.2.62)

This, together with the expansion in Equation (2.2.49)), implies the second
claim.

Proof of III: we expand for some o > 0 by the previous coupling argument
Blo(Hn < ) > Pho (HE,, ey <3) + O (57°) (2.2.63)

We furthermore bound
Bl (Hi% o) < j) > Bl (HE < en?) > Bl (HE | < en?) | (2.2.64)

where HJ) | is the hitting time of points {—2n,+2n} for the first coordinate
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of a multidimensional Brownian bridge. From there on it is straightforward to
see that above remains positive uniformly in j,n. Indeed, this is due to the
scale invariance (map j — j/n?) and the distribution of the maximum of the

Brownian motion/bridge, see [MP10|. This concludes the proof. O]

2.2.3 Hitting a sphere from outside

In this section we prove random walk analogues of known hitting time esti-
mates for the Brownian motion. We begin by introducing the results for the

continuum case. Let for |z| > n

the "density” (in d > 3 it does not integrate to 1) of the first hitting time
of the centred ball with radius n. The main references are [Uchl5|, [Uchl6]
and [BMR13]. Firstly, note that by Brownian scaling we have that

1
q(z,t,n) = —Qq(x/n,t/n2, 1). (2.2.66)
n
It is obvious that ¢ is constant with respect to rotating its first argument and

so we write g(z,t,n) with z € [n, c0).
In [BMR13] it is shown that for d > 3

xr — 1 e(x_1)2/(2t) 1
q(z,t,1) ~ " B @B @B (2.2.67)
and for d = 2
_ 1 ele-12/2) HY2(1 41
g(z,8,1) ~ Z—=C (x+ ) (1 + log @) (2.2.68)

T 32 (1+41log(1+t/z))(1+log(t+x))
The following observation is useful.

Lemma 2.2.4. Suppose n,n" with n = n'(1+4o0(1)). Suppose furthermore that
(x —n)? — (z —n')? = o(t). We then have that

q(z,t,n) ~q(z,t,n'). (2.2.69)
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Proof of Lemma|2.2.4] The lemma follows immediately after noticing that
by the scaling relation and Equation ([2.2.67)

rT—n 2 1
~ L D @en)?/(2)
q(z,t,n) YT (L2 72 1 ()2 (2.2.70)
This concludes the proof. O

The above lemma is useful for the following reason: when we apply the
coupling from Lemma we have to shrink/enlarge a ball of radius n by a
logarithmic factor in n. Lemma shows that if x is sufficiently far away
from the boundary of B,, and t large enough, this error is negligible.
However, it is not possible to infer the analogue of the density ¢(x,¢,n) for the
random walk directly from the above and a coupling argument. Indeed, similar
to [DW15], it is only possible to get bounds on the cumulative distribution
function. This is the content of the next proposition. Note that we often write
P, and similar expressions for € [0, 00). This is shorthand for taking y € R?
(or Z%) with |y| = z(1 + O(1)).

Proposition 2.2.5. Let d > 2. Toke x,n,k > 0. Suppose there exists an
M > 0 such that Mn > x and there exists 6 > 0 such that k > log5+6(n).
Furthermore, suppose that k < n* for some L > 0 and (x —n)log(n) = O(k).
Then -
P, (co> H, > k) ~ / q(z,t,n)dt. (2.2.71)
k

Proof of Proposition [2.2.5l  We only prove the d > 3 case, the case d = 2
follows analogously.

The idea of the proof is as follows: first restrict the k’s, as P, (co > H,, > k)
converges to a constant as k | 0. Given z very close to 0;B,,, we first use
standard estimates to let the random walk escape ”a bit further” from 0B,
and then use the coupling. We use that g(x,n,t) has bounds which are slowly
varying and then show that the errors from the coupling are negligible.

We begin by restricting the k’s we need to consider. By [LL10, Proposition
6.4.2] we know that

P, (H, < 00) = c(x) = (n/z)"? (1+O(n) . (2.2.72)

Denote m = n — z. Choose €; > 0 (depending increasingly on M) such that
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for t € N we have that

]P’0< max |S;| > t) < c(x)/2. (2.2.73)

1<i<et2

For k < e;m?, we bound
P,(co> H, > k)=c(z) =P, (H, < k) >c(x)/2. (2.2.74)

Henceforth we assume k > e;m?. From now on, for [ > 0, shorten H; =
H,1{H, < oo}, to simplify notation. We use the same shorthand notation for
HP. Let n* = n =4 ¢, log?(n).

By [BMR13, Theorem 3] and the rescaling relation (2.2.66|) we have that

00 ni(x _ n:t) ef(xfni)2/(2t)

Pz~ [T

(t/(n*)2)d=3)/2 4 (x/ni)(d,g)/2 dt.

(2.2.75)

We now assume that  —n = m > log(n)>**4. Note that we have n* =

n(l+o0(1)), z —n* =m(1+o(1)) and mlog(n)/t = O(1) for t > k. We thus
get that

nm ef(m)Q/(2t)

dt
1t3/2 (%)(d—3)/2 + (x/n>(d—3)/2

n

n (M et/ dt
~ ;/0 t1/2 (m_z)(d—S)/2 N (z)(d—3)/2 '

n2t n

P$(Hfi2k)~P$(Hka)~/
k

(2.2.76)

By [LL10, Theorem 7.1.1], for every a > 0 we can choose ¢, > 0, such that
there exists a coupling P, between the random walk and the Brownian motion
with
;i — 9| = < i 2.
P, <1H§12a§>§€|3Z Si| > log(k)) < cuk (2.2.77)

Note that by the coupling from above equation

P, (H > k)40 (k™) <P, (H, > k) <P, (HY > k)+0O (k™) . (2.2.78)
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Making o > 0 sufficiently large finishes the proof for the case m > log(n)?+%/4,
We now treat the case m = z — n = O (log(n)**%/*). Here we cannot employ
the coupling directly, as we only know |B; — S;| = O (logQ(n)) under the
coupling and thus the error in Equation may no longer be negligible.
Therefore we let the random walk first ”escape” a bit further from the sphere

and then use the coupling: abbreviate n(8) = n + log*™*/3(n) and decompose

P, (H, > k) =P, (H, >k, H, > H,s)
+> > Po(Hy < Huysy =1, X;=2)P.(H, > k—1).
>1 ZG@Z‘BH((;)

(2.2.79)

We begin by bounding the first term. We claim that

Py (Ho A Hy) > k/2) = O <ck/1°g4+(25)/3(”)> for some ¢ € (0,1). (2.2.80)
As k <n' and k > log®*(n)

k/log*t @28 (n) > 10g'*/3(n) > ¢(L) log'™/3(k) > C'log™4(n). (2.2.81)

This implies that the above term decays faster than any polynomial and is of
order
P, (Hy A Hy > k/2) = O (g™ ®)) 2.2.82
Q)

We now prove the claim, i.e. Equation . Let for x € Bys) \ B, the
box C,(z) C R? be defined as the smallest rotated |-, boxf| centred at z
such that two faces of the box lie in (B \ Bn)®. To be more precise, Cy, ()
is OB®(z) where O € R4 with OT = O and |det(O)| = 1, for I > 0 the
smallest side length such that two faces of C,(z) have zero intersection with
the interior of B, \ B.. See Figure for an illustration.

Let M (z);! be the event that the random walk in the time interval [t1, ¢3) first
exits Cy(x) on any but those two faces which lie outside B,,;). One has that
the length of the faces of Cy,(z) ~ log**%/3(n). Using the Markov property on

*Bi*(z) ={y e R |z —ylo < 1}
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Figure 2.4: An illustration of C),(x)

+(2/3)5<

time scales of length log* n)

P, (Hn A Hys) > k/2)

< ( max max P, (M(y)[ilog4+(2/3)a(n”>

.Z‘EBn<5)\Bn yEC’n(x)

Lk/ log4+(2/3)6(n)J
> (2.2.83)

=0 () = 0 (exp{=Clog Vi (k)})

by the Donsker’s invariance principle, see e.g. [MP10]. This proves the claim
from Equation ([2.2.80)).
Set m(8) = log?™*/3(n). By the results in [BMR13], we have

o 5) o~ (m(8))?/(2t)
Posy (HE > ) ~ [ dt,  (2.2.84
(6) ( n = ) /k n(0)t3/2 <%)(d—3)/2 i (m(é)/n)(d_?’)/Q ’ ( )

where we recall that n(8) = n+log®**/3(n) . Note that m?/k remains bounded
(see beginning of this proof). Thus, the above function satisfies that for any

le{l,...,k/2} we have that
Py (HZ > k) ~ Poey (HZ > k—1) . (2.2.85)

Note that by a martingale (or harmonic function) argument (see |LL10|, Propo-

39



sition 6.3.5]), we have that

n(§)2~4 — g-d m
P, (H, < Hys)) ~ (6T — 2 ~ (@)’ (2.2.86)

due to the restrictions placed on z, i.e. z —n =0 <10g2+5/4(n)>. We use this

to expand

Py (H, > k) = O (')

k/2
+3 Y P (Hy< Hysy=1.X=2)P. (H, > k—1)
=1 2€0;B,s)

~O <010g2+s/4(k>) + Py (Ho < Hug)) ey (Hy > k)

~ O (Clog2+5/4(k)> + Px (Hf > k‘) .
(2.2.87)

Note that we used that Equation ([2.2.86]) cancels the factor of m(d) in Equation
(2.2.84]). This concludes the proof. O
In the case d = 1 and the simple symmetric random walk, we can employ

a different proof and get stronger results. The proof itself is a generalisation
of |LL10, Proposition 5.1.2].

Lemma 2.2.6. Let d = 1 with the random walk with P,(S; = z+1) = P,(S; =
r—1)=pandl—-2p=P,(S1 =x), v € Z and p € (0,1/2]. We then have
that for x > n

P.(Hy = k) ~ QZpkfz(l) —pi(l) - (2.2.88)

=0

Proof of Lemma [2.2.6 Note that we can assume that & > z and let us
assume without loss of generality that z is even (the odd case follows analo-
gously). Note that we have for [ > k that

P.(Hy=Fk, S =y)=P,(Hy =k, S = —y). (2.2.89)

From this we can infer that P,(Hy < k,S, = y) = P.(Hy < k,5, = —y) and
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therefore

]P)x(Hn > k) = Z]Px<Hn > k,Sk = y) - ]P)x(Hn > k’,Sk = _y)

y>0
z—1
= e, y) — pilw, —y) = pi(0) + pr(x) +2> pi(l).
y>0 =1
(2.2.90)
This concludes the proof. O
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Chapter 3

Loop measures, soups and first

properties

In this chapter we define different loop measures, the associated loop soups,
and occupation fields. An important part of this chapter is the derivation of
the Bosonic loop measure as a space-time limit. This part is based on and
generalises the work from |[AV20]. The last part of the chapter is devoted to
isomorphism theorems: we show how one can compute the distribution of the

accrued local time of all the loops by solving a measure-valued equation.

3.1 Loop measures

We begin by introducing the Markovian loop measure, following |[LJ10, Section
3] and [AV20, Definition 1.1].

Definition 3.1.1. For G € (D) and i < 0 (also called chemical potential)

M,[G) = M[G] = 3 /OO %’n@;x(a)dt. (3.1.1)

z€Z4

Remark 3.1.2. The factor p is non-standard and appears in [AV20]. An
exponential decay in the above integral is usually achieved by introducing an
exponential killing uniform on the vertices, see [Szn12]. The two approaches

are equivalent.
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Another important measure on loops is the Bosonic loop measure. Fol-

lowing [AV20], we define.

Definition 3.1.3. For p < 0 (chemical potential), 5 € (0,00) (also referred

to as inverse temperature), we define the Bosonic loop measure

MGl = MP[Gl =) )

z€Z* j>1

eBri —8;

—FL(G), (3.1.2)

where G € o(D).

Remark 3.1.4. The Bosonic loop measure has its origin in the physics com-
munity in the context of functional integration, where mainly its continuum
analogue (replacing the random walk by a Brownian motion) is considered
(see e.g. [BROS]). For random walks on graphs, first computations for Mfﬁ
are carried out in [Oweld]. These are restricted to finite graphs and follow
from different methods compared to what we employ. In [AV20], various prop-

erties for Mfﬁ are proven in the finite setting.

We can unify the above definitions into a single framework. This will
only be needed when talking about isomorphism theorems, as done in Section
0.0l

Definition 3.1.5. Given a positive measure m on [0,00) we define the loop

measure with weight m as

(/

M™[G] = /O m@;x(c:)dm(t) —m [@I,x(a)} , (3.1.3)

where G € o(D). We assume that for all e > 0

< dm(t)
/5 W < 00. (3.1.4)

For the discrete-time random walk, we define the discrete time loop

measure.

Definition 3.1.6. Given a positive sequence a = (a;)jen and G € o(D), we
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define the loop measure in discrete-time with weights (a;);

MG =Y 0P (G). (3.1.5)

x€Z4 j>0
Note that the underlying random walk for M® is a discrete-time random walk.
We begin with a proposition relating the above defined measures.

Proposition 3.1.7. For ease of notation we assume that q(x,T) = 0 for all
L RAWAS

L [AV20, Remark 2.2] Suppose thatt — 1P (G) is Riemann-integrable
/ T,x

and x = Y iy eﬁ]iﬁfjx(G) can be dominated by an integrable (with re-
spect to the counting measure on Z2) positive function g(x) > 0 for all

B > 0 small enough. We then have that

151%1 MP[G] = M,[G]. (3.1.6)

a; = % (ﬁ)ﬂ . (3.1.7)

For every G that is in the sigma-algebra generated by the discrete jump

II. Given p <0 and

chain (Sy)nen, we have that
M®[G] = M,[G]. (3.1.8)

1. Given n <0 '
5 -
o= 2 potytog, ; () (3.9

we have for every G that is in the sigma-algebra generated by the discrete

gump chain (S, )nen that

M°[G) = M2,4[G]. (3.1.10)
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Here, the function PolyLog,(z) is defined as

PolyLog,(z) = Zz— (3.1.11)

IV. We have for every G that is in the sigma-algebra generated by the discrete

jump chain (Sy)nen that for a; = (j1)~" [ e "t/ dm(t) that

M°[G] = M™[G] . (3.1.12)

Remark 3.1.8. This proposition allows us to interpret the Markovian loop

measure as an infinite-temperature limit (i.e. the inverse temperature 3 ] 0)

of the Bosonic loop measure. In Section we show how one can construct

the Bosonic loop measure from the Markovian one.

It furthermore shows that for events depending on the jump chain alone, the

Bosonic and the Markovian loop measure can be represented by M®. Thus,

when analysing connectivity properties of the loop measure in Chapter [ and
Chapter[6, we only use M®.

Proof of Proposition [3.1.7|

L.

II.

As this was a remark in [AV20], we give a proof here. Fix K large enough
such that M,|G,l(w) < K] > M,[G] —e. We then choose a sequence
Bn 4 0 and write the Riemann integral representation of M, [G, l(w) < K]

in the following way

LB Buin_y
M,[G,1(w) < K] = lim >~ 3" @neﬁ ; P(G). (3.1.13)
zezd  j=1 "

We use the dominated convergence theorem to switch limit and summa-

tion. This concludes the proof. O

By the definition of d.., we can write
G = {S(] = X, Sl =Ty, Sk = Ty, Sk-Jrj = T, VJ c N} . (3114)

without loss of generality. The construction of (X;);>¢ as done in [Klel13|
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Chapter 17] shows that we can rewrite X; = Sy,, where (N;),5, is a

Poisson process on the real line with intensity 1. Note that

tk
P(N, =k) = e_tg . (3.1.15)
Thus,
o] e,ut_t 00 e,ut B tk k-1
/0 . RETEDS /0 ettt [[prrin).  (3.116)
k>0 ’ i=0

where we identify z; = xy. The claim follows after a change of vari-
ables t — t(u — 1)7! and using the integral representation of the facto-

rial/Gamma function.

ITI. This follows analogously to the previous proof. Indeed, write @fjm =
e Py s0(B)F (K1) ~'PE . Exchanging the sum over the lengths j with

the sum over the k’s gives the result.
IV. This is similar to the above.

O
The Bosonic and the Markovian loop measure assign comparable weight

to loops of the same length, this is shown in the next lemma.

Lemma 3.1.9. For >0 and u <0

5—jPolyLogl (V) = L j (14 0(1)) . (3.1.17)
J! - J\1—pn

As a consequence, for every 5 > 0 and for every u < 0 there exist constants

Cy, Cy > 0 such that for every event G € o(T') that is generated by the jump

chain we have

C1M,[G] < M75[G) < CoM,[G]. (3.1.18)

Proof of Lemma [3.1.9| This is a consequence of the limiting behaviour of
the polylogarithm. By [Wo092|, we have that

PolyLog, (¢") =T (1 —s) [=r]* ' (1 + o(1)) , (3.1.19)
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as s — —oo. Pluggingin s =1 —j and r = B(u — 1) gives us

PolyLog, ; (e’ ™) = (j — )![B— Bu] ™ (1 +0(1)) , (3.1.20)

and thus the claim follows. O

3.1.1 Random walk soups and their occupation fields

In this section we introduce various loop soups, the notion of local times and

occupations fields.

Definition 3.1.10. For A > 0 we introduce four different classes of Poisson
point processes. For a general definition of Poisson point processes (PPP) on

measurable spaces, see [Kal01|, Chapter 12].
I. We define P{! as the PPP with intensity measure AM,,.

II. We define P® as the PPP with intensity measure )\Mfﬁ.

III. We define P§ as the PPP with intensity measure AM®.
IV. We define P} as the PPP with intensity measure AM™.

If we omat the superscript, it is either to be understood that we refer to all four
types of PPPs simultaneously or that the superscript is clear from the context.
A random measure sampled from Py is denoted by U. We write U* when we
want to emphasise the dependence on A. Since ||q||oo < 00, we have that loops
with infinitely many jumps on finite intervals have zero mass, thus our loop

measures live on a Borel space and by [Kal01, Chapter 12] we can write

U= 6., (3.1.21)

k<k

with k € NU{oo} and wy € I'. The collection of (wg)f_, is often referred to
as the loop soup. We use the (non-standard) notation © € U if there exists w
in the support of U with {x} Nw[0,l(w)] # @.

Remark 3.1.11. Note that M,,, M? and M™ are non-atomic and thus, almost

surely, all wy’s from the above representation are distinct. This means that the
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Figure 3.1: A sample from a simulation of the loop soup and its occupation
field £, by the author. Bright colours correspond to large values of the local
time. Simulation obtained using Dirichlet boundary conditions on a larger
square and unit intensity.

assoctated PPPs are simple. For P this is not the case, as M is a purely

atomic measure.

Another important concept is that of the local time and the occupation
field.

Definition 3.1.12. For w € I' and = € Z¢ we define the local time as
l(w)
L,=L,(w)= / H{w(t) = z}dt, (3.1.22)
0

where we recall that l(w) is the length of the loop.
ForU = stn dw, @ sample from Py, define the occupation field L as

L,=L,(U)=U[L,] = /ml{wk(t) =z, 1 <k <k}dt, (3.1.23)

where in the last equality monotone convergence is applicable. We occasionally
write L and L instead of (Ly)zeza or (Ly)peza-

In Figure [3.1| we show a realisation of the loop soup together with a

heat map of its occupation field.
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3.2 The derivation of the Bosonic loop mea-

sure as a space-time limit

The goal of this section is to prove the converse of Proposition this time
constructing the Bosonic loop measure from the Markovian one. Partial suc-
cess of that task was achieved in [Owelb, Theorem 3.12] and [Vogl6, Theorem
3.3]. Our result is more general and shows a full convergence of the finite-

dimensional distributions. This section is based on and generalises [AV20].

3.2.1 Space-time random walks

We begin with enlarging Z¢ by taking the Cartesian product with a discrete
torus: define for N € N

7% =7%x{0,...,N =1} =Z% x Ty, (3.2.1)
the space-time torus. Define ¥ € RT™ T~ by setting

In this definition, as well as throughout the whole section, we understand
arithmetics on Ty always modulo N. For 5 > 0 and (z1,b1) # (22, b2) let

BilNE(bl, bg) if x4y = Xa, by 7£ ba ,

qn ((21,01), (22, 02)) = ¢ q(x1, 22) if 1 # x9, by = by, (3.2.3)
0 otherwise.
Furthermore, set gy ((z1,b1), (21,01)) = = > 5060 W (21, 01), (2, 0)).

For an illustration of the space-time random walk see Figure [3.2]

Let m: ['(Z%) — I'(Z%) be the projection onto the coordinate in Z¢, i.e.
T ((w(l),w@))) (t) = w(t). (3.2.4)

Here we identify for z € Z$ the coordinates z = (211, 2) with (1) € Z¢ and
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N-1

0 Z

Figure 3.2: The space-time random walk can move freely on Z¢, but on Ty it
has to move upwards. Figure from [AV20].

22 ec{0,...,N —1}.

Definition 3.2.1. Define the space-time loop measure My in the following
way

ekt _y

My[G] =) / —P..(G)dt, (3.2.5)
2€Z4, 0

for G € o(D(Z%)) and the random walk induced by the generator qy. It thus
is the standard Markovian loop measure on the (enlarged) graph 7<;.
For G € o(D(Z%)), we define the projected loop measure

ety

MG =ty or )6 = X [T (X, (X0 € G}

d
2€L%;

(3.2.6)
The associated local times and occupation fields are denoted by L™, L¥, LN, L
and the PPPs by PY and Pf\, respectively.

We begin by analysing the distribution of (w™,w®) under P, for z €
VA

Lemma 3.2.2. Under P, and ﬁi we have that w® and w® are two inde-

pendent stochastic processes with weight matrices q and .

7Z’

Proof of Lemma [3.2.2 As the process is uniquely characterised by its

transition kernel, it suffices to show that

By (1, b1), (w2, b)) = B2 (21, 22)P (b, ba) (3.2.7)
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where the kernels ]‘)Zd and p~ are those generated by the respective projections.
The superscripts will be omitted from now, as the kernel’s arguments serve as

an indicator for the underlying process. Recall 1 = ||¢||~ and expand

o = [t(1+B7'N
e BT NG (21, by), (22, b)) Z 6 L (@1, b0), (2, B2))

i 1+B N

n=0
1 k -1\ n—k
x Z ( )pk me) () pesttot) (7o)

(3.2.8)

In the last line we count how many times the space-time random walk will
choose the torus coordinate.

Exchanging the two sums and expanding the binomial coefficient gives us

S 1 < N tpIN
Zpk(xl,:r;g)g an(bl,bQ) (67'N) —=e By(21, 22)e VB, (b, by) .
= " n=0 :

(3.2.9)

This concludes the proof. O]

3.2.2 Convergence of the finite-dimensional distributions

We begin by stating a set of necessary assumptions for this section.

Assumption 3.2.3. Assume that d > 3 and

p— inf p(z, 1) < (3.2.10)

z€Z4

Let A C (0,00) be Lebesque-measurable and assume
BNNOA=0. (3.2.11)

The main result of this section is the following theorem.
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Theorem 3.2.4. Let Assumption [3.2.5 hold. For k € N and 0 <t; < ... <
tr < 00, with A C (tg,00), it holds that

lim My[Xy, =21,.... X, =2, € A
Nooo * (3.2.12)
= M;fﬁ[th ::Ela"thk :.Tk,l € A] .

Remark 3.2.5. This theorem is an extension of [AV20, Theorem 2.5]. Whilst
the proof is similar, we remove the condition of confinement to a finite box.
Before embarking on the proof, we briefly explain the necessity of Assumptions
3.2.5. The loop length | has the discrete support BN under MP. By [Bil68,
Theorem 13.1], in order to get a consistent notion of convergence on cadlag
spaces, one needs to exclude those times on which the path is discontinuous
(except on a set of measure zero). If BNNOA = &, we can ensure that all the
coordinate projections are continuous almost surely. The conditions on pu and

on q ensure that both sides have finite mass.

Proof of Theorem (3.2.4. We begin with the case £ = 1. Expanding the
left-hand side of Equation (3.2.12)), we get

MY[X,, = a1, 1 € A

- Z Z /A#ﬁtl ((2,0), (21,01)) Dyy, ((x1,01), (z,0)) dt

zeZd bb1€TN

= 3 [ A, b

b1€TN
etk etk
= > [ S na)p bt dt =N [ p nm) p b de,
bieTy ¥4 A

(3.2.13)

where in the last line, b; can be any element of Tx. To go from the second to
the third line, we first used monotone convergence (to exchange integration and
summation) and then the Chapman-Kolmogorov equations. We used Lemma
to factorise the kernel p, ((z1,b1), (x1,b1)). In the last step we used that

the process on Ty is translation invariant.
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pi(b,0) \

28 38 t

Figure 3.3: The graph of the transition kernel p, (by,b1). As N grows large
the peaks converge to a sum of (weighted) delta-measures

We expand the kernel on the torus

By (b by) =™ ”VZ e N) P

t 1NJN
by by) = oo 3 T 5 ,
n=0 7=0

(3.2.14)
as the jump chain of the torus coordinate is deterministic. Thus, p,(b1,b1) # 0

for n € NN only. Recall that the density of a Gamma distributed variable X
with parameters (z,y) € (0,00)? is given by

yx rz—1 _—yt
—t vide 3.2.15

where I'(x) denotes the Gamma function. Expectation with respect to X is

denoted by E, ,[X]. Using monotone convergence and Equation ([3.2.14]),
can rewrite

' S _ et
MN[th =T, l e A] = 5ZEjN+1’fB_1N |:]1A(X)pX(£L'1,£C1) (3216)

Indeed, note that the density NB~'p, (by,b;) is an infinite sum of Gamma
densities with parameters (N +1, 37! N). For a sketch of p, (b1, b;), see Figure
3.3

We can bound for any ¢ > 0 and z € Z¢
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Pz, x) < exp (—t ingdp(x’ﬂ) : (3.2.17)

By |[LL10, Theorem 2.5.6] we have that for any £ > 0 there exists C' > 0 such
that for all ¢t > ¢
Pz, z) < Ot~ 42, (3.2.18)

Since Assumption holds true, at least one of the two above bounds con-
verges to zero at speed O (t_d/Q). Thus
erX
Ejnt15-1N ILA(X)]_)X(xlaxl)T < CEjn1,6-18 [Leoo) (X)X 271
(3.2.19)
for some € > 0 (as inf A > 0). Using Lemma to compute the moments

the Gamma distribution, we can bound this by

241 TGN —d)2)

]EjN-l—l,B’lN []]-[E,oo)(X)X_d/2_1] = (B_lN) F(jN"— 1)

(3.2.20)

For 7 > 1 and N sufficiently large, we can expand the fraction of Gamma

functions using Stirling’s formula (see [LL10, Lemma A.1.4]) and bound

(N —d/2) C
< ) 3.2.21
LC(JN +1) — (jN +1)d4/2+1 ( )
We have shown that
— et X —d/2—1 _3/2
EjN-i—l,ﬁ*lN HA(X)pX(xhxl)Y S Cj S C] s (3222)

and thus can exchange the limit as N — oo with the sum over j € N.

Recall two basic properties of the Gamma function, which can be easily verified
by hand: if X; are i.i.d. Gamma distributed with parameters (z,y), then the
sum » . X; is Gamma distributed with parameters (nz,y). Furthermore, if
X is Gamma distributed with parameters (z,y), then, for any ¢ > 0, ¢X is
Gamma distributed with parameters (z,y/c). This implies that if X is Gamma
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distributed with parameters (jN + 1, 371 N)

:NE:&, (3.2.23)

where each X; is Gamma distributed with parameters (1, 37!). Using that if
X is Gamma distributed with parameters (z,y), its mean is given by z/y and
the strong law of large numbers, we get that for j > 0

ehX ] e

. _ N\ — €
Nh_f)nooEjNH,ﬁ—lN [ﬂA(X)PX(%,iUl)T = 1A(ﬁ]>pﬂj(x17x1)6_j' (3.2.24)

If X is Gamma distributed with parameters (1, 371 N), it converges to 0 almost
surely and in L? and thus (since inf(A) > 0) we have that for j =0

: _ et
]\}liﬂooELﬁle |:1A(X)px($1,$1)7:| =0. (3225)

We can thus conclude that

. > . _ euX
]}E&)M}V[th =11, 1 € A] = /Bz;]\}l_fgo Ejni1,5-1n |:]1A(X)px(931>$1)7
]:
. eHJ 5
=8 Y Pglara)— = MPIX,, =2, L€ Al.
jE,B_lA j
(3.2.26)

This finishes the proof for the case k = 1.

Let us now assume that k£ > 2. Rewrite

My[X,, =a1,..., X, =z, 1 € A

k—1 ot (3.2.27)
= Hﬁtiﬂ_ti(l’zﬁle) /Aﬁt_tk-i-tl(xkaml)Nﬁt(bl;bl)Tdt;
i=1

by the Chapman-Kolmogorov equations. One can use the same approximation

procedure as employed in the case k = 1 to conclude the theorem. O
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3.2.3 Convergence of local times and occupation fields

In this section we examine the convergence of the local time under MY and
the occupation field under Pf\. We want to show that (under M},) the local

time converges to the local time distributed with respect to M?Z.
Assumption 3.2.6. Assume that either

L. The transition matrix satisfies

pu— inf g(x, 1) <O0. (3.2.28)

x€Z4

II. Orthatd > 3 and p= 0.
The main result of this subsection is the following theorem.
Theorem 3.2.7. Let F: [0,00)%" = R be such that

I. There exists Ap C Z% bounded such that F is measurable with respect to

the sigma algebra generated by the coordinates in Ap.

II. F(0) =0 and that the right derivative at zero OF.(0) exists for all coor-
dinates in Ap. This means that for v € Z,t > 0, we abbreviate RZ 5 ¢,
for t.(y) = to,(y) and define OF,(0) by

F(t,) =toF.(0) +o(t) ast 0. (3.2.29)
III. It holds that
sup |F ((Sz)zezd)| < 00. (3.2.30)
(Sw)wezd

Given the above as well as Assumption[3.2.6, we have that

lim MY[F =B 0.F(0)+ MP[F(L)]. (3.2.31)

N—oo
z€Z4

Remark 3.2.8. This theorem is an extension of [AV20, Theorem 2.7], where
the case of random walks confined to a bounded set is considered. As we allow
for the loop measure to be fully supported on 72, more care needs to be taken.

In fact, the largest part of the proof is to make sure that it takes the random

56



L ] L] L] [ L] L]
. ] (d L] ] [ ]
[ ] [ ) L]
L] L] L]
[ ] [ ] [ ]
L ] L] L ] L] L ] (] L] L ] L] L]
[ ] [ ] L] [ ] L ] [ ]
L] [ ) L] L] [ ] L] L] L] L] L] [ L] L] [ ]

Figure 3.4: A loop (in black, on the right) started far away from the support
of F' (in red) are unlikely to reach B,,.

walks sufficiently long to reach the support of F' and we can thus interchange
the limit as N — oo together with the sum of v € Z%.

Proof of Theorem [3.2.7.  Without loss of generality, we may assume that
Ar C B,, for some m > 0. Recall that B,, is the ball of radius m centred at

zero. Abbreviate

= Lw - (3.2.32)

b1€TN

The idea of the proof is as follows: loops (of typical length) started far away
from B, are unlikely to reach the support of F. For an illustration see Figure
3.4L This will allow us to work with loops started in a finite neighbourhood
around B,,. We then use the convergence of the waiting times, similar to the
proof of Theorem [3.2.4]

We begin by showing that loops started far away from B,, are negligible:
expand, using the independence of the process on Z¢ and on Ty and the

translation invariance on Ty,

oo} ty

My F(LY)]] NZ/ _Ezbl)(zbl [ F(LY)]dt . (3.2.33)

reZd

From now on we work with the assumption that d > 3 and p = 0. The
alternative assumption (i.e. that pu — inf, ¢(x, 1) < 0) induces an exponential

decay (see Equation ([3.2.17))) which is faster than the polynomial decay implied
by pu=0.
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We now estimate the integrand in the above equation: for ¢ € [0, ], we bound
py(z,2) < 1. For t > ¢, estimate p,(z,7) < Ct~%2. Notice that F ((s;);) is
bounded uniformly and F(0) = 0 with F differentiable at zero. We can thus
bound

o 1 _ © o _,
/0 E(ﬂ: b1),(z,b1) HF( )Hdt S sup |6$F(0)|/ mp(x,bﬂ’(z,bl)(Hm < t)dt

t T€EB )

*° 1

(3.2.34)

where the constant C' > 0 depends on F.
Take z € Z*\ B,, and define x,, = |x| — dist(z, B,,). Using the union bound
and Lemma 2.2.2]

B,, (Ho<t)< Y B, (H, <t) < Cmlz,[>* o (3.2.35)

yEBm

Use the expansion in terms of Gamma functions from Theorem [3.2.4] and the

above bound to write

= |xm|2*de‘|131‘2

) 1t . B
N/O TE b @an (L )|]dt§CN/O Wpt(blabl)dt

0 [Zm |
|xm|2*de_ 4t
S CZEJ'NJrLB—lN [ (td/2+1 vV 5) ’

J=0

(3.2.36)

where the Gamma distributed random variable is denoted by ¢ and the con-
stant C' depends on m.

The strategy for the next part of the proof is the following: we want to show
that as we move the base point x of the loop further away from B,, (i.e.
|zm| — o0), the sum above becomes a negligible contribution to Equation
(13.2.33)).

For this purpose fix K > 2m > 0 and use the Lemmas to bound a
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sum by an integral:

R 2o 5

z€Z%: |z|>K j=0

1

1 2—d 7\1m‘
Bivnson | apry 5 D lomf e
2€Z% |z|>K (3237)

1 > d d
ZEJN—l-l,B IN lm/ 17‘2 e 4tdr}

7=0

<
Il
o

K _K2
< C'ZE]-NH,,E;AN {me at ] .

J=0

We begin with treating the case ;7 = 0 in the above sum. By comparing
densities, we note that a Gamma distributed random variable with parameters
(1, 37'N) has the same distribution as an exponentially distributed random
variable with parameter 3~'N. Thus

K2
e 4t

By -1 [m

oo

<ce ™" 1 c [ (7'N)

K2/3

e tNBT gt < e KT

(3.2.38)
Therefore, we can choose K; € N such that the K-times the above is smaller
than 0/2 > 0 for all N € N, K > K, and § > 0 arbitrary but fixed.
For a fixed K > 0, split the remaining sum from Equation (|3.2.37)

K2/3

ZEJNJrlﬁ i | ZE3N+15 iv [+ Z Ejntip-in (-] - (3.2.39)

—=K2/3

Begin with j < K?/3 and split the expectation into the regime where t < K3/4

and its complement:

1 K2 1/4
Ejn+1,8-18 {m ] Ce™ 7 4 Pinyi gy (8> K¥Y) 0 (3.2.40)

Recall the fact that the mean of a Gamma (jN +1, 37! N) distributed random
variable is given by 5(j + 1/N).
Recall the large deviation inequality P(Y > y) < exp (—A(y)), for Y a real-
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valued random variable, y > E[Y] and A the associated large deviation rate
function. In Lemma [8.3.2] we show that for a Gamma random variable (with
parameter (jN + 1, 37'N)), the rate function is given by

BNy + (N +1) (log ((jN + 1)) = 1 +log (6Ny)) ify >0,

+00 otherwise.
(3.2.41)

Aly) =

Thus, using that j is bounded by K?/3, we get

Pinirp-iv (> K¥*) <Pjniapon (8> CiKY?) <exp (~CKY") .

(3.2.42)
Therefore,
K2/3 K .
] —_— 7% 5/3 -1 1/12
jZ:;EJNJrl,,B—lN [(tdﬂvg)e 1 } < CK"Pexp (-CT'KY?) | (3.243)

and so we can choose K large enough such that the above is smaller than /4
for all K > Ky and N € N.
For j > K?%? we bound using Lemma for the moments of the Gamma

distribution

K K2 42 B—IN d/2
EjN+17571N [me At :| S OEJN-Fl,ﬂ*lN [t ] S C (m .
(3.2.44)
Thus, we can bound
G 1 w2 —~
Z Ejny1,5-1n5 [We 4t] <C Z 2 (3.2.45)
j=K2/3 € j=K2/3

As the above sum is convergent, we can choose K3 such that for all N € N
and K > K3 we have

> 1 K2
E; iy |———e 4 | < /4. 3.2.46
'%;/3 jN+1,8 N|:(td/2\/€)e 4 1 = / ( )
j:

By collecting the previous estimates, we conclude that for § > 0 there exists
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Ky € N such that for all N € and all K > K, we have that

Bl
N /0 B, o [F(LN)]1dE < 6. (3.2.47)

x€Z%: |z|>K

Thus, we can exchange the limit of N — oo with the sum over all z € Z¢
in Equation (3.2.33). By the independence of the processes on Z% and on Ty
established in Lemma [3.2.2] we can write

—t

E (s 1) () [F(LY)] = EL [F(L)]B, (b1, br) - (3.2.48)

Thus, as in the proof of Theorem [3.2.4

00 et“—t OO ettt
N/O TE(x,bl),(w,bl)[F(Li)]dt:6ZEJ'N+LB’1 [TEZ@[F(L)]} . (3.2.49)
=0

For j > 1 we use the convergence (similar to Equation (3.2.23)) to

. 1— 1 =55
Jm B |JELIP] = ZELIFWL, (3.250)
For j = 0 expand
F(t,) = t8,F(0) + o(t) . (3.2.51)

Write

=t
x,x[

F(L)| = F(tx)@;x (RW does not jump) + Eix [F(L)1{RW does jump}|.
(3.2.52)
By Equation ([2.1.14)), we have that

@;x (RW does not jump) = 1 — O(¢*) and @;z (RW does jump) = O(t?) .
(3.2.53)

As F is a bounded function and O(#?) is stronger than o(t) we can expand

=t

E. [F(L)] = td,F(0) + ot) . (3.2.54)

T,x
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Thus

o |{ELF(D)]| = Busoay 0,510) + (1)) = P 0+ o(1). (32:55)

In the last equality in the above Equation, we use that if ¢ is distributed
with respect to a Gamma distribution with parameters (1, 37'N), then ¢t — 0
almost surely as N — oo. This concludes the proof. O]

As a corollary, we deduce the convergence of the occupation field in a

suitable topology.

Corollary 3.2.9. In the topology of local convergence (for a definition see
Definition m) it holds that LY — 3 converges to L distributed with respect
to P2, given X > 0 and Assumption . Here, B denotes the constant field:

ﬁx::ﬁ'

Proof of Corollary [3.2.9f By Proposition [8.4.2 it suffices to show the
convergence of fA(L), where (f2),, is a separating class for coordinates with
values [0,00)* and A € Z¢. By [Klel3, Theorem 15.6], we have that

{f: fle) =exp <— er%c) Ty > O} , (3.2.56)

zEA

where A ranges over all finite subsets of Z¢, is such a class of functions. By
[Kal0l, Lemma 12.2], we have that

E} [e_ ZweA”Li] = exp (—)\Mk] [1 —e ZweA”LiD : (3.2.57)

Note that as sup,c,{|L%|} — 0 we have that

1 —exp (— ZmLi) = ZrmLi +o0 (sgp{|Li|}) . (3.2.58)

TEA zEA

Thus, by applying Theorem [3.2.7, we have that

lim Eﬁ [e’ Zweﬂzﬁi] = exp (—)\Bzrx —\ME [1 e ZxEATsz}> .

N—oo
TEA

(3.2.59)
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This concludes the proof. O

3.3 Isomorphism theorems

This section provides results regarding the distribution of the occupation field
of the loop soup. We only treat isomorphism in finite volume as infinite volume
versions of the fields may not exist. Extending our results to the whole of Z¢
can be done using similar arguments to the proof of Proposition [3.2.7

We restrict the random walk to some finite, connected subset A of Z?. Define

q(z,y) ifx,yeA
aa(7,y) = ' (3.3.1)
0 otherwise.

This induces a random walk with Dirichlet boundary conditions. Let ) €
RAXA be the matrix with g as entries. Enumerate the real eigenvalues (qy)yen
of Q and write a, = —q,. For (vy)zes With v, > 0, define V€ R the
matrix with (v,), on the diagonal and zero everywhere else. Write p,, for the
eigenvalues of ) —V and set b, = —p,. For a weight measure m, denote m the

measure defined by its Radon-Nikodym derivative
dm(t) = tdm(t) . (3.3.2)

For example, in the case of the Markovian loop measure, we have that dm(t) =
t~1dt and thus m is the Lebesgue measure. For the Bosonic loop measure, we
have that m is a weighted counting measure on SN. We restrict ourselves to m
being a positive measure and refer to [AV20, Equation 4.37] for a construction
of PPP for signed measures.

For a measure m on [0,00), we define its Laplace transform £, = £(m) as

follows o
Lu(zr) = L(m,z) = / e "tdm(t), withz >0. (3.3.3)
0

If m has density f with respect to the Lebesgue measure, we write £;. Denote
the inverse Laplace transform by £71.
We are now in the position to state our isomorphism theorem. It gives the

distribution of the occupation field for loop measures with general weight by
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computing the Laplace transform.

Theorem 3.3.1. Let h: (—00,0] — R be analytically extendable to the half
plane {z € C: R(z) < 0}. Fiz A > 0. Suppose that

m=—-g! (a—hh> : (3.3.4)

satisfies the conditions of Definition |3.1.5. Furthermore, assume that for any
e > 0 the integral [ £w(s)ds exists for all x > €. Then:

I. There exists a measure ¥ on [0,00)" such that its Laplace transform is

det h g
S em¥] = (WQ@V)) : (3.3.5)

given by

II. Under P}, we have that the occupation field L is distributed like ¢ under
¥, i.e. for any bounded test function u: R* — R, we have that

EX [u(£)] = X [u(y)] - (33.6)

Proof of Theorem [3.3.1.  Since the Laplace transform uniquely charac-

terises a measure, the theorem follows upon showing that

det h A
E [0 = (WQ(?)V)) , (3.3.7)

By the Campbell formula for P}
E} [em9] = exp (—AM™ [1 — e~ ™P)]) . (3.3.8)

Note that due to the Dirichlet boundary conditions, the eigenvalues of () are
contained in (—o00,0). Choose € > 0 such that —e is larger than the largest
eigenvalue of ). By Weyl’s inequality (see e.g. [HJ12, Theorem 4.3.1]), we
have that the eigenvalues of () — V are also contained in (—oo, —¢). We recall

that (a,), are the eigenvalues of ) with their sign flipped and (b,), for Q — V.
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Expand, using that the trace is the sum of the eigenvalues,

M™[1—e” ”L Z/ (e"%(z, x) (Q’V)(az,x)) dm(?)

zEA

:/ (th e(@-V)t )dm()
=Y / e ™) dm(t)

yZA / e ™ —e ) dm(t) — /0 T (et — o) dmt)
) (3.3.9)

Fix y € A and observe that g(a,) = [;° (e7™" —e~*) dm(t) satisfies the fol-
lowing ODE

Oglay) = ~Lalay), (3.3.10)
g(e)  =0.
If g(z) = log(h(z)), this implies that
h(xz) = exp (— /CD Sm(s)ds) . (3.3.11)
Thus
exp(—)\Mm [l—e_<vL —eXp< /\ZQ (ay) —g(b >
h(b h(a,)\*
=ex A> lo =
(i) - ()
_ ( det h(Q) )*
deth(Q-V)/)
(3.3.12)

In the last line we use that A can be written as a power series, and thus the

eigenvalues of h(Q) are the images of h applied to the eigenvalues of Q).
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On the other hand, since

log(h(z)) = — / " en(s)ds, (3.3.13)

we have that

= —£x(2), (3.3.14)

and thus we get the condition on m stated in Equation (3.3.4)) is satisfied. This
concludes the proof. O

In the next remark we collect some examples of loop weights.

Remark 3.3.2. I. The above theorem 1is a straight-forward extension of

11

111

the Le Jan isomorphism, as presented in (LJ11,LJ10]. Indeed, choose
A=1/2 and h(x) = z, we solve

=-£ (8hh) =—£" <Ild) = Lebesgue measure, (3.3.15)

and thus dm(t) = t~'dt. The resulting measure Y. is the distribution of

the square of the Gaussian free field with covariance Q.

For the Bosonic field (the occupation field under P? ) introduced in [AV20)],
we choose h(z) = B71(1 + e®@F1) for some B> 0. It is easy to see that

in this case
— gt ( ) > ey = (3.3.16)

7j>1

This implies that m = Zj 6p;€°M9 [ § and thus we recover the Bosonic loop
measure. See also [AV20, Lemma 4.2].

Choosing the positive measure m via

1
=7 (Ze (2n—1)*x 2t2/4) dt, (3.3.17)

results in

sinh (/s)

%) = 75 cosh (v/5)

and thus h(z) = cosh™? (/s) .
(3.3.18)
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The above is shown in (LSL12, Equation 32.150]. Thus,

E} [e= 0] :( deteosh (V=0) >_ . (3.3.19)

det cosh ( V— Q)

Remark 3.3.3. In [AV20] it is shown that one can also define the PPP for
signed measures. FExtending the above theorem to signed measures m gives

these two additional examples:

I. For the Fermionic loop measure (introduced in [BR0S, Theorem 6.5.14])

Méu =3 2321 %W]P’gfﬁ), we can do the same calculation as we did

for the Bosonic loop measure, where 1+ e t1) is replaced by 1 —eP=+m),

1I. Suppose we choose

_ cos(at)
ot
for some a > 0. Note that the resulting loop measure is no longer a

positive measure. By [LSL12, Equation 32.33]

dm(t) dt, (3.3.20)

Lals) = and thus h(z) = Va? + a?. (3.3.21)

This implies

det Q2 +a?1d  \?
m [ . —{Ll)] __
EY [e8)] = <det(Q e +a21d) : (3.3.22)

However, as in this work we restrict ourselves to positive measures, we do not

prove the above.

67



Chapter 4

Connectivity results for loop

measures

In this chapter we prove various estimates for connectivity events with respect
to the loop measure. As connectivity features of the loop soup solely depend
on the jump chain (S,),, we work with general discrete-time loop measure
M=3 > a;P] .. This is justified by Proposition .

In the first part of the chapter, we prove concentration inequalities for the
range of random walk bridges. We then use those to prove a sharp estimate
for the mass of all the loops connecting the origin to the complement of large
spheres. The last part of the chapter is devoted to a technical estimate, which
will be useful later on. The whole chapter treats the case where ¢(x,t) = 0
for all z € Z<.

4.1 Introduction and preliminary results

We define the range of the random walk as follows: let R; be the number of

vertices visited up to time 7, i.e.

R; = |{z € Z*: Ik € {1,...,7} such that S = z}|. (4.1.1)
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Recall that Assumption (defining the class of admissible random walks)
still holds. Let (for any 6 > 0) and j € N

(/7772 +0 (%) ifd=1,

mj/logj + O (jloglog(j)/log?(j)) ifd=2,

1= { ki + 0 (2 10g7(7) ird=3,  (412)
kaj — 8K2log(j)/m* + O(1) ifd=4,
\/ﬁd]’—i—O(l) 1fd25

It is shown in [HamO6, Theorem 2.2] that the above is the expected range of

a random walk bridge, i.e.
L m R;] = L g [Rj] <1 +0O (1)> (4.1.3)
P](O) 0,0 J pj (0) 0,0 J ] : c

In the next lemma we give some bounds on the probability that the range R;

rj = Bé,o [R;] =

deviates from r; (on the scale of r;). Combining a number of fairly recent
results, the proof is short except in the case d = 2. There, one needs to

introduce an additional argument.

Lemma 4.1.1. Let d > 3. For every € > 0, there exists a > 0 and ¢ > 0 such
that
Bl o (|R; — ;] > ery) <O (e9%) . (4.1.4)

For d = 2 and for every € > 0, we have that
: 1 (log(log(j))
Blo (IR, ~ 7l 2 o) = 50 (5B ) (1.15)
Additionally, for d =2 and for e > 0 fixed
- 7 log*(log(5))
Remark 4.1.2. This lemma is crucial for the following reason: the strong

concentration of the range (R;); onto the deterministic sequence (r;); allows
us to use (r;); instead of (R;);.

Proof of Lemma [4.1.1. We begin with the case d > 3. The result is
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implied by various large deviation type upper and lower bounds: in [HKOI,
Theorem 1] and [Ham06, Theorem 2.3], it is shown that

1 1 ,
lim —logP, (R; > bj) = lim —logB’  (R; >bj) = -1V (b), (4.1.7)
n—oo N n—oo N ’
where I(V(b) > 0 if b > kg (Where kg = Po(Hy = 00) is the escape probability
for the random walk). In [Phell] Theorem 1.2.10], it is shown that for the

simple random walk
lim — L~ logP, (R < bj) = — I (b 4.1.8
Jim —Gya log Pe (R < bj) = —I7(b), (4.1.8)
where [ (2)(17) > 0if b < kg In |[LV19], it is proved that the result also holds
for random walks with finite moment generating function. Thus, the result is
applicable to our setting. Combining the above bounds finishes the proof for

the case d > 3, as the exponential decay from the large deviation type bounds

dominates the polynomial decay from the bridge condition:

Pho (IR; — 7l = erj) <Bu (R < (1—e)r)) + Py (Ry > (1+€)5)
(e_o(nl,m» | (4.1.9)

IN

In the case d = 2, the first result follows from Chebyshev’s inequality. Indeed,
note that by [Ham06, Theorem 2.3], we have that

< - *loglog(j)
B, |(R; — Bio[R;])’] = 0 (j—) . 4.1.10
0,0 ( J 0,0[ .7]) 10g3(j) ( )
Thus, by Chebyshev’s inequality and noting that r; = Béyo[Rj], we get that
for every € > 0

Bio (IR — ;| > er;) = 5_120 (%) . (4.1.11)

To verify the second claim made for d = 2, we introduce a new argument:
partition the event {|R — r;| > er;} into sub-events by dividing the interval
0, er;] into shorter scales. We use Chebyshev’s inequality on each scale and

then sum the resulting error.
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Fix a positive increasing sequence b; = o (loglog(j)) with lim; b; = co. Let A

be the event
A ={IR;/rj —1| € [e + klog(j)b; ', + (k+ 1) log(j)b; '] } . (4.1.12)
for £k > 0. We then estimate

B, Ry, IR; — ;] > er]
b —1

< Z( +e)r + (k+1)%g(>> B (Ar)

J

rjlog(j) 1 log log(j)
: CZ < Grer+ik+l) b > (e + /{:log(j)bj_l)2 ( log(j) )

Zjb jlog (log(j)) _ ~jloglog(j)b; log(b;)
(k+1) log (7)) — 10g3(j)

(4.1.13)

where Chebyshev’s inequality gives an estimate on the probability of A;. Using
the assumptions on (b;); concludes the lemma.
O
In the following sections, we use the concentration inequalities from the
previous lemma and our new approach to prove results for the connectivity.
Before continuing, we offer a guiding principle: for the random walk/bridge
(or Brownian motion) to traverse a distance proportional to ~ n, we need time
~ n?. Usually it will be of interest to know the behaviour for times large than

n?~, where one should think of n?~ as slightly smaller than n? (say up to a

2—

logarithmic scale). Characterising the behaviour for times in between n°~ and

n? is usually the most challenging part of our proofs.

4.2 Sharp connectivity estimates for connect-
ing 0 to B,

In this section we prove a sharp loop estimate. The result is, to our best

knowledge, new even in the case of the Markovian loop measure.
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We begin by stating a class of sequences (a;); such that the next propo-

sition holds. Concrete examples are given in the second part of the proposition.
Assumption 4.2.1. Let d > 3. Assume that:

e (a;); a sequence with values in [0, 00).

e a; > Cj¥ for some C >0 and v > —oo. Also, a; = O (j¥*72).

e [urthermore, for S € (2,3):

ajj a;rj
= o > | (4.2.1)

j>n¥ j=n?

For d = 2, assume that the above holds with two additional conditions: fix

€ >0 and let ny be
2

n
= : 4.2.9
' log (log"** (n)) ( )
Assume
nS 1 2(1 ( )) nS
08 \9e)) _ ) J B .
and
ni nS
—en?/j ; .
Zaje i =o Z a;7;9;(0) By o (H? <j) ], (4.2.4)
J=1 Jj=n1

for some ¢ > 0 sufficiently small.

The above assumptions are often quick to verify in practice as we will
see in the proof of the next proposition.
For a loop measure M, denote M[A < B] the mass of all loops which
intersect both A and B, with A, B C Z¢.

Proposition 4.2.2. If Assumption holds, then:

1. Ford>2

Me[0 % By) = (L+0(1) > ajrip;(0)Bio (HY < j) . (4.2.5)

j=1
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II. Fizv <d/2—2. Ifd >3 and a; = 77 (14+0(1)) ora; = j"log(j)(1+o0(1))
for d = 2, we get the decay

M0+ B = kgGa,n* " (14 0(1)) (4.2.6)

where we recall that k4 is the escape probability of the random walk (and
we set ke = m, as the escape probability is zero for d = 2) and the explicit
constant G, 1s given in the Equation (4.2.39)), as an integral over Bessel

function.

w

Remark 4.2.3. [ The condition v < d/2 — 2 is needed so that M®[0 <—

B;] converges to zero.

L only an

II. For the simple random walk, d > 3 and the case a; = j~
upper and lower bound for M?[0 += BC] has been known before, see
[CS16, Lemma 2.7]. The proof in [CS16] is different and only covers

the sequence a; = 1/j. For more on that, see the remark after Theorem
[£.31,

III. Many results in this thesis follow the same pattern: while our method
allows for results for a very general class of sequences (a;);, closed form
expressions are only available in special cases. We use the sequence a; =

7Y to generate closed form expressions.

Proof of Proposition [4.2.2.  We begin the proof by counting paths and

then estimating stochastic quantities. Expand

M0« Byl =Y Y a;P), (H, < j, Hy < j)

zeZd j>0
=3 4P, (H, < j. H, < j)

zeZd j>0

(4.2.7)

= "B, |L{H, <5}, Y 1{ H, < j}

7=0 r€Z4
= Z%E&o (R1{H, < j}] .

7=>0

The second equality is due to the time-homogeneity of the random walk.

Monotone convergence implies the third equality above. For an illustration,
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see Figure
We begin by proving the first statement of Proposition [4.2.2]

Figure 4.1: The set of possible starting points of a loop is equal to the points
visited by it.

First Statement: our strategy is as follows:
. Firstly, restrict to d > 3.
II. Show that loop lengths far below n? can be neglected.
1. Show that loop lengths bigger than n° can be ignored, for S € (2,3).

IV. For the remaining loop lengths, use concentration inequalities for the

range and the hitting time estimates from Chapter 2]

V. Repeat the strategy for the case d = 2, with different concentration

bounds.

We begin with the case d > 3. Define n; = n?/c; log(n) for some ¢; > 0, to be
adjusted later. We have

ni ni
> 0B [Rj{H, < j} < a2 o (H, < j)

j=1 j=1

< Oiajjl—d/2e—0n2/j < Cie—0n2/j -0 (n—f(01)) ’

J=1 J=1

(4.2.8)

for some f(c;) — oo as ¢; — oo. This is because R; < j, the polynomial

growth of a;, and the bound on IB%‘&O (H, < j) from Lemma[2.2.3
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Furthermore, note that by Lemma for j > n?
Bl (H, <j)>C, (4.2.9)

for some C' > 0. We can thus obtain the lower bound

2n?
Za] b0 Rj, Hy < J] >CZ an B{)O (H,<j) >CZ]” 42 > op?tav=d
j=n2 j= n2 j=n2

(4.2.10)
due to the assumption a; > C'7” and the bound R; > 1.
Comparing the two previous equations, we see that by making c; sufficiently
large, the sum over j < n, is of lower order than the sum of j € {ny,...,n%}.
To show that the sum over j > n® with S € (2, 3) is negligible is easier: indeed,
this is the third part of Assumption m, Equation (4.2.1]).
To finish the proof of the first statement, we need to show that

nS

Z a]]Ef)o [R,1{H, < j}|]=(1+0(1 Z a;rp;(0 ( <j). (4.2.11)

Jj=n1 Jj=n1

Fix ¢ > 0. We use the concentration inequality from Lemma to bound

for some o > 0 and all j > ny
Efo IR —rjl >ejl =0 (™) . (4.2.12)
By Equation (4.2.10)), this error lives on a negligible scale:

Z a;O (e7"") = o (n*™*77) . (4.2.13)

j>ny
Thus, we have
nS nS
S @B [RyL{H, < )] < (14+2) Y ayrsps (0B (H, <), (42.14)
j=n1 Jj=ni1
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and the corresponding lower bound

nS

Z CL]E%O R;1{H, <j}|>(1—c¢ Z a;r;p;(0 oo(Hn <j), (4.2.15)
Jj=n1 Jj=n1
for € > 0 small enough.
For any T' > 0 fixed, we can apply Lemma to approximate the random
walk bridge by the Brownian bridge:

Bl (H, < j) =By (H? < j) (1+0(1))+0 (n 7). (4.2.16)

By making 7' > 0 sufficiently large and taking the limit € | 0, we arrive at

nS

Z a]]Ef)o [R,1{H, < j}| =(1+0(1 Z a;r;p;(0 ( <j). (4.2.17)

Jj=n1 Jj=n1

The sum over j < n; and n > n® is negligible as seen above. This shows the
first statement for the case d > 3.

For d = 2, the reasoning is the same: by Assumption [4.2.1] the sum over
j < m; and j > n® is negligible. Lemma m gives us the scale of the error

term:

log”(log(j))

B[R, H, < j] <O
070[ J JjI < ( 10g3(j)

) + (U e)ryBho (H <j) . (42.18)

By the additional assumption made for d = 2 (i.e. Equation (4.2.3)), the O-
term is negligible in the limit. From there on, one proceeds analogously to the
case d > 3.

This finishes the proof of the first statement.

Second statement: the proof of the second statement consists of two steps:

I. Show that (a;); with a; = (j¥1{d > 3} + j"log(j)1{d = 2}) satisfies
Assumption [4.2.7]

II. We then compute the expression given by the first statement of this
proposition (Equation (4.2.5))) by approximating the sum by an integral.

We have to be careful in the second step, as B{)"O(Hf < j) itself is expressed
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as an infinite sum and (as we will see later) the order of summation is not ex-
changeable. We begin by showing that the sequence (a;); satisfies Assumption
421

Step I: the first requirements (polynomial growth and bounded decay speed)
of Assumption [4.2.1] are trivially satisfied. Note that for the sum over long

loop lengths

Z ajjrjj*d/Z > C Z ju+1—d/2 > C«n(Sf2)(u+27d/2) Z ju+1—d/2

jznS j>n$ o2

1) Z ar;j =%

j=n?

(4.2.19)

This shows that (a;); satisfies the assumptions for the case d > 3.
For the case d = 2, recall that n; = n?/c;log(n) . Note that for the sum over

small loop lengths

ni ni
> 4B (R, Hy < j] < Clog(na) > j"Bl o (H, < j)

J=1 J=1

ni 9
< C'log(ny) Zj”e_cnz/j < Clog(ny)n* T <—1/ -1, ﬂ) (4.2.20)

j=1
2v+2

=0 nT )
log*(n)

for some ¢ > 0. The above holds as a; ~ 7 log(j), Lemmamlets us approx-

imate the sum by an integral, and Lemmam gives a bound on IB%QO (Hp, < 7).

To verify the last remaining condition for the case d = 2, note that the sum

over the error term

Za log log OZ log )
J

. log®(n
zm zm (4.2.21)
CIOg (log(n)) n2v+2 ( n2vt2 >
=0l ——| .
- log®(n) log”*! (logHa( )) log(n)

This finishes the proof that the sequence (a;); satisfies Assumption and
thus the first statement of Proposition holds.
Step II: we now calculate the infinite sum ), ajrjpj(O)B&O (HE < j). We do
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this by successively removing areas of summation/integration, similar to Chap-
ter 2l We begin by excluding the event that the Brownian bridge ”quickly”
hits the boundary of B,,: define ny = cyn?/log(n) and choose ¢y > 0 small

enough such that for the hitting time H? of the Brownian motion

nb/2
S B (> HY) =0 (0 ) L (1222)

Jj=n1

Such a choice is possible by noting

{z=(x1,...,29) ER%: |zy] <n}y C B, C{x = (v1,...,24) €RY: 21| < n},

(4.2.23)
and using the independence of the Brownian motion coordinates.
Our goal is to evaluate
nB/2
D T B G (HY <, ng < HY) (4.2.24)
Jj=n1

We recall the explicit formula for dB(J)?0 (H? =t) introduced in Lemma [2.2.3

o0 'uzle—jﬁ,kt/(%%

. J
dBl, (HY =t) = = —— i
0,0 ( ) ; 22207 (p + 1)J/H_1(]u,k) o

(n). (4.2.25)

where p = d/2 — 1. As this formula involves an infinite sum, we begin by
showing that most terms do not contribute to the asymptotics.

Recall the expansion

Talius) = (1P 2 (14 007) (4.2.26)

Fix T" > 0. We now show that for 7" large enough, those terms with k£ > T
in Equation (4.2.25)) are negligible. Bounding the sum by an integral using
Lemma B.2.1] leads to

$ iR @) < ¢ / T /22K o) g (4.2.27)

E>T T

78



Note that

- o\ d/243/2  poo
/ L d/241/25-k2/(2n?) 47, — ((Qn) ) / KAk dL . (4.2.28)
T

t T2
@n)?

Recalling the definition of the upper incomplete Gamma function implies that
d/2+3/2
Equation (4.2.27)) is proportional to <"—2> r (ﬂ T—2t> Choosing T =

t 4 7 n?
log

r (df’,TQ ) <T (d+3 0 (1o 1+51/2(n)>) =0 (e7"0) | (4220)

191 () for any &; > 0 fixed, gives the bound for ¢ > ny

n2

by the asymptotics of the Gamma function from Lemma|8.3.3] for some 6" > 0.

As the above decays fast than any polynomial in n, we have that

nb/2 ju+1 —52 it/ (2n?) ]
J Iy ik ——dt = o (n* ) . (4.2.30
P A S e Lt U B (EXU

We now calculate the main contributing factor

u+1e J7 it/ (2n?)

. T
- dt
Z j p] +( Z n22uF (1 + I)J,H-l(ju,k)

j=n n2 k=1
1 5/2 o (4.2.31)
T n 1 ]uH —j2 ti/(2n2)

= pjan(n)i*™ L —dt,
;];m /n2/j s n220T(p + 1) 1 (Juk)

by the change of variables ¢ — jt. In order to eliminate the scale n, we would
like to approximate the sum over 7 with an integral. Indeed, this would allow
us to perform a change of variables j + n%j. To approximate the sum by an
integral, we use [LL10, Lemma A.1.1]. This lemma states that if the second
derivative decays sufficiently fast, we can replace the sum by an integral at the

cost of a (1 + o(1)) factor. Let us calculate the second derivative (take now

79



j€R)
8; (j2+ypj(1—t)(”)eiji’ktj/(%z» - jid/%%ypj(l—t)(n)e’jivktj/(%z)
2ac 2 2 b?
2 2
X|(c"+—+—(a"+0bc) — = ab+2b)+.—),
( A ( ) J? ( j*
(4.2.32)

fora =2+v, b=n?/2(1 —t), c = j>,t/(2n*). Using the above bounds on j

and k, we can bound the above by

P log* 1
CjHVPj(lft)(n)e_ﬁﬁk“/(%% %% §n) (1 + ) : (4.2.33)
n

By |[LL10, Lemma A.1.1]

1 T 2 juzle—ji,ktj/(zn%
2+ My
Pia-n)J —dt =
/0 ;]; I t)( ) n22“F(M+1)JM+1(ju,k)
T | (4.2.34)

1 T nb5/2 ” jﬁzle—ﬁktj/(zn?)
pia_p(n)i>t” : ——djdt(1+o(1)).
/0 ;/n s0-0(%) 22T (14 1) S (k)

By a similar approximation, we can rewrite the above (omitting the o (n?=4+2)

factor to aid legibility)

'.U'+le_ji,ktj/(2n2)

1 T nd/2 j
24y w.k .

1—p(n ——djdt
/0 ;/nl p](l t)( )j n22“F(,u+ 1)(]“_’_1(]”719) J

1 oo 00 el g K13 /2
, | e, _ (4.2.35)
4+4+2v—d 24v H
/o /o (s ; 2T+ 1) Tsr G

o 442v—d
- Gd,un )

with

1 poo - juzleiji’ktjﬂ
G V:/ / Pa—; (15 " o (4230
d. . (1 t)J( ) ; 200 (pe 4+ 1) g1 (G
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To summarise, we have shown that
M0 <% B¢ = Gy, k(1 +0(1)) . (4.2.37)

This finishes the proof of the second statement of Proposition [4.2.2] O
We now state the result for the connectivity associated to the Bosonic

loop measure separately.

Corollary 4.2.4. For >0, 1 <0, and d > 3, it holds that M ;[0 <— B)]
decays exponentially fast, with speed increasing as j | —oo.
If u =0 and d > 3, we have that

MP 50 <= B] = kaGa-1n* (14 0(1)), (4.2.38)

where the o(1) term depends on 3.

As Lemma implies that the Bosonic loop measure with p = 0 gives
weight 7' (14 0(1)) to a loop of length j, the proof is immediate. Notice the
transition from exponential decay for non-zero chemical potential (u < 0) to

algebraic decay for pu = 0.

4.3 Connecting large annuli

The next theorem gives upper and lower bounds on the mass of connecting

two spheres of diverging radius.

Theorem 4.3.1. Let the underlying random walk have bounded support. Let
v < —1/2 and d > 3. We then have that for every ~o > 1, there ezists a
C = C(v0) > 1 such that for all v > 9, for n large enough and a; ~ j*

C_1n2”+2’y3_d+2” S Ma[Bn <i> B’cyn} S On2y+27y” (431)

where V' = max{2v + 1, —4}.

Remark 4.3.2. 1. Contrary to Proposition we only give this theo-

rem for the case a; ~ j¥, as other sequences do not not yield closed
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form bounds. For more general sequences (a;);, we summarise the (more

lengthy) bounds in the Appendiz, see Proposition|(8.1.1.

II. For d > 3 and a; = j~', a stronger version of the above theorem is
established in [CS16, Lemma 2.7]: it gives bounds on M[K < Bg]
with K C B,, and R > ~yn. The proof exploits the fact that a; = j~*
in an elegant way: if M is the push-forward measure of M under the
equivalence class of forgetting the base point of the loop, we have that for
a loop w (of length n) that

MIw] =

i M (4.3.2)

Here, w is an arbitrary representative of the equivalence class w and
m(w) is the loop’s multiplicity. Noting that M|w] has a factor of n™!,
one can rearrange the sum over loops intersecting K (for any K C B,,)
and B} in a way which aides estimation, as the sum over lengths can
be interchanged with a sum over multiplicities. Our proof works in a

different way, we estimate the contribution of each length directly.

III. The restriction for v < —1/2 is technical. Indeed, note that for v > —1,
we have that M*[B,, <— B, ] diverges to +0o as n — co. This makes
the associated loop soups less interesting to study as long loops cover the

whole space.

Proof of Theorem [4.3.1] As in the proof of Proposition 4.2.2] we begin

with a combinatorial argument. Expand

M*B, «— BS,| = > > aP)  (H, < j, Hyn < j)

zezZd j=1

= Z Z ZajIP’zw (H, < 4, Su, = v, H,, < )

xeZd yeBy j>1

= Z Z ZCLJ’P{,’Z/ (Hx < j; H’yn < j7 Hn(y) Z HZ)

zeZd yeBy j2>1

= > > aF, |1{H, <j} Y I{H.(y) > H,, H, < j}

(4.3.3)

yeB, j>1 x€Z4
= Z Zaj]E;y [:”-{H'yn < J}RHn(y)] ’
yeB, j>1
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where H,(y) is the first time that the random walk hits the set B, \ {y}. If
under P/ the random walk bridge does not hit By, \ {y}, we set H,(y) = j.

All steps apart from the third equality are fairly standard, see also the proof
of Proposition For the third equality, we use the Markov property to

Figure 4.2: A loop intersecting both B,, and B7,. The points visited up to
H,(y) are coloured red.

start the random walk at y and time-reverse it. As y is the first point at which
we hit B,,, the time-reversed walk has to hit = before it hits B,, \ {y}. For an
illustration, see Figure [4.2

Note that since the random walk has finite support, the above sum is non-zero
only for O (ndil) many y’s, as we need to move outside of B,, with the first
step of the random walk. Thus, we assume without loss of generality that p),
the jump distribution in each coordinate, is supported on {—1,0,1}.

Let us restrict the loop lengths j we need to consider. Fix ¢ > 0 small, let

v = — 1 and expand

(yn)?=¢ _ (yn)?~¢ _
Y 4B R Hyw < J1 <Y ayi P Bl (Hyn < )
j=1 j=1

(yn)?~¢ 00
< Z ajj—d/2+le—C('yn)2/j < o= Clm)*/2 Zajj—d/2+1 -0 (e—C(’yn)E/Q) ’
j=1 j=1

(4.3.4)

for some C' > 0. We use Lemma to bound IB%&O (Hyn < j) and the fact

that (a;); grows at most polynomially.
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As the above lives on a smaller scale (exponentially decreasing) than our result

2—

>~ (where we

(of polynomial order), henceforth assume that j > (yn)?>™° =n
suppress the dependence on £ > 0 in that notation).

In the spirit of the proof of Proposition we want to replace the range
(R;); evaluated at the stopping time H,(y), with the stopping time itself.
The intuition is that by Lemma [£.1.1] the range is approximately linear for
large enough arguments. We begin by cutting off small values of H,(y): for
d € (0,1/2) we bound

B}, [L{H,. <} Riy. Hal0) < 5°) <Ej, [Rs] =0 (57%) | (1.35)

as Rjs can be bounded from above by 4%. We impose the following constraint

on the values of (e, 9):
25 —e(—d/2+0+v+1) <1. (4.3.6)

Indeed, with this we have that

Z Z CL] RHn Hn(y) < jé} < Ond—1! Z j—d/2+5+u _ 0<n2u+2).

Y€0iBn j>n3~ j>n3"

(4.3.7)
We now turn our attention to values of H,(y) larger than j°. For H,(y) large,
we know that by Lemma that Ry, ) ~ H,(y). We make this rigorous
now: for any ¢t > 0 and two constants ¢;, C; > 0, depending on ¢, we do a case

distinction whether Ry, is close to its mean or not:
Eg/,y [,RHn(y)7 H,(y) = 7, Hyn < ]]
- E;y [RHn(y) <1{Vk‘ > j(s DRy — il < i}
+ 1{3k > 49 IRy — 75| > ctrk}>,Hn(y) > 40 H,, < j}

<GB}, [Hy < j. Ha(y)]

( —; ) ZE o < s R Holy) = k|[Ri — 1| > 7]

< CtEy,y [H’yn < ], H ( )] + O( c—0t— d/2+1) 7
(43.8)
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for some ¢’ > 0. This follows after using the union bound on &k and Lemma
to estimate the probability that the range deviates by ¢; from the mean.
Choose t > 0 sufficiently large (if necessary, adjust € > 0) such that

2t0 +e(—d/2+2—-0t+v) > 2. (4.3.9)

Indeed, if the above holds, we have that

Z Z @jE;y [H'yn < j, ,R'Hn(y)} <C Z Z @jE;y [H'yn <7, Hn(y)]

yeaan j2n,%7 yeaan ]277,,%7

_|_ 0 (n2y+2) ’
(4.3.10)

by a computation analogous to Equation (4.3.7). Repeating the argument

which give the bound above, results in

Z Z a'jE;y [H'yn < j, ,R'Hn(y)} >C Z Z aij;y [H'yn < j, Hn(y)]
YED:Bn j>n}~ YED; Bn j>n3~
+ o0 (n™*?) .
(4.3.11)

Having reduced the initial problem to an analysis of Eé’y (H.,, <7, Hy(y)], we
now prove upper and lower bounds for E;y [H,, < j, Hy(y)]. The proof of the
lower bound is shorter and uses the FKG inequality. The justification of the
upper bound is lengthier and involves a series of approximations. We begin
with the lower bound.
Lower Bound: we firstly bound H,(y) > H,. Indeed, hitting B,, \ {y} takes
longer than hitting B,,.
The main idea of the lower bound is the following: if y is the north poldT]
we can bound the hitting time H,, by the hitting time of the half space which
consists of those points whose first coordinate is less than n, see Figure 4.3, We
then use the FKG inequality to separate the events {H.,, < j} and {H,, = k}.
We begin by symmetrising the problem so that we can assume that y is equal

to the north pole. The strategy for the symmetrisation is to approximate the

!The point (n,0,...,0) € R%.
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Figure 4.3: The random walk started from the north pole hits the horizontal
red line before hitting the sphere.

random walk by a Brownian motion and then use the rotational invariance
of the Brownian motion. As we only need a lower bound, henceforth discard
je{n2 ..., (yn)’}.

For a point x € 0;B,, let T, be the approximate tangent (for a graphical
representation, see Figure through z defined as follows: let 2* € R? be
the unique point of absolute value n which lies on the line connecting x with
the origin and satisfies |x — x*| < d. Let T be the tangent through z* on the

surface of the ball of radius n (this time in R?). Then
T,={yeR: y+ (v*—z) € T:}. (4.3.12)

Let H, be the half space which contains the origin and has 7}, as its boundary.
Let 7, be the hitting time of that H, N Z¢. We bound

B [H., <j, H)]>F [Ho, <j 7] > 2P (H,, <j/4 7> j/2) .
x,x Y x,r Y v

= 9wz
(4.3.13)
By Lemma m, there exists a coupling P/, between B , and BJ , such that

; C
j Y 2/
Pzﬁw<1m§?ng|51 B;| > cq log (])) < o (4.3.14)
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Figure 4.4: The half-space H,, in blue. 7, is the first time we hit any of the
blue-coloured dots.

with ¢, > 0. Choose a > 0 large enough such that

1+v
n! Z SR o (n**?) . (4.3.15)

ra+d/2
j>(yn)? /

For some C > 0, let Tf, be the hitting time of the half space
H, ={z=(x1,...,74) €R% 2y <n—Cilog*(n)}. (4.3.16)

By adjusting the constant C; > 0, we have that by the coupling and the

rotational invariance of the Brownian motion

> D B, [Hyn <, Hy

y€0; By j>(yn)?

>C Y ) TR (Hy < /4,7y > /2)

y€9;Bn j=(yn)?

>C > > Bl (HE, < /A, TR > j/2) 4o (n??)

y€0; Bn j>(yn)?

(4.3.17)
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Here . = (n,0,...,0) € R is the north pole. Denote Bt(i) the i-th coordinate
of the Brownian motion for 7 = 1,...,d. Bounding the ball B, by the box

with larger radius B3 , we reduce the our expression to a one-dimensional

2yn>
problem:

By s (Hayy < /4 70 > j/2)
> Bl (Vie{l,...,d30 <t <j/a: |BY| =2yn, 78 > j/2)

ZC’B;L <30<t < j/4: |B |—2’yn 7'_>]/2>
(4.3.18)

where Bﬂ;’%) is a one-dimensional Brownian bridge of length j. Note j > (yn)?
and thus the probability of hitting the complement of a box with length 4vn
remains bounded away from zero uniformly in n and j. This allows us to
discard the other coordinates in the equation above. Use the coupling from
Lemma once more (adjusting the constant C in Equation (4.3.16)),

> D B [Hy <, Hy)

Yy€diBn j>(yn)?

> C Z Z 1 d/2+uB](1 <E|0<t < j/4: ]B \—2’771 >j/2>

yEa B, ]> —yn

>0 Y Y PTBG (Haw < /4 T > /2) + 0 (n77)

y€0; By j>(yn)?

(4.3.19)

Here, IB%%’%) is a one-dimensional random walk bridge of length j.

Decompose the event {Hy,, < j/4, 7, > j/2} by conditioning on the value
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of 7,,-: let Pﬁ—:(l) be a one-dimensional random walk and
]B%%ﬁ <H4'yn < j/4 Tn— > ]/2)

> Z PLY (Hipn < j/4, Tue = k) py (0)pj—i(n~, n)
k=j/2
24/3 .
> N PEY (Hyy < /4, 7o = k) p; (0)pj—i(—CF log(n))

k=j/2

2j/3 ) /2
>C Z (ﬁ) pZ ) (Hipn < j/4, Tu- = k) exp (—Clog*(n)/(j — k))
k=j/2

2j/3 j 1/2 "
(1 .
C Z (—k> P2 (H4m <j/4 - =k) .

hmgjo N T

v

(4.3.20)

Using discrete integration by parts from Lemma and using that (j —
k)~1/2 — (j — k — 1)~/ is bounded above and from below by O ((j — k)~3/?),

we rewrite the above as

25/3
C Z 3/2]13”(1 (Hyyn < /4, T > k) + E, (4.3.21)
k= ]/2

where
E > CP:Y (Hyy < j/4, 70 > 5/2) . (4.3.22)

We want to apply the FKG inequality to separate the two events { Hy., < j/4}
and {7,- > k}. For this purpose, firstly bound

P (Hypn < 5/4, 7m > k) 2 PR (HY < j/4, - > k), (4.3.23)
where H 4+vn is the first time the one-dimensional random walk enters {4yn, 4yn+

L,...}.

We now set up the FKG-inequality: set Q = Z7, n = (p(l))®], where recall
that p() is the law induced by S; on Z. We have the following partial order
on : take a,b € 2 and say a < bif for all i € {1,...,j} we have a; < b; (in
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Z), see Figure [4.5] for an illustration. Note that the two events { Hyy, < j/4}
and {7,,- > k} are both non-decreasing. Applying the FKG-inequality (see for

A L] L] L] L L L L L4 L] L L L L L4 L]
.
Z L] . . . . e o 0 . . . . ] . . .
4yn
]
]
.
.
.
]
n
n
—C'log?(n)
. . . . ] ] . . . . ] ] . . .

Figure 4.5: Two ordered configurations, with the larger one being represented
in the dashed style

example |FV17, Theorem 3.50]) to n, we get that

P%’(l) (H+

4yn

<j/47 Tn— Z k’) Z ]P)%?(l) (H+

4yn

<GB (1, > k). (4.3.24)
Using Lemma for the random walk, we then bound

P%’(l) (H+

4yn

< /B (- > k) > CPLY (1, > k) (4.3.25)

where the constant C' does not depend on 7. Indeed, as j > (yn)?, the
probability of {Hj., < j/4} stays bounded away from zero. We then use
Lemma 2.2.6] to estimate

P2 (r- > k) > Ck™Y2. (4.3.26)
Plugging the above into Equation (4.3.21]), we get that for j > (yn)?

JBLY (Hiy < /4, - > §/2) = C512. (4.3.27)

b
n,7
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Thus, by Equation (4.3.13)
E}, [Hy < j, H] > CjY*747. (4.3.28)

This then leads to the estimate
Z Z E;y [H’yn < j’ Hn] 2 C’nd_l Z j—d/2+1/2+l/
y€0; Bp j>(yn)? j=>(yn)?

> Cnd—l/ j—d/2+l/2+l/dj Z C (n\/,—y)Qu-i-Q 71—(17
(

n)?

(4.3.29)

where Lemma implies that one can approximate the sum by an integral.
This concludes the proof of the lower bound.

Upper Bound: we begin by recalling the definition of n%‘ = (yn)?>~¢ where
v =~ —1and € > 0 small, subject to some constraints.

The proof is organised as follows: for j > (yn)* we bound E/  [H,(y), Hy, <
jl < B/ [Hn(y)]. This is justified by the fact that the event {H,, < j} has
constant mass for such j. The expected value of H,(y) is then analysed using
results from [Uchl6], [BMR13]| and [DW19|. The analysis of H,(y) under a
bridge measure is more complex compared to not fixing the endpoint, as we
need to know where the bridge hits B,,. Finally, we need to consider the case
j € {n?f, ..., (yn)*}; however, in that regime we can no longer discard the
event {H,, < j}. From now, shorten H,(y) as H,.

Before embarking on the proof, we offer the following heuristics (ignoring the
condition {H,, < j} for now) for the upper bound: rewrite I  (H, = k) in
the following way by conditioning on the site at which the random walk hits

the sphere:

P, (Hy=k)=P,(Hy=k) > P, (Sk=zH,=k)pji(zy). (43.30)

2€0;Bn,

We then expect that P, (H, =k) ~ q(y,k,n) ~ k=32 (using the notation
from Chapter [2). Furthermore, for k > n? it is reasonable to expect that the
hitting distribution on 8;B,, is uniform, i.e. P, (Sy = z|H, =k) ~ n'~% as
the random walk should have "mixed” on the scale of B,, by that time. For

—d/2

k’s smaller than n?, we can bound p;_x(z,y) by C(j — k) and thus obtain
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the bounds

k‘wzﬁ ZzeaiBn pi—k(z,y) for k >n?,

P, (H,=k) <C
k=3/2(5 — k)~/? otherwise .

(4.3.31)

The difficulty is making the above intuition rigorous: only bounds on the
cumulative distribution function of P, (H, = k) are available and the ”mixing”
result regarding the first hitting location is only available for the Brownian
motion. To overcome this, we employ coupling arguments similar to those
used in Chapter [2 and integration by parts. Finally, for j < (yn)?, we need
to refine the above bounds, as the bound for & < n? is too rough in that case.
We now give the various steps into which we have subdivided the proof of the

upper bound:
[. Step 1: bounding small values of H,,.
II. Step 2: various expansion of H, for j > yn?.
III. Step 3: estimating > .~ 2> e, E7 , [Hn)-

IV. Step 4a and Step 4b: estimating H, 1{H,, < j} for j < n?. Step 4b is

further split into two parts, treating the cases H,, small and large.

Step 1: in this step we show that we can neglect values of H,, smaller
than j'/°. Expand

j1/5

! J
Ei”y[H"] - Z kPg/,y(Hn - k) = Z kP{/,y(Hn = k) + Z kpi/,y(Hn = k) :
k=0 k=1

k=j1/5

(4.3.32)
Using the bound p;(z) = O(j~%?) for any z € Z% the first sum can be
bounded

41/ §1/8
D KP)(Hy=k) <> kpi(y,y) < Cj704 (4.3.33)
k=1 k=1
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This implies for € > 0 small enough

Z Z a;IE H 1{k <]1/5}] < Cpd? Z ju+04 /2 _ (n21/+2) '

jan,_ y€0; By, ]an

(4.3.34)
Thus, henceforth assume that k& > j1/°
Step 2: Assume j > (yn)* and bound E/  [H,, H., < j| <E] [H,].
The next step consists of getting good estimates for the cumulative distribution
function of H,. For that we employ the following strategy: since we are
interested in values of H, > j'° (see previous step), we know that with
overwhelming probability, the random walk first hits a shell with radius slightly
larger n before hitting B,,. Once the random walk has hit that shell, we employ
the coupling with the Brownian bridge. We need this step, because otherwise
the error from the coupling would be non-negligible. We then use the bounds
on HB from the literature to estimate the expectation of H,,.

Rewrite using integration by parts
Z kP Z Pi (H, > k). (4.3.35)
k ]1/5 fe—= Jl/s

Note that by the same argument used in the previous step, we can neglect k’s

with j — k < j/°

Set n* = n 4 log?™(n) for some § > 0 and expand
Pl (Hy > k)= > Py(Hy=1>H,,S=2P(H, >k-I
l>1 268 B nt

+P) (Hy >k, Hyr > H,).
(4.3.36)

By the argument made in the proof of Proposition 2.2.5 we have that for
F > 0 large enough that [ < log” (k) apart from a negligible set. By a similar

argument as stated in that proof

—j1/5 —j1/5
Z]P’ (H, > k) <C sup ZIPWH >k—1), (4.3.37)
k=j1/5 lSIOEg}:(k) k=j1/5
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where R, = {z € Z*: x € 9;B,+ and |z — y| < log™®(n)} are those points
in the boundary of B,,+ which have small distance to y. For an illustration of

R,, see Figure [4.6]
Using the coupling from Lemma [2.2.1 we bound

Figure 4.6: The points z in R, are coloured red.

j—l ji—l( 7B
Pl (Hy>k—1) <CP(H >k—1). (4.3.38)

We will bound P/ (H,,~ > k—1) uniformly in 0 <1 < log™ (k). The bound will
not depend on z. Denote this bound by C(k,y). We then express Equation

(4.3.36) as follows

P/ NH, > k) <CP/J)(HP >k —)Py(H,+ < H,)
C(k,y) (4.3.39)
<C(k,y)P,(H,+ < H,) ~ ————,
< CO(k, y)Py(Hp+ ) Tog?"(n)

where martingale argument from proof of Proposition gives the estimate
on P,(H,+ < H,). We now show that C(k,y) ~ k~/?log®"’(n).

We proceed as follows: to bound dP/,'(H. > k —1), we firstly we bound the
density szj,;l(an = k). By the Markov property we have

APLHE =) = [ AP(HE = WAPAB, = S| = Rpyn(zo)d

(4.3.40)

Indeed, the above is simply a conditioning on the location at which we hit
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0B,,-. Note that by the restrictions placed on [ and k, we have that p,_;_x(z,y) ~
pi-x(2,9).

Using the result from [Uchl6| on dP.(By = z|H,- = k), we bound the above
expression in the following way: fix 5, > 0 (to be adjusted later) and denote
Upp, _ the uniform (Haar with respect to rotation) measure on JB,-. We

then have two bounds

j deHB*:k | — o, if k < 027
P! (HP = k) < ! (H, )Pi—k(y ™ y) if k < Bon
CdP.(HE. = k)Uss, _ [pj—k(Z,y)] otherwise ,
(4.3.41)

where y~ is the projection (through the origin) of y onto B,- and Z is dis-
tributed with respect to Upp . Indeed, for the first bound in the equation
above, a quick estimate using Equation (4.3.40)) gives

dP! (HY =k) < dP.(H} = k) sup p;_i(z,y) < CAP,(HY = k)p;—r(y",y),

2€0B, —

(4.3.42)
by the definition of the heat kernel. To verify the second bound in Equation
(4.3.41), recall that [Uch16, Theorem 2.2] states that for k > 3,n? the hitting
location of the Brownian motion is uniform (up to a multiplicative constant in
the density) on B,,-. This fact gives the second bound in Equation (4.3.41)).
We furthermore bound (using that & > (yn)/%) and Lemma [2.2.4]

B 2448 10g2+6(”)
dP.(H,- = k) =q(z,k,n) =q(n+log"°(n), k,n) < OW (4.3.43)
This implies
o ) (y™ if k < B,n?
dPg7y(H57 _ k) S 13/2 p]—k’(y ay) 1 = 60” y (4344)

Clog;j;/i(n)uBBF pj—k(Z,y)] otherwise .

We now compute Upp _ [p;—1(Z,y)]. Note that we can expand

C 2n~ )
WU, Byl Z0)) € g [ e e 20
" (7 —Kk)42 Jy
(4.3.45)
Indeed, note that since Z € 0B,,-, we have that p;_(Z,y) only depends on
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ly — Z|. We can use the inner product to rewrite this as
ly — Z)* = 2(1 — cos(h)) (n* + cq log(n)) + 2 log*(n), (4.3.46)

where 6 is the angle between Z and y. Approximating (1 — cos(6)) ~ 6% and
incorporating the fact that 0B,,- is a (d — 1)-dimensional submanifold (hence
the factor 7¢2) gives us the bound Equation ({.3.45). Note that log*(n) =
o(j — k). We change variables,

2n~
1 )d/2 / Td—2e—C(r2+ci 10g(n)4)/2(j—k)d,r

(j—k

5 Ok

- O(k))1/2 / o pd/2-8/2
J— 0

We recognise that the integral above as the incomplete Gamma function. Thus

(4.3.47)

1 (n)?
_x(Z <————~(d/2—-1/2,C— ) . 4.3.48
MaBn_ [p] k( vy)] = nd_l(j _ k>1/27( / / ) j_ ]{7) ( )
Recall the asymptotics from Lemma 8.3.3
v(s,x) ~ 2%, (4.3.49)

as ¢ | 0. The above bounds imply that when we plug Equation (4.3.38) into
Equation ([£.3.37)), we can bound the sum by an integral using Lemma [8.2.1]
Furthermore, the function [ — P/ (HP >k — 1) satisfies for [ < log™ (k)

j B j B
P (HE >k—1)~ P! (HE > k/2), (4.3.50)
and
. i
> PL(HEZ >k/2) < 0/1 P! (HE > k)dk < C/l 5kPg,y(Hf, — k)dk.
k>;1/5 3/ Y
(4.3.51)
Thus, by Equation (4.3.39)), we have
PI (Hy >k —1 ok P! (HE =k)dk 4
>k — = : 3.52
> < [ Pl = dk 4352

k2]1/5

96



Fix 8, > 0 with v > 3; > 3, and split the integration into three regions

7 kP (HL = k) Bon? j=pin? i
/ v dk:/ ...dk:+/ ...dk+/ ...dk.
j1/5 log + (n) j1/5 Bon? j—B1n?

(4.3.53)
We begin with the integral from j'/° to B,n%, where we employ the upper

bound from Equation (4.3.41]) and Equation (4.3.43)), so that we get

B}, [Ho Ha € {5, Bon®}]

IB(7TL2 /jon2 | )
C [ i~ [ ey,

<
>~ 10g2+6<n) 175 , 175 k3/2
Bon? Bon? 1/2
< ¢ k< L/ Ldk < M)
o Vk(j— k)2 (G = Bon®)? Jo  Vk (J — Bon?)/?
(4.3.54)
as j > (ny)? and
Bo<Pr<vy=(y—1). (4.3.55)

Next we integrate from 3,n% to j — Bin?. Due to this restriction, one has that
fin?<j—k<j—Bn>. (4.3.56)

We apply the second bound from Equation (4.3.41)) together with Equation
(4.3.43) and Equation (4.3.48]) to bound

Ej,, [Ho, Ho € {80, j = Bin*}]

1 j—Bin? . 5
— kP! (H;- = k)dk
> 10g2+§(n) /3 z,y( n )

C j—B1n? 1 n2
< — _— d/2 —-1/2, —— ) dk
T ndtt Jg e VE(G — ]4;)7 ( / / j— k) (4.3.57)
j—B1n? 1
<C

—dk
gon2  \E(j—k)?

1/2—d/2 1=hin/s 1 1/2—d/2
<O Ak < .
Bon2/j k(1 —k)d

The above uses the bounds in Equation (4.3.56)) on j — k which allows us to
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apply the asymptotics of the Gamma function given in . Observe that
in the last equality, the bounds on 3, and $; make sure that the boundaries of
integration stay away from 1 uniformly in n,j. This implies that the integral
does not blow up.

For the last integral (k from j—1n? to j) we use the fact that y(d/2—1/2,z) <
I'(d/2 —1/2) < oo and Equation (4.3.46))

Ei,y [Hm Hye{j—pn?, ... ,]}]
1 j | oo !
o220 (1) kP!, (H,. = k)dk b
log*"*(n) /j—ﬁmz ol Jdb < ntt fi e KY2(5 — k)12
- / M e CVB
G AR dy BPS e

(4.3.58)

This concludes the second step. In the next step we sum the above estimates.
Step 3: in this step we bound the estimates from the previous step and
calculate the asymptotics for j with j > (4n)%. We use Equation (4.3.39)
together with the various estimates made for the integral over l{;Pij(H B =)
We begin with the part of P/ (H, = k) for k € {j'/*,..., B,n*}. By Equation
(4.3.54), it holds that

> > By, [Ha Hy€ {5, Bon®}]

j>(yn)2 y€d;Bn

%) ju 1 .
d
Z Z j _ 5 n2 Cl/2‘7 \/(\ ) ]d/2 (1 . /Bon2/j>d/2 J

j>(yn)? y€0;Bn

~ C(Pyn)2u+277d )

(4.3.59)
We furthermore have that by Equation (4.3.57))
Z Z ]”EJ Hn, H, € {B,n? ....,5— Ban}]
n 8 Bn
72 ue (4.3.60)

<C Z Z j1/27d/2+u NC(,yn)2r/+2,ylfd'

§>(yn)2 y€d; By,
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For the third summation, notice that Equation (4.3.58|) implies that

SN B, [Ha Hao€ {j - Bin?, .. )]

Jj>(yn)? y€9; By

jl/ 20+2 _ 2v+1
< E g ~ Cn™" "y ,
- d—2 : 2
oemevea, VT VI~ Bin

where the assumption that v < —1/2 allows for a computation of the above

(4.3.61)

sui.

To summarise, we have shown that

SN B HLUE, << Y Y B H)] < On®ty

j>(yn)2 y€8; By, j>(yn)2 y€0; By

(4.3.62)
where v/ = max{2v + 1, 2v + 2 — d}.
It remains to analyse the sum over ni_ <7< (’yn)2 which is done in the next
step.
Step 4: in order to analyse the expectation of H,1{H., < j}, we split the
associated density into two parts by distinguishing whether B, is hit before
B,, or not:

P, (Hy=k Hy<j) =P, (Hy, =k k< Hy,<j)+ P (Hy=k Hy,<k).
(4.3.63)
In Step 4a, we analyse the first summand, in Step 4b the second.

Step 4a: we use the Markov property to decompose the first summand into

PI (H, =k k< H,<j)=P,(H, =k H, > k)
X > P.(l<Hypy<j—k S =y)P, (Sp =2|H, = k).

2€0; B,

(4.3.64)

Indeed, as H, < H

+n, the random walk has to hit 9;B,, at point z after k

steps, it then hits 0,B,,, before returning to y.
As reasoned previously, since we have to cover a distance of (yn)? in j — k
steps, we can neglect j — k < (yn)?log™ ' ((yn)M), for some M > 1 large

enough. By a reasoning analogous to proof of Lemma [2.2.3] we have that for
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some t > 0 fixed
P, (1< H, < j—k,S;_=y) <e WG _f)-d/2 (4.3.65)

Indeed,

Jj—k
IP)Z (H’Yn< ] — kJ,Sj_k = y) = Z sz (Hwn = T’)

bedByy, r=1

x P, (S, = b|H,, =7)pr(b,y)

S OZPz (H”/n = T)pj—k(y+7 y) S IP)Z (H’Wl S .] - k) (] - k)_d/2 )
(4.3.66)

where y* is some point in the O(1) neighbourhood around the intersection of
the line connecting the origin and y with 0B.,,,. The heat-kernel approximation
of the random walk kernel for the contributing r > 0 large enough was used
above.
Plug the above estimate (i.e. Equation (4.3.65))) into Equation (4.3.64) to
bound

> P.(I<H,<j—kSix=y)P,(Sk=2H, =k
zeaiBn (4367)
< Ce~tOmPIG=k)(j _ )=4/2

Bounding P, (H,, = k, H,, > k) < P, (H, = k) and performing a discrete in-

tegration by parts as described in Lemma [8.2.3] we bound

J
Eg/’y [H”H{H’Y” < j}7H’Yn > Hn] <C Z
k=(yn)2log ™" ((yn)™M)

P, (H, > k) <eft(’7n)2/(jfk) (j— k)*d/z _ eft(’yn)Q/(jfkfl)(j ke 1>7d/2> .
(4.3.68)

Using Proposition m to bound P, (H, > k) < Ck~? and Lemma to
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approximate the integral by a sum, we rewrite the above as

, j 4
), [Ha1{H,, < j}, H,y, > H,] < C /1 k2T GTR ( — )2k
(4.3.69)

By changing variables k£ +— jk, we can estimate

/J k71/2eft(7n)2/(jfk)<j _ l{:)"mdk < C(n’ﬁjl/?*d/?e*t(“/n)z/j ’ (4.3.70)
1

where

1
C(n,j) < / k21— k:)_d/ze_t(”")Q[1/(1_k)_1]/jdk. (4.3.71)
1/
However, as 7 is bounded away from 1 and we assumed that j < (yn)?, we
have that
supC(n,j) < o0, (4.3.72)
jn
where the supremum is taken over all n,j satisfying j < (yn)?. This allows

us to estimate

(yn)?
> > o), [HA{H,, < j}, H,, > H,]

j:n,%7 yeai B,

(yn)?
<C Z ajnd*1j1/2*d/26*t(’¥n)2/j (4.3.73)

.2
J=n~y

t
S C('Y?’L)2+2V’)’1_d/ e—]j—5/2+d/2—udj ~ (,yn)2+2y,yl—d’
0

where Lemma allows for an approximation of the sum by an integral and
a change of variables j — t(yn)?/j was used. The above is of the right order
and thus we have finished the case H.,, > H,,.

Step 4b: it remains to estimate

E! , [H.1{H,, < j},H,, < H,] . (4.3.74)
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For C} > 0 abbreviate n; = C;(yn)?log™*(yn) and bound

Z MP);Z/ (Hn = ka H’Yn < Hn) < n1PO(H'yn < 711) < Cnl('yn)*t/cl R (4375)

k<ni
for some ¢t > 0 by |[LL10, Proposition 2.4.5]. By making C} sufficiently small,
we conclude that it suffices to estimate

E;Z/ [Hnﬂ{H’Yn < ]}7 H’yn < Hm Hn Z nl] . (4376)

Two different estimates have to be made for the case H, = k < j/2 and
H,=k>j/2.
Step 4b, Part I: the case k < j/2: we use integration by parts to rewrite

/2 /2
> kP (H,=k H, <H,)=> P (H,>kH,<H,). (43.77)
k=n1 k=n1

The random walk bridge now has to hit first 0;B., before hitting the shell
0;B,,. We estimate again, by conditioning on the point at which the random
walk hits 0,B.,,

J
]P)?]M/ (Hn 2 k7H’Yn < Hn) = Z ZPZ/ (H’Yn: l, H, > H’yn)

2€0; B 1=0
xP,(H,>k—1,S;_=y)P, (S ==z|H,,=1).
(4.3.78)

By the same reasoning as above it suffices to consider the sum over ny <[ <

k —ny. We expand again

IP)z (an k— l7Sj—l = y)
7=l

P.(H,=1t) » P.(S=wH,=1)pj_1(w,y)
— WD, By (4.3.79)

<CSN P.(H,=t)(j—1—-1t)""%,

by the same reasoning as employed in Equation (4.3.67). We integrate by
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parts to bound the above

Z P, (H, > ) [(j—z—t)—d/2—(j—l—t—1)‘d/2]+E, (4.3.80)

E=P,(H,>k—1)(j—k) . (4.3.81)
By Proposition [2.2.5] we have that

= T e
P, (H, Zt)m/ q(n—i—l,s,n)dSN/ me 372 ds ~ P, (Hf Zt) .
t t S
(4.3.82)

Using discrete integration by parts, we can rewrite

j—l—1
SC q<n+17t7n)(]_l_t)_d/2
t=k—I+1

Approximating the sum by an integral using Lemma [8.2.1

-l nfye_ (7”)2/2t

J
N o . g 4\—d/2
P, (H,>k—1,8_ =y)<C /k s G S R PR CE AT

Shorten the above as C'(k, [, n) and note that it does not depend on z anymore.
For f: N — R, denote V,f = f(I) — f(I + 1) and plug the above result into
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Equation (4.3.78]) to get that

if2
> P (Hy >k, Hyp, < H,)
k=n1
J/2 k—nq
<CY > P,(H, =1 H,>H,)C(k,1n)
k=n1 l=nq
/2 k-m
<C> kY Py(H, =1 H,>H,)[C(kln)-Ck+1,1,n)

k=ny, I=n1

<CS kS P, (H, =1, H, > H,y) I (j — k)

k=ny1 I=n1
32 kom —(yn)2/2(k1)
nye ) _
<C Z k Z Py (H,, <1, Hy > Hy,) Vi Py,y(k_l):a/z (J—k) >
k=ny1 I=n1

(4.3.85)

using discrete integration by parts (and neglecting the boundary terms on
account of the reasoning behind Equation (4.3.75))). To estimate the above,
we now need to bound P, (H,, <!, H, > H,,). By the Markov property and
the bound |LL10, Proposition 2.4.5], we have that for some § > 0

Cle—Bmn)?/l
]Py (H"/n < l7 Hn > an) < IP)y (Hn > Hw) Pz (an < l) <—

oo
(4.3.86)
where the martingale argument from the proof of Proposition gives the

bound on P, (H, > H.,,). Inserting the above into Equation (4.3.85)) implies
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j/2
> P (Hy >k H, < H,)
k=n1
if2 k-m —(yn)?/2(k—1)
(ny)e= PR
oS Ry [ U=
k=n1 Il=n;
]/2 k—n1 n)2 /1 ( n)?/2(k—1)
<C

J/2 k—ny 5 n)? —7n) /2(k=1) o=B(yn) /1
< C/ / - kdldk
_ l)3/? ( k) /

1/2 k=ni/j o )?/2j(k=1) o=B(yn)?/(jl)
< Clyn)?j~ 1/2/ / o kdldk
ni/j =132 (1 = k)
< C(’Yn)2]_d/2 I/Qe—C(vn) /j7

(4.3.87)

using integration by parts. The factors of j72(k — 1)73/2 are neutralised by
the exponential. Furthermore observe that (1 — k)~%2 < 292 due to the
assumption that & < j/2. Integrating the above from n?f up to (yn)? with
respect to j gives the upper bound for £ < j/2.

Step 4b, Part II: it remains to analyse the case k € {j/2,...j}. The problem
is that for such k’s, the previously applied bound

E. [pi(Sk, 2)|Ho = k] < max pi(y, ), (4.3.88)

is not good enough, as [ is small with non-negligible mass. This would lead
to a blow-up in the penultimate line of Equation (4.3.87)). However, contrary
to the case that j > (yn)?, we cannot assume uniformity of the hitting time

anymore. We begin by bounding (as done previously)

PH, > k1, Sy =) < PEUHD. > h—1) 4 O ((]—) ) (1389)
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with n~ = n — ¢, log®(n), a > 0 to be determined later. We expand
i~/ 7B _ -
Pz],y (Hn* >k — l) - C(Zaj7l)

j—1
+ / dz / dtdP, (HZ. =t)dP, (B, = z|H) =t)pj—i(z,y) .
0B, k-1

(4.3.90)
Here, we use
C(z,4,1) =PI (HE >j—1). (4.3.91)
Let us firstly neglect the O <<3—£l> ) term and expand
J ' J k—nq
> P (Hy>kHy<H)<CY k> P,(H,=I H,>H,)
k=j/2 k=j/2 l=n1
x Y [PLMHE > k—1) - PLNHD > k+1-1)]
ze&iBﬂm
x P, (S ==2H,,=1,H,>H,,) .
(4.3.92)

We apply the same strategy as before: if k — dP/ /(H} = k — 1) varies
sufficiently slowly with £, we have that

(PIHD > k=1 —PNHE >k+1-1)) ~dP/))(H) =k—1).

(4.3.93)
To show that, we use that

dP/(HY =k —1) = / dP.(By1 = x, H =k —D)p; r(z,y) . (4.3.94)
OB

We now estimate the above quantity. Let, for 2 € 0B.,,, r = |z — n| and

t €[0,00), hf denote a function which can be bounded in the following way

Cq(z,t,n) if t > nr,
hr(z,t) < (4.3.95)

d-1 _.2 .
Chmze /B0 otherwise.

By [Uchll, Lemma 4.5], we can choose h! such that one has that for any
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a>0,t>0,§€0B,

P, [B(HP) € d¢, HP € di]
Usp, (d€)dt

=hi(z-&/a,t), (4.3.96)

where Uyp, is the uniform measure on 0B,. We apply it for a« = n~ and
t = k —[. In the following, set y = n, due to the rotational invariance of the
Brownian motion. We do a case distinction on whether k£ —1 is smaller or large
than yn?.

Case 1: we can apply Equation to find for r = |z - &/n~ — n”| we
have that in the case t = k — [ < yn?

j—1( 7B ¢ rnd! —r2/(2¢)
AP (H,- =k —1) < — et pik(E,y)de. (4.3.97)

We use that

9 1ag2
r= n\/fy2 +1—2vcos(h) + Q%h:lﬂ (cos(0) — 1) + %i(n)

. (4.3.98)

where 6 is not the angle between n and z - £&. Note that for m € Z we have
0 =0:+ 0, =0+ 0, + 2mm, where 0; is the angle between £ and n and 0, is
the angle between z and n. We can apply the angular identities to bound the

integrand

rnd—1

2
t1+d/26 /(2t)p]*k<€7y)

\/72 +1—2y cos(9z + 9§)nd e_cn2 [(724—1—2cos(0z+9€)>/t+(1—COS(95)>2/(j—k)]
t1+d/2<j _ k)d/Q
d

<C

Cyn

—Cn?|¥? [t+02 /(i —k)
§t1+d/2(j—k)d/2 [ ¢ ]

€

(4.3.99)
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Use a change of variables and approximate |sin(0)]|¢72 ~ |0]772 to get

n,ye—Cn272/t

ti+df2(j — k)d/2

— n? —Cn
o (55 o) e
= t1+d/2(j _ k)1/2

dP/J/(HP =k—1)<C / " gri-2=C0*/GR) g
B n — 0

(4.3.100)

Case 2: consider case yn? <t =k — [ < C(yn)?. In that case, we have that

for the rescaled parameters ¢ = t/n* and 2z’ = z/n that

2 1
7 € [va{lC}l} . (4.3.101)

Thus, we can apply |[Uchll, Theorem 2.2] (which gives uniformity of hitting

location) to conclude

C

nd—1

AP (B = €| HE =k 1) < pj—k(& y)dE (4.3.102)

Similarly to before, this allows us to bound

27 (j—F)
Vi—k
Cyn®~?y (% ﬁ) o—(rm)?/(20)

7\/kaﬁ/2 27((1—3)/2 :

e

) Gn(z,k — 1)

dPLN(H- =k —1) <
(4.3.103)

<

Using Equations (4.3.100) and (4.3.103|), we can see that by choosing o« > 0
(the polynomial scale from of the error from the coupling) sufficiently large,

we can absorb the error term into a fixed universal constant. Use the previous
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results to expand

J
> P (Hy >k, Hy, < Hy)

k=j/2
j k—m .
<SCY > kP (Hyy=1>H,)dP! ) (H,- =k—1)  (4.3.104)
k=j/2 l=n1
i k-m n)2e—BOm2/
<C k AP/ Y H,- =k —1).
kZJ;QlZ W T 7 )

Let us firstly treat the case that j € [ni_,’ynz]. In that case, we bound the
sum

Z Z 5}, [Hyn > Hy, > j/2]

o wiid i k_zm knd*1(7n)2efC(7n)2/l ny?y <%7 (jn_zk)> e=COm?/G=D
S jl/ 2 . 1+d .
_ /2(5 _ 1-\1/2
- ni‘ e i (yn)l (J = D" — k)
J o kem kpdtla2e=COm)?/Ly <% (ffk)) o= Clyn)?/ (1)

l2(] _ l)1+d/2(j _ k)1/2

<CZ 2. 2.

k=j/2 l=m1

n2/+2y / dj/ dk;/ di
1/2
/232 <%7 (lzk)> o= Ci(Im =)
12(1 — 1)1Hd2(] — k)1/2 ’

(4.3.105)

X

where we can bound the integral by a universal constant, not depending on ~.
Now assume that j € [n?y, (ny)?] (and thus implicitly that v > 1). As we
have to different bounds for d P’ yl, we bound that term by the sum of the two
(previously) proven bounds. For the ease of reading, we suppress this in the

next two equations and simply treat each term separately.
Let us firstly employ the bound from Equation (4.3.103)), using that the lower
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incomplete Gamma function can be bounded by a finite constant in that case

(yn)?

> > B, [Hyw > Hy > j—n?/2]

j=n? y€d; B,

n)? v nd—1+2-d+1 —Cn2(l*1+(j—l)*1)
<0/ dj/ dk:/ di IE (4.3.106)
i/2 (J = D)32yla=9)/2

2—}—21/

<C————=73
~y(d=4r=5)/2
which can be seen after the following changes of variables: | — ki, then k — jk
and finally j — n?j. If we use the bound from Equation (4.3.100)), we get that

by the same change of variables

(yn)?

> > B, [Hy > Hy > j—n?/2]

j=yn? y€0d; B,

~n)? kjund 142, —Cn2 (17 +(j—1) 1) (4.3.107)
<0/ v /zd"”/ V(=R = T

<Cn 2+21/,73 d+21/'

Collecting the bounds from Step 3, Step 4a and Step 4b finishes the proof. [
A bound like the one we proved in the theorem above is essential to
renormalisation arguments (see [CS16,[DCRT18]). We apply it in Chapter [f]

to make statements about the connected component of the loop soup.
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Chapter 5

Properties of the occupation

field

In this chapter we characterise important features of the occupation field. We
begin by giving the scaling limit of the two-point function and then generalise
the result to correlation functions of arbitrary order. We also give scaling lim-
its for the moments of the occupation field. We then analyse the divergence
in two dimensions before giving scaling results on the probability of observing
large vacant sets.

Similar to the previous chapter, we restrict ourselves to the discrete-time loop
measure M® = 37 > a;P)  and g(z,1) = 0. Continuous-time results follow
analogously.

Throughout the whole chapter, we observe the advantages of the method
(rewriting events in terms of the range) developed in the previous chapter:
not only do our proofs work for the Bosonic and the Markovian loop measure
alike but we also obtain quantitative estimates and precise scaling limits for

many different expressions.

5.1 The two-point function

In the next proposition, we prove sharp asymptotics for the two-point corre-

lation function v, where
oz, y) =Pr(x eU,yeU) —Pr(x eU)Py(y eU) . (5.1.1)
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Recall that P} is the PPP with intensity measure AM“. As M* is fixed in the

entire chapter, we omit the superscript ¢ from the notation.

Proposition 5.1.1. We have that the two-point function Vy(x,y) is given by

Yo(z,y) =Pr(xelU,yeU) —Py(x eU)Py (y € U)

; . 5.1.2
_ e—2>\2j21“j]E0,0[Rj] [exp (AZCLJE{),O[RW H, < j]) — 1] . ( )

j>1

Ford>3,A>0,v<d—3 anda; = j"(1+0(1)), we have that as |x—y| — 0o

Vo(x,y) = Ae2K g, |y — 2|57 2 e i (1 4 0(1)) (5.1.3)
with . .
Kq, = / j2d+u/ pr(i )Pk () dk dy (5.1.4)
0 0
and
K, =3 B[R], (5.15)
j>1

If d=2 and a; = 3" 1og(j)(1 4+ o(1)) we have that for v < —1

Po(x,y) = e M Nz — y|* 2 log(|z — yl)
/ / pr (1/3/7) p1- k(l/\/_)dkdj(Ho(l))_
log®(kjlz — y[?)

(5.1.6)

An estimation of the integral reveals that the leading-order of the above expres-

sion is given by |z — y|*+t?log ™ (Jz — yl).
Remark 5.1.2. 1. Higher-order correlations are given in Proposition|5.2.1].

II. The main difficulty in the proof consists in controlling Eﬁyo R;, H, < jl
uniformly over lengths 7. With the analysis provided in the proof be-
low, we can get an asymptotic expression for a wide range of different

sequences (a;j);. We summarise this in a separate statement, see Propo-
sition [1.2.3.

II1. 1t is interesting to note that for d > 3 the expression in Equation ((5.1.2))
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gives the correct asymptotical behaviour (up to a multiplicative constant)
by employing the crude bounds R,, < n and Po(H, = k) < pr(x).

IV. In [LJ11], closed form expressions for the correlation functions are also
given. From those, one can compute the asymptotics more directly (also
compare [CS16, Lemma 2.5]). However, our approach also works for loop
measures where no closed from expressions exists, and thus we follow our

approach.

Proof of Proposition [5.1.1 Note that due to translation invariance
Vo(z,y) =P (x ¢ U,y ¢ U) — Py (x ¢ U)* . (5.1.7)

Let us assume without loss of generality that y = 0. We have that by the
properties of the PPP that

Py(x ¢U,0¢U) =exp(—AM*[{0,z} Nw # 2]) . (5.1.8)

We can rewrite

M [{0,2} Cwl=> > aP} (H, <j, Hy < j)

yezd j>1
= > > 4Py (He < j, H, <)
yezd j>1
(5.1.9)
=Y @B | {H, <j} D Hy<j
j=1 yeZd
= ZCLJE&O (R, Hy < j] -
i1
Similarly, one finds
M 0ew]=> aF,[R;]=K],. (5.1.10)
i1

The proof of the first statement (i.e. Equation (5.1.2))) of Proposition now
follows from applying the inclusion-exclusion principle to Equation ([5.1.8)):

Me[{0, 2} Nw # 2] = 2M°[0 € w] — M*[{0,2} C w].
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We now prove the asymptotic expression of the two-point function, beginning

with the case d > 3. To accomplish this, we need to analyse

> aE, Ry Hy < 4] (5.1.11)

jz1
Note that, similarly to the proof of Proposition [4.2.2, the sum over j < |z[>/? is
negligible. Our strategy is as follows: we first show that we can neglect loops
of short length. For loops of typical length, we then use the precise asymptotic
results on the first hitting time of single points from Lemma [2.2.2]
Fix ¢ > 0. For j > |2[>/® one has R; < (1 + ¢)kqj outside a set of negligible
probability, similar to the proof of Proposition Thus, it holds

> B[Ry, Hy < j] < ka(l4e) Y ajPly(H, <j).  (5.1.12)

>x|5/3 2>/

Fix M > 1. Lemma [2.2.2] gives us the bound

B, (H, < j) < Cj*P), (H, < j) < Clz|*T(d/2 - 1,|z>7). (5.1.13)

Thus,
|2|?/M |z|2/M
: C d—2 |z|?
Z i : v Z A—d/24vp (@ T4 T
anIP)O,O (Hx < .]) S |l’|d72 J F ( 2 9 ]
j=|x[>/3 j=lx[3/3
/M a2/ M 5.1.14)
C 3—d+v —|z|?/5 c 3—d+v |z|2/5 1, ( o
< B > e < —MQ/ J e dj
j=laf?/3 °

< Oz|* 2 (d 4 v, M),

using Lemma for the asymptotics of the incomplete Gamma function.
By Lemma [2.2.2 we have that for j > |z|*/M

1

Pl (H, < ) =raj~ " (14 o(1)) /

i Pk (W\/E) P1-k (1’/\/5) dk
+ O (jd+1 /Ol/M P (x/\/D Pi_k (x/ﬂ) dk) )

(5.1.15)
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Using similar approximation arguments to those employed in the proof of
Proposition and the change of variables j — j|z|?, we write

1
DD Pz )1k (i~ ?)dk

i>lel2/M /M
0 1
= [ e (e R (14 o(1)
|2 /M 1/M
o0 1
_ |x|6+2u—2d/ j2—d+u pk<j—1/2)p1_k(j—l/2)dk,dj (1 +0(1)) ]
1/M 1/M
(5.1.16)
To summarise, we have shown that
> 4 [Ry, Hy < ]
J>|]5/3
o) 1
S (1 _|_ €>K(21|$|6+2V—2d/ j2—d+l// pk(j_l/Q)pl—k(j_l/Q)dkj dj
1/M 1/M
+ O (|2 70(d + v, M)) .
(5.1.17)

Note that we can get the analogous lower bound, replacing (1 +¢) by (1 —¢).
Taking M — oo and € | 0 finishes the proof for d > 3.

We now treat the case d = 2. The first part is analogous to the proof of
Proposition [£.2.2} fix § > 0 and

|

7 Tog (log” (2))

(5.1.18)

We then expand

i JZ|2V+2 )
a-E%O[R-,Hx<j]:(9< |c )+ a; B[Ry, He < j] ,
Z v log“™2(|]) 2 B[R,

j>w1

(5.1.19)

for some ¢ > 0. Choose 6 > 0 such that dc/2 > 1. Fix € > 0 and partition the
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remaining sum

> B[Ry Ho < jl < (1+6) > arPhy (H, < j)

Jjzx1 j>x

+ > 3P (0)10g()O (B o [R, [R; —ry| = ery]) -

Jj>x1

(5.1.20)

Using Lemma @4.1.1| to bound IB%%’O R;, |R; —r;| > erj] by O ( W), we

have

S og()O (Bl [Ry, Ry — 15| > ergl) <€ 3 5 M

j log®(j
= sz (5.1.21)
Clogg(log(lx\)) [+ ( || 242 )
> v =0\ —%7—7— .
log®(|z[)  log”™" (log’(|z])) log®(|])
We now analyse
Z ajriPho (Hy < ) . (5.1.22)

j>z

We get two contributions to IP’&O (H, < j) from Lemma [2.2.2 a leading-order

term and an error term. Let us begin with the error term:

@ <j—1 /0|x|2/j10g(|x“> pi (2/v/7) w1 (2//5) dk) . (5.1.23)

Recall that a; ~ j”log(j) and that r; ~ j/log(j). We estimate

ZJ”+1@< /xP/jlog(xP-P) o (90/\/3> - (f’?/\/D dk)

j>x1

00 |z|2 /5 log(|z[2~*)
< C/ jV/ Pr <33/\/3> Pk (w/\/;) dkdj
T 0
oo 1/5log(|z|>~*)
<capr [ g pe (1//7) dkdj
z1/|z|? 0

< Claf** / T (O Jor (2P 77)dj < Clal? ™ log™( g )
(5.1.24)

We recall that p > 0 can be chosen arbitrarily small and we have used the
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asymptotics of the incomplete Gamma function from Lemma [8.3.3|
Having estimated the error term, we turn our attention to the main contribu-
tion to ]P%,o (H, < j), calculated in Lemma m

4 loglz| [* pr (2/V/7) p1- k(x/\/_)

J 212/ log(ja=#) log? (k) (5.1.25)
Estimate
[ b (V) pis (VD)
g;] sl |)/|xz/jlog<|z2—P> log? (k)
:/Ooj gl [ i (I/{) P (2/V3) g1y 4 o)
[@[2/j log(|2~) 0g®(kj)
22 el pr (1/v7) prw (1/V7) .,
o el |/m/x|2 //Jlog EE) log?(kjlz/|?) Ak(1 +o(1))
_|x|2+2"10g|x|/ / i 1/122; z;‘;<)/\/‘7)dk(1+o(1)),
(5.1.26)

where similar arguments as in the proof of Proposition imply that the
sum over j can be approximated by an integral. A quick computation reveals
that for p > 0 small enough, the estimate obtained in Equation is o(1)
of the above. By letting € > 0 tend to zero, we show the right upper bound.
The lower bound is then established analogously. This finishes the proof. [J

We give the analogue for the Bosonic loop measure.

Corollary 5.1.3. If pn < 0 and 8 > 0 we have that for the Bosonic Loop soup
PP (zel,yel) =2 (z,y) <O (e /W=y | (5.1.27)

where f(u) increases as p | —oo. This implies that correlations decay expo-
nentially fast.
If d > 3 and p = 0 we have that for fized 5 > 0

UB(,5) = MKy 1 — |20 s (14 o(1)) (5.1.28)
where Kg 5 = Zj>1]_1]E’8] [Rg;] and the error term depends on 5.
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Note that as 5 1 co, we have that

)-d/2
Kip =1+ oll))kaf Z m ZC = 526 (14 0(1) . (5.1.20)

Transitions from an exponential decay to a power law decay are often referred
to as BKT transitions, see [KT73,[F'S81].

5.2 Higher-order correlations

In order to deal with higher-order correlations of the loop soup, we need ad-
ditional notation. We abbreviate {1,...,n} by [n] in this section. Let 9B,, be
the set of all partitions of [n] into non-empty subsets. For I € B, a partition,
we set |I] to be the number of (disjoint) blocks (I; )‘ |1 in I.

The higher-order analogue of the covariance 1y(x,y) is the cumulant. Let
n>2and xq,...,2, € Z% and define the cumulant 1,

Un(r, . zn) = > (DI = D) [ Pazeu,Viel) . (5.21)

1€, Lel

For I C [n], abbreviate
M[I|=M[{z;: jel} Cuw]. (5.2.2)

For J C [n] shorten the inclusion-exclusion formula without singletons

A=) (=) MT) . (5.2.3)

i>2 IcJ
- |1|=i

Let &, be the set of permutations of n points. Define &! be the set of

permutations which map 1 onto 1 and only have two cycles, i.e.

&) ={0€6,:0(1) =1 and ¢ has two cycles }. (5.2.4)
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Define for a,b € R? and ¢, j > 0, the rescaled kernel

- a b
pi(a,b) =p (—.,—.) . 5.2.5
t( ) t \/j \/j ( )
Let for y1,...,y, € R and d > 3
0o ' n—1 '
2 (3/1, cee ,yn) = / jmdn/Q/A P{_Zi t; (yn, 1/1) H Pgi (ym yz’+1) d(ti)i dj,
0 n—1 i=1

(5.2.6)
where Ay, = {t € [0,00)*: ¥ t; <1} for k € N. For d =2 and N > 0, set

@(yla"'ayn>
00 n—1 j
_ -Vn—dn/2/ J pti (yiayH—l) N s
= J Pios o, (Uns 41) : ti)idj .
/0 Ay il }_[1 log®(tijN?|y; — yis1]?)
(5.2.7)
For y1,...,yn € R and d > 2 let

T(ylv"'vyn) = Z Qp(yo'(l)w"?ya(n)) . (528)

ceG)
We now state the main result of this section.

Proposition 5.2.1. Let n > 3 and x1,...,x, € Z%. We then have that for
I ={ig,... ix}

MU =B, o [RisHay < oo Hay <30 (5.29)

Jj=1

and

wn(xl, o 7$n) — o AnM[1] (Z (_1)|1\*1(|[’ _ 1)!6721161 Al(Ii)> _ (5'2'10)

1ePn

Fiz Cy,Cy > 0. Consider distinct yy, . .., y, € R? satisfying

0 < Cy <suply; —y;| < Cs 1I;2f|yZ —yl < Crt. (5.2.11)
i i7]

119



Pick x; € Z such that x; = N(y; + o(1)). Suppose that a; = 7 (14 o(1))
with v < —1 and d > 3. We then have that (uniformly in y)

Vn(T1, . w0) = Agn Y (Y1, ooy yn) N2T2C=D (1 4 o(1)) (5.2.12)

with
Agp = M—=1)"xneAnMIL (5.2.13)

)

If d=2 and a; = 5" 1og(j) (1 + o(1)) with v < —1, we then have that
77ZJn(:L‘17 c e 7$n) = AQ,TLT (y17 s ayn) N2+2V logn<N) (1 + 0(1)) ; (5214)

with
Ay = M=1)"ze MU (5.2.15)

)

Remark 5.2.2. Similar to the case n = 2, we need to analyse

El o (Rjy Hey <3y, Hyy < 5] (5.2.16)

Z1,T1

However, for n > 3 a different reasoning must be used. Several combinato-
rial estimates are needed to prove a cancellation of lower order terms in the
expansion of the exponential in Equation (5.2.10). Similar to previously, the

analysis allows for a wide range of sequences (a;);, which we state separately
in Proposition [5.2.5

Proof of Proposition [5.2.1, To show that

M1 =Y /B [Rj,Hmil <o H, < j] , (5.2.17)

Tig»Tig
Jj=1

one uses a similar reasoning to the case |I| = 2, i.e. Proposition .

The remaining proof is split into three steps. We first obtain an abstract
representation of the cumulant 1, in terms of products of M[I]’s (for I C [n])
and then devise the precise asymptotics for M[I]. In the final step we use the
assumption ¥ < —1 and combine the results from the two previous steps.
Step 1: combinatorial identities

We now prove Equation ([5.2.10). Note that since the cumulant is invariant
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under adding constants, we have that

]

Un(ar, ) = > (=) (1] = 1)!1‘[1@A (z; U Y€ L), (5218)

IePn

where we work with an arbitrary ordering on the I;’s in *J3,,. Note that by the
fundamental properties of the PPP

IED)\ (.Z'j §§Z/{, VJ < IZ> = exXp (—)\M [3] € [z Z; < W]) . (5219)

By the inclusion-exclusion formula and the translation invariance of M, we
have that

MEjeliaew)=> (1)) M[L]. (5.2.20)
r>1 Icr;
- | I|=r
and thus

where we recall that A;([;) is the inclusion-exclusion formula without the sin-

gletons, defined in Equation (5.2.3)).
Inserting Equation ([5.2.21)) into Equation ([5.2.18]) gives the abstract represen-

tation stated in Equation (5.2.10)).

Now expand the exponential and use the alternating combinatorial factor of
(—=D)II=1(|I] — 1)! to cancel a large proportion of the M[J]’s, for J C [n]. We
begin by setting up some new notation. For an illustration see Figure [5.1]

For (J;)¥_, subsets of [n], we abbreviate

M|[J, k] = (H(—l)'J‘l)\M[Ji]) : (5.2.22)

=1

Given a collection (J;);_;, we introduce (J;)j_; where J; are the connected (in
this context we say J; connected to J,. if J; N J, # &) components of U;J;
and 7T is the number of disjoint connected components. Let ©: {1,...,n} —
{1,...,T} with ©(:) = j whenever J; C J,. Given a partition I = {[y,..., .}
and J C [n], we write J < [ if there exists an ¢ € [r] such that J C I,
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i.e. J is fully contained in one of the blocks of the partition. Expanding the

Figure 5.1: The coloured lines represent subsets J;, the dashed lines are the
boundaries of the Jg(;)’s. Here k = 4, T' = 2 and m = 3, as there are 4 J;’s, 2
Je()’s and 3 points are not contained in any of the J;’s.

exponential, we get that

D (DI (] = Dt e 0

1€y,
. k
_Z(_ H=1(r) - lZi )‘ZA
- 1 1
Iep, k=0 Lel
k+\I| 1 |]| _ 1 |I| :
-y ~)VEIAMNL{J € 1}
IeP, k=0 i= 1 JC[n]
k
k: I 1
JC[n]

M aM

PR
o~ k+\[| 1 I
kz | | -

> ML EL{J; < 1, Vi€ [k]},
(5.2.23)

since J < [ being true is equivalent to the sum of the indicator functions

1{J C I;} being one. All sets J; are understood to have at least two elements.
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Let m be the number of points in [n] not contained in any of the J;’s, i.e.

Recall that S(n, k) are the Stirling numbers of second kind, i.e. the number

of ways to partition [n] into & non-empty subsets. Fix k£ € N and expand

m+T
S MIEDY (D)= Y M <, Vi€ [K]}
J1se s JpCn) r=1 ﬁiﬁ
m~+T
= > MY ()T =D HJen < I, Vie K]} (5.2.25)
J1yee JeCn) r=1 ﬁqi,:
m+T
= > MK (1) = DIS(m+T,r).
Jise JeCn) r=1

)

Indeed, ”collapse ” each {Jo(;)}i; onto a single point. This gives a total of
m + T points. Since we partition those into r subsets, this gives S(m + T, r),
compare also Figure [5.1

Note that by [AS65| p.825]

mz (=) r = DIS(m+T,r) = 6:(T +m). (5.2.26)

r=1

Write B¥(n) for all the subsets Ji, ..., Ji such that m + T = 1. By the above

cancellation, we can expand

00 Nk
¢n(x1a--->xn):e_nAM[l]Z(kll) Y. MK (5.2.27)

1 Ji,, J€BE(N)

This concludes the expansion.

Step 2: analysis of M[I]

We can assume without loss of generality that I = [n]. We restrict ourselves
to the case d > 3, as the case d = 2 follows by using reasoning from the cases
d=2,n=2andd>3,n > 3.

We use the following approach: suppose that the random loop (started at x)
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hits the points xs, ..., z,. Then partition that event by specifying the order in
which the points are hit. This leads to a sum over &.. We then show that the
probability of going from a point ; to a point x; without hitting any other x;
(for ¢ # j # 1) is dominated by going from x; to x; (due to restrictions placed
n (yi)i)-
We begin by excluding a certain class of loop lengths, similar to previous
proofs. Set H;, = H,, and
N2
Ny, = m, (5.2.28)

for some C' > 0 sufficiently large such that

Ny n
Z%]thml <U{HZ < j}) =0 (N2+2u+n(2—d)) ' (5‘2‘29)
j=1 i=2

The existence of such a C' > 0 follows from the same reasoning which is used
in the proof of Proposition or Theorem [4.3.1]

Let us assume that 7 > N;. Similar to previous proofs, we approximate

B, o [Rjy Ha < gy Hy < j) =1 (U{H <]}> (1+0(1)), (5.2.30)

where we recall that r; is the expected range of the random walk bridge of

length 7. We then need to estimate
Z aJTJ x1 T1 (U{H < ]}) (5231)
j>N1

We do a case distinction by summing over all the different orders in which the

points (x;); can be hit: expand the different permutations of zo, ..., z,

x1,:v1 (U{H <]}> Z]ijlxl H <H0l+1,‘v’ :2,,71—]_) .

ceGl

(5.2.32)
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Figure 5.2: The solid line is a random walk starting from z, then hitting xs
and then x3. The dashed line represents a realisation of the event Fy: the
point x4 has been hit before xs.

We use the (strong) Markov property and recursively decouple

Pi . (H, < H,

x1,T1

o Vi=2,...,n—1)
= Z ]P)Zm,ml (ti—leai <H0’i+1 =, ‘v’2:2,,n—1)

0<t] sty —1<J
tide Attty _1<j

n—1
= Z pjfziti(xanv xl) H de(i> (Ha(i+1) = tz > Ho'(j)7 \V/.] > 1+ 1) .
0<ty ety 1<j =1

t1tetty_1<5

(5.2.33)

Let E; be the event that, for v > ¢ 4 1, we hit a point x,(y before hitting

To(it1), 1-€.

Ei = {Hg(i_’_l) = tz and dr € {Z+2,,n};|t S {0,,tz} HU(T) = t} .
(5.2.34)
For an illustration of the event E; in the case ¢ = Id, see Figure

We can then subtract

(Ho(iv1) = ti > Hy(j), Vi > i+ 1) =Py (Hoir1) = ti) — Pa,, (Ei) .
(5.2.35)

o (i)
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Thus, we get the expansion

H]P To(s) a(1+1 =1; > H () Vj >i+1 H P, T (i) a(1+1 tz)

o Z |I| (HP rr(J) ) HP a(J) o(j+1) tj)
,1}

Ic{1,..., el I
P J Jg

(5.2.36)

The intuition is as follows: the probability of E; is of lower order than the
one of {Hy(;41y) = t;}. This is because E; requires hitting an additional one of
the x;’s. Thus, only the first term on the right-hand side in Equation ([5.2.36))
remains in the limit. We make this rigorous below.

Let us evaluate P, (E;). Note that by the same reasoning applied above,
we use t; > N;. This allows us to approximate the random walk transition
density. We bound

t;

Proiy (B3) < max 3 oty o), {oti Foti+n)

1
< Ct;™' max / t=42(1 — )42
re{i+2,...,n} Jo

1 (|2oG) = Tow)®  |Totr) = To(4p)l?
57 dt

(5.2.37)

=err(t;),
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by the change of variables ¢ — ¢;¢. Note that

Z Dj-3t: (x0n7$1)P$g<1)(E1) (H ]P)xg(j)(HG(jJrl) = tj))

Ni<t1,otp_1<j j#1
£+ Aty _1<i—Np

< C/ (H P (xa(j),xg(j+1))> pi—s, (%o, , z1)err(t)d(t:);
tde b1 <]

J#1
< C’j(d—l)—(n—l)d/2/ (H pi, («Tg(j)j_l/27«Tg(j+1)j_1/2)> Py s (xon,lﬁ)
Anot \jAL
X err(tlj) d(tz)Z

=Er(l,5).
(5.2.38)
This leads to the following asymptotics
Pzﬁl,wl (Hg(g) < ... < Hg(n))
n—1
= > pimalae.en) [[Pe (Hown = t) + O (Ex(1,5)) .
N1<t1,...tn_1<j =1
ty ottty 1<j—Np
(5.2.39)

Let M > 1 be large. For ¢; > N?/M, we have that by [Uch11, Theorem 1.7]

Py (Ho@sry = 1) = Kabr, (Toi), o) (1 +Oum (N79)) (5.2.40)
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We then have that, approximating the sum by an integral,

n—1
Z pj*zitz(xﬂna xl) H ]P)xa(i) (Ho(i+1) = tz)

ittty 1 <j =1
It >N2/M
n—1
= Z “3_1%’*21- ti<x0'n7 1‘1) H Pt (mﬂ(i% :BU(Z'+1)> (1 + 0O (N_d))
ittty 1<j =1
61> N2 /M
n—1
n—1
= [ e ) [ P e () (14 o1)
[t;|>N2/M =1
_ K;L—lj(n—l)—nd/2
n—1
X / Py o, (Yo N, 51 N) (H p1, (o) N, ya(i-i-l)N)) d(t:)i (1 +o(1)).
Ap—1 i i—1 !
t;>1/M =

(5.2.41)

We also estimate (we assume ¢; > N; in the first two lines) the error term

n—1

Z pj—Zi ti ($gn7l'1) H]P)aca(i> (Ha(i—i-l) = z)

t14. oty _1<d =1
lts|<N2/M

n—1

<C > iy @en ) [] (@t Togiin)

ittty _1<d =1
lts|<N2/M

Ap
t;<1/M

n—1
S Cj(n_l)_nd/Q / ) le_zl ti(yO'nN7 le) (H piz (yc(i)Na ya(i-i—l)N)) d(tz)z .
i=1

(5.2.42)
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We have (ignoring the (14 o(1)) term to aid legibility) that

Z CL]’I“]]n 1— dn/? n 1/A pjl'fziti(yU"N’le)

J>N1 ti:?£;i4
n—1
X H Py, (ya(i)Na Z/a(i+1)N) d(t;);
i=1
:/ dj a;rj"~ l—dn/2 . K1 1/A p{—Z-ti(yU"N’ y1N)
N- n—1 i
! t;>1/M
n—1 '
X H Pgi (ya(i)Na ya(i-l—l)N) d(ti)i
i=1
= gy NP2 d)/ o N p{_zi +,(Yos Y1)
0 > 1/M

n—1
X Hpii (ya(i)a ya(i-l—l)) d(t;);dj.
i=1
(5.2.43)

The result follows by observing that the (error) term containing O (Er(1, 7))

is of lower order and by letting M — oco. To summarise, we have that

M {1, 2} € W] = wENT2HCD Y To (o), o) (14 0(1)) -

ceG)

(5.2.44)

Step 3: conclusion
Fix k € N and, for i € [k], choose sets J; C [n]. Write |J| = |Ji| + ...+ |Jk]
and fix d > 3. We then have by the second step

MI[J k] = (ﬁ(—l)'Jl)\M[J,-]> ~ NE(=1)VI=k N2+ (5 9 45)

i=1

We examine for which & and (J;); the exponent is maximised, under the con-
dition that Ji,...,J; € PB(n), see Equation (5.2.27). Ji,...,Jy € BF(n)
implies that |J| > n. For k = 1, this implies that J; = [n]. As for k > 2, a
collection Jy, ..., J; € B¥(n) has to have non-zero intersection, we can con-

clude |J| > n for k > 1. Thus, J; = [n| and k¥ = 1 maximise the exponent in
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Equation (5.2.45)). This implies that

3 (=" > MLE] = (—rg\)" N2 (g ) (140(1)).

(5.2.46)

This finishes the proof in the case d > 3. For d = 2, the same reasoning
applies. ]
Similar to previous results, we can give a more general version of the

above result. As the proof is similar, we omit it.

Proposition 5.2.3. I. Suppose (aj); satisfies a; > Cj=" for some vy >
—00, C' > 0 and the x;’s are as in Proposition|5.2.1. We then have that

Mlz; e w, Vie{l,....,n}] = (1+0(1 ”1zzajrjjn1dn/2

j=1 oceB}

n—1
X / Py 6 (Yo N, 41 N) <H e, (Yo N, yo(i—i—l)N)) d(t:):,
Anfl

i=1

(5.2.47)

where in the case d = 2 we need to add log™> (t;5) to each factor in the

product. In the case that d = 2 we furthermore need that

3 0,/ Log” (loa (me) , (5.2.48)

o log’l) o

for ny = N?/log (log®(N)) with € > 0.

II. Suppose that for any sets (Ix)x, J C [n] we have that

HM [Ix] = o(M[J]) if |UeLi| > |J]. (5.2.49)

We then have that
U@y, .. xn) = AM{1, ..., n}(=1)"e MU (1 4+ 0(1)).  (5.2.50)

Note that the cumulant uniquely determines the distribution. For the

Bosonic loop measure, analogous statements to the above proposition hold.

130



5.3 The occupation field

Similar to Proposition [5.2.1) we can completely characterise the distribution
of the occupation field in the limit. Due to the similarity in the proof, we
only write out the parts where the proofs differ. Similarly to the correlation
functions, the distribution of the moments of the occupation field have been

studied in [LJ11] for the Markovian loop soup.

Proposition 5.3.1. Let x,...,x, and yy,...,y, as in Proposition|5.2.1. Let
aj = 3" (1+0(1)) for d >3 and a; = j"log(j) (1 + o(1)) for d =2. We then
have that joint cumulant of the family (L), is given by

KdN4+2u+n(2—d)—d@(yh Ly (L +o(1), (5.3.1)

where

= > -v+14n—d(n+1)/2 - )
90(y1, ce - :yn) = / J Fn—dnt1)/ / dth‘gg-(i) (ya(i)>ya(i+1)) ) (532)
0 01" o
where for t € [0,1]" we set o such that toq1) < ... < towmy. Furthermore, we
set 0(0) =o(n+1) =1.

Proof of Proposition [5.3.1.  First, note that

M [ﬁ L, | = Z B .
=1

J=z1

RjHin] : (5.3.3)
i=1

using by now well-known arguments. The computation of the asymptotics
follows the same strategy as in the proof of Proposition from there on.
Note that for I C [n]

E, (5.3.4)

- I . om0
H @; —m A e ]

icl v

We can use Campbell’s formula to compute E [e’“”a] in terms of M [1 — e*<”’L>] )

A multivariate version of Faa di Bruno’s formula (e.g. [Har06]) then shows that
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the joint cumulant of the family (£,,)7_, is given by

M [H in] . (5.3.5)
i=1
Together with the asymptotics this implies the main result and thus finishes

the sketch of the proof. n

Remark 5.3.2. A version of the above result for more general sequences (a;);,
similar to Proposition [5.2.5, can be given. As the conditions should be clear

by now, we leave it to the reader.

The above result could serve as an important tool for any cluster ex-

pansion for a loop soup with interaction.

5.4 Divergence in two dimensions

By Lemma , we have that for d = 2 and a; = 1/j, every vertex in Z?
is covered by at least one loop. In this section we explore the speed of this
occupation by approximating the loop measure with a; = 1/5.

We restrict the lengths of the loops: for T' > 0, let

T
MT=>") 11@;':@. (5.4.1)
€72 j=1 J

Let P1 be the PPP process with intensity measure AM7T. We then have the

following limiting behaviour.

Proposition 5.4.1. We have that

| A\
lim —— logPT S 4.2
M ogog) 08T (0 €4) = —3 (54.2)

This shows that the divergence occurs at a very slow speed.

Proof of Proposition [5.4.1]  We use the fundamental property of the PPP
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to write
P (0 ¢ U) =exp (—AM" [0 € w]) = exp (—)\Z %EédRﬂ) . (5.4.3)

By |[HamO06, Theorem 2.2] we have that the logarithm of the above is equal to

T

AY (101 loglog()) + O(1). (5.4.4)

= 2jlog(4)

Indeed, B%7O[Rj] =mj/log(7) (1 + O (1/loglog(j))) and thus the above follows
by approximating p,;(0) by p,;(0). Note that for f(j) = 1/(jlog(j)) one has
that

1

Pf(H =0 (—) , 5.4.5
9270 = © (77055 (5.45)

and thus by [LL10, Lemma A.1.1] one has that

S| 171
——— (1 +0(1/loglog(j :—/ _ —dj +C +0(1/T?%)
JZ:; 2jlog(j) ( o =3, ; log(3) (/")
(5.4.6)
where the constant C' is uniformly bounded in 7. By computing the integral,
we get that
A

loglPy (0 ¢ U) = ) loglog(T) + O(1). (5.4.7)
This concludes the proof. O

We can also analyse the divergence of the expectation of the occupation

field. Due to the similarity of the proof, we have chosen to omit it.

Proposition 5.4.2. We have that asymptotically

A
lim

1 T B
Jim o ol = 5 (5.4.8)

5.5 Vacant sets

It is increasingly unlikely to observe a large unoccupied region of the space.
We derive a precise limit for /*°-boxes, as their symmetry corresponds to the

random walk. We make this precise later.
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Proposition 5.5.1. Let B® = {z € Z%: |z|oo < n}. Furthermore, assume

—d/2

that a;j~%*r; is summable (see beginning of Chapterfor a definition of r;).

We then have the following limit

1
lim ———<log P\ (B} NC = ) ==X a;p;(0) =-ACF.  (55.1)

n—o00 (2n + ) o1

Furthermore, we can even get the next order term

_ (logP\ (By? NU = @)+A(2n + 1)4C5°) . -
Jm N2n 1 )i =24 ) aBho [Ry] = ~DF

Jj=1

where H is the first time the random walk hits the half space {x € Z¢: 20

03\ {0}.

Proof of Proposition [5.5.1. Note that by the fundamental properties of
the PPP we have that

loglP\ (B’ ¢ U) = =AM [wN B;X # 2] . (5.5.3)
Let H:° be the hitting time of B, . We expand

M[wﬂB?%@]:ZZ% o [HY < gl

zezd j>1

— Z Zaj H°°<]—|—ZZaJpJ
x€ZN\BX j2>1 r€B j>1

= Z Z aj]E;J [RHgo(x)} + (2n +1)¢ Z a;p;(0)
2€IBX j>1 j>1

(5.5.4)

where H:°(z) is the first time of hitting B;° \ {#}. We can bound the first

term

Z Za] RHoo x) Z Zaj <C’nd IZajj_d/er.

z€0B° j>1 xe@B?Lo j>1 7j>1
(5.5.5)

Thus, dividing by (2n + 1)¢ and taking the limit as n — oo shows the first
part of Proposition [5.5.1}
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Figure 5.3: The (black) square is 0B, the red subset is 0B, , with ; = 2.
Hitting the blue line corresponds to H(z), for  in the horizontal part of
OB,

We now prove the second statement, the characterisation of the second order

term. Fix € > 0 and choose M > 0 large enough such that

Z Z a; B [Ruse(n)] < e/4, (5.5.6)

for n sufficiently large. Let 1 > €; > 0 and define B, as follows

OBy ={r € 0By :Viec{l,...,d}Vj € {=1,+1}: |z — jneio > e1n},
(5.5.7)
where we recall that (e;)%, are the standard basis vectors in Z¢. For an illus-
tration of B, in two dimensions, see Figure [5.3 . Choose 1 > 0 sufficiently

small such that

ndl—l Z Zag [Ruse@)]| <e/4. (5.5.8)

2€OBX\OBX

n,eq

This is possible as 0B, | ~ ein®'. For x € 9By, let

H(z) =inf{n >1: |SY| < n}, (5.5.9)

where S% is the i-th coordinate of S, and 7 is the unique coordinate such that
|z®| = n. Note that for z € 9B;°. we have that bound

]P’g},vx <I~{(£B) # Hff’(x)) < ]P’zw ( sup |z — Si| > 51n> : (5.5.10)

0<k<n

As the above goes exponentially fast to zero uniformly in z € B, , we can
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write

Y Y ek Rupel - AL S S0 (R

xeaBn - j=1 x€0B° - j=1
(5.5.11)
Choose n sufficiently large such that the o(1) term is smaller than £/4. By

symmetry, we have that

IE;J: [Rﬁ(x)} = E%,o [RH(O)} ’ (5.5.12)

and thus

My

My
> > e [Riy| = 24201 = &) + )Y oo Ry
j=1

z€dBY., j=1
(5.5.13)
By further increasing M; and using the triangle inequality, we have shown
that

M,
Z Z a; ], [Ruse] — 2d(2n + 1) Z aj]Eg),o [RH(O)} < ent?
2€OBX j>1 j=1
(5.5.14)
This concludes the proof. O

Remark 5.5.2. The volume order limit in Proposition holds true more

generally: given a sequence of connected sets (A,), which is strictly increasing
and satisfies |0A,| = o(|A,|), we have

lim . |10gIF’,\(A NU=2)=-\CF. (5.5.15)

For the second order term, we need some knowledge of the "scaling limit” of
the geometry of 0A,,. In the case of B’

thus compute the second order limat.

it scales to the half space and we can

n ’
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Chapter 6
Loop percolation

In this chapter we study the connected component of U which intersects the

origin, denoted by Cy. As in all percolation models, there are different param-

eters:
Ae = 1nf{/\ >0: Py (|Co| = OO) > 0},
Ar = inf{\ > 0: limsup P, (B,, connected to Bj,) =1}, (6.0.1)
n—oo

)\# = 11’1f{>\ > 0: E, [#Co] = OO} .

It is obvious that A\, < A. and Ay < A.. In [CS16], it is shown that Az < A,
ford>5and a; =1/

We firstly introduce loop percolation rigorously and recall some results from
the literature before applying them to our setting. We then use the estimates
obtained in Chapter [4| to prove equality of critical parameters for (a;); decay-
ing sufficiently fast. Important will be the framework of the OSSS inequality,
which is applied in [DCRT18| to show A\. = A, for the Poisson-Boolean and
other models. In the last section of the chapter, we prove some finer estimates
on the structure of Cp, some of which were predicted in [CS16].

We restrict ourselves to random walks such that the increments in each di-

mension are supported on {—1,0, 1} in this chapter.

Remark 6.0.1. A brief comment regarding decay assumptions: while in the

previous chapters, assumptions on the decay of a; were generous, in this chap-

!Their definition of A, is slightly different: take A, the smallest A such that
limsup,, _, . Px (B, connected to Bf,,) = 1 and set A\, = supy~ Ax.
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L It is common in long-

ter we often assume that a; decays much faster than j~
range percolation models (see e.g. [DCRT18]) that some restrictions on the cor-
relation decay is imposed. One can interpret sequences a; with ijl a;j < oo
as introducing an additional (slow) killing to the Markovian loop measure: set

Vi, the measure on N with V,(X = j) = a;j. We can then rewrite

. PJ
My = 0Pl = Vo) [ o) = (6.0.2)

6.1 Introduction and preliminary results

Given a random point measure Y = Y., . 0d,,, we define C C Z¢ x Z¢ to
be the subset of bonds in Z¢ which are ;pen in the following way: given
(discrete-time) loops (wg)r with wy = (wk(0),wk(1), ..., wk(ng) = wk(0)) (with
wi (i) € Z9), set

C = JJfwrl = 1), wi(D)} . (6.1.1)

k<=1
Note that bonds are not directed in this setting. If the bond b = {b',0*} € C,
we say that b = {b',0?} is open. For x € Z% we often say that z € C (or
equivalently, x open) when we mean that {x,y} € C for some y € Z.
Let A, be the smallest A > 0 such that for all A > A, there exists an unbounded
connected component of C almost surely. Note that A\. < oo as the random
walk loop soup is bounded from below by the Bernoulli bond percolation. This

1

argument is made for a; = 77" in [LJL13| and applies for (a;); positive.

For z,y € Z¢ we say that x is connected to y if there exists a sequence of open
bounds by, ..., b, such that

I. z € bl.
IT. y €b,.
III. For all i € {1,...,n — 1} we have b; N b1 # .

For A, B C Z% we say that A is connected to B (denoted by A <— B) if there
is x € A connected to y € B. If one of the sets consists of a singleton, we

write x «— B instead of {z} +— B. If there exists a single loop connecting
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A and B, we write A < B.
The next lemma gives us a minimal condition on the weights (a;); such that
the percolation problem is not trivial. We recall that { denotes the loop soup

with intensity measure AM?.

Lemma 6.1.1. For any A > 0 we have that

320

Due to the translation invariance of the loop measure, this implies that every

edge is covered by at least one loop.

Proof of Lemma [6.1.1. We expand

Mi0ew =Y Y aPi, (H<j)=> > aPl,(H, <j)

z€Zd j>0 zezZd j>0
= Z a/ng),O Z ]l{Hx < j}] = Z aj]E‘é,O [R]] Z CZ aj,,,.jjfd/Z 7
320 zezd 3>0 j>1

(6.1.3)

by the time-homogeneity of the random walk, monotone convergence and fi-
nally [HamO06, Theorem 2.2] (to evaluate the expectation of the random walk
bridge). Note that by the fundamental properties of the PPP and by a limiting
argument

P2 (0 ¢ C) = exp (—AM[0 € w]) . (6.1.4)

This concludes the proof of the first statement. By an inclusion-exclusion
argument, it is straightforward to see that every edge is covered by at least

one loop. This concludes the proof. O]

Remark 6.1.2. This lemma is a slight generalisation of [CS16, Proposition
3.4], where the case a; = a? with a > 1 is treated. The above lemma can also be
applied more generally: replacing r; with j, the lemma is valid for any random

walk, as R; < j holds true always.

We incorporate the result of the above lemma into an assumption.
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Assumption 6.1.3. Henceforth assume that

-—d/2
Zajrjj / < 0,
J=0

so that the induced percolation process is not trivial.

Next, we state a proposition establishing some basic properties of the
connected component. As its proof is essentially the same as the one given

in [CS16], we chose to omit it.

Proposition 6.1.4. The loop soup is ergodic under lattice shifts. It has at

most one unique infinite cluster.

6.2 Decay estimates of the loop soup

In this section we prove decay estimates for the entire loop soup. We work in

the regime that a; < C'j~! for the entire section. We recall that
Ar = inf{\ > 0: liminf P, (0B,, +— 0By,) = 1}. (6.2.1)
n—o0

Note that 0 < A, < A.. The next proposition follows immediately form |CS16,

Lemma 4.1].

Proposition 6.2.1. [CS16] For d > 3 and a; = O(1)j~' we have that
A > 0.

Furthermore, for X < \., we have that the connectivity Py (0 <— B) is
bounded from above by C(A\)n=°Y for some C(N\),c(A\) > 0 both depending
on A > 0.

Lis exam-

Indeed, in aforementioned reference the special case a; = j~
ined. However, for a; = O(1)j~!, we can bound the associated loop soup from
above by the special case.

The next proposition uses a proof strategy laid out in [CS16, Section 5]. Let

Az > 0 be the largest A > 0 such that E,[|Cy|] < co. We then have that:
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Proposition 6.2.2. Let A < Ay. Let aj ~ j¥ (v < —1)if d > 3 and
aj ~ j"logj (v < —1, d=2). We then have that

Py (0 ¢+— B¢) ~ n*T271, (6.2.2)

Proof of Proposition|6.2.2 The lower bound follows from the Proposition
4.2.2| The upper bound is analogous the proof of Proposition [CS16, Proposi-
tion 5.2] where the only ingredient needed is an estimate of the probability of
having a single loop connecting zero to the boundary of a ball with diverging
radius. This we compute in Proposition [4.2.2

By [CS16, Proposition 5.1], we know that for d > 5 that Ay > 0.

Remark 6.2.3. In [DCRT1S§], it is shown that for Poisson-Boolean percola-

tior] Pb one has
I Pb, (0 +— BY)
im

n=oo (o LN B;)

=1, (6.2.3)

where Pb) (0 YA B;) 1s the probability of connecting O to the complement of
By, through a single ball. Proposition|[0.2.9 might seduce one into thinking that
such a statement for loop percolation could be true as well. However, this is
not the case: connecting the origin to B; through a single loop is of the same
order than having a loop of diameter O(1) which intersects both the origin
as well as different loop, which intersects 0B,, and the first loop, but not the
origin. This reasoning is true for d > 3 due to the transience of the random
walk. For d = 2 the above reasoning no longer applies, and it remains an open
question whether for sufficiently fast decaying weights the above equation holds
true for loop percolation in two dimensions. As Theorem has only been
shown for d > 3, an important tool used in [DCRT18] is not available and so

we do not explore this question further. See Chapter|7 for further remarks.

2In Poisson-Boolean percolation one studies the PPP with intensity measures v x
ALebesgue on (0,00) x R? with v a probability measure and intensity A > 0. A sample
(r,x) is interpreted as a sphere with radius r, centred at z. The overlapping of the spheres
induces clusters in R%.
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6.2.1 Equivalence of two critical parameters for small v

In this section we prove that for v < —1 sufficiently small, we have the equiva-
lence of the two critical parameter A\, and Ay. Given Theorem {4.3.1} the proof

is short and classical.

Theorem 6.2.4. Givena; ~ j7,s>0,v<—1,d>3 and2+2v < —sd — 1,
we have that for A < A, that

Ex [|Col’] < o0 (6.2.4)
In particular, if v < —d —1 (i.e. s> 1), we have that A\, = Ay.

Proof of Theorem [6.2.4  We follow [GT19], where the case of the Poisson-
Boolean model is considered.

We begin by noting that
P\ (B, < B;,) <P (B, < B5,)’ + Py (Bay < BS,) . (625)

Indeed, if there does not exist a loop connecting 0,Bs, to Bj,, then B, is
connected to Bj, through loops contained in Bs,—; and the same for 0Bj5,
to By,. Note that by Theorem [4.3.1]

P, (an PN Bjn) < AM [Bgn & B | < o2 (6.2.6)

Let m(n) = P, (B, +— Bj,,). By covering B,, with smaller balls, we can find

K such that for all n we have
Py (B, +— Bgnﬂ) < KPy (Byu +— BS) . (6.2.7)

Choose ng sufficiently large that 4K7(n) < 1/2 for all n > ng/4. This is
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possible as A < A,.. Then for all n > ng

n

/m317r dm<K/ m* tr(m/4)2dm + \C | m* 'm* T dm

no

< = /m w(m/4) dm—i—)\C/ m*Im* 2 dm (6.2.8)

§— m*1x(m/4)dm + \C..
2 no/4

Rearranging, we get that

1 [m

/ m* w(m)dm < = m*tr(m/4)dm + \C (6.2.9)
no/4

As the right-hand side of the above equation no longer depends on n, we can

let n go to infinity and obtain
/ m*m(m)dm < oo. (6.2.10)

As {|Co| > 2n} C {B,1/a +— B 1/a}, we have proven the claim. O

6.3 The OSSS inequality and sharpness

In this section we prove sharpness for loop percolation, i.e. that A\, = A,
given (a;); decays sufficiently fast. We use the strategy laid out in [DCT16,
DCRT18].

We begin by explaining the framework of the OSSS inequality, as proved in
|OSSS05] and used in [DCRT18]. Let I be a finite index set, 2 = X,_, Q; the
product space over some probability spaces (2, 7;) and 7 = ),.; 7. Take
f:Q — {0,1} (think of f = 1{0 <— By }). An algorithm T takes a point in
the sample space w € 2 and checks the value of each of its coordinates, one
after the other. It stops as soon as the value of f does not change with the
remaining coordinates. For example, if we need to check whether 0 «+— By,
we may stop as soon as we have found a lattice path connecting 0 to B,. Note
that it is not necessary to check all coordinates in B,,.

Given an algorithm T and a product space (€2, 7), we define two important
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functions

I. The revealment: it quantifies how likely it is for the algorithm to visit
Q; for i € I. It is henceforth denoted by 6;(T) and is defined as

0;(T) = 7 [T reveals the value in €] . (6.3.1)

It will turn out that it is desirable to have a uniformly low revealment.

I1. The influence. It quantifies how important a coordinate is to the outcome
of f. It is defined as

Int,(f) = @ W [f(w) £ f @) . (6.3.2)

where 7; is an independent copy of m; and @ is the tuple where we take

w and re-sample the i-th coordinate with respect to 7; .

The OSSS inequality can then be seen as a generalisation of the Poincaré

inequality for product spaces.

Theorem 6.3.1. [OSSS05] Given the above set-up, we have that
alf) = 7l = varf <> (T Ingi(f). (6.3.3)

The central idea in [DCT16] is to combine the OSSS-inequality with
two other tools from percolation theory to obtain a short proof of sharpness.
These are a Russo type formula (see Lemma and a differential inequality.
We begin by stating the latter one:

Lemma 6.3.2. Differential Inequality, [DCRT19b, Lemma 3.1] Given
a converging sequence of differentiable functions f,: [0,1] — [0, 1] satisfying

of, > —_f 6.3.4
g Zz;éfkf (634

for all n > 1. Then, there exists By € [0, 1] such that

I. For any < ph, there exists cg > 0 such that f,(8) = O (e~ "), as

n — o0.
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II. There exists C > 0 such that for any 5 > (1, lim, f,(8) > C(8 — p1).
Next, we present a proof of the Russo’s formula adapted to our setting.

Lemma 6.3.3. Russo Let A ={0<— 0B,}, withn > 0. We then have that

Py (A) = Z M{w}|Py (w pivotal for A) . (6.3.5)

wel

Furthermore, the above formula holds for any increasing event A satisfying

M{w could be pivotal for A}] < co.

Proof of Lemma [6.3.3] Let I'), = {w: wnN B,, # @}. We write the loop
soup UM = U UU" using the superposition of Poisson point processes. Let

P denote this coupling between Py, and P, and expand

Pyin(A) —Py(A) =P (AeUrulU", A¢U) =
— Z PAceUU{w}t, A¢U* w=U"NT,) (6.3.6)

werr

+P(Aeruut, A¢uru"nr,| >2).

A quick calculation in the spirit of Lemma (6.1.1]) reveals that M[I",,] < oo as
long as the percolation process is non-trivial. As a consequence, the second
term in the above equation is of order O(h?) and thus negligible.

We expand further, using the independence of U* and U",

PAeuu{w}h, A¢U* w=U"NT,)

. (6.3.7)
= P, (w pivotal for A) e "M RHppr[{w)].
Dividing by h and taking the limit h — 0 yields
AhP\(A) = Z M[{w}]Py (w pivotal for A)
el (6.3.8)
= Z M[{w}]Py (w pivotal for A) .
wel

In the last equality we used that for w to be pivotal, it has to hold that
weT,. O
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We recall the renormalization parameter

A, = inf{\ > 0: lim P, (0B, «— Bs,) =1} < .. (6.3.9)

n—oo

6.3.1 Estimating influence

In this subsection we quantify the influence of re-sampling a coordinate. We
begin with a lower bound on connectivity. The following lemma is given in
[DCRT18] for the Poisson-Boolean percolation in RY. The proof is similar, we
adapt it here. We say that A <Zs Bif A is connected to B through loops

which are contained inside Z.

Lemma 6.3.4. Let d > 2. We then have for every X > \. and x € 0B,

Bn
P, (0 By x) > s (6.3.10)
Proof of Lemma [6.3.4. We begin by noting that
Py (0B, < 0By,) < Cn®'P, (0 +— B,) , (6.3.11)

by the union bound. Since we have that A > \,., we get that for some C, > 0

we have that

C,
nd—1-
Define Y = 9;B,, and the finite set Z = B,, \ Y. Note that if 0 is connected
to 0B, then either we have that for one z € Z that z is connected to 0 in B,,

or that there exists a y € Y such that A(y) occurs with

Py (0 +— B,,) >

(6.3.12)

B,

A(y) = {0« y} N {Jw intersecting both y and IB,,} . (6.3.13)

By independence and the estimates from Proposition 4.2.2| we have for n =

n— [yl
PA(A(y)) < en™ 2 =P, (0 22 y) (6.3.14)

by the independence of the PPP. Note that by the union bound we have

Co

nd—1

SR (0455 2) + D P (AW) = Pa (04— By) >

z2€Z yey

(6.3.15)
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Note that we have by the FKG inequality that

IP’,\<0<i>x> ZIP’,\(O&y)P,\<y<Bﬁ—(y)>x>
(6.3.16)
> CRt=4=2P, (A(y))Py <y L), x)

If we assume that Py (O PRI m) > Cn? %4 one can use induction, as Equation
(6.3.16)) reduces the question from z € 0B, to x € dB,,_,. One readily checks
that assuming a; ~ j¥ and 2v < —d — 3 ensures the success of the inductive

step. Indeed, combining the above equations we have

U(n) = ¢ — , (6.3.17)

- 2d—2
G + G2 2 ey Ty

where U(n) = sup,csp, Pa <0 RN x) The condition imposed on v ensures
that the sum over y (in the above equation) does not grow faster than n2?-2,
If 2v > —d — 3, note that the loop process can be written as a sum of two loop

~4=3 and the other with weight a; — 77973, Since the

soups, one with weight j
event in question is increasing and we are seeking a lower bound, the sum of the
two processes fulfils the inequality in question. This concludes the proof. [J

Write Cy for the points connected to 0 and C,, for those connected to

0B,,. Fix n,m > 1 and x € Z? and define the event
Po(m) ={CoN B,,(z) # @} N {B,,(z) «— B} N {0 +— B }°. (6.3.18)

The following lemma is proven in [DCRT'1§| for the Poisson-Boolean case and

can be adapt easily to the setting of loop percolation.

Lemma 6.3.5. [DCRT18] For some constant C > 0 we have that

Py (P.(m) and dist (Co N By (2),Cp) < 2) > Py (P.(m)) . (6.3.19)

m3d—2

For an increasing event A, we define the random variable Piv, 4 in the

following way

Pivy aU) = U ¢ A} Y {UUwe A}Mw]. (6.3.20)

w: w(0)=z
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The next lemma is an important result and is a consequence of Lemma [6.3.5]
It is also given in [DCRT18| for the Poisson-Boolean case. We give its proof
for the sake of completeness. Let M) be the distribution of w +— ||w|| under
M. We recall that ||w]| is the maximal distance between any two points in the

loop.
Lemma 6.3.6. [DCRT18] We have for some C' > 0 that for every m,n > 1

and every A > \,

N Infi,(fa) < Cm 2 Mylm — 1,m] > Ea[Pivya] . (6.3.21)

x€Z4 x€Z4

Proof of Lemma [6.3.6 We firstly note that
Inf (g m)(fn) < AM)j[m — 1, m|Py (Po(m)) , (6.3.22)

as P,(m) has to occur and we need to have at least one loop connecting z to
B,,,(x). Note that if dist (Co N Bs,,(x),Cp) < 2, we have to have at least one y
with |y — x| < 4m such that P, (1) occurs. By the union bound together with
Lemma [6.3.5] this implies that

Py (P.(m)) < Cm* 2Py (P,(1)) , (6.3.23)

for such y’s. As we have Py (P,(1)) < CE, [Piv, 4], this finishes the proof. [

6.3.2 Proving sharpness

The main result of this section is the following theorem.

Theorem 6.3.7. Consider loop percolation induced by the loop measure with
weight sequence (a;);. Supposed that a; < Cj”, for some C' > 0.
We have that for d > 3 and v < —2d — 1/2 that

A, = inf{\ > 0: liminf P, (0B, +— 0Bs,) =1} = \,. (6.3.24)

This implies (together with Theorem that under the above conditions
Ae = Ay = Ao It also implies that the estimates in Proposition and
Proposition hold for the entire subcritical regime X < ..
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Proof of Theorem [6.3.7] At first, we restrict our probability space. Let
a = —4d2—-d/2+v)and L > 2n* > 0 and set A = {0 «— B} and
f =T1{A}. Define the space of restricted coordinates Iy, in the following way

Sp={weTl: |lw0)|+]|w| <L} (6.3.25)

Let g =1\ S;, and let U, be the PPP restricted to loops in g. Denote 7, the
law of U, and let, for (z,m), m,,, be the law of P, restricted to loops with
w(0) = x and ||w|| € [m — 1,m). Denote the space of such loops by I, ,,, and
U, m the restricted PPP. Let I, be those (x,m) such that I',,,, C Sp. Write
then Q = (g, m,) x X(mvm)(f‘%m,ﬂzym). Write I = {g} U IL.

In order to apply the OSSS-inequality, we need to choose an appropriate al-
gorithm Ty. Fix an arbitrary ordering of /. Set ig = g and reveal U,. Suppose
that {ig,...,%_1} C I have been revealed, and denote C; the connected com-
ponents formed by Uf;(l)l/{,-l intersecting 0B,. The algorithm Ty, then takes one

of the two following steps:

L. If there exists (z,m) € I\ {io,...,9;_1} with the distance between z and
C; being less than m, reveal the first (z,m) in the ordering which fulfils
that. Set i = (x,m).

II. Halt the algorithm if such (z,m) does not exist.

For an illustration of a configuration explored after the above algorithm ter-

minates, see Figure [6.1]. By Theorem [6.3.1| we then have that

Py(A) = Py(A)* = 0,(1 = 6,) <2 6;(T,)Infy(f), (6.3.26)

icl

where 6,, = Py(A). We begin by bounding the influence of the coordinate g.
From the choice of L > 0, it follows that

Inf,(f) <Py (Jw: ||w|| > L and wN B,, # @)
<C Z Zaj]Ei,,x [H, < j] < COn®? Z a;j % = 0(1),

le|>L j>1 j>L8/2
(6.3.27)

due to the conditions placed on (a;); and L and using similar reasoning to the
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Figure 6.1: The loops connected to B, have been revealed by Tp. In this

instance the origin is not connected to B,
proof of Proposition [4.2.2, We can also bound
0i(Tr) < Py (B,(z) «— By) .

By letting L — oo, we thus obtain

erd
m>1
We then estimate
n—1 n—1
> Py (Bu(z) «— BS) < Cm*™' ) 0,
s=1 s=1
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by the union bound. Using the above equation, we obtain

0,(1—106, 3
25:1 08 zezd

m>1

Assume that A > \,.. We use Lemma [6.3.6| and bound

> mT N () < C Y mP M [m — 1, m]E[Piv, 4] . (6.3.32)

zezd zczd
m>1 m>1

Applying Proposition 4.2.2] integration by parts and the assumption on v, we
get that

Z m* 3 M im — 1,m] < Z mPITATATAT2Y — O < o (6.3.33)

m>1 m>1

Plugging that into the above equation, we get that

1 —
161 = bn) < C D EalPivya] < CO6,, (6.3.34)

n—1
28:1 93 erd

where in the last step we use Lemma |6.3.3]

Fix A, > A,.. By Lemma there exists a 8; > A, such that for A < (3,
we have exponential decay of connectivity and for A > ; we have a positive
bound from below. This implies that 8 = A.. On the other hand, since the
decay of connectivity is exponentially fast, this implies that 5; > A, and thus
b=\ = A m

Remark 6.3.8. Like the results in [DCRT18], our results put some moment
conditions on the decay of the connectivity and do not cover all non-trivial
weights. We conjecture that by refining the estimation of the influence and

using different algorithms, one can allow for a wider range of sequences (a;);.

6.4 Finer properties of the subcritical phase

We now turn our attention to the structure of the loop soup for A > 0 small.

The following bound is predicted in |[CS16] and we give a proof here:
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Lemma 6.4.1. Let A < Ay, d > 3 and a; ~ j¥. We then have that

Py (0 <— B, through loops of diameter at most m) = O (e™/™) . (6.4.1)

Proof of Lemma [6.4.1 We show that

P, (0 «— B,, through loops of diameter at most m) = O (e_CL"/mJ) ,
(6.4.2)
and prove the result via induction over [n/m|. Note that this result implies
the lemma. Let n = mk + r with k,n,m € Nand 0 <r < m. Let A,, be the
event that loops of diameter at most m are used to facilitate the connectivity.
Then

}P))\ (0 <— Bkm, Am)
B, U\Bsy,
<P, (o BX B A, Jw € 9By NCy: 1 NP 6B,m> (6.4.3)
<Py (0 «— B, Ap) Ey[Co] Py (0 <— B—2)m, Am) |
where we use the independence of the loops which are contained in By, and

those which are not. To go from the penultimate to the last line, we condi-

tioned on = € Cy. For n = m, we have that
Py (0 <— By, Ay) =0 (m*?) (6.4.4)

by Proposition [6.2.2] This finishes the proof of the lemma. n
Note that in the above proof, Equation (6.4.4) implies that O (e_‘m/ m)

can be replaced by the stronger O (e*c("/ m)log m)

The next bound had also been predicted in [CS16] for the Markovian case. We

give a general proof here.

Proposition 6.4.2. Given that A < Ay, d > 3 and a; ~ j¥. We then have
that

P (Cy contains at least two loops of diameter bigger than m)=0O (m10_4”_2d).
(6.4.5)

Proof of Proposition [6.4.2] Let A,, the event that Cy contains at least
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two loops of diameter bigger than m. Let C5™ be the open cluster formed by
loops of length less than m. We have two possibilities: either there exists two
or more loops contained in C5™ or the C;™ intersects only one loop of length
greater than m. Define C" the sub-cluster of Cy formed in the following way:
in the first scenario described above, take the cluster formed by loops of length
less than m and wy, where wy is the first loop of diameter bigger than m (in
some arbitrary ordering on I'). In the second scenario, take the cluster formed
by loops of diameter less than m together with wy, where wqy is the unique
loop intersecting C5™. We show E, [CT] < E,[Co]Ex [R(wp)]. The intuition

Figure 6.2: The long loop in red, together with 3 clusters of small loops at-
tached to it.

is as follows: if wy contains j points, the maximum size of the cluster CI" is
bounded by j-times the size of the cluster C;™ as we can attach at most one
?version” of C5™ to each point in wy, see Figure . Expand

Ex[Cr] =) "> E\[CT, R(wo) = j, wo(0) = ]

j=>m xezd

< Z Z Ex [C5™, R(wo) = J, wo(0) = 7] (6.4.6)

Jjzm geZd

< E,A[C5™MEN [R(wo)] ,

where we use that the loops which form C5™ are independent from loops with
diameter greater than m.
Note that by the same reasoning used in the proof of Proposition

Ex[R(wo)] =Y ajE o [RF] ~ mS=tt2. (6.4.7)

Jj=1
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By the same reasoning to above, we can bound

Py (An) <E\[CT] Py (Bwi: 0 € wy and wi N B, # @) = O (m'0%7%9) |

(6.4.8)
where we bound Py (3w;: 0 € wy and wy N B, # @) by O (m**?~?) using
Proposition [4.2.2] This concludes the proof. m
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Chapter 7

Outlook

In this chapter we briefly comment on continuations of the results proved in
this thesis.

7.1 Sharpness

The sharpness result in Theorem is limited by the decay assumption
a; < Cj~271Y2 for some C' > 0. We believe that this is a purely technical
assumption and that one can show in general that A\, = A, using our method
and thus answering a question posed in |[CS16] for the Markovian case. The
route to such a result will probably use different algorithms for the OSSS
inequality and refined intersection estimates for random loops. Indeed, most
proofs for loop percolation (so far) usually do not involve classical random
walk intersection estimates (compiled in the classic reference |[Law13]).

We compare loop percolation to the Poisson-Boolean model: in the Poisson-
Boolean model each realisation consists of a collection of spheres. This means
that the "base” element (a sphere) has volume of the same order as the space.
In loop percolation this is not the case: a loop of diameter n consists of only
n?+°() points (with overwhelming probability under Py). Since we "know”
(strictly speaking only for A < A.) that large clusters Cy typically have one
large loop, we can argue P (|Co| = n?"°W[0 +— Bf) = 1—o0(1). If we want to
use a renormalisation approach, we need to factor in that if we want to connect
the loops contained in By, (denoted by C*") with a single loop to BY,, it is

very unlikely that this loop intersects C?*. Using similar computations as done
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in Chapter 4} we can find bounds such as
o d—2 d—2
) < € [ W-y=ooor (2 0 ) 1 (52 b )
R4

(7.1.1)
where PZ}éjQ(int) is the probability that two independent random walk bridges
of length j; and js intersect (where the first loop is started at the origin and
the second one at x € Z%). One can then use the properties of the Poisson
process to estimate intersection probabilities of the loop soup. We believe that

the above strategy is key to reducing the moment conditions from Chapter [0]

7.2 One-arm domination in two dimensions

For d = 2 and a; sufficiently fast decaying we make the following conjecture:
for any A < \., we have that
AM[0 < BS/]

li =1. 7.2.1
o0 P,(0 «+— BY) ( )

This kind of result is known as one-arm domination. It is proven in [DCRT1§|
for the Poisson-Boolean case for d > 2. In loop percolation, it can only hold
for d < 2 as the random walk is transient for d > 3. Indeed, transience implies
that we could connect 0 to e; (the point (1,0...,0)) and e; to the boundary
of B,, through a loop which avoids the origin and have a comparable cost to
connecting 0 to B;, through a single loop.
To prove one-arm domination result in the planar case, it would be vital to
have a stronger version of Theorem for d = 2. The large deviation
bounds for range process from [BCR09,LV 19| together with the explicit bounds
from [BMR13| can be used to prove Theorem for d = 2 for v < —1
sufficiently negative. Indeed, our method does not need to be adapted for
that. To prove a one-arm domination result, we could strengthen the result
by showing

M[By <= BSy] = f(7, N)N* 72 (14 0(1)) , (7.2.2)

with f(v, N) converging as N — oo uniformly in «. Indeed, this would allow
us to utilise the strategy from the proof of [DCRT18, Theorem 2| to show one
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arm domination. This seems out of reach, as the upper and lower bounds in
Theorem differ substantially. The aim would therefore be to exploit the

recurrence of the planar random walk to show that
M[By <= By, 0 ¢ w] ~ N*72f(v), (7.2.3)

where f(7) goes to zero as N — oo. Equipped with such an estimate, the

proof of one-arm domination would follow rather quickly.

7.3 The disordered loop soup

Given the results on the correlation function in Chapter [, we could study the
loop soup with disorder. We briefly explain the setting of disordered models,
following the notes [CSZ16]. Given a statistical mechanics model with law P,
on some domain €y, governing the behaviour of a family of spins (0, ).cqy
with o, € {0,1}. We assume that Qy = (N~'Z)? for a continuum domain
Q Cc R?as N — co. We model disorder by a family of i.i.d. centred random
variables (w,)zeqy -Given two parameters, § > 0 and h € R, we define the

disordered model Pg , through its Radon-Nikodym derivative

CXp <_ ZCEEQN (ﬁwx + h) UJ:)
Z]U</7,B,h

dPs, = dPy (o). (7.3.1)
Some examples of disordered models are the disordered pinning model (see
e.g. [IDGLT09]), the directed polymer model (see e.g. [CSY04]) and the ran-
dom field Ising model (see e.g. [CSZ17]). It is important to know whether
the model is disorder relevant or not, i.e. does an arbitrarily small amount
of disorder change the statistical properties of the model. Harris in [Har74]
proposed the following criterion: let v > 0 be the correlation length (i.e. the
correlation functions of order k of P} scale like N=7%). Then the model is
disorder irrelevant if v < d/2 and disorder relevant for v > d/2. In |CSZ17],
the authors give a different viewpoint on disorder relevance: does there exist
By, hy | 0 such that the limit of Z% 5, converges to a non-constant random
variable? If the answer is yes, then the model is disorder irrelevant. If any scal-

ing of By, hy | leads to a trivial limit, the model is disorder relevant. One key

157



advantage of that method is that the existence of the scaling limit of the corre-
lation functions (pointwise and in L?) suffice (together with some uniform, in
N, bounds for k large). See [CSZ16, Assumption 1.1] for a precise statement.
One can study the disordered loop soup model by making the identification
o, = 1{z € U}. At least for d > 3 and a; = j7”(1 + o(1)) (thus including the
Bosonic and Markovian case) the required bounds follow immediately from
Proposition [5.2.1] As the framework in [CSZ16] assumes the finiteness of ,
one could study the disordered loop soup on the continuum torus first (making
small adjustments in Proposition , before extending the disorder to the
whole space. As the correlation length is d — 2 (compare Equation ),
Harris criterion would predict that d < 4 is disorder irrelevant and d > 4 is
disorder relevant. This shows that d = 4 is the critical dimension. Only small
gaps need to be filled for computing the scaling limit of Z% 5, for the loop
soup and we will close them in a forthcoming publication.

Note that besides a criterion to classify order/disorder relevance, the existence
of the continuum limit allows for statements on the free energy of the system.
This can be used to make statements regarding localisation/delocalisation
transitions. Using Proposition [5.3.1] on the asymptotic behaviour of the oc-
cupation field, we could extend the study to disorder on non-compact state

spaces.
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Chapter 8

Appendix

8.1 Bounds for connecting annuli

The next proposition summarises the bounds from Theorem [4.3.1} Given
some sequence (a;);, one can use these bounds to compute asymptotics of

connectivity.

Proposition 8.1.1. Let v, = v — 1. Let ¢; > 0 arbitrary but fized. Let
ny = n?/cilog(n). The following bounds hold for all j > ny, v > ~,:

Lower bound: we have that for some C' > 0

B}, [W{Hyn < j} Rity] > G312 00 p,0). (8.1.1)
Upper bounds: fir 0 < [y < By < ~. We then have that
B}, [H{Hn <} R, y)]

n 1/2—d/2 1
<C ((J'—ﬁorf")d/2 tJ * nd_Q(j—51n2)1/2> ’

. . _ n - y k—n n .
(52 + (yn)2j~V/2) e COm i 4 577 S I (kD)
(8.1.2)

where the first bound is for j > (yn)? and the second for j € [ny,(yn)?].
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Furthermore, b(n, j, k,1) =

(yn)*k v ((d = 1)/2,n*/(j — k) ( n®f (yn) ) _

eC(yn)?/1aC ()2 /(k—1)]2 Vi — k(k —1)3/2 T (k — l)1+d/2\/Tk
(8.1.3)

The above proposition follows by collecting the bounds from the proof
of Theorem [4.3.71

8.2 Sum and integral techniques

In this section we collect various ways of approximating integrals by finite

sums.

Lemma 8.2.1. Given f: [a,b] — (0,00), a,b € NU {£o0} measurable and

Flk+7) . o f(k+T)
su sup —————= < oo and inf inf —= >0, 8.2.1
ke[a,l}])mN TG[OI,)I] f(k) kelablnNref0,1]  f(k) ( )
then there exists C' > 1 with
b—1 b b—1
C™Y fk) < / FO)dt <Cy " fk). (8.2.2)
k=a @ k=a

Proof of Lemma [8.2.11 We bound

b b—1 k+1 b—1
1) k)
/af(”d“;;f(’“)/k F S 20 e Ty, (623)

from which the result follows by taking the supremum over all k& € [a,b]. The

lower bound works analogously.

Lemma 8.2.2. We have that for f(k) = pi(z)

k k
sup sup sup fk+ 1) < oo and Inf inf inf M

>0,
k€[a,b]NN |z|<k re[0,1] f(k) kelablnN [z|<kref0,1]  f(k)

(8.2.4)
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Furthermore

sup sup sup M < 00 and inf inf inf M

>0, (825
zezd k>|z| re[0,1]4 pr() wezd k>|al ref0,1)d  Pr(T) ( )

Proof of Lemma [8.2.21 Note that

p:(fg) B (kmd/z exp (—%) : (8.2.6)

Due to the restrictions placed on |z|, we can conclude the statement. The

second part of the theorem follows analogously by expanding |z +7|? = |z|* +

2(z,r) + |r|? and using the Cauchy-Schwarz inequality.

Lemma 8.2.3. Fora,be Z and f,g: |[a — 1,b] — C we have that
D F(R)g(k) = F(k) [g(k) — g(k + D]+ F(a—1)g(a) = F(b)g(b), (8.2.7)

where F(k) =3 f(1)

Proof of Lemma [8.2.31 We have that

> f(k)g(k) = [F(k) — F(k —1)] g(k)
b b—1
=Y F(k)g(k) = > F(k)g(k+1)
k=a k=a—1

b—1
= F(k)[g(k) — g(k +1)] + F(a — 1)g(a) — F(b)g(b).
k=a

(8.2.8)

8.3 Properties of the Gamma function and Gamma

distribution

Let E, s be the expectation with respect to a Gamma distributed variable with

parameter (a, 3).
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Lemma 8.3.1. If vy € R with o > vy, we have that

E.s [X77] = % (8.3.1)

Lemma 8.3.2. The moment generating function of a Gamma distributed ran-

dom variable is given by

o(r) =Eqp[e™] = <1 — %>_ 1{r < 8} + col{r > g}. (8.3.2)

Furthermore, its large deviation rate function satisfies

A(z) = sup{zr —log p(r)} = Br + a(log(a) — 1 —log(zf)) if x>0,
reR o0 me S 0

(8.3.3)

Proof of Lemma|(8.3.2. The first part of the lemma is standard and follows
easily from observing that ¢(r) = C(r)E, g—[1] and solving for C(r).
For r < (3, we differentiate xr —log ¢(r) to obtain that (given r < § and z > 0)

decreasin ifr>p—a/zx,
xr —log p(r) = & paf (8.3.4)

increasing ifr < f—a/x

whereas for x < 0 it is strictly decreasing. This implies that for z < 0 that
A(x) = o0, as zr dominates the log term. For x > 0, we have that f—a/z <
and thus we attain a maximum at 8 — a/z. Plugging that value back into the
definition of A(x), we obtain the result.

We also include the following asymptotics of the incomplete Gamma

function. As they are easy to derive, we omit the proof.

Lemma 8.3.3. We have
(s, )

) . S.x
lim =1 and lim 7(5,7)
00 xs—le—ac =10 xs

~1. (8.3.5)
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8.4 The topology of local convergence

This section relies heavily on [Geo88, Definition 4.2]. Let (E, 7(E)) be a locally
compact Polish space (e.g. R™, Z" or the real half-line).

Definition 8.4.1. Denote ¢ € EX = Qa field with values in E. Let
Da EZ 5 E be the projection which maps ¢ to ¢, € E. Let F = EX e
the product sigma algebra on E%. For a finite subset A C Z let Fy be the
sigma algebra generated by the maps (py)een- Let F° be the sigma algebra of
cylindrical events defined by

= J A (8.4.1)

ACZ4: |A|<oo

The topology of local convergence is then the coarsest topology such that the
map v — v(A) is measurable for allv € M(Q, F) and A € F°.

We need the following results about the topology of local convergence.
We call a function local if it is measurable with respect to Fa for some A C Z¢
finite. We call it quasilocal, if it can be approximated by a sequence of local

functions in the infinity norm.
Proposition 8.4.2. . M (Q,F) equipped with the topology of local con-

vergence is Hausdorff.

II. v, — v in the topology of local convergence if and only if v,(f) — v(f)
for all f quasilocal.

II. Let {f2 n € N, fA — F\ measurable } be a collection of separating

classes for (E* EN). Then v, — v in the topology of local convergence
if and only if v, (f2) — v(f2) for all m, A.

Proof of Proposition [8.4.2] The first two statements follow directly from
[Geo88, Remark 4.3]. For the third statement, choose A € Z¢ and f*-F,

measurable such that |f — f*| < /3 for some € > 0. We can write

wa(f) = V() < 26/3+ [wa(f*) = v(fY)]. (8.4.2)

But as v,(f2) — v(f2) and (f2),, a separating class for Fj, we have that for
n large enough |v,(f*) — v(f*)| < /3. This concludes the proof.
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