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Abstract
In this paper, an adaptive anisotropic constitutive model, namely AA1-CLAY,
is developed for clays based on the critical state framework. The model has a
non-associated flow rule, and it can also reduce to basic critical state constitutive
models. A versatile yield surface (YS) is implemented in the model which
can generate a broad range of shapes to improve the possibility of capturing
experimental yield points of different clay types with high accuracy. In addition
to the isotropic hardening rule, an innovative rotational hardening (RH) rule is
also incorporated into the model to control the YS rotation rate. The proposed
RH rule uses a transitional function to govern the effect of plastic strains at
different constant stress ratios more realistically. Furthermore, the equilibrium
state of anisotropy, which the YS tends to reach during plastic straining, is
defined uniquely based on the experimental findings. The detailed model
formulation is presented, and important features of the model are elaborately
discussed. The capabilities of the model are also demonstrated by comparing
the simulation results of several element tests on a number of different clays
against the available experimental data.
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1 INTRODUCTION

Manydevelopments in advanced constitutivemodeling of clays are associatedwith the critical state soilmechanics (CSSM)
theory. As the earliest elastoplastic constitutivemodel based on theCSSMconcept, the original Cam-clay (OCC)model has
improved the prediction of isotropically consolidated soft soils.1,2 In OCC, a bullet-shaped surface was adopted for both
yield surface (YS) and plastic potential surface (PPS), and a simple isotropic hardening rule was employed to represent
the evolutions associated with plastic strains. This model made a significant amount of progress in predicting various
experimentally observed responses of isotropically consolidated soft clays. However, as OCC cannot distinguish between
isotropic and one-dimensional normal loading, and to solve the computational difficulties associated with the presence of
an acute tip in its bullet-shaped surface, an ellipsoid was later adopted for the YS and PPS which led to the development
of modified Cam-clay (MCC) model.3 Ignoring the issues related to the application of single YS in the basic CSSM-based
models (such as inability in capturing the nonlinear responses in the small strain domain or inability in simulating the
cyclic behavior), Cam-clay family of models still suffer from two other major deficiencies. Firstly, these models fail to
simulate the behavior of natural and anisotropically reconstituted soils. And secondly, due to their bulky YS shape in the
dry side of the critical state line (CSL), their performance in capturing the yield points of the overconsolidated clays is
unsatisfactory. In other words, they can overestimate the peak strength of overconsolidated clays.
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Many experimental data have confirmed that yield stress envelope of highly overconsolidated clays in triaxial stress
space forms an approximately straight line on the dry side of the CSL rather than an MCC type ellipse.4 This yield locus,
in the general stress space, is termed as the Hvorslev surface in honor of the pioneering work of Hvorslev.5 Several con-
stitutive models have incorporated the Hvorslev surface as a straight or slightly curved line into their YS to predict the
behavior of highly overconsolidated clays more precisely.6–11 Since piecewise YSs cause computational difficulties due to
the discontinuous joining points which violate the uniqueness of YS gradient vector condition, adopting continuous YS
shapes which can approximate the Hvorslev surface is considered as the most coherent approach. This being the case,
different CSSM model families with improved YSs have been developed in recent years with a wide range of theoretical
backgrounds, for example, by experimental data fitting or employing thermodynamics theories.12–17 Thesemodels are able
to produce a wider range of YS shapes; hence, not only they can capture yield points more appropriately, but also they
open up opportunities to develop unified constitutive models for both clay and sand.18,19
The arrangement and orientation of soil particles or fabric, and their evolution during straining affect the behavior of

soils through both elastic and plastic deformation domains. Many studies have confirmed that stress-strain relationship
and shear strength of soils depend primarily on their fabric. By definition, the anisotropic configuration of solid particles
leads to directional dependence of mechanical properties which may result in planes with lower shear strengths and even
different stress-strain responses. Due to deposition history or the initial stress conditions, natural clays are considered
as intrinsically anisotropic materials. This type of anisotropy, which is known as inherent anisotropy, might be adjusted
during stress variation and deformations. The evolved fabric composition, which shows the influence of current stress
conditions, is called stress-induced anisotropy.
It is a well-established fact that the yield points obtained from tests on undisturbed specimens of natural clay constitute

YSs that are inclined in the representative stress spaces. This inclination of the YSs is largely agreed to be due to the
inherent fabric anisotropy that exists in the structure of the clay.20–24 A popular approach in considering the effects of
inherent anisotropy within an elastoplastic modeling framework is development of elastoplastic soil constitutive models
that involve inclined yield curves.25–29 Thismethodology for representing the inherent anisotropy has its roots in theworks
of Sekiguchi andOhta,30 andHashiguchi,31 andwere subsequently followed by other researchers.17,21,32–40 In these works,
the inclined YS is either fixed30,41 or variable by adopting a rotational hardening (RH) rule to simulate the development or
erasure of anisotropy during plastic straining.17,36–39,42–46 How plastic strain components participate in rotating the YS is
one of the key aspects in proposing different RH rules.While various anisotropic constitutivemodels have been developed
by correlating the evolution of the YS inclination with the volumetric plastic strain increment,21,32–35,38 Wheeler et al.36
and Yang et al. 39 introduced constitutive models which adopt both volumetric and deviatoric plastic strain increments in
their RH rules. Defining the RH rule as a function of only deviatoric plastic strain increment has also been examined in
the work of Chen and Yang17.
In the present study, an adaptive anisotropic constitutive model based on the CSSM framework is presented for sim-

ulating the behavior of clays. By introducing two new shape parameters, a flexible YS is defined and incorporated into
the model to produce various YS shapes. The proposed YS equation shows very promising capabilities in predicting the
yield points both in dry and wet sides of the CSL. A non-associated flow rule formulation is also adopted by using an
inclined PPS ellipse which satisfies the condition of zero volumetric plastic strain increment at the critical state. While
the proposed model does not use any RH rule for PPS and considers identical inclinations for both YS and PPS during the
evolution of plastic strains, they are generally not similar in shape and size. Moreover, the model uses an innovative RH
rule, with a new expression, for both YS and PPS rotations, which also ensures the equilibrium state of anisotropy (which
can also be termed as steady state) during plastic shearing which YS and PPS tend to reach. Based on observations from
experimental results, a transitional function is implemented into the proposed RH rule to employ the governing plastic
strains (volumetric and deviatoric) and equilibrium state more realistically at different constant stress ratio loading. Addi-
tionally, by choosing suitable model constants the development and erasure of fabric anisotropy (until reaching isotropic
fabric state) at critical state can be modeled with the proposed RH rule. It is noteworthy to mention that the proposed
model can be reduced to simpler well-documented constitutive models, as its YS shape and RH rule can be transformed
into those of the previous models by choosing appropriate parameter values.
The layout of the paper is as follows. In Section 2, the general formulation of the model is presented in the triaxial

stress space. The distinct features of the proposed model are discussed in Section 3. To determine the contribution of
model parameters on the predictions, the calibration procedure is performed in addition to a detailed sensitivity analysis
in Section 4 using the experimental results of Taipei silty clay (TSC). In the following section, the model performance is
then verified against the test data of several clays including Kaolin clay (KC), Lower Cromer till (LCT), Boston blue clay
(BBC) and Santa Clara clay (SCC). Finally, concise conclusions are provided in the last section.



DEJALOUD and REZANIA 3

2 MODEL FORMULATION

AA1-CLAY is an elastoplastic critical state-based constitutive model with an inclined YS to represent the anisotropic com-
position of clays in their natural state. This model can be considered as the first version and basis of a constitutive model
family for natural and reconstitute clays. The proposed constitutive model benefits from a flexible YS equation that, based
on the values of two model-specific shape parameters, produces a wide range of YS shapes from a simple ellipse to more
complex tear or bullet shape YSs. Furthermore, in this model, a non-associated flow rule is adopted by introducing a
rotated and sheared MCC type ellipse as the PPS. An innovative RH rule is also introduced, which predicts the evolution
of anisotropy more realistically by using a transitional function between plastic volumetric and deviatoric strain incre-
ments. Moreover, an equilibrium state of anisotropy is defined through the RH rule to interrupt the YS from excessive
rotation when the stress state reaches the CSL. Finally, a new expression for the initial inclination of the YS is presented
based on the employed RH rule.
In the following, specific features and components of AA1-CLAY are discussed. It must be noted that all stress-related

parameters used in this paper represent effective stresses, and the prime sign is therefore neglected. Moreover, the model
formulation is presented in the triaxial or 𝑝 − 𝑞 space for the sake of simplicity, and the general stress formulation is
provided in Appendix A.

2.1 Yield surface

Using expressions with more degrees of freedom to produce a wide range of different shapes (i.e., from a simple ellipse
form to a complex inclined teardrop or bullet-shaped surfaces) can provide a higher level of accuracy in capturing the
experimental yield stress points, and also enhance themodel capabilities formore realistic stress path and stress-strain pre-
dictions. For instance, following experimental observations from undrained triaxial tests confirming that failure envelops
of the heavily overconsolidated clays lie on the Hvorslev surface4, teardrop-shaped yield surfaces were proposed to sub-
stitute with the Hvorslev surface in the dry side.12,18,47 This type of YS expressions also provided the opportunity to define
unified models for clays and sands18,19; since constitutive models of sands mostly use a thin open or close wedge as their
YS because shearing and variation of stress ratio are known as the primary cause of plastic strain in non-loose granular
soils.48 Additionally, the interpretation of triaxial test results on some isotropically consolidated clays shows that models
with a bullet-shaped YS reproduce more accurate simulations.49
Compared to established simple anisotropic clay models SANICLAY37 and S-CLAY1,36 the YS in the proposed model

has two additional parameters,𝑚 and 𝑛, which enable themodel to reproduce awide range of shapes from a simple ellipse
to tear or bullet-shaped YSs and also leaf-shaped YSs with two sharp tips. The YS is expressed in the triaxial stress space
as

𝑓 = (𝑞 − 𝛼𝑝)
2
−

(
𝑁2 − 𝛼2

)
(𝑝∕𝑝0)

𝑚
(𝑝𝑛 (𝑝0 − 𝑝))

2

1+𝑛 = 0 (1)

where 𝛼 is a stress-ratio type variable that defines the inclination of YS to represent the plastic anisotropy, 𝑝0 is pre-
consolidation pressure and represents the size of the YS,𝑁 is the shape factor of the YS, and𝑚 and 𝑛 are two parameters
controlling the shape of the YS. Figure 1 illustrates the YS shape variations with different values of 𝑛 and𝑚. As this figure
shows, parameter 𝑛 changes the overall shape of the YS while parameter 𝑚 mainly contributes to the adjustment of the
YS curvature, especially in the dry side. The possibility of calibrating these two parameters results in enhanced pliability
of the model in capturing yield points and subsequently improved undrained soil behavior simulations in both normally
consolidated and overconsolidated states. By setting 𝑛 = 1 and𝑚 = 0 the YS of themodel reduces to those of the former
constitutive models, as is illustrated in Figure 2. One can substitute shape factor, 𝑁, with critical state stress ratio,𝑀, to
obtain the S-CLAY1 model (𝑁 = 𝑀) or leave it as a constant model shape parameter to replicate SANICLAY constitutive
model (𝑁 ≠ 𝑀).

2.2 Plastic potential and flow rule

In addition to determining the relativemagnitude of plastic strain increments, the PPS also specifies the ultimate strength.
Although some studies suggest that using identical YS and PPS is a feasible assumption for constitutive models with an
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F IGURE 1 Variation of AA1-CLAY yield surface with shape parameters (A) n (m = 0) and (B) m (n = 1)

F IGURE 2 Hierarchical simplifications of AA1-CLAY model

orientedYS19,36,50, it was found that employing associated flow rule leads to unrealistic simulations.12,18,37–39,51 Yu18 showed
that models using associated flow rule fail to predict the undrained response of normally consolidated undisturbed clays
with softening and pre-failure peak strengths. Taking this point into account, several recently developed models employ
the non-associated flow rule in their formulation.16,17,37–39,52
AA1-CLAY uses the same PPS shape of those in S-CLAY1 and SANICALY models, which is an oriented and sheared

MCC type surface and it is defined in triaxial stress space with the following expression

𝑔 = (𝑞 − 𝛽𝑝)
2
−

(
𝑀2 − 𝛽2

) (
𝑝𝑔 − 𝑝

)
𝑝 = 0 (2)

where 𝛽 and 𝑝𝑔 represent the inclination and the size of the PPS, respectively. It is noteworthy to mention that in the
proposed model, the non-associated flow rule is in order, unless when 𝑚 and 𝑛 shape parameters are set to 0 and 1,
respectively, and 𝑁 = 𝑀. The proposed model does not employ any independent RH rule for PPS, and it assumes an



DEJALOUD and REZANIA 5

identical inclination for YS and PPS (𝛼 = 𝛽). To set up the non-associated flow rule and determine the PPS gradient at
the current stress state, it is necessary to find the size of the PPS by solving Equation (2).
As the PPS is defined, now the plastic volumetric and deviatoric strain increments can be determined readily using the

following expressions

𝑑 𝜀
𝑝
𝑣 = ⟨𝐿⟩ 𝜕𝑔

𝜕𝑝
= ⟨𝐿⟩𝑝 (

𝑀2 − 𝜂2
)

(3a)

𝑑 𝜀
𝑝

𝑑
= ⟨𝐿⟩ 𝜕𝑔

𝜕𝑞
= ⟨𝐿⟩ 2𝑝 (𝜂 − 𝛽) (3b)

where 𝜂 = 𝑞∕𝑝 is stress ratio, 𝐿 is loading index, and ⟨ ⟩ represent Macaulay brackets.
2.3 Hardening rule

The new AA1-Clay model adopts isotropic and RH rules to represent any changes in size and inclination of the YS due to
plastic volumetric and shear strains.

2.3.1 Isotropic hardening

For the expansion and contraction of the YS, the model adopts a volumetric hardening rule with the same general for-
mulation of that of the MCC model where the changes in the size of the YS are related to the plastic volumetric strain
increments, 𝑑𝜀𝑝𝑣 , as

𝑑 𝑝0 =
𝑣𝑝0
𝜆 − 𝜅

𝑑𝜀
𝑝
𝑣 (4)

in which 𝑣 is the specific volume, 𝜆 and 𝜅 are the slopes of the normal compression and swelling lines in the (ln 𝑝 − 𝑣)
space, respectively.

2.3.2 Rotational hardening

As stated above, the proposed model belongs to the class of anisotropic models, where anisotropy is introduced through
the initial inclination of YS, and the evolution of YS during the development of plastic strains is controlled by a RH rule.
In the literature, different combinations of the plastic strain increment components are considered to contribute to the
soil anisotropy. While Banerjee and Yousif 32, Dafalias21, Whittle and Kavvadas34, Ling et al.35, Dafalias et al.37, Jiang
et al.38 presented RH rules as a function of plastic volumetric strain increment, Chen and Yang17 introduced a RH rule
by incorporating only plastic deviatoric strain increment. Involving both components of plastic strain increment in the
evolution of anisotropy is another option that can be found in the works of Pestana and Whittle19, Wheeler et al.36, Nieto
Leal et al.53 by assuming separate contribution of plastic strain components in the evolution of anisotropy. Moreover, Yang
et al. 39 merged the actions of plastic strain components through the root mean square of plastic volumetric and deviatoric
strain increments.
One of the most crucial aspects of a RH rule is the definition of an equilibrium state that attracts the YS during non-

hydrostatic loading and plays the role of a limiting value which controls the excessive rotation of the YS.44 Under the
application of a constant-stress-ratio loading, a specific configuration of soil fabric is formed in its structure that induces
a preferred inter-particular state. One realization of this fabric configuration, that also controls the soil’s shear strength
and stress-strain behavior, is a specific inclination of the YS in the stress space that is termed as equilibrium state of
anisotropy. Dafalias21 considered a fraction of 𝜂 as the bounding value by means of a model constant 𝑥 (Equation 12 in the
reference). Although this formulation provides adequate results along with its simplicity, it cannot restrict the rotation of
the YS when 𝜂 > 𝑀. As a remedy, Dafalias and Taiebat51 redefined parameter 𝑥 as a function of 𝜂 through an exponential
function to curb the excessive rotation the YS, and showed that the modified version provides more conformity with
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experimental results. To address the hypothesis of isotropic fabric orientation during critical state failure, Dafalias, and
Taiebat44 improved their last premise and proposed an expression for the equilibrium state for the range of |𝜂| ≥ 𝑀 with a
declining trend for bounding value to zero as the quantitative representation of the isotropic state.Wheeler et al.36 defined
equilibrium state of fabric anisotropy implicitly through their RH rule which can be obtained by solving 𝛼̇ = 0 (explained
in the sequel). The equilibrium value varies between 1

3
𝜂 and 3

4
𝜂, according to the values of the model constant 𝛽 (Figure 5

in the reference). It should be noted that similar to Dafalias21, Wheeler et al.36 did not anticipate any measures to limit
the equilibrium state of anisotropy when 𝜂 > 𝑀 which leads to the excessive rotation of the YS.51 Yang et al. 39 equipped
their proposed RH rules for both YS and PPS with two distinct equilibrium states. The integration of the proposed RH
by Chen and Yang17 led to an exponential function of plastic deviatoric strain increment. Although no explicit bounding
value was defined in their model, it was shown in their work that the accumulative anisotropy reaches to zero as the
plastic deviatoric strain increases infinitely on reaching the critical state.
In this work, a novel RH rule is proposed to describe the rotation of both YS and PPS. The RH formulation represents

the development and erasure of anisotropy due to both plastic volumetric and shear strain increments. In the triaxial stress
space, this hardening rule has the form

𝑑𝛼 = 𝜇
𝑝

𝑝0

(
A 𝑑𝜀

𝑝
𝑣 + [1 − A]

||| 𝑑𝜀𝑝𝑑 |||) (𝛼𝑒 − 𝛼) (5a)

𝛼𝑒 = 𝜂

[
𝐴 (𝜒𝑣 − 𝜒𝑑) + 𝜒𝑑 exp

(
−𝑐

⟨|𝜂|
𝑀

− 1

⟩)]
(5b)

𝐴 = tanh(𝑎 < 1 −
|𝜂|
𝑀
>𝑏) (5c)

in which 𝜇 controls the absolute rate of anisotropy evolution toward its equilibrium state (𝛼𝑒), 𝜒𝑣 and 𝜒𝑑 represent the
bounding values which the YS tends to incline along with due to pure plastic volumetric and deviatoric strains under
constant stress ratio loading condition when 𝜂 = 𝑀, and 𝑎, 𝑏, and 𝑐 are model constants that adjust the equilibrium
state at different stress ratios. Moreover, 𝑝∕𝑝0 is implemented to slow down the rate of YS rotation with increasing over-
consolidation ratio (𝑂𝐶𝑅).
As it is shown in Equation (5a), the proposed RH rule employs both plastic volumetric and deviatoric strain increments.

It controls their participation through a transitional function (𝐴) which considers a gradual change in the contribution of
governing plastic strain increments from volumetric to deviatoric by increasing stress ratio (𝜂). This function is defined
in such a way that it satisfies the dominance of plastic volumetric strain at low values of stress ratio, while it signifies the
role of plastic deviatoric strain simultaneously with the increment of stress ratio.
Moreover, a new expression for the equilibrium state of anisotropy is defined via Equation (5b). The first term in the

square bracket characterizes the bounding value when 𝜂 ≤ 𝑀, while the second exponential term is considered to restrain
the rotation of YSwhen 𝜂 ≥ 𝑀. By specifying𝜒𝑣 and𝜒𝑑 as two extreme equilibrium states and considering the significance
of dominant plastic strain increments by hyperbolic function 𝐴, 𝛼𝑒 is determined as a function of 𝜂∕𝑀. Figure 3 shows
the variation of 𝛼𝑒 with regard to parameters 𝑎, 𝑏, and 𝑐. Parameters 𝑎 and 𝑏 prescribe the equilibrium state of anisotropy
between 𝜒𝑑 and 𝜒𝑣 with regard to the governing plastic strain component when 𝜂 ≤ 𝑀 (Figures 3A and 3B). On the other
hand, parameter 𝑐 controls the variation of equilibrium state for loading beyond the critical state (see Figure 3C). While
0 < 𝑐 < 0.9may lead to excessive rotation of YS as a consequence of the development of anisotropy, 𝑐 > 0.9 results in the
erasure of anisotropy and decreases the inclination of the YS.
It should be noted that in some anisotropic models such as S-CLAY136 and MIT-S119, Macaulay brackets are applied to

the plastic volumetric strain increments. This is because in thesemodels, yielding on the dry side of the critical state (𝜂 > 𝑀

and 𝑑𝜀𝑝𝑣 < 0) can result in excessive rotation of the YS and divergence from the equilibrium state at an accelerating pace.
However, as discussed above, for the proposedmodel the second exponential term in Equation (5b) prohibits any deviation
from the equilibrium state. Therefore, in the new model, contributions from the actual values of plastic volumetric strain
increments (whether positive or negative) can be considered for fabric evolution and application of Macaulay brackets is
not required.
As is demonstrated in Figure 4, the previously proposed equilibrium states of anisotropy can be reproduced by choosing

relevant values of RH parameters, as are shown in Table 1. Also, by assuming 𝜒𝑣 = 𝜒𝑑 , the variation of equilibrium
anisotropy state transforms to a straight line as in Nieto Leal et al.53 Moreover, Figure 5 shows the comparison of actual
and simulated values of the equilibrium state of anisotropy for Otaniemi clay.36 With calibrated values of 𝜒𝑑 = 0.4 and
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F IGURE 3 Variation of anisotropy equilibrium state with parameters (A) 𝑎, (B) 𝑏, and (C) 𝑐

𝜒𝑣 = 1.0 to fit with experimental data at low and high stress ratios, Equation (5b) can provide excellent agreement with
experimental data points for 𝜂 > 0.

Discussion of the 𝜇 parameter
Controlling the pace of anisotropy evolution via a constant parameter is an integral part of almost every anisotropic consti-
tutive model (e.g., 𝜇 inWheeler et al36, 𝑐 in Dafalias et al.37 and𝑚 in Chen and Yang17). This parameter directly affects the
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F IGURE 4 Comparison of proposed anisotropy equilibrium state with recently proposed ones in the literature

TABLE 1 Comparison of the proposed equilibrium state of anisotropy with different rotational hardening formulations

Models Parameters in reference RH rulesa
Proposed RH rule parameters
𝒂 𝒃 𝝌𝒅 𝝌𝒗

Wheeler et al36 𝛽 = 0.91 1.5 1 0.33 0.75
Dafalias and Taiebat51 𝑚 = 0.412 𝑛 = 9 𝛼𝑐 = 0.23 4.2 0.75 0.19 0.58
Dafalias and Taiebat44 𝑧 = 2 𝑠 = 1.5 1 1.3 0.43 0.9
Yang et al.39 𝑘𝑔 = 4.6 𝜁𝑔 = 1.46 2.2 0.7 1 0.5

aParameters are presented based on their notations in the original reference.

model simulations by controlling the rate of YS inclination. Moreover, it has an implicit contribution to alter the overall
response of the model, which has not been clearly elaborated in the literature.
Besides controlling the absolute pace of anisotropy evolution, parameter 𝜇 also specifies the participation rate of

isotropic and RH rules in the variation of YS. This means 𝜇 indirectly affects the isotropic hardening. Figure 6 shows
the effect of parameter 𝜇 on the size of YS under 𝐾0 loading condition, when YS is oriented along with the equilibrium
state 𝛼𝑒. As the figure shows, low values of 𝜇 signify the role of isotropic hardening in representing the plastic strain

F IGURE 5 Anisotropy equilibrium state values of Otaniemi clay for constant stress ratio loading (data fromWheeler et al.34)
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F IGURE 6 Variation of yield surface size with 𝜇 under 𝐾0 loading condition

F IGURE 7 Variation of yield surface inclination with 𝜇 under 𝐾0 loading condition

increments and lead to more expanded YS. On the other hand, when 𝜇 tends to infinity, YS almost remains unchanged in
size.
Although it was found that the convergence of YS inclination to the equilibrium state 𝛼𝑒 might be guaranteed just for

relatively high values of 𝜇 and there is an implicit limiting value which interrupts YS from rotating,54 no hidden limiting
value was observed in the AA1-CLAY, at least in the case of 𝐾0 loading condition YS reaches its equilibrium state for
any desired 𝜇 > 0. But low values of 𝜇 might lead to unrealistically large sizes of YS. Figure 7 shows the variation of
YS inclination with 𝜇 under 𝐾0 loading condition. As this figure shows, parameter 𝜇 can dictate how YS changes its
inclination to lay in the direction of the prescribed equilibrium state. However, it is noteworthy that in all cases, reaching
the prescribed equilibrium state is satisfied.

2.4 Plastic modulus

To establish a complete stress-strain relationship, the consistency condition should be satisfied over the YS, which guaran-
tees that the stress state remains on the YS during the plastic flow (𝑓̇ = 0). By determining the loading index from routine
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plasticity procedure and following a standard differentiation of the YS with regard to its state variables and substituting
the hardening rules and loading index into it, the plastic modulus is obtained as

𝐿 =
1

𝐾𝑝

(
𝜕𝑓

𝜕𝑝
𝑑𝑝 +

𝜕𝑓

𝜕𝑞
𝑑𝑞

)
(6)

𝐾𝑝 = −
𝜕𝑓

𝜕𝛼

(
𝜕𝛼

𝜕𝜀
𝑝
𝑣

𝑑𝜀
𝑝
𝑣 +

𝜕𝛼

𝜕𝜀
𝑝

𝑑

𝑑𝜀
𝑝

𝑑

)
−
𝜕𝑓

𝜕𝑝0

𝜕𝑝0

𝜕𝜀
𝑝
𝑣

𝑑𝜀
𝑝
𝑣 (7)

It should be noted that the plastic strain components associated with the YS evolution are obtained using the Euler back-
ward implicit integration scheme, which is described in Appendix B.

3 MODEL FEATURES

3.1 Uniqueness of CSL

From themathematical point of view, the uniqueness of CSL is preserved if it can be proven that the ratio ofmean effective
stress at CSL (𝑝𝑐) to mean effective stress at NCL (𝑝0) is independent of Lode angle.51 By rewriting YS equation into the
stress-ratio form and setting the values of 𝑝, 𝜂 and 𝛼 to the corresponding values at the critical state (𝑝𝑐, 𝑀, and 𝜒𝑑,
respectively), the following relationship can be obtained

(1 − 𝜒𝑑)
2(

𝑁

𝑀

)2
− 𝜒2

𝑑

=

(
𝑝𝑐
𝑝0

)𝑚 (
𝑝0
𝑝𝑐

− 1

) 2

1+𝑛

(8)

By considering a unique NCL in 𝑒 − ln 𝑝 space, Equation (8) shows that for constant𝑚 and 𝑛, there is at least a constant
𝑝0∕𝑝𝑐, and by considering 𝑀 = 𝑁, it will only depend on 𝜒𝑑. Therefore, the CSL in 𝑒 − ln 𝑝 space can be specified
easily for any value of 𝑝0 and the constant ratio of 𝑝0∕𝑝𝑐. As the left-hand side of Equation (8) is independent of Lode
angle, the uniqueness of CSL remains valid for any loading mode process in the 𝜋-plane. Moreover, reaching a certain
value of anisotropy equilibrium state at CSL is necessary. It means utilizing a suitable RH rule should be considered as a
crucial part of the constitutive model to maintain a unique CSL. For a RH rule that relates the rate of YS rotation to only
plastic volumetric strain increments (Equation 3a), reaching CSL yields 𝜕𝑔∕𝜕𝑝 = 0, and since YS does not evolve any
further, it cannot be conclusively proven that an identical anisotropy equilibrium state is reached.37 This is why several
recently developed advanced constitutivemodels employ plastic deviatoric strain increment in their formulation to simply
eliminate the 𝜕𝑔∕𝜕𝑝 part.
To schematically illustrate the uniqueness of the CSL for the simple case of triaxial loading, two undrained anisotropi-

cally consolidated compression and extension loading were simulated. As is shown in Figure 8, the evolution of YS during
both compression and extension triaxial simulations leads to identical mean effective stress at CSL (𝑝𝑐) and YS size values
(𝑝0). The sickle-shaped stress path near CSL at the extension side proves that the model continues to evolve to reach the
anisotropy equilibrium state and satisfies the uniqueness of CSL.

3.2 𝑲𝟎 simulation

PPS plays a decisive role in the simulation of𝐾0 loading in isotropic constitutive models. The basic OCC andMCCmodels
fail to predict the 𝐾0 loading precisely for normally consolidated conditions. As a remedy, using PPS with a more flexible
shape has become a smart option that yields rather satisfactory results.49,55 In the case of anisotropic constitutive models,
in addition to PPS, RH rules are responsible for simulating 𝐾0 loading.
The capability of the proposed RH rule guarantees that the 𝐾0 value can be adequately simulated. Figure 9 shows how

the variation of parameters 𝑎, 𝑏 and 𝜒𝑑 can reproduce different 𝜂 under the application of one-dimensional loading.
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F IGURE 8 Schematic illustration of critical state line uniqueness

3.3 Inherent anisotropy

Before achieving a satisfactory model simulation, it is essential to properly define the initial state of soil element. In
addition to preconsolidation pressure (𝑝0) and initial void ratio (𝑒𝑖𝑛), determination of the initial inclination of the YS (i.e.,
α0) as a measure of inherent soil fabric anisotropy, is of great importance. Due to the sedimentation process of natural
clays and also through the preparation of reconstituted samples under 𝐾0 condition, it can be assumed that the fabric
of soil element alters similarly with the anisotropy equilibrium state (𝛼0 → 𝛼𝑒), where each 𝛼0 corresponds to a specific
stress ratio 𝜂0 related to 𝐾0 via

𝜂0 =
3 (1 − 𝐾0)

1 + 2𝐾0
(9)

AA1-CLAYassumes the domain between𝜒𝑑-line and𝛼𝑒 as the permissible range of𝛼0 and defines it as a simple function
of 𝜂0 by

𝛼0 = 𝜔 𝜂0 (10)

where for simplicity 𝜔 is defined as the mean of 𝜒𝑑 and 𝛼𝑒

𝜔 =
1

2

(
𝜒𝑑 + tanh(𝑎 < 1 −

|𝜂0|
𝑀

>𝑏) (1 − 𝜒𝑑)

)
(11)

4 MODEL PARAMETERS AND THEIR CALIBRATION

In this section, the input model constants of the proposed model are discussed, and then the model response is elaborated
through a step-by-step parameter calibration process using experimental results of TSC.56 The calibration procedure of
each parameter is followed by amore detailed sensitivity analysis in order to demonstrate the influence of a broader range
of parameter values on the model simulations.
The model parameters and state variables required for the AA1-CLAY model can be categorized into three groups: (1)

isotropic parameters including 𝑝0, 𝑒0 (initial void ratio),𝑀, 𝜆, 𝜅 and 𝜈 (Poisson’s ratio) which are similar to those of MCC
model, (2) YS shape parameters including 𝑁, 𝑚, and 𝑛, and (3) anisotropy parameters including 𝛼0, 𝜒𝑑, 𝜇, 𝑎, 𝑏, and 𝑐.
The evaluation of the isotropic parameters is straightforward, and they can be determined from the results of standard
geotechnical tests as is the routine for MCC-based critical state models (see, e.g., Wood57). The other parameters can be
obtained by using the following calibration procedure.
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F IGURE 9 Variation of model simulation under 𝐾0 condition by considering different (A) 𝜒𝑑 , (B) 𝑎, and (C) b

4.1 Model calibration

The calibration procedure involves sequential tuning of YS shape and RH rule parameters to achieve the most suit-
able prediction of soil responses. This process starts with optimizing YS shape parameters (𝑚, 𝑛, and 𝑁). Although
it is reasonable to fine-tune the shape parameters in order to capture the yield stress points more accurately, due
to known uncertainties associated with determining the definitive yield stress points,49,58,59 the authors recommend
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F IGURE 10 Comparison of experimental results of Taipei silty clay and model simulations with differentM

fitting the triaxial undrained isotropic and anisotropic stress paths using the variation of shape parameters. However,
for the sake of completeness, the result of the best calibrated YS shape parameters can also be compared with the yield
points.
The optimization of RH rule parameters (𝜒𝑑, 𝑎, 𝑏, 𝑐, and 𝜇) should be carried out in the second step of the param-

eter calibration process. For the best results, it is recommended to calibrate these parameters against one-dimensional
loading tests. Nonetheless, using undrained triaxial test results can be another way to calibrate suitable values of RH rule
parameters.
The calibration procedure is conducted over the experimental test data of normally consolidated TSC. The specimens

were tested at 𝑒0= 1.01 with maximum past consolidation stress of 640 kPa. The values of conventional critical state
parameters are taken from Ling et al.60 Measurements of effective stress at the axial strain of 𝜀𝑎= 10% resulted in fric-
tion angle (𝜙) of 28◦ and 33◦ in compression and extension, respectively. Given the dependence of critical state ratio to 𝜙
(i.e.,𝑀 = 6 sin 𝜙∕(3 − sin 𝜙) ),𝑀 was estimated as 1.1 for 𝜙 = 28◦. Comparison of experimental data with the model sim-
ulations (Figure 10) suggests that𝑀 = 1.3 (by considering 𝜙 = 33◦) can lead to more compatible predictions and therefore,
calibration of parameters is carried out by assuming𝑀 = 1.3. It should be noted that a similar value for𝑀 is used in the
simulation of the undrained isotropic triaxial test of TSC in Hung et al.61

4.1.1 YS shape parameters calibration

Figure 11 shows the model responses with different values of YS shape parameters. By increasing the value of 𝑛, the
proposed model shows more distinctive vertical stress path associated with a peak strength while, in the end, all simu-
lations approximately converge to a specific stress state (Figure 11A). On the other hand, the variation of 𝑚 affects the
model responses at high strain levels, and for small strain levels the model yields almost identical stress paths. It is clear
from Figure 11B that higher values of𝑚 produce more softening-like behaviour. The value of the shape parameter 𝑁 has
the most significant influence on the model simulations and it can change the overall shape of the stress path. Defin-
ing this parameter independent from 𝑀, brings functional capabilities to the model. The lower values of this parame-
ter can alter the nature of model simulation from purely hardening mode to hardening-softening and purely softening
(Figure 11C).
The yield loci for TSC were determined by using triaxial drained tests. Prior to shearing the samples, in-situ stress

condition was reproduced, and samples were allowed to consolidate.56 The yield data were normalized with respect to the
in situ vertical stresses to eliminate the effects of different sampling depths. Figure 12 shows a practically good agreement
between the experimental yield stress points, and the model YS using the best-fitted parameters in Figure 11.
To clarify the contribution of YS shape parameters on the response of AA1-CLAY, themanner inwhich these parameters

transform the YS is also studied for the isotropic condition (𝛼 = 0). For this propose, the YS can be rewritten in the
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F IGURE 11 Yield surface shape parameters calibration (A) 𝑛, (B)𝑚, and (C) 𝑁



DEJALOUD and REZANIA 15

F IGURE 1 2 Yield surface for Taipei silty clay (data from Chin et al.56)

following form

𝑞2 =
[
𝑀2 (𝑝0 − 𝑝) 𝑝

] [(
𝑁

𝑀

)2(
𝑝

𝑝0

)𝑚 (
𝑝
𝑛−1

𝑛+1 (𝑝0 − 𝑝)
1−𝑛

𝑛+1

)]
(12)

In which the first square bracket forms the MCC YS and the second one stands as the shape modifier. Therefore, evalu-
ating the second square bracket defines the role of each shape parameters in adjusting the YS and their corresponding
simulations in stress and strain spaces.

Parameter 𝑛
According to Equation (12), parameter 𝑛 takes part in the transformation of YS via the last parentheses in the second
square brackets, called 𝐷𝑛 from now on

𝐷𝑛 =

(
𝑝
𝑛−1

𝑛+1 (𝑝0 − 𝑝)
1−𝑛

𝑛+1

)
(13)

Given 𝑛 > 1, 𝐷𝑛 contracts the YS at low values of the stress (𝑝 → 0) and expands it for normally consolidated and lightly
overconsolidated stress states (𝑝 → 𝑝0). Thus, 𝐷𝑛 alters the MCC YS to a teardrop-shaped with a flat cap by increasing
𝑛. To better understand how 𝐷𝑛 affects the model simulations, let us assume that the YS and PPS are associated with
the normally consolidated stress state of Figure 13. For the sake of simplicity, the isotropic condition is evaluated, but the
results can be readily extended to the anisotropically consolidated soil. It is evident that in the early stages of the loading,
both normals to the YS and PPS are nearly coincided and perpendicular to the stress increment. Therefore, the model
experiences a nearly neutral loading situation and stress state moves along the YS (𝑑𝜀𝑝𝑣 → 0). This condition continues
until the norms deviate from each other, and after that, the stress path leans to reach CSL. On the other hand, 𝑛 < 1

reproduces the bullet-shaped YS with an acute cap. Unlike the YSs with a bulky cap, the normals to the bullet-shaped YS
start to diverge from the normal of the PPS at the beginning of the loading process, and the stress path heads to reach the
CSL. Figure 14 shows the sensitivity of model simulations to the values of 𝑛. The variations can be evaluated in line with
the YS shapes in Figure 1A.
For the calibration purposes, since 𝑛 has themost striking effect on themodel response from early stages of the shearing

and influences the stress path from low strain levels, this parameter can be calibrated by fitting the undrained triaxial stress
paths in the low strain levels.

Parameter𝑚
Parameter𝑚 participates in controlling the shape of YS through the power function𝐷𝑚 = (𝑝∕𝑝0)

𝑚 .𝐷𝑚 is amonotonically
increasing (𝑚 > 0) or decreasing (𝑚 < 0) function tending to unity when 𝑝 → 𝑝0. Therefore, the variation of𝑚 does not
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F IGURE 13 Comparison of yield surface and plastic potential surface normals for (A) teardrop-shaped and (B) bullet-shaped surfaces

make any considerable changes in YS shape when 𝑝 → 𝑝0 andmainly reshapes the YS for low values of 𝑝 (as illustrated in
Figure 1B). Considering the flow rule and consistency condition, one can realize why the stress path remains unchanged
with the variation of 𝑚 in the early stages of shearing. The effect of this parameter on both YS and stress path becomes
significant when the stress state moves away from 𝑝0. While increasing 𝑚 leads to a narrower teardrop-shape YS with
maximumdeviatoric stress greater than that in conjugationwith CSL, the stress path shows a softening behavior. Figure 15
compares how different values of 𝑚 can affect the response of AA1-CLAY. It is apparent that when 𝑚 → 1, AA1-CLAY
shows a softening stress path.
The evaluation of the sensitivity analysis suggests that 𝑚 can be calibrated using the experimental results from

undrained triaxial tests at high strain levels.

Parameter N
The term (𝑁∕𝑀)2 as a constant ratio magnifies (when 𝑁 > 𝑀) or compresses (when 𝑁 < 𝑀) the YS. By changing the
volume of the YS, this coefficient adds a desirable amount of flexibility to the model, and consequently, various forms
of model response can be obtained. Considering an anisotropic state of the soil (𝛼) and the ratio 𝑁∕𝑀, AA1-CLAY may
reproduce various modes of simulations for normally consolidated samples from purely hardening to purely softening.
Figure 16 shows a range of model simulations for different values of 𝑁∕𝑀. The significant effect of this parameter on
model responses is evidently noticeable.
After trying to calibrate parameters 𝑛 and𝑚 to capture the overall trend of experimental test data, the model response

can be fine-tuned by adjusting 𝑁. It should be kept in mind that changing 𝑁 may lead to re-calibration of the other two
shape parameters.
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F IGURE 14 Sensitivity analysis for shape parameter 𝑛 in (A) triaxial stress and (B) stress-strain spaces

4.1.2 RH rule calibration

Due to low sensitivity of model response to the variations of RH rule parameters in simulating the undrained triaxial test
data (as will be discussed in the sequel), it is recommended to calibrate the RH rule parameters using the one-dimensional
loading data. Moreover, since the initial inclination of the YS (𝛼0) is defined as a function of RH rule parameters (Equa-
tions 10 and 11), yield stress points can also be used to approximate or further validate these parameters’ values. Calibration
procedure of each RH rule parameter is discussed in the following.

Parameters 𝑎, 𝑏, and 𝑐
Figure 17 illustrates how 𝑎 and 𝑏 can change model simulations. Knowing that the majority of differences in model sim-
ulations demonstrated in Figure 17 come from the various initial anisotropy state of the soil (𝛼0), it is evident that the
variation of these parameters does not have a significant influence on the triaxial test predictions. To clarify this, one
can consider Figure 18 which shows the effect of parameters 𝑎 and 𝑏 on the model responses by neglecting their con-
tribution in the changing of 𝛼0. This figure reveals that, contrary to simulations of the 𝐾0 condition shown in Figure 9,
predictions of undrained triaxial test results are less sensitive to the values of 𝑎 and 𝑏. Therefore, unless there are no valid
one-dimensional loading test results, one can ignore the flexibilities which are brought into themodel by these parameters
and consider them as constant values by assuming 𝑎 = 5 and 𝑏 = 2. As will be shown, the model verifications indicate
that this set of parameters can lead to adequate results for various types of clay. Figure 19 shows a sensitivity analysis over
a broader range of RH rule parameters’ values. This analysis also proves the inconsiderable effect of these parameters on
the simulation of the undrained triaxial test results.
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F IGURE 15 Sensitivity analysis for shape parameter𝑚 in (A) triaxial stress and (B) stress-strain spaces

Parameter 𝑐 participates in controlling the rotation of the YS for 𝜂 > 𝑀. Thus, this parameter is applicable for specific
loading conditions that continue beyond the CSL. Although using this parameter is optional, it is recommended to set
𝑐 ≥ 0.9 to restrict the YS from excessive rotation. Figure 19 shows how 𝑐 diminishes the sickle-shaped stress path by
restraining the YS rotation.

Parameter 𝜒𝑑
This parameter directly controls the equilibrium state of anisotropy at CSL. Since 𝜒𝑑 defines the intersection point of the
YS and CSL at failure, it has a similar effect as shape parameter𝑚 on the simulation of the undrained triaxial test data. By
considering constant 𝑎 and 𝑏 values, both𝐾0 loading and the undrained triaxial tests can be used to calibrate𝜒𝑑. Moreover,
similar to 𝑎 and 𝑏, 𝜒𝑑 participates in the determination of initial inclination of the YS. Therefore, yield stress points can
also be used to calibrate or further validate the value of 𝜒𝑑. It should bementioned that the equilibrium inclination at CSL
(𝜒𝑑𝑀) must be less than 𝑁 to have a valid YS ((𝑁2 − 𝜒2

𝑑
𝑀2) > 0).

Figure 20 shows the simulation of undrained triaxial test data using various 𝜒𝑑 values. Although the effect of various
𝛼0 is concealed in these predictions (Figure 20A), this parameter can also change the model responses by assuming a
constant initial anisotropy state (Figure 20B). Moreover, Figure 21 shows the sensitivity of model predictions against 𝜒𝑑.
To ignore the effect of various inclination of the YS on the model response, constant 𝛼0 is considered in these simulations.

Parameter 𝜇
The remaining RH rule parameter, 𝜇, controls the absolute pace of YS rotation toward its equilibrium state. Although
this parameter controls how YS rotates during shearings, Figure 22 confirms that it has an insignificant effect on the
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F IGURE 16 Sensitivity analysis for shape parameter 𝑁 in (A) triaxial stress and (B) stress-strain spaces

overall prediction of the undrained triaxial test data. As a recommendation, values between 0.8𝑝𝑎𝑡𝑚 and 1.2𝑝𝑎𝑡𝑚 can be
considered for this parameter.

4.2 Conclusion on the parameter calibration

Table 2 summarizes the suitable tests to be used in the calibration procedure of YS and RH rule parameters. As discussed
in Section 4.1, for each parameter two recommended and alternative tests are suggested. Moreover, for use in the practice
with limited or no tests available, permissible parameter values are suggested.

5 MODEL VERIFICATION

In this section, using available experimental test results from the literature, the performance of the proposed model is
studied. First, the ability of the model’s YS in producing appropriate fits for yield stress points is investigated. Then, AA1-
CLAY is validated using undrained triaxial test data for four different clays, including KC62, LCT63, BBC64, and SCC65.
Prior to simulations, and following the procedures described in the previous section, the model parameters are first cal-
ibrated. Table 3 summarizes the model parameter values for each soil type. It is noteworthy that for all soil types, the
RH rule parameters 𝑎 and 𝑏 are considered constant and equal to 5 and 2, respectively (as indicated in the previous
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F IGURE 17 Rotational hardening rule parameters calibration for parameters (A) 𝑎, and (B) 𝑏 by considering varying values for 𝛼0

section). Moreover, the calibration of 𝜒𝑑 is followed by determining the initial inclination of the YS via Equations 10
and 11.

5.1 Yield surface

As discussed earlier, AA1-CLAY employs a versatile YS equation that can capture yield points more accurately in com-
parison with other constitutive models with an elliptic YS. One of the primary motivations for introducing such YS is the
known problems associated with capturing the experimental yield points. For the purpose of demonstration, the proposed
YS is tuned to fit some of the well-documented clays in the literature (see Figure 23).22,49 To this end, when there has not
been enough data available to determine the initial inclination of the YS, the anisotropy parameter is altered until the
best fit is achieved (as suggested by Wheeler et al.36). Based on presented plots in Figure 23 it is reasonable to conclude
that in comparison with simple anisotropic models, for example, 36–37 AA1-CLAY provides a more realistic and complete
representation of the experimental yield points.
Based on the evaluation of experimental data and yield stress points, Sivasithamparam and Castro49 argued that the

value of the YS shape parameter may not be constant but may depend on the degree of anisotropy. By considering this
point, the YS for the isotropic condition tends to be bullet-shaped, while for anisotropic condition, an inclined ellipse
or teardrop-shaped surface best represents the experimental observations. In addition to Figures 23E and 23F, triaxial
simulations in the next section also confirm this hypothesis.
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F IGURE 18 Rotational hardening rule parameters calibration for parameters (A) 𝑎, and (B) 𝑏 by considering constant 𝛼0

5.2 Simulation of undrained triaxial test data

5.2.1 Kaolin clay (KC)

Stipho62 conducted a series of undrained triaxial shearing tests on fully saturated KC samples. In his stress-controlled
compression experiments on isotropically and anisotropically consolidated samples, Stipho62 considered different 𝑂𝐶𝑅
values ranging from 1 to 5 for isotropic tests, and 1 to 4 for anisotropic tests (𝐾0= 1.0, 0.8, 0.67, and 0.57). In these experi-
ments, the preconsolidation stress, 𝑝0, varied between 357 and 408 kPa for isotropically consolidated tests, and 204 kPa for
anisotropically consolidated tests. The experimentally observed soil responses from these tests are used here to validate
the prediction capability of the developed model.
Figure 24 compares theAA1-CLAY simulationswith the undrained triaxial compression test results of KC. In this figure,

the solid lines show the predicted results for compression tests, and the scattered symbols represent the test data. It can
be seen in the figure that the model predictions are notably consistent with the experimental data in both invariant stress
(Figures 24A, 24C, 24E, 24G) and stress-strain spaces (Figures 24B, 24D, 24F, 24H), especially for the case of normally
consolidated samples. It is important to note that simulations for isotropically and anisotropically consolidated samples
are obtained by using different YS shape parameter values (Table 3). The proposed model shows good agreement with the
experimental data for different consolidation conditions which supports the hypothesis of different YS shape parameter
values for isotropic and anisotropic conditions, as discussed in the previous section. Considering 𝑛 = 0.1 and 𝑚 = 1.3 for
isotropically consolidated sample leads to a bullet-shaped YS, while 𝑛 = 1.4 and𝑚= 0.4 combination results in a relatively
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F IGURE 19 Sensitivity analysis for rotational hardening rule parameters for parameters (A, B) 𝑎, (C, D) 𝑏, and (E, F) 𝑐

bulky teardrop-shaped YS. Moreover, the excellent agreement between the model response and the experimental data for
𝑂𝐶𝑅 = 1.2 also confirms the suitability of calibrated YS shape parameter values (see the corresponding stress path and
crossing of the YS in Figure 24A).
For the NC sample at 𝐾0 = 0.57 (Figure 24G), the model fails to produce reasonable predictions using the calibrated

YS shape parameter values for the anisotropic sample. Sivasithamparam and Castro49 related the similarly observed mis-
match to the overconsolidation of the sample due to ageing and creep effects, and they captured the best fit by considering
an 𝑂𝐶𝑅 of 1.1. Although this assumption can be considered as a possible solution to improve the simulation quality, in
this work a more realistic model simulation is achieved by only adjusting the shape parameter value 𝑛 = 3.6 to signify the
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F IGURE 20 Calibration of 𝜒𝑑 by considering (A) variable and (B) constant 𝛼0

upward trend in the stress path, as shown in Figure 24G (by the dashed line). It should be noted that the initial inclination
of the YS (i.e., 𝛼0), which is derived using Equations 10 and 11 for different values of 𝐾0, are in a good agreement with
those obtained through simulation of the 𝐾0 stress paths in Sivasithamparam and Castro.49

5.2.2 Lower Cromer till (LCT)

Gens63 performed undrained compression and extension triaxial tests on samples of LCTwhichwere consolidated isotrop-
ically and anisotropically. The low plasticity glacial till samples were obtained from Norfolk coast in the UK where the
deposit had been part of the North Sea Drift. It is a sandy clay with a liquid limit of 25%, plastic limit of 13% and a plas-
ticity index of 12%. To resolve the variability of this natural material, Gens63 performed his experiments on reconstituted
samples which were taken from uniform specimens.
Figure 25 shows the 𝐾0 loading simulation which is used to calibrate the values of RH rule parameters 𝜒𝑑 and 𝜇 to be

used in triaxial test simulations. As shown in the figure, by considering constant 𝑎 and 𝑏, the value of 𝜒𝑑 = 0.23 results in
a very good simulation of the experimental data with almost identical stress ratio 𝜂. Although 𝜇 has no significant effect
on the triaxial response of the model, it is used to predict the one-dimensional 𝐾0 loading.
Figure 26 shows the AA1-CLAY predictions of undrained isotropic and anisotropic shearing of LCT samples corre-

sponding to experimental tests at different 𝐾0 conditions. Figure 26A shows that the stress paths predicted by the model
for all values of 𝐾0 are qualitatively and quantitatively consistent with the experimental data. The model provides good
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F IGURE 2 1 Sensitivity analysis for 𝜒𝑑 in (A) triaxial stress and (B) stress-strain spaces

F IGURE 22 Calibration of parameter 𝜇
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TABLE 2 Determination of the model parameters

Parameter Definition
Determination approach
Recommended test Alternative test No test data

𝑛

YS shape parameters Undrained triaxial test Yield stress points

1

𝑚 0 ≤ 𝑚 ≤ 1

𝑁 𝑀

𝑎

RH rule parameters

1D loading test Undrained triaxial test (not very sensitive)
5

𝑏 2
𝑐 1D loading test (𝜂 > 𝑀) Undrained triaxial test > 0.9

𝜒𝑑 1D loading test Undrained triaxial test 0.33
𝜇 0.8𝑝𝑎𝑡𝑚 ∼ 1.2𝑝𝑎𝑡𝑚

TABLE 3 Model parameters for four types of clays

KC62 LCT63 SCC65

Parameter 𝑲𝟎 = 𝟏 𝑲𝟎 ≠ 𝟏 𝑲𝟎 = 𝟏 𝑲𝟎 ≠ 𝟏 𝑲𝟎 = 𝟏 𝑲𝟎 ≠ 𝟏 TSC56 BBC64

𝜆 0.14 0.063 0.045 0.17 0.184
𝜅 0.05 0.018 0.0065 0.02 0.034
𝜈 0.2 0.25 0.2 0.3 0.23
𝑒0 1.07 1.79 1.77 1.01 1
𝑀 1.05 1.18 1.35 1.3 1.39
𝑁 0.85 0.9 1.2 1.02 1.05
𝑛 0.1 1.4 0.2 1 0.1 2.2 2.2 0.9
𝑚 1.3 0.4 0.8 0.4 0.4 0.6 0.2 0.4
𝜒𝑑 0.42 0.23 0.47 0.33 0.33
𝜒𝑣 1 1 1 1 1
𝑎 5 5 5 5 5
𝑏 2 2 2 2 2
𝑐 100 100 100 100 100
𝜇 85 105 85 85 80

agreement with the test data in the stress-strain space, as well (see Figure 26B). Similar to KC, the isotropically consol-
idated sample is simulated with different YS shape parameters while all anisotropic samples are predicted with a uni-
form set of shape parameters. In this case, the isotropic sample is modeled using a lean bullet-shaped YS by setting 𝑛 =
0.2 and 𝑚 = 0.8, which is different from the tear-shaped YS of the anisotropically consolidated samples. Moreover, the
simulations reveal the ability of AA1-CLAY in capturing the softening behavior which can be clearly observed, for exam-
ple in the cases of 𝐾0 = 0.5 and 𝐾0 = 0.4 (see Figure 26). Although for the case of 𝐾0 = 0.4 the proposed model does
not capture the apparent hardening behaviour preceding the softening response, but still for the pure softening part the
simulation shows a good qualitative agreement with the stress-strain data (see Figure 26B). In order to better demon-
strate the advantages of the proposed model, the simulations are also compared with the results of S-CLAY136 model.
The RH parameters of S-CLAY136 are taken from Yang et al.39 in which simulation of the LCT behaviour under different
loading conditions were used for parameters calibrations. As can be seen in the figure, AA1-CLAY clearly outperforms
S-CLAY136 in prediction of the stress paths and stress-strain responses at different𝐾0 conditions during undrained triaxial
shearing.

5.2.3 Boston blue clay (BBC)

BBC is a marine clay type that exists in a layer of the complex Boston soil deposit. This soil has a saturated unit
weight of 1826–1922 kg/m3 and its dry unit weight is between 1281 and 1393 kg/m3. The liquid limit, plasticity index and
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F IGURE 2 3 Validation of the proposed yield surface equation

liquidity index of BBC are 41%, 21%, and 0.8%, respectively. A series of undrained compression and extension triaxial tests
on isotropically and anisotropically normally consolidated samples of BBC were performed by Ladd and Varallyay64. The
specimens were tested at 𝑒0 = 0.84–0.89 with 𝑝0 ranging from 273 to 785 kPa. The model parameter values, determined for
simulations, are summarized in Table 3, among which the values of conventional critical state parameters are taken from
Ling et al.60
Figure 27 shows the AA1-CLAY predictions of normalized stress paths and corresponding stress-strain curves for

isotropically and anisotropically consolidated samples. Figure 27A shows that the stress path predictions are in good
agreement with experimental measurements for both isotropic and anisotropic samples. Unlike previous clay types, the
proposed model predicts the behavior of BBC using an identical set of YS shape parameters for both isotropically and
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28 DEJALOUD and REZANIA

F IGURE 2 5 Comparison of data and simulation for 𝐾0 loading test on Lower Cromer till (data from Gens63)

F IGURE 26 Comparison of data and simulation for undrained triaxial tests on Lower Cromer till (data from Gens63); (A) Stress path,
and (B) stress-strain responses
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F IGURE 27 Comparison of data and simulation for undrained triaxial tests on Boston blue clay (data from Ladd and Varallyay64); (A)
Stress path, and (B) stress-strain responses

anisotropically consolidated samples. Overall, it can be seen that the numerical predictions of stress-strain responses are
in good agreement with the experimental results (see Figure 27B).

5.2.4 Santa Clara clay (SCC)

Venda Oliveira and Lemos65 carried out a series of isotropic and anisotropic undrained triaxial tests over samples from
medium plasticity clay deposits of the Santa Clara dam area in Portugal. They also performed drained triaxial tests in order
to determine the yield stress points. To this end, the isotropic sample was first normally consolidated to an effective stress
of 200 kPa and then unloaded down to an effective stress of 100 kPa (i.e.,𝑂𝐶𝑅 = 2). From this state, four drained constant
stress ratio tests were conducted (𝑑𝜂 = 1.0, 2.5, 3.0, 5.0) to capture different yield points. In the case of determining the
anisotropic YS, the reconstituted samples were consolidated under 𝐾0 = 0.47 condition, where 𝐾0 was obtained from the
one-dimensional tests (zero radial strain) using a computer-controlled triaxial device. In the next step, the samples were
unloaded to𝑂𝐶𝑅 = 1.25. Similar to the isotropic condition, four constant stress ratio tests were carried out (𝑑𝜂 = -1.5, -0.5,
1.0, 3.0).
Figure 28 demonstrates the undrained triaxial compression stress path of SCC for isotropic and anisotropic tests associ-

ated with their corresponding yield points. Evaluation of the isotropic triaxial test (see Figure 28A) suggests that a bullet-
shaped surface can best represent the YS of the isotropically consolidated samples. Using 𝑛 = 0.1 and𝑚 = 0.4 generates a
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F IGURE 28 Comparison of data and simulation for undrained triaxial tests on Santa Clara clay (data from Venda Oliveira and
Lemos65); (A) isotropic, and (B) anisotropic conditions

bullet-shaped YS which reproduces admissible responses, both for the yield points and the stress path in isotropic condi-
tion. On the other hand, the anisotropic sample is simulated using a bulky teardrop-shaped YS, which offers a reasonable
fit to the yield point data and leads to a realistic stress path direction (see Figure 28B).

6 CONCLUSION

A new adaptive anisotropic constitutive model, namely AA1-CLAY, has been developed within CSSM framework. This
model can be considered as the first version and basis of a constitutive model family for natural and reconstitute clays.
A flexible YS is incorporated into the model to reproduce a wide range of shapes, from simple ellipse to more advanced
teardrop-shaped or bullet-shaped surfaces using two additional shape parameters. The proposed YS enables the model
to capture the experimental yield points in both dry and wet sides with good accuracy. The model formulation is devel-
oped using a non-associated flow rule and an inclined elliptic plastic potential function. An added advantage of AA1-
CLAY model is that based on the values of YS shape parameters, it can reduce into simpler classical constitutive models.
Moreover, this model uses a new RH rule to control the rotations of yield and plastic potential surfaces. Based on exper-
imental evidence, a transitional function is implemented into the proposed RH rule to determine the governing plastic
strains and equilibrium state (which the YS tends to reach during shearing) more accurately for different constant stress
ratios. In addition to the determination of the anisotropy evolution before failure, by choosing suitable model constants,
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the development and erasure of fabric anisotropy at critical state can also be simulated with the proposed RH rule. The
numerical implementation of the model is developed via an implicit Euler Backward integration scheme. The proposed
model, AA1-CLAY, has seven new parameters compared to the MCC model. A detailed sensitivity and calibration proce-
dure has been domostrated, which can be considered as a useful guide to determine model parameter values. The model
was also employed for prediction of the responses of five different isotropically and anisotropically consolidated clayey
soils at different 𝑂𝐶𝑅s. The comparison of model predictions against experimental data illustrated the excellent capabili-
ties of the model in capturing different clays responses. To summarize the originality of the model, in addition to a novel
yield function that has the flexibility to produce non-elliptical YSs that can capture yield points with high accuracy, it has
a versatile RH rule that encapsulates the important aspects of clay anisotropy. The combination of these two novelties
provides remarkable capability to outperform existing elliptical constitutive models in predicting soil peak strength, 1D
compression and general stress-strain behavior both in small and large strain domains.
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APPENDIX A: MODEL FORMULATION IN GENERAL STRESS SPACE
The formulation of the AA1-CLAYmodel can be rewritten for the general stress space by implementing the tensorial form
of the effective stress and the anisotropy variable into different model components including YS, PPS and RH rule, as
individually shown in the following.
Yield surface
By using the definition of deviatoric stress tensor (𝜎𝑑

𝑖𝑗
) and deviatoric fabric tensor (𝛼𝑑

𝑖𝑗
), the YS can be generalised as

follows

𝑓 =
3

2
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where 𝑁∗ is a function of the values of the YS shape parameter (𝑁) in compression (𝑁𝑐) and extension (𝑁𝑒), 𝛼 =√
(
3

2
)𝛼𝑑
𝑖𝑗
𝛼𝑑
𝑖𝑗

and the Lode angle (𝜃) (defined in the sequel).
Plastic potential surface and flow rule
Similar to YS, a function for PPS can also be rewritten in the general stress form
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where, as stated in section 2.2, 𝛽𝑑
𝑖𝑗
= 𝛼𝑑

𝑖𝑗
. Similar to the 𝑁∗, 𝑀∗ is implemented in the PPS formulation to consider the

effect of Lode angle on the variation of 𝑀 between its corresponding values in compression (𝑀𝑐) and extension (𝑀𝑒).
According to the relationship suggested by Sheng et al.66, the dependency of the slope of CSL to the Lode angle can be
formulated as

𝑀∗ = 𝑀∗
𝑐
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2𝑟4
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where 𝑟 = 𝑀∗
𝑒 ∕𝑀

∗
𝑐 and𝑀∗

𝑒, 𝑐 = 𝑀2
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2. Moreover, the Lode angle is defined by sin 3𝜃 = 3
√
3∕2(𝑆∕𝐽)3, where 𝐽 and

𝑆 are the second and third stress invariants, respectively.
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With PPS defined, now the plastic strain increments can be determined readily using the following expressions

𝑑 𝜀
𝑝

𝑖𝑗
= ⟨𝐿⟩ 𝜕𝑔

𝜕𝜎𝑖𝑗
(A.6)

where 𝐿 is the so-called loading index
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and 𝐾𝑝 is the plastic modulus that can be obtained from the consistency condition 𝑓̇ = 0
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where 𝜀𝑝𝑣 and 𝜀
𝑝

𝑑
are plastic volumetric and deviatoric strains, respectively. It should be noted that the derivatives of YS

and PPS with respect to 𝜎𝑖𝑗 and 𝛼𝑑𝑖𝑗 are involved with the derivatives of𝑀
∗ and 𝑁∗, as these parameters are a function of

stress and anisotropy state of the clay.
Hardening rules
The isotropic hardening rule is expressed identically in both invariant and general stress spaces. However, the rotational

hardening rule can be rewritten in the general stress space as follows

𝑑 𝛼𝑖𝑗 = 𝜇
𝑝

𝑝0

(
A 𝑑𝜀

𝑝
𝑣 + [1 − A]

|||𝑑𝜀𝑝𝑑 |||) (
𝛼𝑒
𝑖𝑗
− 𝛼𝑖𝑗

)
(A.9)

𝛼𝑒
𝑖𝑗
=
𝜎𝑑
𝑖𝑗

𝑝

⎡⎢⎢⎢⎣𝐴 (𝜒𝑣 − 𝜒𝑑) + 𝜒𝑑 exp

⎛⎜⎜⎜⎝−𝑐
⟨√

3

2
𝜎𝑑
𝑖𝑗
𝜎𝑑
𝑖𝑗

𝑀𝑝
− 1

⟩⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (A.10)

𝐴 = tanh(𝑎 < 1 −

√
3

2
𝜎𝑑
𝑖𝑗
𝜎𝑑
𝑖𝑗

𝑀𝑝
>𝑏) (A.11)

and the volumetric and deviatoric plastic strains can be defined as follows

𝑑 𝜀
𝑝
𝑣 = 𝑑𝜀

𝑝

𝑘𝑘
(A.12)

𝑑 𝜀
𝑝

𝑑
=

√
2

3
𝑑𝜀

𝑝

𝑖𝑗
𝑑𝜀

𝑝

𝑖𝑗
(A.13)

APPENDIX B: NUMERICAL INTEGRATION
AA1-CLAY is integrated using an easy-to-implement and efficient implicit scheme called the cutting-plane algorithm.67
In this method, the strain increments are split into elastic and plastic components. This procedure starts with the integra-
tion of the elastic predictor part, while the plastic hardening parameters remain unchanged. The trial stress increment is
determined using the elastic stiffness tensor 𝐷𝑖𝑗𝑘𝑙

𝑑 𝜎𝑡𝑟𝑖𝑎𝑙
𝑖𝑗

= 𝐷𝑖𝑗𝑘𝑙 𝑑𝜀𝑘𝑙 (B.1)
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The resulting stresses are used as initial variables for plastic correction step. The plastic strain components associated
with the YS evolution can be obtained using the plastic multiplier which is resulted from linearized YS formulation

𝐿 =
𝑓

𝐾𝑝 +
𝜕𝑓

𝜕𝜎𝑖𝑗
𝐷𝑖𝑗𝑘𝑙

𝜕𝑔

𝜕𝜎𝑘𝑙

(B.2)

and the plastic corrector is defined as follows

𝑑 𝜎̂
(𝑖)
𝑖𝑗
= −𝐿(𝑖)𝐷

(𝑖)

𝑖𝑗𝑘𝑙

𝜕𝑔

𝜕𝜎𝑘𝑙

(𝑖)

(B.3)

where the superscript (𝑖) represents the number of iterations before triggering the convergence criterion. It means that
the iteration continues until the prescribed convergence criterion for the iterative stress integration with respect to the YS
is satisfied (i.e., 𝑓 < 10−7). Under this condition, the stress increment is calculated as

𝑑 𝜎𝑖𝑗 = 𝑑𝜎𝑡𝑟𝑖𝑎𝑙
𝑖𝑗

+ 𝑑 𝜎̂𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙

(
𝑑𝜀𝑘𝑙 − 𝐿

𝜕𝑓

𝜕𝜎𝑘𝑙

)
(B.4)

and the trial stress in step (𝑛 + 1) can be obtained from stresses at the previous step (i.e., step 𝑛) as

𝜎
(𝑛+1)
𝑖𝑗

= 𝜎
(𝑛)
𝑖𝑗

+ 𝑑𝜎𝑖𝑗 (B.5)

It should be noted that in order to obtain stable solutions, if necessary, the size of the strain increment can be controlled
through an automatic sub-stepping algorithm (see for example Sheng et al.66).
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