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Abstract
Distributed deep learning is an important and indispensable direction in the field of deep
learning research. Earlier research has proposed many algorithms or techniques on
accelerating distributed neural network training. This study discusses a new distributed
training scenario, namely data isolated distributed deep learning. Specifically, each node
has its own local data and cannot be shared for some reasons. However, in order to
ensure the generalization of the model, the goal is to train a global model that required
learning all the data, not just based on data from a local node. At this time, distributed
training with data isolation is needed. An obvious challenge for distributed deep learning
in this scenario is that the distribution of training data used by each node could be highly
imbalanced because of data isolation. This brings difficulty to the normalization process
in neural network training, because the traditional batch normalization (BN) method will
fail under this kind of data imbalanced scenario. At this time, distributed training with
data isolation is needed. Aiming at such data isolation scenarios, this study proposes a
comprehensive data isolation deep learning scheme. Specifically, synchronous stochastic
gradient descent algorithm is used for data exchange during training, and provides several
normalization approaches to the problem of BN failure caused by data imbalance.
Experimental results show the efficiency and accuracy of the proposed data isolated
distributed deep learning scheme.

1 | INTRODUCTION

Distributed deep learning has become a popular research and
industrial topic in recent decades [1]. The main purpose of
previous research on using distributed methods to train neural
networks is the pursuit of higher training efficiency, or simply
to deal with the problem that the excessive data cannot be put
into a machine for training [2]. The distributed learning has
many advantages, but, in some cases, the existing methods do
not work. Because in traditional distributed learning, the cen-
tral server can obtain all the training data, the data is evenly
shuffled and distributed to each distributed computing nodes
during the training process. However, in some scenarios, each
node can only have its own data, and the data between the
nodes cannot be shared or uploaded to the central node. This
is the new scenario studied here. Distributed neural network
training is performed in the case of data isolation, that is, data
isolated distributed deep learning.

The data isolated distributed scenario is not a completely
new concept. It is also involved in federated learning. Feder-
ated learning is essentially a distributed learning framework.
Although the scenario considered in federated learning is also a
situation where data cannot be shared between computing
nodes, the scenario considered in federated learning is different
from the data isolation scenario discussed in the following
aspects. The first is from the scene. Federated learning is
originally proposed by Google [3], which is a federated learning
system for mobile devices. This starting point determines that
the computing nodes in the federated learning system have the
characteristics of a large number, limited computing power and
unstable communication. This is the main difference between
federated learning and distributed learning, and the most
fundamental difference between the scenarios it considers and
the data isolation scenario we consider. In the data isolation
scenario discussed here, each computing node has certain
computing capabilities, and the communication between nodes
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is relatively stable. The second is from the objective. Because
the scenario considered by federated learning is a situation
where the nodes are large and unstable, the goal is to solve the
node selection strategy and coordinate the imbalance of
computing resources among the nodes. The research objective
of the distributed data isolation deep learning discussed here is
whether the data imbalance between the nodes will affect the
traditional distributed training architecture, and to solve the
negative impact of the imbalanced data distribution on the
normalization operation of the neural network. The third is
from the focus. Federated learning focuses more on how to
encrypt and decrypt the information that needs to be inter-
acted to protect privacy, and how to coordinate and schedule
the data imbalance and computing resource imbalance of each
computing node. The focus of our work is to discuss the
impact of data imbalance in distributed computing on the
normalization method, and how to use the normalization
scheme to ensure the accuracy of distributed training neural
networks.

The scene of data isolation is very common in the real‐life
situation. The data isolation may first aim at the protection of
privacy. For example, user data cannot be uploaded to the
central server for training, but the central server needs to train
a model based on the data of each user. This scenario can refer
to the data of the hospital [4]. Each hospital has its own patient
data. For the purpose of privacy protection, data among
various hospitals cannot be shared. However, the data of each
hospital may have its own distribution. For example, one
hospital that specializes in lung cancer may have more data of
lung cancer patients, and another hospital that specializes in
treating oral cancer may have more data of oral cancer patients.
In order to ensure the generalization of the model, this model
is required to learn enough data, not just based on data from a
local hospital. This is a neural network training process with
data isolated situation. Another consideration for the forma-
tion of data isolation may be the limit of the communication
capacity of data transmission. When the data is widely
distributed, all local data need to be uploaded to the central
server for unified training, which requires huge communication
overhead and memory. In this case, the use of data isolated
network training framework is also a better choice.

Therefore, based on such data isolation scenarios, we aim
to propose a neural network training framework. At the same
time, because of the data isolation situation, the data between
various data sources can be imbalanced, which poses a chal-
lenge to the normalization process in the neural network
training. Here four solutions are provided to solve the
normalization problem during neural network training in data
isolation scenarios.

In summary, our contributions lie mainly in the following
four aspects:

� We have proposed a neural network training framework for
data isolated scenario.

� We have theoretically proved batch normalization (BN) is
not suitable for imbalanced data distribution in data isola-
tion distributed learning.

� Due to data imbalance in data isolation scenarios, we have
discussed the feasibility of four existing normalization ap-
proaches, instance normalization (IN), layer normalization
(LN), channel normalization (CN) and group normalization
(GN), which were designed for other different purposes.
These four methods are not affected by the imbalanced
distribution of data, and can be used in our data isolated
deep learning.

� We conclude that GN outperforms among these four ap-
proaches for the data isolated deep learning, but needs to
manually choose the parameter group number.

The following part of this study is structured as follows.
The previous work about distributed deep learning is intro-
duced in Section 2. In Section 3, the overall framework of
neural network training based on data isolation scenarios is
given. In Section 4, we discuss the reason why BN algorithm is
not applicable in data isolated distributed training. In Section 5,
we present four approaches to the data imbalance normaliza-
tion problem caused by the data isolation scenario. In Sec-
tion 6, the experimental part shows the effect of the four
normalization approaches. Finally, the conclusion and future
work are discussed in Section 7.

2 | RELATED WORK

Deep neural network (DNN) has become an important di-
rection in the field of machine learning research, and also an
important tool in many industrial and daily life applications.
However, data that need to be processed by DNN is getting
larger and larger. In order to train DNN more effectively,
distributed/parallel deep learning research has attracted more
interests. According to [2], the reason for the parallel neural
network is that the neural network model contains millions of
parameters and thus, it takes large amount of data to learn
these parameters. This is a very time‐consuming and compu-
tationally intensive process, while the distributed neural
network can effectively improve the training efficiency of
DNN.

According to [5], the previous research on distributed deep
learning can be mainly divided into three categories: data
parallelism, model parallelism and hybrid parallelism. Data
parallelism is splitting the complete data set to different ma-
chines, and each machine uses the allocated data for calculation
in each training iteration. There are two main methods of data
parallelism, one is synchronous update [6], and the other is
asynchronous update [7]. The difference between them is
whether to wait for all nodes to complete the calculation when
updating the weight. If it needs waiting, it is called as syn-
chronous stochastic gradient descent (SSGD), and if it does
not need to wait, it is called as asynchronous stochastic
gradient descent (ASGD). Furthermore, in order to solve the
delayed gradient problem in ASGD, more research has been
carried out [8–10]. Among them, the authors of [10] proposed
a delay compensation ASGD method to compensate when the
weights are updated, so that the training speed is improved

2 - ZHOU ET AL.



compared with ordinary ASGD. The method of model paral-
lelism is also called as network parallelism. It splits the neural
network into different machines. After all machines get the same
batch of data, each machine calculates different parts of the
DNN. Previous studies on model parallelism include [11–13].
Hybrid parallelism is the combined application of data paral-
lelism and model parallelism, and also has some successful
studies [14–17]. However the focus of this work is how to
accelerate distributed training, without considering the data
isolation in distributed scenarios.

The generation of the data isolation scenario is mainly due
to privacy issues, that is, each node has its own local data and
does not allow to exchange data with any other nodes. The
purpose of data isolation distributed learning is to train a global
model only with the data of each node. Previous research on
privacy‐preserving machine learning models includes [18–20].
Among them, [18, 19] discussed the training of privacy‐
preserving distributed regression models. And [20] proposed
a new protocol that encrypts the data to be exchanged for
privacy protection purposes. This method can be used for
linear regression, logistic regression and neural network
training. However, the focus of these works is how to encrypt
data to protect data privacy. In essence, they all study the ex-
change of encrypted data or the encrypted intermediate results.
They hardly considered distributed training with the deep
learning model, and did not consider the problem of data
imbalance caused by data isolation.

The previous research about data isolated deep learning
has been discussed in a few studies from the aspect of feder-
ated learning. For example, [21] discussed secure multiparty
computation, differential privacy and homomorphic encryp-
tion are three privacy protection mechanisms for federated
learning. It focused on the use of some strategies or encryption
methods to protect privacy, and did not consider the problem
of data imbalance in data isolation scenarios. The author in [22]
established a self‐balanced federated learning framework called
Astraea, which was used to mitigate the impact of data
imbalance on the accuracy of federated learning. However, it
needed to know the distribution of data at each node and the
distribution of all data, which may not be available in the
scenario where data is isolated. Similar to [22, 23] studied
collaborative fairness in federated learning and proposed a
collaborative fair federated learning framework. This frame-
work uses reputation to force participants to converge to
different models, thereby achieving fairness. The research on
the imbalanced data distribution caused by data isolation in
federated learning mainly comes from [24, 25]. Among them,
[24] studied the method of data expansion that can be used for
boundary‐aware fusion and boundary expanding to solve the
problem of data skew. And [25] proposed a monitoring scheme
that can infer the composition of each round of federated
learning training data, and design a new loss function to alle-
viate the impact of imbalance. However, none of them dis-
cussed the issue of BN failure caused by data imbalance. At the
same time, [26] researched the dynamic modeling of cross‐layer
soft error rate based on back propagation neural network, and
proposed a system availability optimization strategy.

All the studies mentioned above have not paid attention to
how to achieve normalization in the case of data isolation.
Normalization is very important to guarantee the accuracy of
neural network. We discuss the problem of imbalanced dis-
tribution of data among various nodes caused by data isolation
scenarios. Such imbalanced data will lead to the failure of BN
in distributed neural network training. And we will give the
solution to this problem, thus giving a new data isolation deep
learning scheme.

3 | FRAMEWORK OF DATA ISOLATED
DISTRIBUTED DEEP LEARNING

The framework of distributed neural network is based on the
SSGD algorithm. The essence of data isolated deep learning is
a distributed neural network training process. In order to un-
derstand the proposed framework better, the structure of the
neural network and SSGD algorithm will be introduced in
detail in the following section.

3.1 | Neural network structure

The complete neural network structure includes an input layer,
one or more hidden layers and an output layer. The input data
goes through the layer‐by‐layer connected network and gets
the final output result. In the simplest DNN structure, the
connection between each upper and lower layer will generally
pass through the fully connected layer, the normalization layer
and the activation layer, as shown in Figure 1. In a more
complex network with CNN structure or RNN structure, the
fully connected layer is generally replaced by the convolutional
layer or an RNN connection layer, though it is essentially a
combination of the linear connection layer and the activation
layer. For the sake of simplicity, the following discussion uses a
simple DNN structure as an example, but the derivation from
the DNN structure to the CNN or RNN structure can be
easily achieved.

As mentioned above, the transfer between the two layers of
neurons in the neural network generally goes through three
processes: the linear connection layer, the normalization layer
and the activation layer. In the forward propagation of the
neural network, the formulas of these three layers are as
follows.

The linear connection layer is described as:

X0 ¼W ⋅ Xþ B¼
X

i

ðwi ⋅ xþ biÞ; ð1Þ

where X is the input of the linear connection layer, X0 is the
output of the linear connection layer and W and B are the
weights and biases of the linear connection layer.

The normalization layer is described as:

X00 ¼ NORM X 0ð Þ; ð2Þ
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where X0 is the input of the normalization layer, X00 is the
output of the normalization and NORM() represents various
normalization methods.

The activation layer is presented as:

X000 ¼ σ X 00ð Þ; ð3Þ

where X00 is the input of the activation layer, X000 is the output
of the activation and σ() represents various activation func-
tions. The most common activation functions are Relu, Sig-
moid, Tanh etc.

In the backward propagation of the training, the parame-
ters which need to be updated are in the linear connection layer
and the normalization layer, while the activation layer does not
have learnable parameters. The normalization layer will be
discussed in detail in the next two sections. The parameter
update formula given below is only for the parameters in the
linear connection layer.

θ ≔ θ − η
∂J
∂θ
; ð4Þ

Such a parameter update formula is the stochastic gradient
descent algorithm [27], where θ denotes the parameters that
need to be learnt and updated, and specifically includes the
linearly connected weights (W ) and the bias (B ) referred as
weights. Here J is the cost function, generally the most com-
mon ones are the quadratic cost function and cross‐entropy
cost. η denotes the learning rate, which is an adjustable
parameter in the neural network optimizer. The most impor-
tant part in the formula is ∂J∂θ, which is called gradient (G ). The
transmission and integration of the gradients is the core of
distributed deep learning, which will be specifically explained in
the next section.

3.2 | Synchronous stochastic gradient
descent

SSGD [28] is the most common method for distributed neural
network training. In the structure of SSGD, there are n + 1
processes, one of which is called master, and the other

processes are called workers. The master's job is to receive the
information sent from each worker, and then broadcasts it
after processing. The worker's job is to use its own local data
for local calculations. The algorithm of SSGD is shown in
Algorithm 1.

First, each worker organizes its local data to prepare for
training. Then the master and workers initialize the network
structure. When training, in each epoch, the worker first
loads its own local data divided into batches. Then in each
batch of training, the master first sends its latest weights to
all workers. All workers replace the weights of the local
models with the received weights. Next, each worker starts
the local calculation, first doing the forward propagation to
calculate the loss, and then using the loss to perform the
backward propagation to calculate the gradients. After
completing the calculation, the worker sends the local gra-
dients to the master and then waits. When the master re-
ceives the gradients from all workers, it calculates the
average of all gradients and uses the average gradients to
update the weights. This process repeats until the model
training reaches the end condition.

F I GURE 1 Neural network with normalization layer
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Next, we provide a simple proof that the distributed
SSGD algorithm is essentially the same as all data placed on a
central server for training. Without considering BN, SSGD is
not affected by the imbalance distribution of data among
workers.

For each weight needed to be updated, the average gradient
Gave calculated by the master is the average of n workers
gradients Gif gi¼1;…;n, Gi is the gradient calculated by the ith
worker, one has:

Gave ¼
1
n

∑n
i¼1 Gi; ð5Þ

where Gi is the gradient average of all samples in this batch of
the ith worker. Assuming that the batch size ismi, gij represents
the gradient obtained by the jth sample of the ith worker, then
Gi can be expressed as:

Gi ¼
1
mi

∑mi
j¼1 gij: ð6Þ

Then, we can get that:

Gave ¼
1
n

∑n
i¼1

1
mi

∑mi
j¼1 gij: ð7Þ

When the batch size of all workers is the same, that is,
m1 = m2 = ⋯ = mi = ⋯ = m, we can show that:

Gave ¼
1
nm

∑n
i¼1 ∑m

j¼1gij: ð8Þ

It can be seen that Gave obtained now is actually equiv-
alent to the gradient training with the batch size of nm using
a single process. At the same time, this nm‐size batch is the
integration of the data from all workers. It shows that even if
there is data imbalance in a single worker, this batch can
ensure that the data is derived from the average sampling of
the entire data. When the batch sizes of the workers are
inconsistent, Gave can also be calculated by using the
weighted average method, which will not affect the conclu-
sion and not be discussed in detail here.

3.3 | Scheme of data isolated deep learning

After the introduction of SSGD, the scheme of data isolated
deep learning can be given. Each of the data sources has its
own data. When we need to train a global model but cannot
collect data from various data sources, we first set up a
master node to receive and send the weights and gradients
during the training process. Then each local node uses its
own local data in the local training, and this process uses
the SSGD algorithm to integrate and update the model, and

finally gets the global model. This scheme is shown in
Figure 2.

However, in this scheme, the BN layer in the neural
network is missing, because the training of the BN layer cannot
be simply achieved by the SSGD algorithm. Therefore, we
need to solve the problem of normalization for the neural
network training for data isolation scenario.

4 | BATCH NORMALIZATION

BN [29] was proposed to solve a problem called covariate
shift. In the simple term, the problem is that the input
distribution of the activation function changes during the
training process, which is prone to the problem of gradient
disappearance. Once the gradient disappearance occurs the
learning process cannot go any further. Adding a normali-
zation layer to a neural network can effectively improve the
training efficiency of the model. Therefore, when training
the neural network with data isolated case, we also hope
that the network structure can contain the normalization
layer.

4.1 | Local batch normalization

In distributed neural network training, if BN is imple-
mented directly, we call it local BN, which means that BN
is performed inside each local node. During the local BN
training process, similar to the training of the linear
connection layer, except that the weights and gradients
need to be interacted, other data does not need to be
exchanged.

For the algorithm of the local BN, we can refer to Algo-
rithm 2. In the training process, local BN layer goes through
four steps: (1) find the mean within this batch, (2) find the
variance within this batch, (3) normalize the input and (4)
finally scale and shift the input. In the inference/evaluation
process, the steps are similar: use the mean and variance of
each batch to update the global mean and variance, and then

ZHOU ET AL. - 5



normalize, scale and shift the input. Similar to distributed linear
connection layer training, after each iteration of local BN
computing, the gradients of weights are sent by the worker
nodes to the master node. Then, the master node calculates the
average gradients to update the weights. The weights that need
to be updated here include scale weight γ and shift weight β.

The reasons that make the local BN inadequate for using in
data isolated training are the calculations of the mean and
variance. Because in the data isolation scenario, the data dis-
tribution of each data source cannot guarantee uniformity, and
even the distribution may vary greatly. In this way, each node
may differ greatly in calculating its own mean and variance, or
it can be said that the mean and variance calculated by each
node are not global. Although at the end of training, we can
integrate the inference mean and variance of all nodes, this is
still different from the case where the data in each batch is
relatively uniform when the data is concentrated on one single
server for training. Therefore, from the principle of BN, it can
be seen that the local BN algorithm is not suitable for neural
network training in data imbalanced distribution scenarios
caused by data isolation. At the end of this study, our experi-
mental part also gives the same conclusion.

4.2 | Distributed batch normalization

In order to solve the normalization problem in data isolation
distributed training, the most straightforward way is to use
distributed BN. The study [30] proposed a model called cross‐
GPU BN for image processing. Because the memory of each
GPU is limited, a single GPU cannot complete large batch size
SGD training when the training images are too large. There-
fore, this cross‐GPU BN was proposed to implement neural
network training across GPUs. Inspired by [30], although the
purpose is different, the distributed BN in the data isolation
scenario can adopt the same principle as the cross‐GPU BN.
That is, the results of the intermediate calculations in the BN
layer are all sent to the master node to be averaged, and the
average value is sent back to the local node to continue the
calculation.

The above process is shown in Figure 3. The whole pro-
cess is that in each training of the BN layer, each local node
calculates the local batch mean and sends it to the master
server. Then the master calculates the average mean and
broadcasts it back to the local nodes. Each local node uses the
average mean to calculate the local variance and sends it to the
master. Next, the master calculates the average variance and
broadcasts it back to the local nodes. Finally, the local nodes
continue the calculation of the BN layer with the received
global mean and variance.

Such a process can be simply proved to be equivalent to
the BN layer training where the data is concentrated on a
central server, and the detailed proof will not be performed
here. Therefore, this distributed BN solution can be considered
as an ideal realization of BN in data isolated scenario. However,
this algorithm has a fatal flaw, that is, it greatly increases the
communication overhead. When the BN layer is ignored and
the SSGD algorithm is originally used for distributed training,
data exchange is performed only after the completion of a
batch training, that is, one iteration performs a round‐trip data
exchange. However, the distributed BN needs to perform two
round‐trip data exchanges during each BN layer training. If
there are n‐layer structures in the neural network including theF I GURE 2 Data isolated deep learning without normalization

F I GURE 3 Distributed batch normalization
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BN layer, the communication load will be 2n + 1 times the
original. At the same time, considering the waiting problem of
the synchronization algorithm, this distributed BN algorithm
will be unacceptable as it is time‐consuming when the model
has a large network structure. Therefore, this distributed BN
algorithm can only be considered when the network structure
is small, the communication speed is guaranteed in various
nodes and the computing power between the nodes is rela-
tively equally distributed.

5 | NORMALIZATION INDEPENDENT
FROM DATA DISTRIBUTION

Due to the huge additional communication overhead involved
in distributed BN, its availability in reality will be very low, if it
is not impossible. Therefore, the following will introduce four
feasible normalization approaches, which were proposed in
different fields. we select them because they are independent
from data distribution, and can be used for data isolation deep
learning.

In addition to BN, some other normalization methods
have been previously proposed for various purposes [31–34].
Among them, [31] proposed a method called IN to achieve
better results in the image style transfer task. LN was proposed
by [32] to compensate for the defect that the effect of BN
depends on batch size. On the basis of [31, 32], a normaliza-
tion method was proposed by [33] that also does not depend
on batch size. It is called GN, which achieves the effect su-
perior to IN and LN in image classification problems. In recent
years, a new normalization method called CN [34] has been
proposed to solve the problem of gradients vanish in deep
single‐channel linear convolutional networks. It is worth noting
that although the purposes of these four normalization
methods are different, none of them has been implemented in
the batch size dimension. This shows that IN, LN, GN and
CN will not be affected by data distribution, and therefore
might be used for distributed training in imbalanced data dis-
tribution scenarios.

The existing normalization algorithms were proposed for
image processing. Figure 4 is a schematic of five normaliza-
tion algorithms when processing image data. Specifically, the
dimensions of the input are batch size (N ), channel (C ),
height (H ) and width (W ). Here, batch size denotes the
number of samples selected in one iteration training. And
height, width and channel represent the size of each input
sample in three dimensions. For a 32 � 64 RGB picture, the
values of H, W and C are 32, 64 and 3, respectively. For the
input of this dimension, BN is normalized in N, H, W di-
mensions, IN is normalized in H, W dimension, LN is
normalized in C, H, W dimensions, CN is nomalized in C
dimension and GN is slightly more complicated and is an
algorithm between IN and LN. It divides the channel di-
mensions into groups and does normalization in the group,
H and W dimensions.

It can be seen that except for BN, the other four
normalization algorithms are not normalized in the batch size

dimension. Not normalizing in the N dimension means that
normalization will only be performed within each input sam-
ple, and there is no cross‐sample normalization. The result of
this is that the imbalanced distribution of the data of each node
will not cause the normalization to fail. Therefore, the LN, IN,
CN and GN can be directly applied to neural network training
under the data isolation scenario. It can be proved that their
effect is the same as the effect of centralizing data to a central
server for training.

The pseudocodes of these five algorithms are summa-
rized in Algorithm 3. The two lines with asterisks (*) are
only required for GN. P is a parameter called group number
that needs to be set when applying GN. D denotes the
dimension to calculate the mean and variance. When
the dimensions of x are (N, C, H, W ), D = 0 means that
the mean and variance are calculated only on the first
dimension of x, which is N dimension. When Norm = BN,
D = [0,2,3], it means that the mean and variance are
calculated on the N, H, W dimensions. When Norm = IN,
D = [2, 3], it means that the mean and variance are
calculated on the H, W dimensions. When Norm = LN,
D = [1, 2, 3], it means that the mean and variance are
calculated on the C, H, W dimensions. When Norm = CN,
D = [1], it means that the mean and variance are calculated
on the C dimension. When Norm = GN, D = [2, 3, 4], it
means that the mean and variance are calculated on the C//
P, H, W dimensions. It can be seen from the pseudocode
that the process of GN is first setting a parameter group
number (P ), then dividing the channel dimensions into small
groups and then normalizing on C//P, H and W di-
mensions. It can be seen here that the drawback of the GN
algorithm is that a parameter P needs to be manually set,
and there is not much theoretical guidance for this param-
eter setting. And the different settings of P will have great
impact on the experimental results, which will be explained
in more detail in the experimental section.

As we have repeatedly emphasized, because the four
normalization methods IN, LN, CN and GN are not
normalized in the batch size dimension, all of these four ap-
proaches can be used as the normalization method for data
isolated deep learning to replace the traditional BN method.
Next, we will use the experiments to illustrate the feasibility of
these four approaches.
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6 | EXPERIMENTS

After introducing the four normalization approaches for data
isolated deep learning, this section provides experiments to
verify our proposed data isolated distributed deep learning
framework by using these normalization methods. There are
two parts of experiments included. First, we conduct the local
BN experiments in the case of imbalanced data training to show
that the local BN is not suitable for data imbalance distribution
caused by data isolation scenario. Here, the local BN means
using each node to do BN according to its own local data,
without the data exchange of mean and variance. Next, we give a
comparison of the experimental results of local BN, IN, LN, CN
and GN, while distributed BN is not implemented because of its
huge communication overhead. The results of this part experi-
ment illustrate the feasibility of using IN, LN, CN and GN for
data isolation neural network training.

As regards the experimental settings, all of the experiments
are executed on the Cifar10 data set [35], the network structure
uses resnet18 [36] and the optimizer uses the ordinary SGD.
Three processes are used to conduct experiments, one of
which is the master node and the other two are worker nodes.
The master node is responsible for collecting the gradients
calculated by each worker, and updating the weights after
calculating the average gradients. The worker nodes are
responsible for calculating a new round of gradients with the
latest weights returned by the master.

6.1 | Local batch normalization on
imbalanced data isolation

In the first experiment, we show that the local BN is not
suitable for distributed neural network training under data

F I GURE 4 Five normalization approaches

F I GURE 5 Batch normalization results under different imbalanced ratios
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imbalance distribution. Here first, the cifar10 data set is created
into imbalanced data. Cifar10 is a data set containing 10 types
of data (0–9 types), including 50,000 training data sets and
10,000 test data sets. For the master node, all training sets and
test sets are assigned to the master node for evaluating the
training results. Then for the two workers nodes, we first divide
the entire training set into two subdatasets Subset1 and Subset2.
Subset1 contains all the training data in categories 0–4 with a
total of 25,000 images, 5000 in each category; Subset2 contains
all the training data in categories 5–9 with a total of 25,000
images, 5000 in each category. Next, we control the data
imbalance by setting a parameter Ratio (R). Equations (9) and
(10) give the training data set obtained by worker1 and
worker2.

worker1Dataset ¼ R ⋅ Subset1 þ ð1 − RÞ ⋅ Subset2 ð9Þ

worker2Dataset ¼ ð1 − RÞ ⋅ Subset1 þ R ⋅ Subset2 ð10Þ

Here R ranges from 0% to 50%. It can be seen that when
R is 0%, worker1 is allocated to all Subset2 for training, and
worker2 is allocated to all Subset1, then the data of the two
workers are regarded as completely imbalanced. When R is
50%, both worker1 and worker2 are allocated to 50% of
Subset1 and 50% of Subset2. At this time, the data of the two
workers are considered to be completely balanced.

Figure 5 and Table 1 show the experimental results under
different R settings. Figure 5 shows the changes in loss and top
1 accuracy on the test set. Table 1 shows top 1 accuracy and
top 5 accuracy. It can be seen that as the imbalance of the data
becomes higher (R becomes smaller), the model trained with
the local BN performs worse on the test set. This proves that
the local BN is no longer applicable for deep learning in data
imbalance scenarios caused by data isolation as explained in
Section 4.1. Therefore, the following experiments use different
normalization methods to prove that IN, LN, CN and GN are
the feasible approaches to the normalization problem in neural
network training for data isolation.

6.2 | Comparison of normalization methods

In this part of the experiment, the results of the five normal-
ization methods (local BN, IN, LN, CN and GN) for distrib-
uted neural network training under data imbalance are given.
First of all, the previous Section 5 has explained that the
imbalanced data does not affect the four normalization
methods of IN, LN, CN and GN. Therefore, the following
experiments are conducted under the setting of parameter
R = 0%, that is, the data is completely imbalanced.

Figure 6 and Table 2 show the performance of the five
normalization methods local BN, GN, LN, IN and CN on the
test set. Here the parameter group number (P ) in GN is set to
32, according to the optimal parameter setting proposed [3]. It
can be seen that GN, LN, IN and CN have achieved better
results than the local BN. Under this parameter setting, the

F I GURE 6 Results of different normalization methods for imbalanced data isolation

TABLE 1 Batch normalization results under different imbalanced
ratios

Ratio (R) Top 1 accuracy (%) Top 5 accuracy (%)

0.0 88.15 99.87

0.1 99.80 94.93

0.3 94.25 99.93

0.5 95.32 99.92

TABLE 2 Results of different normalization methods for imbalanced
data isolation

Norm method Top 1 accuracy (%) Top 5 accuracy (%)

BN 88.15 99.80

IN 91.78 99.71

LN 90.88 99.74

CN 90.61 99.74

GN 92.32 99.83
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model trained with the GN method performs best. The
experiment illustrates that the GN, LN, IN and CN methods
are all the feasible normalization approaches for deep learning
of data imbalance caused by data isolation scenario.

Next, the experiment of GN with different parameter
group number (P ) settings is implemented. Figure 7 and Table
3 show the performance of the experiment on the test set. It
can be seen that the model using the GN method has a large
difference in performance under different group number set-
tings. Therefore, although GN performs best on the cifar10
data set under optimal parameter settings, GN still has the
drawback of manual tuning. Therefore, in the actual data
isolation neural network training process, we can choose
different normalization solutions proposed to complete the
deep learning according to the actual situation.

7 | CONCLUSION AND FUTURE WORK

This study addresses the problem of neural network training in
data isolation scenarios, in which the data of each node cannot
be shared. When a global model that needs learning from all
data is required, we need to use data isolated distributed
training. The obvious challenge in this case is the imbalanced

distribution of data at each node. This will cause BN algorithm
in the neural network no longer applicable. Based on the above
problems and challenges, this study first gives the framework
of data isolated distributed training based on SSGD algorithm.
For the normalization problem of imbalanced data, we prove
from both theoretical and experimental aspects that local BN is
not suitable for imbalanced data distribution, because it greatly
reduces the accuracy of the model. On the other hand, we
theoretically illustrate the impracticality of distributed BN
because of its huge communication overhead. Further, we
adopt four normalization approaches from other fields: IN,
LN, CN and GN to replace the BN layer in the neural network.
These four algorithms are independent from data distribution,
and we explain from theoretical analysis and experiment that
they can be implemented directly for imbalanced data distrib-
uted training. These four methods achieve higher accuracy than
the local BN in the data isolation scenario. Among them, GN
achieves the highest accuracy, but manually tuning the group
number is defective in the implementation of GN.

For future work, Section 5 gives four normalization ap-
proaches that are feasible in data isolated distributed deep
learning, but we have not discussed in depth which normali-
zation is most suitable in different cases. This part of the work
needs more experimental and theoretical explorations in the
future. In addition, all the discussions in this work are based on
the SSGD algorithm. Compared with the ASGD algorithm, it
is easier to prove the feasibility in theory, although it has to lose
the efficiency of training. Therefore, our future work will also
focus on the ASGD method and explore its implementation
and feasibility in the distributed neural networks training with
data isolation.
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F I GURE 7 Group normalization results under different parameter group numbers

TABLE 3 Group normalization results under different parameter
group numbers

Group number Top 1 accuracy (%) Top 5 accuracy (%)

1 91.33 99.71

2 91.36 99.76

4 91.42 99.68

8 91.72 99.76

16 92.04 99.77

32 92.22 99.76

64 92.85 99.84
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