BMJ Health & Care Informatics

Scoping review exploring the impact of digital systems on processes and outcomes in the care management of acute kidney injury and progress towards establishing learning healthcare systems

Clair Ka Tze Chew , 1 Helen Hogan, 2 Yogini Jani 3,4

To cite: Chew CKT, Hogan H, Jani Y. Scoping review exploring the impact of digital systems on processes and outcomes in the care management of acute kidney injury and progress towards establishing learning healthcare systems. BMJ Health Care Inform 2021;28:e100345. doi:10.1136/ bmjhci-2021-100345

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10. 1136/bmjhci-2021-100345).

Received 20 February 2021 Accepted 08 June 2021

@ Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

For numbered affiliations see end of article.

Correspondence to

BMI

Dr Yogini Jani; y.jani@ucl.ac.uk

ABSTRACT

Objectives Digital systems have long been used to improve the quality and safety of care when managing acute kidney injury (AKI). The availability of digitised clinical data can also turn organisations and their networks into learning healthcare systems (LHSs) if used across all levels of health and care. This review explores the impact of digital systems i.e. on patients with AKI care, to gauge progress towards establishing LHSs and to identify existing gaps in the research.

Methods Embase, PubMed, MEDLINE, Cochrane, Scopus and Web of Science databases were searched. Studies of real-time or near real-time digital AKI management systems which reported process and outcome measures were included.

Results Thematic analysis of 43 studies showed that most interventions used real-time serum creatinine levels to trigger responses to enable risk prediction. early recognition of AKI or harm prevention by individual clinicians (micro level) or specialist teams (meso level). Interventions at system (macro level) were rare. There was limited evidence of change in outcomes.

Discussion While the benefits of real-time digital clinical data at micro level for AKI management have been evident for some time, their application at meso and macro levels is emergent therefore limiting progress towards establishing LHSs. Lack of progress is due to digital maturity, system design, human factors and policy levers. **Conclusion** Future approaches need to harness the potential of interoperability, data analytical advances and include multiple stakeholder perspectives to develop effective digital LHSs in order to gain benefits across the system.

INTRODUCTION

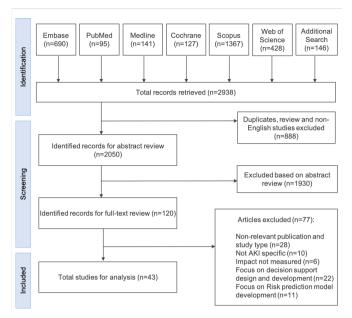
The National Health Service (NHS) was in the midst of a rapid phase of digital transformation before the COVID-19 pandemic, which has patently further forced the pace of change. The increasing availability of digitised clinical data has the potential to turn

individual organisations and their networks into learning healthcare systems (LHSs), systems that use information collected routinely as part of the care process to identify trends and variations and drive learning and quality improvement.² When this clinical information becomes near to or realtime, it opens up the prospect not only of more detailed retrospective review of care but also the possibility of making more frequent and subtle adjustments across the system, to ensure quality is maintained as care proceeds.

The potential for real-time clinical information to enable rapid adaptive responses to improve outcomes is clearly recognised at an individual patient level. Over the last 20 years digitised Early Warning Scores have been introduced onto many hospital wards to reduce response time to deteriorating patients with mixed results.^{3 4} However for a LHS to be fully realised these data need to drive agile adaptation across different levels of the organisation and potentially the wider local health and social care system, facilitating changes that increase the chances of good outcomes for populations of patients while at the same time reducing risks of iatrogenic harm. Broadening 'recognition and response' mechanisms from those focused on rapidly identifying and managing acute changes in individuals to real-time matching of acute illness burden to staff numbers and skill set on wards or converting hospital beds to higher care levels based on changes in demand is the next step towards building a LHS.⁵ Limited progress in this direction has been reported, occurring mainly within individual organisations or healthcare

systems rather than across the wider health and care system.⁶

Recent patient safety initiatives have prioritised detection and prevention of sudden deterioration, through focus on areas such as acute kidney injury (AKI) management. AKI is a common complication found among acutely ill patients and has been associated with longer hospital stays, increased morbidity and mortality. It can be a complication of an illness such as sepsis or a result of drugs or treatments the patient receives, especially where kidney function is already compromised by comorbid illness. There are no curative treatments but much can be done to limit kidney damage through institution of simple early interventions. This, in turn, avoids more complex interventions such as dialysis or renal replacement at a point where the kidneys can no longer be salvaged.


Diagnosis depends on a rising blood creatinine level or falling urine output. Laboratory values for creatinine can be easily digitised and the availability of electronic healthcare records (EHRs) have enabled the real-time/ near real-time reporting of values to clinicians. The NHS has recently introduced a standardised electronic reporting system for creatinine in an effort to decrease response times to treatment. For EHRs that support clinical decision support systems, computer physician order entry and electronic prescribing, alerts related to rising creatinine can be notified to the patient's clinical team via the EHR providing real-time advice on an appropriate course of action and treatment choices. ¹⁰ Alternatively, such systems can send an alert to a pharmacist or renal rapid response team (RRT) to prompt action. 11 12 As well as promoting earlier diagnosis, some digital systems are predictive, identifying patients at risk and allowing closer monitoring or tailoring of treatment to avoid the condition developing. 13 Others play a part in harm-reduction by highlighting the potential dangers of certain drugs or doses to kidney function.

Given that digitisation of creatinine levels and real-time digital recognition and response systems for management of AKI have been available for over a decade, we used the literature to explore the extent to which such systems have impacted on patient care processes and outcomes across all levels of health and care systems (patient, organisation and population levels), to gauge progress towards the goal of establishing LHSs and to identify where current gaps in the research exist.

METHODS

Scoping review

An initial scan of the literature on the use of real-time data for AKI management indicated a large variety of study approaches of varying methodology and rigour. A scoping review approach was selected to synthesise a metanarrative and identify themes based on the broad body of research in this field without exclusion based on study methods or formal assessment of study quality.

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analysis flowchart of literature search. AKI, acute kidney injury.

A protocol based on the recommended items in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for scoping review was developed but not published (online supplemental material 1).¹⁴

Search strategy

Databases (Embase, PubMed, MEDLINE, Cochrane, Scopus and Web of Science) were searched for papers published from inception to 31 January 2020 using freetext keywords related to our review questions (online supplemental material 2). Additional articles were identified through citation searches of relevant articles and reviews (figure 1). As one of the main objectives was to identify gaps in research, only published research articles were included as a source of evidence.

Study selection

We included original research or case reports in the English language, conducted using any study design, in any setting, for any cohort of patients. We only included publications that reported process and/or outcome measures resulting from a real-time or near real-time healthcare professional response to data in the management of AKI, for example, interventions in medicines management in response to renal insufficiency. During the search review articles and non-English studies were excluded. During abstract and full-text screening, narrative reports, articles that did not report a real-time response to data and changes in process or outcomes, audits, qualitative studies, population health studies and publications which focused on model or alert development were excluded.

Table 1 Review questions mapped to themes used to analyse the studies

Review question

At which level is the realtime data intended to generate action: what is the digital information designed to change?

Definition of concepts Micro: patient-level

► Clinical care and treatment at the patient level.

Meso: organisation/specialty/service/unit management-level

For example,

- ▶ Management of cohorts of renal patients by specialist e.g. pharmacist or renal specialist.
- ▶ Allocation of patients to a particular care pathway or ward.
- ► Staffing levels or skill mix.
- Resource distribution e.g. across diagnostic services or educational support or between harm management and risk assessment interventions.

Macro: population-level

For example,

- ▶ Targeting of interventions at particular populations e.g. primary or secondary care.
- ▶ Population management processes or the range of services that are available across the health and care system.

NB: Some studies report on interventions where impact is intended at multiple levels. These were extracted to the higher level i.e. macro, meso then micro.

What are the interventions and which staff are the targets?

Afferent arm (the monitored data item used to trigger a response)

- Serum creatinine changes.
- ▶ Risk prediction score using composite values (on 'entry' identify at risk of AKI before any treatments).
- ▶ Urine output.
- Nephrotoxin exposure.

Timing (speed at which the digital data available to the responder)

- ► Real-time <1 hour.
- ► Near real-time <24 hours.

Targeted group

- ► Physician.
- Nurse.
- ▶ Pharmacist.
- ► Two or more—multidisciplinary team.
- ▶ Undefined (clinical team).

How integrated is the intervention into workflow?

Efferent arm (the alerting mechanism)

- ► Interruptive within workflow.
- ► Interruptive outside workflow.
- ► Non-interruptive within workflow.
- ► Non-interruptive outside workflow.
- ▶ Undefined.

Level of digital maturity

Level 1: Stand-alone afferent arm that requires human intervention for efferent mechanism e.g. by sending an email or text to raise an alert.

Level 2: Integrated afferent and efferent arms in a single system with a specific focus e.g. pharmacy medicines management systems.

Level 3: Integrated afferent and efferent arms that link alert data to wider response group across organisation or system but are not integrated into clinical workflow.

Level 4: Integrated afferent and efferent arms that link alert data to wider response group across organisation or system and into clinical workflow.

Level 5: Multi-organisation and cross-sectional (but otherwise same as 4).

Can use of real-time data improve processes of care and outcomes for patients with AKI?

Process measure

Measures of specific activity completed used in the study.

Outcome measure

Measures of clinical outcomes or proxies used in the study.

Findings

Changes in process or outcome measures as a result of the intervention being studied.

AKI, acute kidney injury.

Data extraction

Our review objective was addressed through the following questions that formed a basis for thematic data extraction (table 1). Each article was mapped against concepts linked to the review questions.

RESULTS

We identified 2050 unique articles (figure 1). Following title and abstract screening using pre-specified criteria, 120 full-text articles were reviewed, resulting in 43 studies (online supplemental material 3) of interventions using

real-time clinical information on AKI to drive service change and reported changes in either process or outcome measures (tables 2 and 3). The included studies were published between 1994 to 2020, with only seven publications before 2010. The majority of studies were from the USA and the UK, with 11 from other countries. Most studies were conducted in hospitals with two in primary care, and one involving community pharmacy services. There were eight randomised controlled trials (RCTs). The other studies used a range of observational designs, with the majority being uncontrolled before and after studies.

Micro level

Twenty-six studies featured an intervention at the micro (individual patient) level. In 12 studies the main purpose of the intervention was harm prevention, ¹⁵ ¹⁹⁻²¹ ²³ ²⁴ ²⁸ ³⁰ ³⁵ ³⁸⁻⁴¹ in 12 studies it was earlier diagnosis ¹⁶ ²² ²⁶ ²⁷ ³²⁻³⁴ ⁴²⁻⁴⁶ and in 2 studies it was risk prediction. ¹³ ⁴⁷ Harm prevention interventions involved alerts to clinicians of the need to change nephrotoxic drugs (non-prescription, dose altering or drug suspension) based on a patient's renal function. The main purpose of early diagnosis interventions was to alert individual clinicians of a patient's deteriorating renal function to trigger an early review and appropriate intervention. Risk prediction interventions used algorithms to identify high risk individuals and institute individual management plans to prevent the development of AKI.

Interventions at this level were based on real-time data apart from four studies, which used near real-time data. ²³ ²⁶ ⁴² ⁴⁶ Three quarters of these interventions used interruptive alerts, ¹⁵ ²³ ³² ⁴⁰ ⁴⁵ ⁴⁷ and in a third the alert was outside the clinicians' workflow. ²¹ ²³ ²⁷ ³² ³⁴ ⁴² ⁴⁶ All early diagnosis alerts, apart from one (urine output²⁷), were activated by changes in serum creatinine (SCr) levels. This was similar for harm prevention, with a minority of interventions using nephrotoxic drug exposure instead. ²⁰ ⁴¹ All the risk prediction interventions used algorithms to trigger alerts. ¹³ ⁴⁷

In almost half the interventions where it was specified, the alert was targeted at a physician, 16 20 21 $^{26-28}$ 30 35 39 $^{41-43}$ with a member of the multidisciplinary team (MDT) being the next most common target. 13 15 19 23 33 34 40 46 47 The digital maturity of the interventions clustered at level 2 (standalone databases not fully integrated into the EHR) 20 21 24 27 28 30 $^{32-34}$ 39 41 43 and level 4, 13 16 19 22 35 38 44 45 47 two were at level 1^{42} 46 and four at level 3. 15 23 26 40

Meso level

Fourteen interventions were found at meso (management) level. Two-thirds were harm prevention, ¹¹ ¹⁷ ¹⁸ ²⁵ ²⁹ ³⁶ ⁴⁸ ⁴⁹ the others enabled earlier diagnosis. ¹² ⁵⁰-⁵³ Harm prevention interventions usually involved pharmacist surveillance of nephrotoxic medication across groups of patients at ward, specialty unit or hospital level. Such surveillance led to patient intervention when kidney function was deteriorating and was often accompanied

by feedback and education for clinical teams. Meso-level interventions aimed at early diagnosis were generally part of an approach to reducing the incidence and severity of AKI across a number of wards or the whole organisation. These interventions used the digital data in a variety of ways including to alert hospital-wide renal RRTs, to review patient management plans within ward-based safety huddles or to audit the timely implementation of AKI bundles (elements of protocolised AKI management plans). All but one of the interventions at meso level used changes in levels of SCr to trigger an alert, 11 with twothirds based on near real-time activation, ¹¹ ¹⁷ ¹⁸ ²⁵ ²⁹ ⁴⁸ ⁴⁹ ⁵² and half being interruptive. 1229 36 48 50 51 53 In five studies the alerts were presented within the clinical workflow. 25 29 49-51 The most popular recipient of the alerts was a pharmacist for harm prevention interventions and a member of the MDT for early diagnosis interventions. The digital maturity of interventions was low with the majority at level 2 and only three at level 3 or above. ^{36 50 53}

Macro level

Just three studies had interventions that were designed to work at the macro (whole system) level. 31 37 54 Two focused on earlier diagnosis, ^{31 54} and one on harm prevention. ³⁷ Two studies were based in the ambulatory care setting, one used alerts to notify primary care physicians of patients with AKI who needed review and the other identified contraindicated medication prescription in patients with compromised renal function. The third study described an organisation-wide quality improvement programme that included staff education, development of a care bundle and a renal RRT. All used changes in SCr level to trigger a response, all were interruptive, two-thirds were real-time and targeted at physicians. These studies involved digital systems that spanned more than one organisation across the care system and therefore considered to have high digital maturity.

Measures and outcomes

Study measures provide an implicit indication of the intervention goals. At the micro level, process measures for harm prevention interventions included adjustment of individual patient medication dose, completion of a medication review and the time to medication adjustments or changes in monitoring regimes. Similar process measures were seen for early diagnosis and risk prediction interventions, focusing on changes in the recognition and recording of AKI, institution of appropriate individual patient management and the timing of such actions or the timing between recognition of deterioration and escalation to higher acuity or specialist levels of care.

Process measures at the meso level were similar to those seen for micro harm prevention interventions, with the addition of measures reflecting the degree of acceptance of pharmacist recommendations by physicians. Mesolevel interventions that focused on early diagnosis used process measures such as time to AKI recognition, the

Table 2	Thematic analysis	of studies classifying the	Thematic analysis of studies classifying the afferent arm, efferent arm, timing, targeted group, study type and level of digital maturity	timing, targeted gro	up, study type and lev	el of digital maturity	
Level	Purpose	Afferent arm	Efferent arm	Timing	Targeted group	Study type	Level of digital maturity
Micro	Risk prediction ¹³	Risk prediction score ¹³⁴⁷ Interruptive within workflow ¹³	Interruptive within workflow ¹³	Real-time ^{13 47}	MDT ^{13 47}	RCT ¹³	4 ¹³ 47
			Non-interruptive within workflow ⁴⁷			Controlled before and after ⁴⁷	
	Earlier diagnosis ¹⁶ 22 26 27 32-34 42-46	Earlier diagnosis ¹⁶ SCr ¹⁶ 22 26 32–34 42–46 22 26 27 32–34 42–46	Interruptive within workflow ^{16 22 26 43–45}	Real-time ^{16 22 27} 32-34 43-45	MDT ^{33 34 46} Physician ^{16 26 27 42 43}	RCT ^{22 33 34}	14246
		SCr and urine output ²⁷	Interruptive outside	Near real-time ²⁶	Undefined (clinical	Before and after ^{26 32 42 44}	2 ²⁷ 32–34 43
			Workliow		ream)	Interrupted time-series ^{27 46}	3^{26}
			Non-interruptive outside workflow ^{32 46}			Time-series ¹⁶	41622 44 45
						Retrospective comparative study ⁴⁵	
						Observational descriptive study ⁴³	
	Harm prevention ¹⁵ 19-21 23 24 28 30 35 38-41	Harm prevention ¹⁵ Nephrotoxin exposure ²⁰ 19-21 23 24 28 30 35 41	Interruptive within workflow ^{19 20 24 28 30 35 39 41}	Real-time ^{15 19-21 24} 28 30 35 38-41	MDT ¹⁵ 19 23 40	RCT ³⁶	220 21 24 28 30 39 41
		SCr ¹⁵ 19 21 23 24 28 30 35 38-40 Interruptive outside	Interruptive outside	Near real-time ²³	Pharmacist ²⁴	Before and after ^{15 19–21} 23 28 30 38 40 41	315 23 40
			Worklow Non-interruptive within		Physician ^{20 21 28 30 35} 39 41	Observational descriptive study ^{24,39}	4 ^{19 35 38}
			Non-interruptive outside		Undefined (clinical team) ³⁸		
			workflow ²³				Continued

Table 2	Continued						
love	Gacaria	Afferent arm	Efferent orm	Timing	Taraeted aroun	Study time	Level of digital
Meso	Earlier diagnosis ¹² 50-53		Interruptive within workflow ^{50,51}	Real-time ^{12 50 51 53}	MDT ^{12 50 53}	Controlled before and after 12	2125152 3 ⁵⁰
			Interruptive outside workflow ^{12 53}	Near real -time ⁵²	Physician ^{51 52}	Before and after ^{50–52}	403
						Qualitative interview study ⁵³	
	;	;	Non-interruptive outside workflow ⁵²	8	60	Ş	;
	Harm prevention 17 18 25 29 36 48 49	Harm prevention ¹¹ Nephrotoxin exposure ¹¹ 17 18 25 29 36 48 49	Interruptive within workflow ²⁹	Real-time³º	MDT ¹⁷ 29 36	RCT**	-
		SCr ¹⁷ 18 25 29 36 48 49	Interruptive outside	Near real-time ^{11 17} 18 25 29 36 48 49	Pharmacist ^{11 18 25 48 49}	Controlled study ²⁹	217 18 25 29 48 49
			workflow ³⁵ 45			Before and after 11 17 18 25 49	536
			Non-Interruptive within workflow ^{25 49}			Quality improvement ⁴⁸	
			Non-interruptive outside workflow 11718				
Macro	Earlier diagnosis ³¹ 54	SCr ^{31 54}	Interruptive outside workflow ^{31.54}	Real-time ⁵⁴ Near real-time ³¹	MDT ⁵⁴	Quality improvement ⁵⁴	53154
					Physician ³¹	Randomised factorial design QI approach ³¹	
	Harm prevention ³⁷ SCr ³⁷	SCr ³⁷	Interruptive within workflow ³⁷	Real-time ³⁷	Physician ³⁷	RCT ³⁷	537
	:			:			

MDT, multidisciplinary team; QI, quality improvement; RCT, randomised controlled trial; SCr, serum creatinine.

Table 3 Thematic analysis of studies highlighting the process measures and outcome measures used, and findings reported

Level	Purpose	Process measures	Outcome measures	Findings
Micro	Risk prediction ¹³	Changes in care management ⁴⁷ Frequency in monitoring or management ¹³ Alert or recommendation generated/ compliance ⁴⁷	AKI incidence ¹² 46 AKI progression ⁴⁷ AKI severity ¹³ Length of stay ¹³ Mortality ¹³ 47	↑ AKI documentation ⁴⁷ ↑ Appropriate medication dosage ⁴⁷ ↑ Proportion of SCr tests ordered ¹³ ↓ AKI incidence ⁴⁷ ↓ Mortality ⁴⁷
	Earlier diagnosis ¹⁶ ²² ²⁶ 27 ³² ³⁴ ⁴² ⁴⁶	Detection ^{42 43} Alert or recommendation generated/ compliance ²⁶ Changes in care team or setting ^{22 32} Changes in care management ^{16 34 42 46} Appropriate care management ^{16 27} Time to changes in care management ^{27 32}	AKI incidence ²² 26 34 46 AKI progression ²⁷ 34 44 45 AKI recovery ²⁶ 27 Duration of AKI ³⁴ Length of stay ²⁷ 34 Mortality ²⁶ 27 33 34 44 45 Change in SCr ³³	↑ AKI documentation ^{34 46} ↑ AKI incidence ^{34 46} ↑ AKI recovery ^{26 27 34 44 45} ↑ Interventions ^{26 32 34} ↑ Rates of hospitalisation ³² ↓ Time to intervention ^{26 27} ↓ Length of stay ³⁴ ↓ Mortality ^{44 45}
	Harm prevention ¹⁵ 19-21 23 24 28 30 35 39-41	Detection ²³ Alert or recommendation compliance ^{19 35 39 41} Changes in care management ^{19 21 23 24 28 35 40} Appropriate care management ^{20 21 23 28 30 41} Time to changes in management ^{15 41}	Rate of adverse drug events ³⁸ 39 AKI progression ¹⁵ Contrast-induced AKI ²⁸ Length of stay ⁴⁰ Mortality ⁴⁰	↑ Alert compliance 19 35 ↓ Alert compliance 39 ↑ Appropriate care management 19 21 23 24 35 ↓ Time to intervention 15 ↑ Care interventions 24 ↓ AKI progression 15 ↓ Length of stay 40 ↓ Mortality 40 ↓ Dialysis 40 ↑ Rate of potential adverse drug events 38 ↓ Rate of preventable adverse drug events 38
Meso	Earlier diagnosis ^{12 50–53}	Detection ¹² Alert or recommendation generated/ compliance ⁵⁰ Appropriate care management ^{50 53} Changes in care team or setting ^{51 52} Changes in care management ⁵¹ Time to changes in care management ^{12 50 52}	AKI incidence ⁵⁰ AKI progression ^{50 51} AKI recovery ¹² Cardiac arrest ⁵¹ Change in renal function ⁵¹ Early detection ⁵³ Intensive care unit admission ¹² Length of stay ⁵² Length of stay cost ⁵¹ Mortality ^{12 51 52} Need for renal replacement therapy ¹² Peak SCr ⁵²	↑ Alert compliance ⁵⁰ ↓ Time to intervention ^{12 50} ↑ Recommendations ⁵⁰ ↓ AKI incidence ⁵⁰ ↓ AKI progression ⁵⁰ ↓ Time to AKI recognition ¹² ↓ Possible cardiac arrests ⁵¹ ↓ Costs ⁵¹ ↑ Junior staff anxiety ⁵³
	Harm prevention ^{11 17 18} 25 29 36 48 49	Alert or recommendation generated/ compliance ^{17 25 29} Changes in care management ¹¹ Appropriateness of care management ^{17 18 36 49}	Adverse drug events ¹⁸ AKI incidence ¹¹ ⁴⁸ Length of stay ¹⁸ Cost of antibiotics ¹⁸ Nephrotoxin exposure 11 48 49	↑ Appropriate care management 17 25 36 49 ↑ Care management interventions 11 ↑ Acceptance of recommendations 29 ↓ AKI intensity 11 ↓ Length of stay 18 ↓ Number of adverse drug effects 18
Macro	Earlier diagnosis ^{31 54}	Detection ⁵⁴ Changes in care team or setting ^{31 54} Changes in care management ⁵⁴ Alert or recommendation generated/ compliance ⁵⁴ Patient given guidance ⁵⁴	AKI diagnosis ⁵⁴ Hospital Standardised Mortality Ratio ⁵⁴ Time to AKI response ³¹	↓ Mortality ³¹
	Harm prevention ³⁷	Appropriate care management ³⁷		

AKI, acute kidney injury; SCr, serum creatinine.

percentage of changes made across the care pathways of interest, number of activations of renal RRTs and the time between team activation and patient intervention. AKI detection rate and clinician engagement with renal RRTs were process measures for early diagnosis interventions at the macro level. For harm prevention interventions, the proportion of inappropriately prescribed nephrotoxic drugs was measured.

Outcome measures were similar across all system levels and included AKI rates, AKI severity, rates of recovery, progression, initiation of renal replacement therapy, admissions to higher acuity or specialist care, length of stay and mortality. For harm prevention interventions this was supplemented with proportions of adverse events.

The impact of the interventions was mixed. Among micro-level interventions over half of early diagnosis interventions showed positive changes in outcomes. 26 27 34 44-46 Only one study was a RCT³⁴ and this showed a reduced length of stay. A quarter of harm prevention studies at this level found improvements in outcomes, 15 38 40 none of which were RCTs. Both of the risk identification studies had a positive impact on outcomes. At the meso level there were no high-quality studies. One-fifth of harm prevention 11 18 and two-fifths of early diagnosis 50 51 interventions had the desired impact. At the macro level, one RCT found a reduction in mortality following an ambulatory care intervention to increase the recognition of AKI.³¹ Across harm prevention interventions at all levels there was evidence of a positive change in the most common process measures (reduced prescription of nephrotoxic medication and more appropriate dosing) in 42% of studies. 15 17 19 21 23–25 35 36 47 49 Fewer earlier diagnosis intervention studies (29%) showed positive findings for the most common process measures (time to recognition and response to AKI and institution of more elements of appropriate management). 12 26 27 32 34 50

DISCUSSION

Given the longstanding availability of AKI digital information we used this condition to examine how digital clinical systems were maturing towards LHSs. Our findings show that while such systems have had a positive effect for over 30 years at micro levels, their application at macro levels is emergent. Most interventions used SCr levels to trigger alerts or algorithms in real or near real-time to enable risk prediction, early recognition of AKI or harm prevention by individual clinicians or specialist teams such as pharmacists and renal RRTs. Evaluations using process measures indicate apparent gains in harm reduction through avoidance of nephrotoxic medications or doses, or earlier prediction of the risk of deterioration. Evidence for improved outcomes is limited, with change more often seen in proximal outcomes such as length of stay in the lower quality studies and a few studies reporting reduction in mortality. 31 40 44 45 47 54 Much remains to be understood about the longevity and sustainability of

the interventions, but there are signals that this may be feasible within integrated health systems.⁵⁴

The limited evidence on interventions and positive outcomes at the meso and macro level may be explained by several factors. Many digital systems have evolved from clinician interest in better management of individual patients and recognition that the 'right' data needs to be presented in an appropriate format, in a timely manner at the appropriate point in the workflow. Thus, the majority of reported interventions were targeted at individual clinicians or specialist teams, using changes in SCr as the trigger. Expansion of the use of real-time digital clinical information to improve quality of care at meso and macro levels will also require the increasing digital maturity of systems. With the transition from standalone to integrated EHRs within and across health systems more data will be available not just to clinicians at the point of care, but also the wider MDT as well as organisation and system managers.

However, data and digital systems alone are insufficient for changing or influencing behaviours. Recognising and considering the role of human factors in EHR design, adoption and utilisation is important to ensure maximum benefit of digitally enabled real-time data at relatively neglected meso and macro levels. Furthermore, challenges of generating actionable data include considerations of how the data are conveyed to enable a realtime response from the most appropriate persons. In the evidence reviewed, many systems relied on interruptive alerts or alerts that were outside the clinicians' workflow. Other reviews have highlighted that success of alerts and accompanying clinical decision support systems to change user behaviours is dependent on workflow integration, level of intrusiveness and presence of multiple competing alerts, with alert fatigue cited as the most frequent reason for ineffectiveness. 55 56

Successful transition from data utilisation to data driven healthcare has implications for technical factors (system design), individual practices (behavioural impact) and resources (individuals, infrastructure), and requires a supportive, adaptive policy environment.⁵⁷ Advances in technical factors through EHR systems within organisations are becoming established but need to progress towards integration and interoperability across organisations and with other systems, such as management databases for staffing. A range of disciplines need to be involved in further developments, including clinicians, human factors experts, behavioural scientists, technology experts and data scientists. Developing the analytics capability and digital literacy of clinical and administrative staff is fundamental for successful LHSs, to develop mechanisms to monitor the impact of the use of information and to enable continuous tailoring (to different contexts and staff compositions), especially in light of changing contexts and the need to respond to user feedback.

The recent experience of the COVID-19 pandemic illustrates that under these unusual conditions adaptive and enabling policies, with the rapid development,

deployment and innovative use of digital systems can enable continuity of healthcare delivery across acute and primary care sectors. Other examples of data-driven enabling policies at macro level such as the UK value-based commissioning, ⁵⁸ or 'getting it right first time' programmes, ⁵⁹ demonstrate the feasibility of using routinely collected clinical data at system level to determine care outcomes or to better understand the causes of their variation, signalling what might be possible within an effective digital LHS.

The NHS and healthcare systems more widely are quite complex, and therefore from a research perspective, evidence is needed from studies that go beyond immediate care settings expanding measurement to indicators of system dependent health outcomes such as hospital avoidance, reduced length of stay and access to healthcare services. Well chosen patient-centred process and outcome indicators from across the system will provide feedback in real-time to steer individual patient care, as well as provide information that may be available later for reflective and responsive learning at population level, from small groups of patients up to larger populations. This requires a different real-time focus on the same data, promoting reactive behaviour at the micro level while also providing insight into variations that may be addressed at meso and macro levels through adaptive changes in service delivery and resource (re) distribution, as seen during the recent pandemic responses and policy changes. 60-62

Strengths and limitations

Our scoping literature review format combining clearly defined key concepts and a systematic approach enabled exploration and synthesis of a complex and heterogeneous area and the capture of most relevant and appropriate articles. However, there may be examples of the use and impact of real-time data at meso and macro level not published in academic literature as developments at these levels are relatively immature. Moreover, we may have misclassified some intervention across micro, meso and macro levels as the interventions were not always well described. It was also not our intention to formally assess the quality of included papers given that we were as interested in which dimensions of intervention process or outcomes were chosen for measurement as we were in the impact of the intervention. In the majority of cases, drawing conclusions about the latter was difficult given the limitations of study designs used.

CONCLUSIONS

Digital transformation, use of data in real-time and LHSs are cornerstones for achieving the triple aim to improve population health, quality of care and cost control. ^{63–65} Wider approaches are now required to build on the initial impact seen at individual patient level in order to gain benefits across the system, particularly in service delivery and resource distribution. This will require a coordinated

effort across developments in technical, human factor and policy arenas with adequate resourcing. The lessons learnt from deployment of digital systems to enable the coordination of resources across primary and secondary care during the COVID-19 pandemic should act as a powerful catalyst.

Author affiliations

¹Transformation and Innovation Team, University College London Hospitals NHS Foundation Trust, London, UK

²Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK

³Centre for Medicines Optimisation Research and Education, University College London Hospitals NHS Foundation Trust, London, UK

⁴UCL School of Pharmacy, University College London, London, UK

Acknowledgements At the time of completing this work, YJ and HH were Health Foundation Improvement Science Fellows. The Health Foundation is an independent charity committed to bringing about better health and healthcare for people in the IIK

Contributors All authors were involved in the design, database searching, screening, analysis, interpretation of results and writing the review paper.

Funding This study was funded by Health Foundation (Grant number: AIMS 64700, AIMS 67226).

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; internally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Clair Ka Tze Chew http://orcid.org/0000-0001-7640-5467

REFERENCES

- Department of Health and Social Care. The future of healthcare: our vision for digital, data and technology in health and care, 2018. https://www.gov.uk/government/publications/the-future-of-healthcare-our-vision-for-digital-data-and-technology-in-health-and-care/the-future-of-healthcare-our-vision-for-digital-data-and-technology-in-health-and-care
- 2 Foley TJ, Vale L. What role for learning health systems in quality improvement within healthcare providers? Learn Health Syst 2017;1:e10025.
- 3 RCP. National Early Warning Score (NEWS) 2 Standardising the assessment of acute-illness severity in the NHS. London, 2017. https://www.rcplondon.ac.uk/projects/outputs/national-earlywarning-score-news-2
- 4 Burke JR, Downey C, Almoudaris AM. Failure to rescue deteriorating patients: a systematic review of root causes and improvement strategies. J Patient Saf 2020. doi:10.1097/PTS.0000000000000720. [Epub ahead of print: 21 May 2020].

- 5 Wouters RHP, van der Graaf R, Voest EE, et al. Learning health care systems: highly needed but challenging. Learn Health Syst 2020;4:e10211.
- 6 Scobie S, Castle-Clarke S. What can the NHS learn from learning health systems? Nuffield trust, 2019. Available: https://www. nuffieldtrust.org.uk/research/what-can-the-nhs-learn-from-learning-health-systems
- 7 Connell A, Laing C. Acute kidney injury. Clin Med 2015;15:581-4.
- 8 Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 2015;41:1411–23.
- 9 NHS England. Algorithm for detecting acute kidney injury (AKI) based on serum creatinine changes with time relating to the NHS England patient safety alert: NHS/PSA/D/2014/010. Available: https://www. england.nhs.uk/wp-content/uploads/2014/06/psa-aki-alg.pdf
- 10 Chang J, Ronco C, Rosner MH. Computerized decision support systems: improving patient safety in nephrology. Nat Rev Nephrol 2011;7:348–55.
- 11 Goldstein SL, Kirkendall E, Nguyen H, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 2013;132:e756–67.
- 12 Connell A, Montgomery H, Martin P, et al. Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissions. NPJ Digit Med 2019;2:67.
- 13 Van Driest SL, Wang L, McLemore MF, et al. Acute kidney injury risk-based screening in pediatric inpatients: a pragmatic randomized trial. Pediatr Res 2020;87:118–24.
- 14 Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467–73.
- 15 Rind DM, Safran C, Phillips RS, et al. Effect of computer-based alerts on the treatment and outcomes of hospitalized patients. Arch Intern Med 1994;154:1511–7.
- 16 Sellier E, Colombet I, Sabatier B, et al. Effect of alerts for drug dosage adjustment in inpatients with renal insufficiency. J Am Med Inform Assoc 2009;16:203–10.
- 17 Nash IS, Rojas M, Hebert P, et al. Reducing excessive medication administration in hospitalized adults with renal dysfunction. Am J Med Qual 2005;20:64–9.
- 18 Evans RS, Pestotnik SL, Classen DC, et al. Evaluation of a computer-assisted antibiotic-dose monitor. Ann Pharmacother 1999;33:1026–31.
- 19 Galanter WL, Didomenico RJ, Polikaitis A. A trial of automated decision support alerts for contraindicated medications using computerized physician order entry. J Am Med Inform Assoc 2005;12:269–74
- 20 Chertow GM, Lee J, Kuperman GJ, et al. Guided medication dosing for inpatients with renal insufficiency. JAMA 2001;286:2839–44.
- 21 Matsumura Y, Yamaguchi T, Hasegawa H, et al. Alert system for inappropriate prescriptions relating to patients' clinical condition. Methods Inf Med 2009;48:566–73.
- 22 Wu Y, Chen Y, Li S, et al. Value of electronic alerts for acute kidney injury in high-risk wards: a pilot randomized controlled trial. Int Urol Nephrol 2018;50:1483–8.
- 23 Roberts GW, Farmer CJ, Cheney PC, et al. Clinical decision support implemented with academic detailing improves prescribing of key renally cleared drugs in the hospital setting. J Am Med Inform Assoc 2010;17:308–12.
- 24 Heringa M, Floor-Schreudering A, De Smet PAGM, et al. Clinical decision support and optional point of care testing of renal function for safe use of antibiotics in elderly patients: a retrospective study in community pharmacy practice. Drugs Aging 2017;34:851–8.
- 25 Such Díaz A, Saez de la Fuente J, Esteva L, et al. Drug prescribing in patients with renal impairment optimized by a computer-based, semi-automated system. Int J Clin Pharm 2013;35:1170–7.
- 26 Park S, Baek SH, Ahn S, et al. Impact of Electronic Acute Kidney Injury (AKI) Alerts With Automated Nephrologist Consultation on Detection and Severity of AKI: A Quality Improvement Study. Am J Kidney Dis 2018;71:9–19.
- 27 Colpaert K, Hoste EA, Steurbaut K, et al. Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of rifle class. Crit Care Med 2012;40:1164–70.
- 28 Cho A, Lee JE, Yoon JY, et al. Effect of an electronic alert on risk of contrast-induced acute kidney injury in hospitalized patients undergoing computed tomography. Am J Kidney Dis 2012;60:74–81.
- 29 Choi KS, Lee E, Rhie SJ. Impact of pharmacists' interventions on physicians' decision of a knowledge-based renal dosage adjustment system. Int J Clin Pharm 2019;41:424–33.
- 30 Desmedt S, Spinewine A, Jadoul M, et al. Impact of a clinical decision support system for drug dosage in patients with renal failure. Int J Clin Pharm 2018;40:1225–33.

- 31 Tollitt J, Flanagan E, McCorkindale S, et al. Improved management of acute kidney injury in primary care using e-alerts and an educational outreach programme. Fam Pract 2018;35:684–9.
- 32 Aiyegbusi O, Witham MD, Lim M, et al. Impact of introducing electronic acute kidney injury alerts in primary care. Clin Kidney J 2019;12:253–7.
- 33 Wilson FP, Shashaty M, Testani J, et al. Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet 2015;385:1966–74.
- 34 Selby NM, Casula A, Lamming L, et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol 2019;30:505–15.
- 35 Awdishu L, Coates CR, Lyddane A, et al. The impact of realtime alerting on appropriate prescribing in kidney disease: a cluster randomized controlled trial. J Am Med Inform Assoc 2016;23:609–16.
- 36 Bhardwaja B, Carroll NM, Raebel MA, et al. Improving prescribing safety in patients with renal insufficiency in the ambulatory setting: the drug renal alert pharmacy (DRAP) program. Pharmacotherapy 2011;31:346–56.
- 37 Vogel EA, Billups SJ, Herner SJ, et al. Renal drug dosing. effectiveness of outpatient Pharmacist-Based vs. Prescriber-Based clinical decision support systems. Appl Clin Inform 2016;7:731–44.
- 38 Leung AA, Schiff G, Keohane C, et al. Impact of vendor computerized physician order entry on patients with renal impairment in community hospitals. J Hosp Med 2013;8:545–52.
- 39 Wong A, Amato MG, Seger DL, et al. Evaluation of medicationrelated clinical decision support alert overrides in the intensive care unit. J Crit Care 2017;39:156–61.
- 40 Al-Jaghbeer M, Dealmeida D, Bilderback A, et al. Clinical decision support for in-hospital AKI. J Am Soc Nephrol 2018;29:654–60.
- 41 McCoy AB, Waitman LR, Gadd CS, et al. A computerized provider order entry intervention for medication safety during acute kidney injury: a quality improvement report. Am J Kidney Dis 2010;56:832–41.
- 42 West Midlands Acute Medicine Collaborative. West Midlands acute medicine collaborative. The impact of the NHS electronic-alert system on the recognition and management of acute kidney injury in acute medicine. Clin Med 2019;19:109–13.
- 43 Porter CJ, Juurlink I, Bisset LH, et al. A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital. Nephrol Dial Transplant 2014;29:1888–93.
- 44 Kolhe NV, Staples D, Reilly T, et al. Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study. PLoS One 2015;10:e0132279.
- 45 Kolhe NV, Reilly T, Leung J, et al. A simple care bundle for use in acute kidney injury: a propensity score-matched cohort study. Nephrol Dial Transplant 2016;31:1846–54.
- 46 Kothari T, Jensen K, Mallon D, et al. Impact of daily electronic laboratory alerting on early detection and clinical documentation of acute kidney injury in hospital settings. Acad Pathol 2018;5:237428951881650–10.
- 47 Hodgson LE, Roderick PJ, Venn RM, et al. The ICE-AKI study: impact analysis of a clinical prediction rule and electronic AKI alert in general medical patients. PLoS One 2018;13:e0200584.
- 48 Goldstein SL, Mottes T, Simpson K, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 2016;90:212–21.
- 49 Ralph R, Patel JA, Postelnick M, et al. Use of a clinical decision support system alert to prevent supratherapeutic vancomycin concentrations. Journal of Pharmacy Technology 2014;30:175–8.
- 50 Sykes L, Sinha S, Hegarty J, et al. Reducing acute kidney injury incidence and progression in a large teaching hospital. BMJ Open Qual 2018;7:e000308.
- 51 Connell A, Raine R, Martin P, et al. Implementation of a digitally enabled care pathway (Part 1): impact on clinical outcomes and associated health care costs. J Med Internet Res 2019;21:e13147.
- 52 Thomas ME, Sitch A, Baharani J, et al. Earlier intervention for acute kidney injury: evaluation of an outreach service and a long-term follow-up. Nephrol Dial Transplant 2015;30:239–44.
- 53 Connell A, Black G, Montgomery H, et al. Implementation of a digitally enabled care pathway (Part 2): qualitative analysis of experiences of health care professionals. J Med Internet Res 2019:21:e13143.
- 54 Chandrasekar T, Sharma A, Tennent L, et al. A whole system approach to improving mortality associated with acute kidney injury. QJM 2017;110:657–66.
- 55 Sutton RT, Pincock D, Baumgart DC, et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med 2020;3:17.

- 56 Kwan JL, Lo L, Ferguson J, et al. Computerised clinical decision support systems and absolute improvements in care: meta-analysis of controlled clinical trials. BMJ 2020;370:m3216.
- 57 Salas-Vega S, Haimann A, Mossialos E. Big data and health care: challenges and opportunities for coordinated policy development in the EU. Health Syst Reform 2015;1:285–300.
- 58 Dent E. The real value of values-based commissioning. HSJ, 2013. https://www.hsj.co.uk/supplement-archive/the-real-value-of-values-based-commissioning/5059932.article
- 59 Royal National Orthopaedic Hospital, NHS England, NHS Improvement. Getting it right first time. Available: https://www.gett ingitrightfirsttime.co.uk/girft-reports
- 60 Grantz KH, Meredith HR, Cummings DAT, et al. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nat Commun 2020;11:4961.
- 61 Ferguson NM, Laydon D, Nedjati-Gilani G. Report 9: Impact of nonpharmaceutical interventions (Npis) to reduce covid19 mortality and healthcare demand. Imperial College London, 2020.
- 62 Hale T, Angrist N, Goldszmidt R, et al. A global panel database of pandemic policies (Oxford COVID-19 government response Tracker). Nat Hum Behav 2021;5:529–38.
- 63 Berwick DM, Nolan TW, Whittington J. The triple AIM: care, health, and cost. Health Aff 2008;27:759–69.
- 64 NHS England, NHS Improvement. Implementing the NHS long term plan proposals for possible changes to legislation, 2019. Available: https://www.longtermplan.nhs.uk/wp-content/uploads/2019/02/nhs-legislation-engagement-document.pdf
- 65 Wyatt D, Lampon S, McKevitt C. Delivering healthcare's 'triple aim': electronic health records and the health research participant in the UK National Health Service. Sociol Health Illn 2020;42:1312–27.

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITE M	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #	
TITLE	TITLE			
Title	1	Identify the report as a scoping review.	p1	
ABSTRACT				
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	p2	
INTRODUCTION		•		
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	p3-4	
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	p4-5	
METHODS				
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	p4	
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	p4	
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	p4 and Supplement al Material 2	
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	Supplement al Material 2	
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	p4	
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	p4-6 Data Extraction/ Table	
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	p4-6 Data Extraction Table	
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	Not applicable (p4 and p15 for	

			comment)		
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	p4-6		
RESULTS					
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	p4 study selection and prisma flowchart figure		
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Supplement al Material 3 Table S1		
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	Not applicable (p4 and p15 for comment)		
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	Supplement al Material 3 Table S1 and p9-12 Tables 2 & 3		
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	p9-12 Tables 2 & 3		
DISCUSSION					
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	p6-13		
Limitations	20	Discuss the limitations of the scoping review process.	p15		
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	p13-15		
FUNDING					
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	p15		

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

^{*} Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

[†] A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote). ‡ The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

[§] The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

Supplemental Material 2: Search terms

Databases (Embase, PubMed, Medline, Cochrane, Scopus and Web of Science) were searched for papers published from inception to 31 January 2020 using free text keywords related to our review questions. Additional articles were identified through citation searches of relevant articles and reviews.

Search terms used were:

(Acute Kidney Injury or Acute Renal Failure or Renal or AKI)

and

(Decision Support or health information exchange or hospital information system or EHR or EPR or electronic or computer* or CPOE or Surveillance or Monitoring or Detection or Management or Prevention or Prescribing or Treatment or Alert* or predictive analy* or predictive model* or machine learning or care process models or resource utilisation or clinical workflow or referral tracking or hospital service or care models or intervention).

Supplemental Material 3: Summary of the 43 studies included in the scoping review

Table S1: Summary of 43 studies included in the scoping review

Surname et al Country^citation number	Population & Setting	Intervention
Aiyegbusi et al UK (Scotland) (2018)[1]	All primary care in NHS Tayside region	AKI identified in primary care (PC-AKI) through AKI e-alerts
Al-Jaghbeer et al USA (2018)[2]	14 hospitals in a health care system	Clinical decision support system in hospital
Awdishu et al USA (2016)[3]	Tertiary healthcare hospital and ambulatory care system	Clinical decision support tool developed for 20 nephrotoxic medications
Bhardwaja et al USA (2011)[4]	Single large integrated health care delivery system (Kaiser Permanente Colorado)	Use of pharmacy alert system to reduce medication errors in renal insufficiency
Chandrasekar et al UK (2017)[5]	Acute hospital admissions	Whole system quality improvement approach
Chertow et al USA (2001)[6]	Urban tertiary care teaching hospital	Computerised decision support for prescribing in patients with renal insufficiency
Cho et al Republic of	Teaching hospital	Computer alert for risk of contrast- induced AKI and recommendation for

Surname et al Country^citation number	Population & Setting	Intervention
Korea (2012)[7]		prophylaxis
Choi et al Republic of Korea (2019)[8]	Hospital patients with eGFR less than 50	Designated pharmacist in addition to computerised alerts
Colpaert et al Belgium (2012)[9]	Tertiary Hospital	Introduction of real-time electronic alert system to improve management and severity of AKI
Connell et al UK (2019)[10]	A large hospital	A digitally enabled care pathway comprising automated AKI detection, mobile clinician notification, in-app triage, and a protocolised specialist clinical response.
Connell et al UK (2019)[11]	ED departments in single tertiary hospital (intervention) vs single district hospital (control)	Multicomponent intervention (alert system, AKI response team and care protocol) to improve the outcomes from AKI
Connell et al UK (2019)[12]	Tertiary care hospital	Mobile results viewing in a digitally enabled care pathway
Desmedt et al Belgium (2018)[13]	Academic hospital (non- ED or ICU patients)	Computerised decision support for dosing adjustments for 85 drugs
Díaz et al Spain (2013)[14]	Teaching hospital	A system for drug dosage adjustment integrated into the hospital computer provider order entry system
Evans et al USA (1999)[15]	Tertiary care centre	Computer-assisted antibiotic dose monitor
Galanter et al USA (2005)[16]	Single teaching hospital	Automated alerts designed to reduce the use of contraindicated drugs in patients with renal insufficiency
Goldstein et al USA (2013)[17]	Single quaternary paediatric hospital	Pharmacist screen for nephrotoxic load and recommendations for serum creatinine testing made
Goldstein et al USA (2016)[18]	Children noncritical care unit	Pharmacist recommended monitoring and dosing after electronic trigger
Heringa et al Netherland (2017)[19]	Community pharmacies	CDSS with optional point of care testing
Hodgson et al UK (2018)[20]	2 non-specialist hospitals	Electronic clinical prediction rule combined with an AKI e-alert

Surname et al Country^citation number	Population & Setting	Intervention
Kolhe et al UK (2015)[21]	Tertiary care centre	A care bundle with interruptive alert
Kolhe et al UK (2016)[22]	Single teaching hospital	AKI care bundle with interruptive alert
Kothari et al USA (2018)[23]	8 New York hospitals	Daily laboratory alerting of patients at risk for AKI
Leung et al USA (2013)[24]	5 Community Hospitals	Comparison of different intensities of clinical decision support within EHR computer order physician entry
Matsumura et al Japan (2009)[25]	Single hospital	Development of EHR e-alert system for evaluating renal function and checking doses of medication according to the patient's renal function
McCoy et al USA (2010)[26]	Academic tertiary care hospital	Computerised order entry alerts: passive alert for increasing creatinine and interruptive alert for medication adjustment
Nash et al USA (2005)[27]	Teaching hospital	An automated system to complement an existing computerized order entry system by detecting the administration of excessive doses of medication
Park et al Korea (2018)[28]	Tertiary teaching hospital	AKI alert system that provides option for automated consultation requests to the nephrology division
Porter et al UK (2014)[29]	Teaching hospital	Real-time alert to detect AKI
Ralph et al USA (2014)[30]	Tertiary hospital	Pharmacist-run CDSS alert based on early serum creatinine
Rind et al USA (1994)[31]	Teaching hospital	Computer-based alerts for hospitalised patients
Roberts et al Australia (2010)[32]	Teaching hospital	CDSS in an environment independent of computerised provider order entry introduced to prescribers via academic detailing
Selby et al UK (2019)[33]	5 hospitals	Multi-faceted intervention programme (AKI e-alerts, an AKI care

Surname et al Country^citation number	Population & Setting	Intervention
		bundle, and an education program) to improve outcomes associated with AKI
Sellier et al France (2009)[34]	2 departments in a teaching hospital	Alert at time of ordering medication in computerised provider order entry system to decrease inappropriate prescriptions
Sykes et al UK (2018)[35]	Single teaching hospital	Whole system approach quality improvement to reduce AKI and its impact (e-learning package, AKI bundle, enhanced pharmacy medicines reconciliation, QI nurses, safety huddles, supporting literature, champions)
Thomas et al UK (2015)[36]	2 acute hospitals and a community service	AKI outreach service
Tollitt et al UK (2018)[37]	46 primary care practices	AKI e-alert and AKI educational outreach sessions
Van Driest et al USA (2020)[38]	Teaching hospital	Implementation of AKI risk alerts to promote increased uptake of serum creatinine screening of patients
Vogel et al USA (2016)[39]	Integrated health care delivery system (Kaiser Permanente Colorado)	Pharmacy and physician facing e-alert system linked to prescribing
West Midlands Acute Medicine Collaborative et al UK (2019)[40]	Acute medical units in 14 hospital sites	UK National Health Service AKI e-alert system
Wilson et al USA (2015)[41]	Tertiary Hospital	Use of automated e-alert to reduce severity of AKI injury and improve outcomes
Wong et al USA (2017)[42]	Urban tertiary care hospital ICU	Computerised decision support including to support safe drug use in renal insufficiency
Wu et al China (2018)[43]	Hospital ICUs and high- risk cardiovascular wards	AKI e-alert on high-risk wards

AKI, acute kidney injury; PC-AKI, primary care acute kidney injury; GFR, glomerular filtration rate; ED, emergency department; ICU, intensive care unit; EHR, electronic health

Surname et al
Country^citation
number

Population & Setting Intervention

system; CDSS, clinical decision support system.

References

- Aiyegbusi O, Witham MD, Lim M, et al. Impact of introducing electronic acute kidney injury alerts in primary care. Clin Kidney J 2018;**12**:253–7. doi:10.1093/ckj/sfy083
- Al-Jaghbeer M, Dealmeida D, Bilderback A, et al. Clinical Decision Support for In-Hospital AKI. J Am Soc Nephrol 2018;**29**:654–60. doi:10.1681/ASN.2017070765
- Awdishu L, Coates CR, Lyddane A, et al. The impact of real-time alerting on appropriate prescribing in kidney disease: A cluster randomized controlled trial. J Am Med Informatics Assoc 2016;23:609–16. doi:10.1093/jamia/ocv159
- 4 Bhardwaja B, Carroll NM, Raebel MA, et al. Improving Prescribing Safety in Patients with Renal Insufficiency in the Ambulatory Setting: The Drug Renal Alert Pharmacy (DRAP) Program. *Pharmacotherapy* 2011;**31**:346–56. doi:10.1592/phco.31.4.346
- Chandrasekar T, Sharma A, Tennent L, et al. A whole system approach to improving mortality associated with acute kidney injury. QJM An Int J Med 2017;**110**:657–66. doi:10.1093/QJMED/HCX101
- 6 Chertow GM, Lee J, Kuperman GJ, et al. Guided Medication Dosing for Inpatients With Renal Insufficiency. *JAMA* 2001;**286**:2839–44. doi:10.1001/jama.286.22.2839
- 7 Cho Aj, Lee JE, Yoon JY, et al. Effect of an Electronic Alert on Risk of Contrast-Induced Acute Kidney Injury in Hospitalized Patients Undergoing Computed Tomography. *Am J Kidney Dis* 2012;**60**:74–81. doi:10.1053/j.ajkd.2012.02.331
- 8 Choi KS, Lee E, Rhie SJ. Impact of pharmacists' interventions on physicians' decision of a knowledge-based renal dosage adjustment system. *Int J Clin Pharm* 2019;**41**:424–33. doi:10.1007/s11096-019-00796-5
- 9 Colpaert K, Hoste EA, Steurbaut K, et al. Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit Care Med 2012;40:1164–70. doi:10.1097/CCM.0b013e3182387a6b
- Connell A, Raine R, Martin P, et al. Implementation of a Digitally Enabled Care Pathway (Part 1): Impact on Clinical Outcomes and Associated Health Care Costs. *J Med Internet Res* 2019;**21**:e13147. doi:10.2196/13147
- 11 Connell A, Montgomery H, Martin P, et al. Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissions. npj Digit Med 2019;2:67. doi:10.1038/s41746-019-0100-6
- Connell A, Black G, Montgomery H, et al. Implementation of a Digitally Enabled Care Pathway (Part 2): Qualitative Analysis of Experiences of Health Care Professionals. *J Med Internet Res* 2019;**21**:e13143. doi:10.2196/13143
- Desmedt S, Spinewine A, Jadoul M, *et al.* Impact of a clinical decision support system for drug dosage in patients with renal failure. *Int J Clin Pharm* 2018;**40**:1225–33.

- doi:10.1007/s11096-018-0612-1
- Díaz AS, de la Fuente JS, Esteva L, *et al.* Drug prescribing in patients with renal impairment optimized by a computer-based, semi-automated system. *Int J Clin Pharm* 2013;**35**:1170–7. doi:10.1007/s11096-013-9843-3
- Evans RS, Pestotnik SL, Classen DC, et al. Evaluation of a computer-assisted antibiotic-dose monitor. *Ann Pharmacother* 1999;**33**:1026–31. doi:10.1345/aph.18391
- Galanter WL, Didomenico RJ, Polikaitis A. A Trial of Automated Decision Support Alerts for Contraindicated Medications Using Computerized Physician Order Entry. *J Am Med Informatics Assoc* 2005;**12**:269–74. doi:10.1197/jamia.M1727
- Goldstein SL, Kirkendall E, Nguyen H, et al. Electronic Health Record Identification of Nephrotoxin Exposure and Associated Acute Kidney Injury. *Pediatrics* 2013;**132**:e756–e767. doi:10.1542/peds.2013-0794
- Goldstein SL, Mottes T, Simpson K, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. *Kidney Int* 2016;**90**:212–21. doi:10.1016/j.kint.2016.03.031
- Heringa M, Floor-Schreudering A, De Smet PAGM, et al. Clinical Decision Support and Optional Point of Care Testing of Renal Function for Safe Use of Antibiotics in Elderly Patients: A Retrospective Study in Community Pharmacy Practice. *Drugs and Aging* 2017;34:851–8. doi:10.1007/s40266-017-0497-z
- Hodgson LE, Roderick PJ, Venn RM, et al. The ICE-AKI study: Impact analysis of a Clinical prediction rule and Electronic AKI alert in general medical patients. *PLoS One* 2018;13:e0200584. doi:10.1371/journal.pone.0200584
- Kolhe N V, Staples D, Reilly T, et al. Impact of Compliance with a Care Bundle on Acute Kidney Injury Outcomes: A Prospective Observational Study. PLoS One 2015;10:e0132279. doi:10.1371/journal.pone.0132279
- Kolhe N V., Reilly T, Leung J, et al. A simple care bundle for use in acute kidney injury: a propensity score-matched cohort study. Nephrol Dial Transplant 2016;**31**:1846–54. doi:10.1093/ndt/gfw087
- Kothari T, Jensen K, Mallon D, et al. Impact of Daily Electronic Laboratory Alerting on Early Detection and Clinical Documentation of Acute Kidney Injury in Hospital Settings. Acad Pathol 2018;5:1–10. doi:10.1177/2374289518816502
- Leung AA, Schiff G, Keohane C, et al. Impact of vendor computerized physician order entry on patients with renal impairment in community hospitals. *J Hosp Med* 2013;**8**:545–52. doi:10.1002/jhm.2072
- 25 Matsumura Y, Yamaguchi T, Hasegawa H, et al. Alert System for Inappropriate Prescriptions Relating to Patients' Clinical Condition. *Methods Inf Med* 2009;**48**:566–73. doi:10.3414/ME9244
- McCoy AB, Waitman LR, Gadd CS, et al. A Computerized Provider Order Entry Intervention for Medication Safety During Acute Kidney Injury: A Quality Improvement Rrenal eport. Am J Kidney Dis 2010;**56**:832–41. doi:10.1053/j.ajkd.2010.05.024

- Nash IS, Rojas M, Hebert P, et al. Reducing excessive medication administration in hospitalized adults with renal dysfunction. *Am J Med Qual* 2005;**20**:64–9. doi:10.1177/1062860604273752
- Park S, Baek SH, Ahn S, *et al.* aute Kidney Injury (AKI) Alerts With Automated Nephrologist Consultation on Detection and Severity of AKI: A Quality Improvement Study. *Am J Kidney Dis* 2018;**71**:9–19. doi:10.1053/j.ajkd.2017.06.008
- Porter CJ, Juurlink I, Bisset LH, et al. A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital. Nephrol Dial Transplant 2014;29:1888–93. doi:10.1093/ndt/gfu082
- Ralph R, Patel JA, Postelnick M, et al. Use of a clinical decision support system alert to prevent supratherapeutic vancomycin concentrations. *J Pharm Technol* 2014;**30**:175–8. doi:10.1177/8755122514544127
- 31 Rind DM, Safran C, Phillips RS, et al. Effect of Computer-Based Alerts on the Treatment and Outcomes of Hospitalized Patients. *Arch Intern Med* 1994;**154**:1511–7. doi:10.1001/archinte.1994.00420130107014
- Roberts GW, Farmer CJ, Cheney PC, et al. Clinical decision support implemented with academic detailing improves prescribing of key renally cleared drugs in the hospital setting. J Am Med Informatics Assoc 2010;17:308–12. doi:10.1136/jamia.2009.001537
- Selby NM, Casula A, Lamming L, et al. An organizational-level program of intervention for AKI: A pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol 2019;30:505–15. doi:10.1681/ASN.2018090886
- Sellier E, Colombet I, Sabatier B, et al. Effect of Alerts for Drug Dosage Adjustment in Inpatients with Renal Insufficiency. *J Am Med Informatics Assoc* 2009;**16**:203–10. doi:10.1197/jamia.M2805
- Sykes L, Sinha S, Hegarty J, *et al.* Reducing acute kidney injury incidence and progression in a large teaching hospital. *BMJ Open Qual* 2018;**7**:e000308. doi:10.1136/bmjoq-2017-000308
- Thomas ME, Sitch A, Baharani J, et al. Earlier intervention for acute kidney injury: evaluation of an outreach service and a long-term follow-up. Nephrol Dial Transplant 2015;**30**:239–44. doi:10.1093/ndt/gfu316
- Tollitt J, Flanagan E, McCorkindale S, *et al.* Improved management of acute kidney injury in primary care using e-alerts and an educational outreach programme. *Fam Pract* 2018;**35**:684–9. doi:10.1093/fampra/cmy030
- Van Driest SL, Wang L, McLemore MF, et al. Acute kidney injury risk-based screening in pediatric inpatients: A pragmatic randomized trial. *Pediatr Res* 2020;**87**:118–24. doi:10.1038/s41390-019-0550-1
- Vogel EA, Billups SJ, Herner SJ, *et al.* Renal drug dosing: Effectiveness of outpatient pharmacist-based vs. prescriber-based clinical decision support systems. *Appl Clin Inform* 2016;**7**:731–44. doi:10.4338/ACI-2016-01-RA-0010
- West Midlands Acute Medicine Collaborative. The impact of the NHS electronic-alert system on the recognition and management of acute kidney injury in acute medicine. *Clin Med* 2019;**19**:109–13. doi:10.7861/clinmedicine.19-2-109

- Wilson FP, Shashaty M, Testani J, et al. Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial. *Lancet* 2015;**385**:1966–74. doi:10.1016/S0140-6736(15)60266-5
- Wong A, Amato MG, Seger DL, *et al.* Evaluation of medication-related clinical decision support alert overrides in the intensive care unit. *J Crit Care* 2017;**39**:156–61. doi:10.1016/j.jcrc.2017.02.027
- Wu Y, Chen Y, Li S, *et al.* Value of electronic alerts for acute kidney injury in high-risk wards: a pilot randomized controlled trial. *Int Urol Nephrol* 2018;**50**:1483–8. doi:10.1007/s11255-018-1836-7