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Abstract

Background: Children living in sub-Saharan Africa have a high burden of rickets and infectious diseases, conditions
that are linked to vitamin D deficiency. However, data on the vitamin D status of young African children and its
environmental and genetic predictors are limited. We aimed to examine the prevalence and predictors of vitamin D
deficiency in young African children.

Methods: We measured 25-hydroxyvitamin D (25(OH)D) and typed the single nucleotide polymorphisms, rs4588
and rs7041, in the GC gene encoding the vitamin D binding protein (DBP) in 4509 children aged 0–8 years living in
Kenya, Uganda, Burkina Faso, The Gambia and South Africa. We evaluated associations between vitamin D status
and country, age, sex, season, anthropometric indices, inflammation, malaria and DBP haplotypes in regression
analyses.

Results: Median age was 23.9 months (interquartile range [IQR] 12.3, 35.9). Prevalence of vitamin D deficiency using
25(OH)D cut-offs of < 30 nmol/L and < 50 nmol/L was 0.6% (95% CI 0.4, 0.9) and 7.8% (95% CI 7.0, 8.5), respectively.
Overall median 25(OH)D level was 77.6 nmol/L (IQR 63.6, 94.2). 25(OH)D levels were lower in South Africa, in older
children, during winter or the long rains, and in those with afebrile malaria, and higher in children with
inflammation. 25(OH)D levels did not vary by stunting, wasting or underweight in adjusted regression models. The
distribution of Gc variants was Gc1f 83.3%, Gc1s 8.5% and Gc2 8.2% overall and varied by country. Individuals
carrying the Gc2 variant had lower median 25(OH)D levels (72.4 nmol/L (IQR 59.4, 86.5) than those carrying the Gc1f
(77.3 nmol/L (IQR 63.5, 92.8)) or Gc1s (78.9 nmol/L (IQR 63.8, 95.5)) variants.

Conclusions: Approximately 0.6% and 7.8% of young African children were vitamin D deficient as defined by
25(OH)D levels < 30 nmol/L and < 50 nmol/L, respectively. Latitude, age, season, and prevalence of inflammation
and malaria should be considered in strategies to assess and manage vitamin D deficiency in young children living
in Africa.
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Background
Vitamin D deficiency is estimated to be common world-
wide [1], including in Africa [2]. Vitamin D deficiency is
an important public health problem due to its link with a
growing number of diseases [1]. Children may be at a
higher risk of low 25-hydroxyvitamin D (25(OH)D) levels
and related diseases [3] including rickets, infectious dis-
eases and impaired growth and development [1, 3]. Young
children living in Africa have a high burden of nutritional
rickets [4], infectious diseases, and account for more than
half of all under-5-year mortality worldwide [5].
Few studies have investigated the prevalence of vitamin

D deficiency in young African children and most have
followed a case-control design to determine associations
with specific disease conditions [2, 4, 6, 7]. Population-
based studies include a study from Nigeria with 218 pre-
school children aged between 6 and 35months [8] and
two studies from Tanzania, one with 581 infants aged 6
months [9] and another with 948 HIV-exposed (unin-
fected) infants [10]. Similarly, little is also known about
the risk factors for vitamin D deficiency in African chil-
dren. A single study found that 25(OH)D levels increased
with age in 21 infants of Malawian mothers living with
HIV [6], and seasonal variation in vitamin D status has
been reported in school children in Algeria (n=435) and
South Africa (n=385) [11, 12]. Vitamin D deficiency was
associated with severe wasting in 21 young Kenyan chil-
dren with rickets [4], but was not associated with sex,
stunting, underweight or wasting in 581 Tanzanian infants
[9]. Studies have reported conflicting findings regarding
associations between vitamin D status and inflammation
[13, 14]; however, only a single study has been conducted
in African children [7]. Similarly, only a few studies have
evaluated the relationship between vitamin D status and
malaria, with mixed findings [9, 10, 15].
Genetic polymorphisms in the group-specific compo-

nent gene, GC, in the 4th chromosome that codes for Gc
globulin (Gc), also known as the vitamin D binding pro-
tein (DBP), have been associated with vitamin D status
and many pathophysiological conditions [16]. More than
85% of circulating vitamin D metabolites (including
25(OH)D) are bound to DBP [16]. The combination of
two GC SNPs (rs7041 and rs4588) give rise to three
major DBP variants with different amino acid and glyco-
sylation characteristics, Gc1f, Gc1s and Gc2, and six
DBP haplotypes: Gc1f/1f, Gc1f/1 s, Gc1f/2, Gc1s/1 s,
Gc1s/2 and Gc2/2 [16]. The DBP variants have been re-
ported to differ in binding affinity and concentrations
[16–18]. The Gc1f allele is most frequent in individuals
of African ancestry, while Gc1s is more common in Eu-
ropeans [17]. Nevertheless, little is known about the gen-
etics of vitamin D and how it is related to vitamin D
status in populations living in Africa. To our knowledge,
only two small genetic studies in The Gambia (n = 237

and n = 18) have assessed the association between
25(OH)D levels and DBP haplotypes in Africa [19, 20].
Information on the prevalence and predictors of low

vitamin D status in young African children is important
in guiding public health policy, however, this informa-
tion is limited in African populations. In the current
study, we measured 25-hydroxyvitamin D (25(OH)D)
levels in 4509 children living in Kenya, Uganda, Burkina
Faso, The Gambia and South Africa and evaluated the
prevalence and predictors of vitamin D deficiency.

Methods
Study cohorts
This study included young children living in Kenya (n =
1361), Uganda (n = 1301), Burkina Faso (n = 329), The
Gambia (n = 629) and South Africa (n = 889). Details of
these cohorts have previously been described [21–25] and
are briefly summarised below.

Kilifi, Kenya (3.5° S, 39.9° E)
This is an ongoing community-based cohort aimed at
evaluating immunity to malaria in children [21]. Chil-
dren were followed up from birth to eight years with
weekly follow-ups and annual cross-sectional surveys
during which anthropometric measurements and blood
samples were collected. Levels of 25(OH)D, CRP and
malaria parasitemia were measured in plasma samples
from a single cross-sectional survey, based on the avail-
ability of samples archived at − 80 °C.

Entebbe, Uganda (0.1° N, 32.5° E)
The Entebbe Mother and Baby Study (EMaBS) is a pro-
spective birth cohort study that was originally designed
as a randomised controlled trial (ISRCTN32849447)
aimed at evaluating the effects of helminths and anthel-
mintic treatment during pregnancy and early childhood
on immunological responses to routine vaccinations and
incidence of infections in childhood [22]. Anthropom-
etry and blood samples were collected at birth, and at
subsequent annual visits. Laboratory assays were con-
ducted in samples from a single annual visit based on
the availability of stored samples archived at – 80 °C.

Banfora, Burkina Faso (10.6° N, 4.8° W)
The VAC050 ME-TRAP Malaria Vaccine trial tested the
effectiveness, safety and immunogenicity of a malaria
vaccine in children between the ages of six and 17
months [23]. Anthropometry and blood samples were
collected at multiple time-points after receipt of the ex-
perimental vaccine. Levels of 25(OH)D, CRP and malaria
parasitaemia were measured on stored plasma samples
archived at – 80 °C.
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West Kiang, The Gambia (13.3° N, 16.0° W)
This study included children aged between two and six
years recruited from 10 rural villages in the West Kiang
region of The Gambia as previously described [25]. An-
thropometry and biomarkers were measured in samples
from a single cross-sectional survey at the start of the
malaria season.

Soweto, South Africa (26.2° S, 27.9° E)
The Soweto Vaccine Response Study included infants of
African heritage recruited from vaccine trials [24]. This
study used stored plasma samples collected from infants
that had received all of their routine Expanded Program
on Immunization vaccines. The study was conducted in
a non-malaria-endemic region and anthropometry and
haemoglobin levels were not measured in this cohort.

Laboratory assays
Assays of 25(OH)D (chemiluminescent microparticle im-
munoassay, Abbot Architect) and C-reactive protein
(CRP) (MULTIGENT CRP Vario assay, Abbot Architect)
and α1-antichymotrypsin (ACT) (immunoturbidimetry,
Cobas Mira Plus Bioanalyser, Roche) were performed. A
verification of the 25(OH)D assay and the comparison of
its results with those from an LC/MS method have been
published previously [26]. In-house assessments of the
assay showed heparinized plasma to give results that were
on average 5.1% lower than those obtained on matching
serum. The assay’s performance was monitored by 12-
hourly quality control checks, with overall CVs that
ranged from 2.8% to 7.9% for mean 25(OH)D concentra-
tions ranging from 21 to 116 nmol/L (Additional file 9:
Figure S1). Over a 6-month period that spanned the 20-
week period of analyses, three sets of external quality
assurance (DEQAS) data showed the method to have a
mean (SD) bias of − 2.7% (7.6) against the all-laboratory
trended values, and one of − 0.4% (7.7) against the target
values. Malaria parasitaemia was detected using Giemsa-
stained thick and thin blood smears.

Definitions
Vitamin D status was defined using 25(OH)D cut-offs of <
30 nmol/L, < 50 nmol/L, and 50–75 nmol/L, as adapted from
the Endocrine Society and the US Institute of Medicine
guidelines [27–29]. Inflammation was defined as CRP level >
5mg/L or ACT > 0.6 g/L [30]. Malaria parasitaemia was
defined as the presence of asexual malaria parasites at any
density. Height-for-age z-scores (HAZ), weight-for-age z-
scores (WAZ), and weight-for-height z-scores (WHZ) were
computed using the 2006 WHO child growth standards [31].
Stunting was defined as HAZ < − 2, underweight as WAZ <
− 2 and wasting as WHZ < − 2. Season was defined using 3
monthly intervals (1st season, December, January, February;
2nd, March, April, May; 3rd, June, July, August; 4th,

September, October, November). In South Africa, the sea-
sons correspond to summer, autumn, winter and spring; in
Uganda and Kenya, there are two rainy and two dry seasons;
and in Burkina Faso and The Gambia, there is a single rainy
and a single dry season, although the timing of the rains is
often unpredictable and may vary [12, 32, 33].

Genotyping and SNP quality control
Genomic DNA from study participants were genotyped
using genome-wide SNP arrays (see Additional file 1: Supple-
mentary Methods for more details). Two GC SNPs (rs7041
and rs4588) were retrieved from imputed data and their
combinations used to classify participants into Gc variants;
Gc1f (T and C), Gc1s (G and C) and Gc2 (T and A) and six
DBP haplotypes; Gc1f/f (TT, CC), Gc1f/s (TG, CC), Gc1f/2
(TT, CA), Gc1s/s (GG, CC), Gc1s/2 (TG, CA), and Gc2/2
(TT, AA).

Statistical analyses
All statistical analyses were conducted using Stata Statis-
tical Software: Release 15 (College Station, TX: Stata-
Corp LLC) and R version 3.5.1 (https://www.R-project.
org/). 25(OH)D levels were natural log (ln)-transformed
to normalise their distributions in regression analyses.
Medians and geometric means for 25(OH)D levels were
used to summarise average 25(OH)D levels for different
groups. Between-group differences in median 25(OH)D
levels were tested using Wilcoxon rank-sum test (two
categories) and Kruskal-Wallis equality-of-populations
rank test (more than two categories). Linear and logistic
regression analyses were performed to evaluate the asso-
ciation between vitamin D status (ln-25(OH)D levels
and 25(OH)D levels of < 50 and between 50 and 75
nmol/L compared to > 75 nmol/L) and country, age, sex,
season, stunting, underweight, wasting, inflammation,
malaria, and DBP haplotypes and variants. Since few
children had 25(OH)D levels < 30 nmol/L, further ana-
lyses did not include this group. Multivariable regression
analyses were adjusted for age, sex, season, inflamma-
tion, and study site, as appropriate.
We further searched PubMed and Embase for pub-

lished studies that measured serum 25(OH)D levels in
healthy children aged 0–8 years in Africa without date of
publication or language restrictions. The search strategy
is presented in Additional file 2: Table S1. We then car-
ried out meta-analyses of low vitamin D status categories
(25(OH)D levels < 50 and < 75 nmol/L) and mean
25(OH)D levels using random effects models (‘meta’ R
package).

Role of the funding source
The funders had no role in the study design, data collec-
tion, data analysis, data interpretation, or writing of the
report. The corresponding authors had full access to all
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the data and had final responsibility for the decision to
submit for publication.

Results
Characteristics of study participants
A total of 4509 infants and children with an age range of
0.2 months to 8 years and a median age of 23.9 months
(interquartile range 12.3, 35.9) were included in the
study (Table 1). Approximately half (49.1%) of children
were female. Overall prevalence of stunting, underweight
and wasting was 25.4%, 15.6% and 6.4%, respectively,
and varied by country with the highest prevalence
observed in Kenyan children. Overall prevalence of

inflammation and asymptomatic malaria was 22.8% and
13.5%, respectively, and varied by country with the high-
est prevalence observed in Burkina Faso (33.9% and
21.1%, respectively) (Table 1).

Vitamin D status
Overall median 25(OH)D level was 77.6 nmol/L (IQR
63.6, 94.2), and geometric mean 25(OH)D level was 77.0
nmol/L (95% CI 76.3, 77.7). Prevalence of vitamin D de-
ficiency defined by 25(OH)D levels of < 50 nmol/L or <
30 nmol/L were 7.8% (350/4509) and 0.6% (28/4509),
respectively (Table 1). A total of 1674 children (37.1%)
had 25(OH)D levels between 50 and 75 nmol/L. The

Table 1 Characteristics of study participants

Overall Kenya Uganda Burkina Faso The Gambia South Africa

No. of participants (%) 4509 (100%) 1361 (30.1%) 1301 (28.9%) 329 (7.3%) 629 (13.9%) 889 (19.7%)

Median 25(OH)D nmol/L (IQR)a 77.6 (63.6, 94.2) 81.0 (66.3, 101.6) 78.6 (65.1, 94.5) 78.4 (64.5, 91.3) 71.2 (59.1, 84.2) 76.2 (60.6, 91.9)

Vitamin D status

25(OH)D > 150 nmol/l 79/4509 (1.8%) 51/1361 (3.7%) 17/1301 (0.1%) 4/329 (1.3%) 1/629 (0.2%) 6/889 (0.7%)

25(OH)D > 75 nmol/l 2485/4509 (55.1%) 815/1361 (59.9%) 756/1301 (58.1%) 186/329 (56.5%) 265/629 (42.1%) 463/889 (52.1%)

25(OH)D 50–75 nmol/l 1674/4509 (37.1%) 464/1361 (34.1%) 479/1301 (36.8%) 123/329 (37.4%) 302/629 (48.0%) 306/889 (34.4%)

25(OH)D < 50 nmol/l 350/4509 (7.8%) 82/1361 (6.0%) 66/1301 (5.1%) 20/329 (6.1%) 62/629 (9.9%) 120/889 (13.5%)

25(OH)D < 30 nmol/l 28/4509 (0.6%) 4/1361 (0.3%) 5/1301 (0.4%) 0/329 (0%) 2/629 (0.3%) 17/889 (1.9%)

Median age (months) 23.9 (12.3, 35.9) 19.8 (12.7, 36.8) 24.1 (23.9, 35.9) 23.4 (19.7, 26.4) 46.6 (35.2, 58.7) 12.0 (11.9, 12.1)

Age categories (months)

< 12 816/4509 (18.1%) 300/1361 (22.0%) 24/1301 (1.8%) 19/329 (5.8%) - 473/889 (53.2%)

12–24 1597/4509 (35.4%) 555/1361 (40.8%) 440/1301 (33.8%) 172/329 (52.3%) 15/629 (2.4%) 415/889 (46.7%)

24–36 1029/450 (22.8%) 153/1361 (11.2%) 587/1301 (45.1%) 138/329 (42.0%) 150/629 (23.9%) 1/889 (0.1%)

36–48 478/4509 (10.6%) 146/1361 (10.7%) 167/1301 (11.8%) - 165/629 (26.2%) -

48+ 589/4509 (13.1%) 207/1361 (15.2%) 83/1301 (6.4%) - 299/629 (47.5%) -

Sex: females 2216/4509 (49.1%) 671/1361 (49.3%) 641/1301 (49.3%) 161/329 (48.9%) 297/629 (47.2%) 446/889 (50.2%)

Seasoneb

Summer/short rains/dry 867/4503 (19.3%) 285/1361 (20.9%) 331/1296 (25.5%) 72/329 (21.9%) - 179/889 (18.1%)

Autumn/dry 1475/4503 (32.8%) 896/1361 (65.8%) 295/1296 (22.8%) 123/329 (37.4%) - 161/889 (18.1%)

Winter/long rains 1361/4503 (30.2%) 86/1361 (6.3%) 330/1296 (25.5%) 129/329 (39.2%) 536/628 (85.4%) 280/889 (31.5%)

Spring/dry 800/4503 (17.8%) 94/1361 (6.9%) 340/1296 (26.2%) 5/329 (1.5%) 92/628 (14.7%) 269/889 (30.3%)

Nutritional statusc

Stunted 581/2289 (25.4%) 99/208 (47.6%) 203/1282 (15.8%) 103/307 (33.5%) 176/492 (35.8%) n/a

Underweight 389/2487 (15.6%) 102/389 (26.2%) 103/1296 (8.0%) 58/309 (18.8%) 126/493 (25.6%) n/a

Wasted 147/2285 (6.4%) 24/205 (11.7%) 59/1281 (4.6%) 20/307 (6.5%) 44/492 (8.9%) n/a

Inflammationd 1019/4469 (22.8%) 363/1344 (27.0%) 306/1285 (23.8%) 109/322 (33.9%) 85/629 (13.5%) 156/889 (17.6%)

Malariae 445/3293 (13.5%) 227/1082 (20.8%) 89/1280 (7.0%) 64/303 (21.1%) 65/628 (10.4%) n/a

South African children were not exposed to malaria
IQR inter-quartile range, n/a not available, 25(OH)D 25-hydroxyvitamin D
aMedians (interquartile ranges) are presented. bSeasons were based on 3 monthly intervals: 1st season, December to February; 2nd season, March to May; 3rd
season, June to August; 4th season, September to November. In South Africa, the seasons correspond to summer, autumn, winter and spring, respectively, in
Uganda and Kenya there are two rainy and two dry seasons and in Burkina Faso and The Gambia there is a single rainy and dry season. However, timing of the
rains is often unpredictable and may vary from these times. cStunted was defined as height-for-age Z score < − 2; underweight as weight-for-age Z score < − 2,
wasted as weight-for-height Z score < − 2 (denominator number varied because anthropometry data was not available for South African children). dInflammation
as CRP > 5mg/L or ACT > 0.6 g/L. ACT, but not CRP, was available for The Gambia. eMalaria as the presence of P. falciparum parasites on blood film
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prevalence of vitamin D deficiency varied by country,
with the highest prevalence observed in South African
children (Table 1 and Fig. 1). About 1.8% (79/4509) of
children had 25(OH)D levels above 150 nmol/L (51 Ken-
yan, 17 Ugandan, four Burkinabe, one Gambian and six
South African children).

Vitamin D status is associated with age and season, but
not with nutritional status
25(OH)D levels decreased with increasing age across all
age groups (Additional file 3: Table S2 and Additional
file 10: Figure S2), even after adjustment for potential con-
founders in multivariable regression analyses (Table 2).
Approximately 4.5% of the observed variation (R2 = 0.045)
in 25(OH)D levels was explained by age (Table 2). In a
multivariable linear regression analysis, study site, age, sex,
season and inflammation accounted for 12% (R2 = 0.12) of
observed variation in 25(OH)D levels. Each additional year
of age increased the odds of 25(OH)D levels < 50 and 50–
75 nmol/L by 69% (OR 1.69, [95% CI 1.52, 1.89]) and 43%
(OR 1.43, [95% CI 1.34, 1.52]), respectively (Additional
file 4: Table S3). Vitamin D deficiency (25(OH)D < 50
nmol/L) was more prevalent during the South African
winter and the long rains in sub-Saharan Africa (Fig. 1
and Additional file 4: Table S3). Seasonality explained
3.8% of the variation in 25(OH)D levels (R2 = 0.038)
(Table 2).
Median 25(OH)D levels were lower in stunted children

in univariable analyses, but this association was not ob-
served after adjustment for potential confounding factors
in multivariable regression models (Table 2). Overall
25(OH)D levels were not associated with sex, underweight
or wasting although girls had a 32% higher risk of
25(OH)D levels of <50 nmol/L (Table 2 and Fig. 1), a find-
ing that was mainly observed in The Gambia. Findings are
presented by individual countries in Additional file 3: Ta-
bles S2, Additional file 4: Table S3, Additional file 5: Table
S4 and Additional file 6: Table S5.

25(OH)D levels are higher with inflammation and lower
with malaria
Children with inflammation (CRP > 5mg/L or ACT >
0.6 g/L) had higher median 25(OH)D levels (81.9 nmol/L
[IQR 68.0, 99.5]) than those without inflammation (76.4
nmol/L [IQR 62.7, 92.3])) (Table 2 and Additional file 10:
Figure S2), a difference that was observed in all countries
except Burkina Faso (Additional file 3: Table S2).
Inflammation explained 1.2% (R2 = 0.012) of the total
variation in 25(OH)D levels (Table 2). Children with in-
flammation were 42% and 26% less likely to have
25(OH)D levels of < 50 and 50–75 nmol/L, respectively,
compared to those with 25(OH)D levels > 75 nmol/L
(Additional file 4: Table S3). CRP levels also varied by
country (Additional file 11: Figure S3).

Children with asymptomatic malaria parasitaemia had
lower median 25(OH)D levels (71.3 nmol/L [IQR 58.9,
85.4]) than those without (77.1 nmol/L (IQR 63.1, 92.4)
(Table 2 and Additional file 10: Figure S2). Malaria was
further associated with lower vitamin D status in multi-
variable regression analyses adjusted for potential
confounders, although this association was observed
only in Kenya (Table 2, Additional file 4: Table S3 and
Additional file 6: Table S5). Malaria parasitaemia ex-
plained 0.4% of variation in 25(OH)D levels (R2 = 0.004)
(Table 2).

Vitamin D binding protein variants are associated with
vitamin D status
Overall, the most frequent DBP haplotype was Gc1f/f
(69.8%), followed by Gc1f/2 (13.6%), Gc1f/s (13.4%),
Gc1s/2 (1.7%), Gc1s/s (1.0%), and least frequent was
Gc2/2 (0.6%) (Table 3). The most frequent Gc variant
was Gc1f (83.3%), followed by Gc1s (8.5%), and the least
frequent was Gc2 (8.2%). Frequencies of DBP haplotypes
and variants varied by country, with the highest frequen-
cies of Gc1f, Gc1s and Gc2 observed in South Africa
(87.3%), The Gambia (13.1%) and Uganda (10.2%), re-
spectively (Additional file 7: Table S6). Median 25(OH)D
levels were lowest in children carrying the Gc2 variant
(72.4 nmol/L [IQR 59.4, 86.5]), but did not differ be-
tween the Gc1f (77.3 nmol/L [IQR 63.5, 92.8]) and Gc1s
variants (78.9 nmol/L [63.8, 95.5]). Median 25(OH)D
levels similarly differed by DBP haplotype (Table 3).
DBP haplotypes and variants explained 0.9% and 0.4% of
the variation in 25(OH)D levels, respectively (Table 3).
The Gc2 variant was associated with lower 25(OH)D
levels (β = − 0.08 [95% CI − 0.11, − 0.06] and a 69% (OR
1.69 [1.23, 2.31]) increased risk of vitamin D deficiency
(25(OH)D levels < 50 nmol/L) in adjusted regression
analyses (Table 3). The Gc2 variant was similarly associ-
ated with the highest prevalence of vitamin D deficiency
(Fig. 1). Country-specific analyses are presented in Add-
itional file 7: Table S6).

Meta-analysis
Out of 18 previous studies that assessed the vitamin D
status of African children aged 0–8 years (Additional
file 8: Table S7), we included a total of 12 studies in the
meta-analyses. Six studies were excluded because they
lacked estimates of mean 25(OH)D levels, prevalence of
vitamin D status (25(OH)D < 50 or < 75 nmol/L) or did
not report estimates from children aged between 0 and
8 years. The meta-analyses included 2128 children from
five African countries with mean ages ranging from one
to 47 months and included estimates from healthy chil-
dren in 9 case-control and three population-based stud-
ies in addition to the current study. Overall, mean
25(OH)D level in young African children was 73.2 nmol/
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Fig. 1 Prevalence of vitamin D categories by country (a), age categories (b), sex (c), season (d), stunting (e), underweight (f), wasting (g), inflammation
(h), malaria status (i), and vitamin D binding protein (DBP) haplotypes (j) and variants (k). Season was based on 3 monthly intervals. In South Africa the
seasons are summer, autumn, winter and spring, in Uganda and Kenya there are two rainy seasons and in Burkina Faso and The Gambia a single rainy
season. Stunting was defined as height-for-age Z score < − 2; underweight as weight-for-age Z score < − 2, wasting as weight-for-height Z score < − 2;
inflammation as CRP > 5mg/L or ACT > 0.6 g/L (ACT, but not CRP was available for The Gambia); malaria as presence of P. falciparum parasites on blood
film. Prtest (STATA) was used to test the significance in the difference in the proportion of low vitamin status (25(OH)D levels < 50 or 50–75 nmol/L)
within each category with the first category as the reference
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L (95% CI 66.4, 80.1) (Fig. 2) and prevalence of
25(OH)D levels < 50 and < 75 nmol/L was 10.9% (95%
CI 6.9, 15.5) and 49.1% (95% CI 40.8, 57.5), respectively
(Additional file 12: Figure S4 and Additional file 13: Fig-
ure S5). Only a single eligible study reported prevalence
defined by 25(OH)D levels < 30 nmol/L [4] precluding
meta-analysis. There was high heterogeneity between
studies included in the meta-analyses with overall I2 ran-
ging from 95.1% and 99.4% (p < 0.01).

Discussion
Little is known about the vitamin D status of African
children. In this study, overall median 25(OH)D level
was 77.6 nmol/L (IQR 63.6, 94.2) and prevalence of
25(OH)D cut-offs between 50 and 75, < 50, and < 30
nmol/L was 37.1%, 7.8%, and 0.6%, respectively, in young
African children. The prevalence of vitamin D deficiency
(25(OH)D levels < 50 nmol/L) was higher in South Afri-
can children and during the South African winter or the
long rainy season in East Africa. Median 25(OH)D levels
decreased with increasing age and with inflammation
but did not differ by sex or nutritional status after ad-
justment for potential confounders in multivariable
models. Malaria parasitaemia was associated with lower

25(OH)D levels overall and in Kenyan children, but not
in Ugandan, Burkinabe or Gambian children. The most
common Gc variant was Gc1f (83.3%), followed by Gc1s
(8.5%) and Gc2 (8.2%), with Gc2 being associated with
the lowest 25(OH)D levels and the highest prevalence of
low vitamin D status (25(OH)D levels < 50 and 50–75
nmol/L). In a meta-analysis of the current and previous
studies of young African children overall mean 25(OH)D
level was 73.2 nmol/L.
Our median 25(OH)D estimate of 77.6 nmol/L is com-

parable to values reported in previous studies of healthy
young children in sub-Saharan Africa including reported
levels of 80.4 nmol/L in Uganda, 78.6 nmol/L in Malawi,
and 72.4 nmol/L in Nigeria (Fig. 2). However, studies in
198 Nigerian children and 581 Tanzanian infants living
in urban areas reported lower mean levels of 64.8 and
64.9 nmol/L, respectively [8, 9]. The prevalence of vita-
min D deficiency (25(OH)D levels < 50 nmol/L) was
7.8% overall, with a higher prevalence of 13.5% in South
Africa. Previous studies of healthy young children have
reported higher prevalence estimates of 13.6% in Kenya,
15.0% in Uganda, and 25.8% in Nigeria [4, 8, 15]. Preva-
lence estimates were also higher in young children from
other continents, including estimates of 15% in the USA,

Fig. 2 Meta-analysis of studies that evaluated 25(OH)D levels in healthy young children in Africa. For case-control studies, we only included mean
25(OH)D levels of healthy controls in the meta-analysis. Means of age in months are presented. Studies that only measured 25(OH)D levels in
cord blood, reported only median values, or did not report estimates from young children (aged 0–8 years) separately from older children were
excluded from these analyses. Details of the studies are presented in Additional file 8: Table S7
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14% in Japan, and 11% in China [34–36]. Vitamin D de-
ficiency is also more prevalent in northern African coun-
tries [2], and the higher vitamin D status observed in
our study might be explained by differences in latitude,
geography, skin pigmentation, clothing coverage, and re-
ligious and cultural practices across Africa [37]. The
year-round abundance of sunshine in sub-Saharan Africa
may also explain higher vitamin D status although vita-
min D supplementation and food fortification is less
common. Since vitamin D deficient rickets is rare at
levels above 30 nmol/L, the very low prevalence of
25(OH)D levels < 30 nmol/l (0.6%) in the current study
suggests that rickets in African children is more likely to
be caused by calcium rather than vitamin D deficiency.
Conversely, we found very few children with 25(OH)D
levels above 150 nmol/L suggesting that even plenty of
exposure to sunlight rarely generates these high levels
probably because vitamin D production in the skin is
highly regulated [1].
In the present study, 25(OH)D levels decreased con-

sistently with age overall and in all countries except The
Gambia (Additional file 3: Table S2), perhaps because of
older age in the Gambian children and corresponding
cultural habits. Age explained 4.5% of the variation in
25(OH)D levels. Previous studies of school children
(aged 5–18 years) from South Africa, Ethiopia and
Algeria have also reported that 25(OH)D levels de-
creased with age [11, 38, 39]. However, a single study in
Malawian pre-school children reported an increase in
25(OH)D levels with age; however, this study was small
(n=21) and included infants of mothers living with HIV
in Malawi [6]. Studies from high-income countries have
reported an increase in 25(OH)D levels with age, but
children in these studies received vitamin D supplemen-
tation or fortification [34, 35, 40]. In a meta-analysis of
previous studies from Africa, children had higher vita-
min D status than adults in African populations [2] pos-
sibly due to increased time spent outdoors.
In addition, we found limited evidence of an associ-

ation between 25(OH)D levels and sex, although over-
all girls had a 32% (95% CI 1.04, 1.68) increased risk of
vitamin D deficiency (25(OH)D < 50 nmol/L) compared
to boys. Similar studies from South Africa, China, and
Ecuador have not found sex-related differences in
25(OH)D levels [36, 38, 41]. We also found evidence of
seasonality in 25(OH)D levels with the strongest effect
in South Africa, and more variable effects observed
across the sub-Saharan African countries during the
rainy season. These findings may be explained by colder
winters in South Africa with greater coverage of skin by
clothing and more time spent indoors and in East Africa
by increased cloud cover and less time spent outdoors
during the long rains. Season explained 3.8% of the vari-
ation in 25(OH)D levels. These findings agree with

previous studies that evaluated the effect of seasonality
in vitamin D status in Africa, although many of these
studies were in South Africa or northern African
countries [2].
We did not find associations between 25(OH)D levels

and stunting, underweight, or wasting in adjusted regres-
sion analyses. Similarly, studies in young children from
Tanzania (n = 948) and Nepal (n = 280) reported that
25(OH)D levels were not associated with stunting,
underweight or wasting [10, 42]. However, severe wast-
ing was associated with 25(OH)D levels < 30 nmol/L in
21 Kenyan children with rickets [4]. In addition,
Mokhtar and colleagues reported that low 25(OH)D
levels (< 42.5 nmol/L) were more common among
stunted and underweight Ecuadorian children [41]. The
lack of association between vitamin D status and an-
thropometric indices in the current study suggests that
sunlight may be more important than dietary intake in
influencing vitamin D status in Africa.
We observed a positive correlation between 25(OH)D

levels and markers of inflammation overall and children
with inflammation had higher 25(OH)D levels than
those without after adjusting for potential confounders.
Our findings agree with results from a small case-
control study in Egyptian children with sepsis (n = 40,
mean age 6 years) and a large community-based study of
children (n = 4274, mean age 9.9 years) in England,
which reported that 25(OH)D levels increased with in-
creasing levels of CRP and IL-6 [7, 13]. In contrast, a re-
cent meta-analysis of 24 randomised controlled trials
reported that vitamin D supplementation had an overall
effect of reducing IL6, but not CRP or other inflamma-
tory markers, although many trial participants had med-
ical conditions [14]. A nationally representative survey of
15,167 adults in the USA reported an inverse association
between 25(OH)D and CRP levels at 25(OH)D levels <
52 nmol/L and a positive association above this level
[43], suggesting that there may be a U-shaped associ-
ation, which might explain previously mixed findings. In
our study, 90% of children had 25(OH)D levels > 52
nmol/L, perhaps explaining the positive association ob-
served between inflammation and 25(OH)D levels.
However, the association between inflammation and
25(OH)D may not be clinically relevant since inflamma-
tion explained only 1.2% of the observed variation in
25(OH)D levels.
In this study, 25(OH)D levels between 50 and 75

nmol/L were associated with an increased risk of afebrile
malaria parasitaemia overall compared to levels > 75
nmol/L. In contrast, a study in western Kenya found no
association between 25(OH)D levels and malaria parasit-
aemia in newborns and their mothers [44]. However, an-
other study in Uganda reported that children with
severe malaria had lower 25(OH)D levels than healthy
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community children [15]. Malaria explained only 0.4% of
the variation in 25(OH)D levels in our study, suggesting
that this association may not be clinically significant. No
clinical trials have yet investigated the effect of vitamin
D supplementation on malaria incidence or treatment
outcomes [45].
In the current study, we found that Gc1f was the most

frequent Gc variant (83.3%) and the Gc1s and Gc2 vari-
ants were less frequent (8.5 and 8.2%, respectively). The
Gc1f and Gc1s variants were associated with higher
25(OH)D levels compared to the Gc2 variant. In agree-
ment with our study, a study involving 237 Gambian
children with similar Gc variant frequencies (Gc1f was
86%, Gc1s 11% and Gc2 3%) reported that Gc1f was as-
sociated with higher 25(OH)D levels than the other hap-
lotypes combined [19]. Gc1f, the most frequent Gc
variant in Africans, has a higher binding affinity for vita-
min D compared to the Gc1s and Gc2 variants which
are more frequent in Europeans and Asians [16, 18]. In a
study involving adults from The Gambia and the UK
(n=36), Gc1f was associated with higher total 25(OH)D
levels and shorter 25(OH)D half-life [20]. In addition,
DBP levels and genetic polymorphisms have been linked
to lower levels of 25(OH)D in black American adults
compared with white American adults [17]. In another
study involving multi-ethnic children, differences in DBP
polymorphisms were associated with lower vitamin D
status in African children and reduced response to vita-
min D intake compared to Hispanic and Caucasian chil-
dren [46]. The differences in 25(OH)D levels attributed
to DBP polymorphism has led to the suggestion that
DBP variants and levels should be considered in the
assessment of vitamin D status in different populations
[47].

Strengths and limitations
To the best of our knowledge, the current study, which
included a total of 4509 children, is the largest study to
date to evaluate vitamin D status and its predictors in
young African children. The study further evaluated the
effect of common genetic polymorphisms encoding the
vitamin D binding protein on 25(OH)D levels. However,
our findings should be interpreted in the context of
some limitations. First, due to the cross-sectional nature
of our study, we could not evaluate temporal changes in
25(OH)D and CRP levels or infer the direction of causal-
ity for the observed associations. We also did not meas-
ure vitamin D binding protein, parathyroid hormone,
calcium levels, dietary or supplementary vitamin D in-
take, or exposure to sunlight, factors which have been
shown to influence vitamin D status. DBP may also be a
better marker of the effect of inflammation since it is re-
duced during tissue damage and in inflammation result-
ing in the reduction of circulating 25(OH)D levels and

other vitamin D metabolites [48]. Our study cohorts
were also diverse with different ethnicities and ages, and
hence may not be generalisable to other age groups or
African countries, although cohort-specific data and ana-
lyses were presented.

Conclusions
Approximately 0.6% and 7.8% of children in our study
had 25(OH)D levels of < 50 or < 30 nmol/L, and approxi-
mately one third of children had 25(OH)D levels be-
tween 50 and 75 nmol/L. Our data indicate that older
children and those who live further from the equator
may be at a higher risk of vitamin D deficiency. Stunting,
underweight and wasting were not associated with vita-
min D deficiency suggesting that sunlight is a more im-
portant source of vitamin D than dietary intake in
children living in sub-Saharan Africa. Genetic differences
in DBP also altered 25(OH)D levels. Further research is
required to understand the effects of inflammation and
malaria on vitamin D status in Africa and to investigate
the causality between vitamin D status and infectious
diseases like malaria, which are common in African chil-
dren. These findings may have important implications
for public health strategies involving young children in
Africa.
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