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Abstract (230/250 Words)  

Objective: HIV-associated chronic lung disease (HCLD) is a common comorbidity in children 

and adolescents in sub-Saharan Africa (SSA). The pathogenesis of HCLD is unclear and may be 

driven by underlying dysregulated systemic immune activation and inflammation. We 

investigated the association between twenty-six plasma soluble biomarkers and HCLD.  

Design: Case-control analysis of baseline biomarker data from 336 children and adolescents 

(6-19 years old) with perinatal HIV infection (PHIV) and HCLD (cases) and 74 age and sex-

matched controls with PHIV but no CLD. HCLD was defined as having a forced expiratory 

volume in one second (FEV1) z-score <-1 with no reversibility.  

Methods: Cryopreserved plasma collected at recruitment was used in a multiplex bead assay 

(Luminex) to measure baseline levels of soluble biomarkers. Logistic regression alongside 

data-reduction and techniques quantifying the interconnectedness of biomarkers were used 

to identify biomarkers associated with odds of HCLD.  

Results:  Biomarkers of general immune activation and inflammation (2M, CRP, sCCL5, GCSF, 

IFN-, IP-10), T-Cell activation (sCD25, sCD27), platelet activation (sCD40-L), monocyte 

activation (sCD14), coagulation (D-Dimer), cellular adhesion (E-selectin), and extracellular 

matrix degradation (MMP-1, MMP-7, MMP-10) were associated with increased odds of HCLD. 



Exploratory PCA and assessment of biomarker interconnectedness identified T-cell and 

platelet activation as centrally important to this association. 

Conclusions:  HCLD was associated with a large number of soluble biomarkers representing a 

range of different pathways. Our findings suggest a prominent role for T-cell and platelet 

activation in HCLD.  

 

Introduction  

The widespread use of combination antiretroviral therapy (ART) has led to a growing number 

of children with perinatally-acquired HIV infection (PHIV) in sub-Saharan Africa (SSA) surviving 

into adolescence and beyond (1). In recent years, a range of chronic cardiovascular, 

respiratory, musculoskeletal and neurocognitive comorbidities have been described among 

children growing up with HIV, despite ART  (2–5). In particular, while ART has reduced the 

incidence of pulmonary infections, there remains a substantial burden of chronic respiratory 

symptoms among children and adolescents with HIV (6–8). Studies have reported a 

prevalence of about 30% in children with HIV aged over 10 years (2). HIV associated chronic 

lung disease (HCLD) is typically characterised by a chronic cough, exercise restriction, hypoxia 

and airflow obstruction without reversibility (9).  

The underlying pathological processes contributing to HCLD are poorly understood. Immune 

activation and inflammation are key mechanisms in the pathogenesis of multiple chronic 

complications of  adult HIV, and are associated with airflow obstruction in HIV-infected adults 

(10–12). The underlying mechanisms could be unique to the pediatric population or might be 

shared with adult HIV infection. Ongoing airway inflammation, either directly due to HIV 



infection or infections that occur as a consequence of HIV-related immunosuppression may 

result in progressive tissue remodeling, fibrosis of the small airways and lung function decline 

(13).  

We conducted a case-control study to investigate the association of soluble biomarkers 

covering a wide spectrum of pathogenetic pathways with HCLD in children in Malawi and 

Zimbabwe. We also assessed how the associations between biomarkers changed in HCLD 

participants to better understand pathways dysregulated in disease. The predictive ability of 

individual biomarkers for HCLD was also assessed.  

 

Methods:  

This study was nested within the BREATHE trial (Bronchopulmonary function in response to 

azithromycin treatment for chronic lung disease in HIV-infected children) (ClinicalTrials.gov, 

NCT02426112), that investigated the impact of azithromycin therapy on lung function in 

children with HCLD. Full details of the trial are described elsewhere (14–16). Briefly, inclusion 

criteria were age 6 to 19 years, perinatally-acquired HIV, taking ART for at least 6 months and 

HCLD (Forced expiratory volume in one second (FEV1) z-score <-1.0 with no reversibility on 

bronchodilators). Participants were recruited from two public sector HIV clinics in Harare, 

Zimbabwe and Blantyre, Malawi. Individuals with acute respiratory tract infections, 

tuberculosis (TB) or potentially fatal conditions at time of screening were excluded. TB was 

screened using the Xpert MTB/RIF assay (Cepheid). Trial participants served as cases for the 

current study. Controls without HCLD (FEV1 z-score >0) but otherwise meeting the same 

criteria and frequency-matched to cases by age and duration on ART were recruited for 

laboratory studies.  



 

Measurement of Soluble Biomarkers  

Soluble biomarkers were measured from cryopreserved plasma stored at -80oC. The full list 

of biomarkers measured and their abbreviations are reported in Supplementary Table 1. The 

levels of all plasma soluble biomarkers were measured using the Luminex multiplex bead 

assay on a MagPix instrument according to the manufacturer’s protocol (Luminex technology, 

Hertogenbosch, Netherlands). Briefly, plasma samples collected from heparinised blood were 

thawed on their first use, diluted appropriately, and the level of biomarkers assessed 

immediately in duplicates on a single MagPix instrument. Samples with measurement values 

falling outside the standard curve were repeated at appropriate dilutions. Those with 

consistently low levels of detection upon repeating were considered undetectable, and 

assigned half the minimum value measured for the specific biomarker under investigation.  

 

Statistical Methods  

Data were analysed in R Studio (Version 1.1.383). For continuous demographic and 

anthropometric variables, the mean, median and interquartile range (IQR) were calculated by 

HCLD status. For categorical variables proportions were calculated. Differences between 

cases and controls were assessed by Kruskal Wallis test for continuous variables and Chi-

square test for categorical variables. Weight-for-age and height-for-age z-scores were 

calculated using British 1990 Growth Reference Curves (17). Wasting and stunting were 

defined respectively as weight and height for age z-score less than -2 standard deviations.  



Spearman rank correlation coefficients between all soluble biomarkers were calculated in all 

participants and separately within cases.  Correlation networks were visualised using the 

qgraph package in R. Statistically significant (p< .05) Spearman rank correlations were 

visualised. Within the case and control network the node strength centrality 

(interconnectedness) of each biomarker was calculated from the absolute value of edge 

weights and converted into a z-score to facilitate between biomarker comparisons. To 

increase comparability of regression results between biomarkers, all biomarkers were scaled 

to a mean of 0 and standard deviation of 1 within the population studied. Logistic regression 

was used to assess the association of biomarkers with HCLD. In cases, the association between 

biomarker and FEV1 z-score as a continuous measure was assessed using linear regression. 

Variables associated with HCLD, FEV1 z-score and biomarker level, alongside those defined a 

priori were included as covariates in adjusted models. Sex, trial site, supressed viral load (HIV 

viral load <200 copies/ml) and having ever been treated for TB were included as binary 

covariates. Age and height-for-age z-scores were included as continuous variables. Adjusted 

and unadjusted odds ratios, 95% confidence intervals (CI), regression coefficients and their 

standard errors are presented. Where appropriate, missing data in clinical covariates were 

imputed by mean imputation. Due to the exploratory nature of the study we did not correct 

for multiple testing. 

Due to the expected correlation between biomarkers, techniques were employed to reduce 

the dimensionality of the data. Exploratory principal component analysis (PCA) was 

performed using the FactoMineR package in R (18). Prior to assessment, biomarker values 

were scaled. PCA dimensions with eigenvalues >1 were retained for downstream analysis. 

Exploratory PCA was performed separately for all participants and then for cases. Participants 

value for each principal component (PC) were extracted and included in the logistic and linear 



regression analyses described. The sensitivity and specificity of biomarker levels for predicting 

HCLD was assessed using receiver operating characteristics (ROC) analysis. Area under the 

curve (AUC) of each biomarker and HCLD were calculated for all biomarkers and whole 

population principal components showing association with HCLD. Threshold values 

maximising sensitivity and specificity for each biomarker were calculated.  

 

Ethics 

Consent from individuals within BREATHE study was sought from the guardian and age-

appropriate assent from the participant (for those aged <18 years).  

 

Results 

A total of 410 participants (336 cases and 74 controls) were recruited. Cases were more likely 

than controls to be stunted (50.0% vs 29.7% p= <.002), have ever been treated for TB (29.9% 

vs 12.2% p = .005) and to be on second line ART (25.9% vs 10.8%, p= .009) (Table 1). There 

was no difference in the proportion of individuals with suppressed HIV viral load between 

cases and controls (43.2% vs 51.4%, p=.248). A total of 59 (0.6%) biomarker measurements 

fell below the limit of detection. One measurement was missing. MMP-12 was dropped from 

data reduction owing to a reasonable number of values falling below the limit of detection 

(13%). Biomarker levels by group are presented in Figure 1A. Untransformed levels of each 

soluble biomarker (pg/ml) are reported in Supplementary Table 1). The centrality z-score for 

each soluble biomarker by group is presented in Figure 1D. sCD40-L was the most 

interconnected biomarker in cases and second most in controls (Figure 1B/C). Several 



biomarkers showed noticeable differences between cases and controls (ANG-1, 2M, D-

Dimer, IFN-, IP-10).  

There was a high degree of correlation between biomarkers (Supplementary Figure 1). 

Separate exploratory PCA in all participants and just those with HCLD identified 7 and 8 

principal components with eigenvalues >1 explaining 61 and 64% of the variation respectively 

(Supplementary Figure 2, Supplementary Table 2). These were extracted and used in 

downstream analysis.  

18 soluble biomarkers and 6 principal components were associated with HCLD status. MMP-

1, MMP-7, MMP-10, ANG-1, sCCL5, sCD14, sCD25, sCD27, sCD40-L, CRP, IP-10, D-Dimer, E-

Selectin, Fas, IFN-, VCAM-1, PC1, PC3 and PC7 were associated with increased odds of HCLD. 

sCD40-L was associated with the largest increase in odds (OR=2.96 (95% CI= 2.21-4.25, p< 

.001)). GCSF, VEGF and PC4, PC5 and PC6 were associated with reduced odds of HCLD, GCSF 

was associated with the largest reduction (OR= 0.68 (95% CI= 0.50-0.91, p=0.010)) (Table 2 & 

Supplementary Table 3 & 5).  

Among cases, MMP-8, MMP-10, ANG-1, CRP, IP-10, E-Selectin, Fas, GCSF, VCAM-1, VEGF, PC1 

and PC5 were associated with reduced FEV1 z-score (Table 3 and Supplementary Table 4/5). 

The coefficients were largest for MMP-10 and CRP (β = -0.132 ± 0.04 and β = -0.128 ± 0.38, 

respectively). An increase of one standard deviation in Fas was associated with a small 

increase in FEV1 z-score (β = 0.082 ± 0.039, p= .028). Of these biomarkers, only MMP-8 was 

not associated with HCLD in the previous analyses.   

Receiver operator characteristics (ROC) identified CD40-L, sCD25 and PCA principal 

component 1 as having area under the curve (AUC) greater than 0.7 (Supplementary Figure 3 



& Supplementary Table 6). The best performing biomarker was log transformed sCD40-L 

which at a threshold of 3.526 had a specificity of 0.716, sensitivity of 0.812 and AUC 0.768.  

Discussion 

Soluble biomarkers have been associated with reduced lung function in multiple diseases 

(25,26), including HIV (19,20). Radiological studies in children are consistent with constrictive 

obliterative bronchiolitis (OB) as the predominant underlying cause of HCLD (2,3). OB is a 

condition characterized by inflammation and fibrosis of the terminal bronchioles resulting in 

progressive airflow obstruction and lung function decline (21–23). In this study, we describe 

an association between soluble biomarkers involved in several pathways and HCLD, 

suggesting potential mechanisms involved in OB pathology in the context of HIV-1 infection 

further to those previously described (15,24).  

Platelets are responsible for the vast majority of sCD40-L found in plasma (25) and  play a key 

role in initiation and propagation inflammatory lung diseases (26). Excessive ligation of 

surface CD40 by sCD40-L drives an inflammatory endothelial cell phenotype (for which VCAM-

1 is a marker of (26)) and increases expression of MMPs (27).  sCD40-L is associated with a 

range of inflammatory conditions in the context of HIV (28,29) and has been postulated as a 

therapeutic target for HIV associated neuroinflammation (30). The high centrality of sCD40-L 

in both cases and controls is unsurprising considering the co-stimulatory properties of sCD40-

L in both innate and adaptive immunity. The high sensitivity and specificity of sCD40-L for 

HCLD further underscores its central role and potential use as a biomarker for HCLD. 

Combined, our results highlight the importance of sCD40-L and/or cells involved in its 

production, as potential targets for reducing HIV associated chronic inflammation. sCD40-L is 

also produced by activated T-cells. Our results show an association between increased T-cell 



activation (sCD25/sCD27 and PC1) and HCLD, which is consistent with previous reports 

implicating peripheral T-cell activation with HIV-associated pulmonary dysfunction (20). 

Soluble CD25 (IL2-RA) correlates well with surface CD25 expression (31) and is a marker of 

activated T-regulatory cells (CD25+) (32). Soluble CD25 has been used as a marker of disease 

severity in a number of inflammatory conditions (33) and is associated with an expanded Th17 

response (34), which recruits pathogenic T cells to sites of inflammation in inflammatory 

diseases such as asthma (35). In non-atopic asthma patients sCD25 is negatively associated 

with FEV1. These patients typically experience broncho-obstructive reactions to inflammatory 

stimuli similar to HCLD which normalises with sCD25 (36). Intriguingly several of these 

markers (sCD40-L, CD25, CD27) were not associated with FEV1 z-score in the HCLD group. 

These findings could suggest that different pathways may be involved in the initiation and 

progression of HCLD, which warrants further study. Overall, these results suggest that 

treatment strategies which reduce the levels of platelet and T-cell activation may be 

beneficial for the prevention of HCLD.   

We report an association between HCLD and elevated levels of several immune activation 

markers. CRP has previously been associated with pulmonary dysfunction in individuals with 

HIV infection (19,20) and is associated with FEV1 decline at the population level (37). Long 

term exposure to elevated levels of IP-10, which is likely in this population due to the strong 

association between IP-10 and active HIV replication, has been shown to cause bronchiolitis-

like inflammation (38). In chronic obstructive pulmonary disease (COPD), tissue injury is 

thought to be promoted by IFN- through release of MMP from activated macrophages (39). 

Furthermore, elevated immune activation in HCLD is likely driven by HIV-associated increases 

in gut lumen permeability leading to microbial translocation. As a marker of monocyte 

activation in response to lipopolysaccharide, elevated sCD14 levels in the HCLD participants 



is suggestive of increased microbial translocation in individuals with HCLD. sCD14 has 

previously been associated with airflow limitation and combined mosaic attenuation on chest 

computerised tomography (CT) scan, consistent with obliterative bronchiolitis (12). We 

describe an increased inflammatory state in individuals with HCLD and highlight that further 

studies assessing microbial translocation in this population are warranted.  

 

In a similar study, Attia et al recently proposed that chronic inflammation may cause 

endothelial disruption that drives HCLD (12). Endothelial activation is well described in HIV-

infected individuals (40), and is particularly marked in perinatal infection (41). Soluble E-

selectin reflects the activation of endothelial cells and was elevated in HCLD participants in 

our study. In emphysema patients, endothelial cells release pro-inflammatory cytokines such 

as TNF-alpha and IL-1-beta that contribute to CLD development (42). We also report 

elevations in D-Dimer, a fibrinogen breakdown product which has been associated with HIV 

all-cause mortality and acute execrations in patients with interstitial lung disease (43,44).  D-

Dimer is also strongly correlated with endothelial dysfunction, microbial translocation and 

sCD14 (45–47) and strongly supports evidence implicating platelets as drivers of pathology.  

Owing to the essential role of the pulmonary extracellular matrix (ECM) for normal lung 

function, the association of several markers of extracellular matrix degradation (MMP1, 7 & 

10) with HCLD is of interest (48). The level of MMPs from bronchoalveolar lavage (BAL) fluid 

samples have been associated with radiological markers of small airway disease and 

emphysema severity (49) with MMP-7 shown to promote pulmonary fibrosis (50).  MMP-10 

is expressed by multiple cell types in response to infection (51), and likely represents 



increased immune activation in the HCLD group. MMP-1 is elevated in subjects with COPD 

and children with pulmonary TB (49) but is responsive to TB treatment (52).  

As soluble biomarkers do not act in isolation, we sought to study the relationships between 

biomarkers in cases and controls to understand better the activated pathways that may drive 

pathology. Comparing how networks change between disease states can help understand 

processes involved in pathology We suggest that biomarkers of high centrality in the HCLD 

group offer the best potential for therapies aimed at reducing systemic immune activation. 

The increased centrality of the well described immune activation markers 2M, IFN- and IP-

10 in cases is indicative of HCLD being associated with an elevated inflammatory 

environment. Interestingly, the centrality of ANG-1 was inverted, concordant with positive 

effects of high ANG-1 in persons living with HIV (53). However, this is not consistent with 

increased odds of HCLD in individuals with higher levels of ANG-1. Further work is required to 

understand the association between angiogenesis and HCLD. Interestingly the HCLD- network 

contains more negative correlations between biomarkers, likely representative of lower 

overall levels of immune activation and maintenance of functional regulation which becomes 

dysregulated in the context of HCLD. 

There are several limitations to this study. The cross-sectional design means that the 

direction of temporal relationships is unknown. Ward et al found no relationship between 

bronchoalveolar lavage (BAL) and blood sCD14 (33), indicating that the levels of plasma 

soluble biomarkers may not represent local levels in relevant organs. High-resolution 

computed tomographic scans and BAL sampling from BREATHE participants would allow us 

better to describe the phenotype of HCLD and describe local inflammation within the 



cohort. Due to the exploratory nature of the study, we have not corrected for multiple 

testing and results should be interpreted accordingly.  

In conclusion, this study furthers the understanding of pathways associated with HCLD in 

children and adolescents living with PHIV and suggests that studies aimed at characterising 

T-cell activation alongside understanding the activity of platelets may be warranted. 

Furthermore, these results show that soluble biomarkers representing a wide array of 

pathways are associated with HCLD, and highlight a central role for sCD40-L, which itself 

showed good predictive ability for HCLD. These results act as a first step towards 

understanding the pathology of HCLD, alongside highlighting potential targets for 

therapeutic modalities that may have utility in prevention.   
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Table 1: Clinical, demographic and anthropometric characteristics of participants included 

from the BREATHE trial. 

 Controls (n=74) Cases (n=336) P-value 

Age at Enrolment, Mean (SD) 14.9 (3.6) 15.0 (3.2) .833 

Female, N (%) 46 (62.2) 166 (49.4) .063 

Zimbabwe, N (%) 55 (74.3) 241 (71.7) .758 

Malawi, N (%)  19 (25.7) 95 (28.3)s - 

Height-for-Age z-score, Median (IQR) -1.5 (1.0) -2.1 (1.2) < .001 

Stunted, N (%) 22 (29.7) 168 (50.0) .002 

Weight-for-Age z-score, Median (IQR) -1.1 (1.2) -2.2 (1.5) < .001 

Wasting, N (%) 14 (18.9) 176 (52.4) < .001 

CD4+ T Cell Count, >350 Cells /mm3, N 

(%) * 

57 (78.1) 252 (75.2) .715 

HIV Viral Control (<200 copies/ml), N 

(%)* 

38 (51.4) 145 (43.2) .248 

Log-10 HIV Viral Load Copies/ml, 

Median (IQR)* 

2.0 (1.8) 2.6 (2.5) .087 

FEV1 Z-Score, Median (IQR) 0.6 (0.5) -2.0 (0.7) < .001 

FEV1/FVC z-score, Mean (SD) 0.2 (0.8) -0.7 (1.1) < .001 

FEV % Predicted, Mean (SD) 107.7 (6.1) 72.8 (9.9) < .001 

Duration ART in Years, Median (IQR) 6.5 (2.8) 6.4 (3.2) .758 

Ever Treated for TB, N (%)* 9 (12.2) 97 (29.9) .005 

First Line Regimen - ATV/LPV/PI, N (%) 66 (89.2) 249 (74.1) .009 

Second Line Regimen - EFV/NVP, N (%)* 8 (10.8) 87 (25.9) - 

 

IQR = Interquartile Range, N= Number, ATV = Atazanavir, LPV=Lopinavir, PI= Protease 

inhibitor EFV= Efavirenz NVP = Nevirapine, *One data point missing, ** Two data points 

missing 

 

 

 

 



Table 2. Biomarkers and Principal Components associated with HCLD 

 

 Univariate OR (95% CI, P) Adjusted OR (95% CI, P) 

MMP-1 1.41 (1.09-1.84, p= .009) 1.36 (1.04-1.79, p= .028) 

MMP-7 1.52 (1.18-1.98, p=0= .001) 1.42 (1.07-1.90, p= .015) 

MMP-10 1.70 (1.29-2.25, p< .001) 1.61 (1.20-2.19, p= .002) 

Angiopoietin-1 1.49 (1.19-1.90, p= .001) 1.53 (1.20-1.96, p= .001) 

sCCL5 1.36 (1.06-1.75, p= .015) 1.37 (1.05-1.80, p= .023) 

sCD14 1.96 (1.51-2.57, p< .001) 2.23 (1.66-3.05, p< .001) 

sCD25 2.74 (2.01-3.81, p< .001) 2.85 (2.00-4.19, p< .001) 

sCD27 2.26 (1.65-3.16, p< .001) 2.05 (1.48-2.91, p< .001) 

sCD40-Ligand  2.89 (2.12-4.06, p< .001) 2.96 (2.12-4.25, p< .001) 

CRP 1.55 (1.20-2.04, p= .001) 1.48 (1.12-1.98, p= .006) 

IP-10/CXCL10 1.93 (1.42-2.69, p< .001) 1.89 (1.36-2.72, p< .001) 

D-Dimer +  1.68 (1.27-2.25, p< .001) 1.68 (1.25-2.29, p= .001) 

E-Selectin  2.08 (1.57-2.81, p< .001) 2.05 (1.52-2.82, p< .001) 

FAS 1.59 (1.23-2.08, p= .001) 1.59 (1.21-2.12, p= .001) 

GCSF 0.75 (0.58-0.97, p= .032) 0.68 (0.50-0.91, p= .010) 

IFN- 1.75 (1.35-2.28, p< .001) 2.63 (1.77-4.12, p< .001) 

VCAM-1 1.70 (1.29-2.30, p< .001) 1.56 (1.18-2.10, p= .003) 

VEGF 0.79 (0.61-1.02, p= .070) 0.73 (0.55-0.95, p= .022) 

PC1 1.60 (1.39-1.85, p< .001) 1.54 (1.33-1.80, p<0.001) 

PC3 

 

1.39 (1.15-1.70, p= .001) 1.44 (1.16-1.81, p=0.001) 

PC4  

P 

0.68 (0.56-0.83, p< .001) 0.62 (0.49-0.77, p<0.001) 

PC5 0.77 (0.62-0.96, p= .022) 0.71 (0.54-0.92, p=0.012) 

PC6 0.77 (0.61-0.96, p= .020) 0.74 (0.58-0.94, p=0.014) 

PC7 1.28 (1.00-1.64, p= .053) 1.47 (1.11-1.95, p=0.007) 

 

Odds ratios represent change in odds per one standard deviation increase in biomarker. 

Adjusted models include Age, Sex, Study site, Height for age z-scores, HIV viral suppression 

and having ever been treated for TB. Only biomarkers with p < .05 in adjusted analysis are 

shown. 

 

 

Table 3: Biomarkers associated with lung function in HCLD+ participants   



 

 

 

 

 

 

 

Linear Regression of log10 scaled biomarkers and FEV1 z-score in the HCLD group. 

Covariates included age, sex, having ever been treated for TB, study site, height for age z-

score and supressed viral load. Only biomarkers with statistically significant associations (p < 

.05) are shown.  β = coefficient 

Figure 1: Comparison of biomarkers in cases and controls  

 

 

 
Univariate β ± SE P-Value Adjusted β ± SE P-Value 

MMP-8 -0.122 ± 0.039 .002 -0.097 ± 0.039 .012 

MMP-10 -0.161 ± 0.038 <.001 -0.132 ± 0.04 .001 

ANG-1 0.08 ± 0.039 .041 0.077 ± 0.039 .046 

CRP -0.149 ± 0.038 <.001 -0.128 ± 0.038 .001 

IP-10 -0.089 ± 0.039 .023 -0.08 ± 0.04 .048 

E-Selectin -0.104 ± 0.039 .008 -0.082 ± 0.039 .037 

Fas 0.083 ± 0.039 .035 0.082 ± 0.039 .033 

GCSF -0.106 ± 0.039 .007 -0.11 ± 0.039 .006 

VCAM-1 -0.105 ± 0.039 .007 -0.09 ± 0.039 .021 

VEGF -0.117 ± 0.039 .003 -0.113 ± 0.039 .004 

PC1 -0.053 ± 0.017 .002 -0.044 ± 0.018 .014 

PC4 0.084 ± 0.03 .005 0.096 ± 0.03 .001 

PC5 -0.105 ± 0.033 .002 -0.092 ± 0.036 .011 

PC7 0.083 ± 0.038 .029 0.082 ± 0.038 .031 



 

 



Figure 1 A) Comparison of Log10 biomarker level between cases (HCLD+) and controls 

(HCLD-). Levels compared by Wilcoxon rank sum test. Stars represent significance level at ≤ 

.05, ≤ .01, ≤ .001 and ≤ .0.0001 respectively. B/C) Network plots showing strength and 

direction of correlations between biomarkers in HCLD+ and HCLD- individuals. Colour 

saturation and width of edges correspond to absolute weight and scale relative to strongest 

weight in the graph. Nodes arranged by spring format. Biomarkers coloured by a priori 

biological pathway. Only significant (p < .05) correlations r2 >0.2 are shown D) Node 

strength centrality z-scores for nodes in the networks. Score indicates the relative 

interconnectedness of each biomarker within the network. 

Supplementary Figure 1: Biomarker Correlations  

 

Spearman rank correlations between biomarkers in A) HCLD- controls B) HCLD+ cases. 

Number within square indicates spearman rank correlation coefficient between biomarkers. 

Blank squares represent no significant correlation between biomarker pairs (p > .05). 

 



 

 

 

 

 

 

Supplementary Figure 2: Contribution of biomarkers principal components 

 

 

Contribution of individual biomarkers to principal components derived from the A) Whole 

population and B) Participants with HCLD. Percentages in brackets show how much of 



variation of biomarker data is explained by each principal component. Top 6 biomarkers 

contributing to each component are shown. Dashed red line indicates contribution of 

biomarker if all equally contributing.  

 

  



Supplementary Figure 3: Sensitivity and Specificity of markers for HCLD  

 

ROC curve for top three performing variables. Only variables with AUC >0.7 included 

Diagonal line represents no predictive ability.  AUC = Area under the Curve  

 

 

 


