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Abstract: 4-(4-Chlorophenyl)-2-(5-(4-fluorophenyl)-3-(1-(4-fluorophenyl)-5-methyl-1H-1,2,3-triazol-
4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (4) and 4-(4-fluorophenyl)-2-(5-(4-fluorophenyl)-3-(1-(4-
fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (5) have been
synthesized in high yields. Crystallization of 4 and 5 from dimethylformamide solvent produced
samples suitable for structure determination by single crystal diffraction. The materials are isostruc-
tural with triclinic, PĪ and symmetry and comprise two independent molecules in the asymmetric
unit. The two independent molecules in the asymmetric unit assume similar conformation. The
molecule is essentially planar apart from one of the two fluorophenyl groups, which is oriented
roughly perpendicular to the plane of the rest of the molecule.

Keywords: crystal structure; heterocycle; 1,2,3-triazole; 1,3-thiazole; biological activity; 4,5-dihydro-
1H-pyrazole; synthesis

1. Introduction

The progressive development of microbial resistance to current drugs is of global
concern and, consequently, the design and synthesis of new medications are an ongoing
challenge [1]. The majority (85%) of biologically active compounds contain different
heterocycles and hence the synthesis of new molecules is important for the quest to generate
potential additions to the established heterocyclic systems for therapeutic use [2].

1,2,3-Triazoles are highly stable heterocycles that have a wide range of medicinal appli-
cations [3]. They have anti-HIV, anticancer, antibacterial, anti-inflammatory, antitubercular
and antiviral activities [4–16]. The common synthetic routes for 1,2,3-triazoles include 1,3-
dipolar cycloaddition between azides and terminal alkynes [17]. However, the procedure
results in a mixture of 1,4-disubstituted and 1,5-disubstituted 1,2,3-triazoles due to poor
regioselectivity. The use of a copper(I)-catalyzed version of azide–alkyne cycloaddition and
click chemistry approaches resulted in the production of various substituted 1,2,3-triazoles
in high yields [18–22].

Pyrazoline-containing heterocycles are involved in different therapeutic applications.
They are used as antimicrobial, anti-inflammatory, analgesic, antidepressant and anticancer
agents [23–25]. Many pyrazolines exist in vitamins, pigments, alkaloids and cells of many
plants and animals [26]. Substituted pyrazolines can be synthesized in one-pot proce-
dures. For example, condensation of carbonyl compounds and hydrazine hydrochloride
in methanol for 1 h at 65 ◦C produced substituted pyrazolines [27]. They can also be
produced from 3-butynol and arylhydrazines through hydrohydrazination in the presence
of a catalyst containing zinc [28].
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1,3-Thiazoles exist in nature and have diverse pharmacological applications as bioac-
tive compounds. For example, tiazofurin, ritonavir, ravuconazole, nitazoxanide, fanetizole,
meloxicam, fentiazac, nizatidine and thiamethoxam act as antimicrobial agents [29,30].
The synthesis of compounds containing the thiazole system is therefore a useful ven-
ture due to their potential for medicinal applications. Recent synthetic procedures for
1,3-thiazoles include a copper-catalyzed oxidative reaction of aldehydes and amines in
the presence of sulfur [31]. Furthermore, the Hantzsch condensation of thiourea and 2-
bromoacetophenones provided 2-aminothiazoles [32]. Recently, we have synthesized a
number of heterocycles containing pyrazole, thiazole and 1,2,3-triazole moieties [33,34]
and some crystal structures have been established [35,36].

This work involved the synthesis of 4-(4-chlorophenyl)-2-(5-(4-fluorophenyl)-3-(1-(4-
fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (4) and
4-(4-fluorophenyl)-2-(5-(4-fluorophenyl)-3-(1-(4-fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-
yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (5). The crystal structures obtained enabled a
comparison of the structural properties of the materials; the structures are identical in this
case. The study of isostructurality in crystalline solids contributes to the general under-
standing of the factors that may be important in the design of solid materials for particular
applications [37]. Investigation of the properties of isostructural materials containing
different substituents continues to attract interest [38–41], including compounds in which
different halogens have been exchanged [42–44]. Although it is not surprising that two
similar molecules can display similar structural properties, it is not a certainty that this
will be the case. Thus, for example, 3-chlorocinnamic acid and 3-bromocinnamic acid can
display different crystal structures [45] and, indeed, one molecule can crystallize in more
than one crystal structure type, as observed for 3-chlorobenzoic acid [46,47].

Compounds 4 and 5 allow a comparison of isostructural chloro and bromo derivatives
of 4-(4-aryl)-2-(5-(4-fluorophenyl)-3-(1-(4-fluorophenyl)-5-methyl-1H-1,2,3-triazol -4-yl)-
4,5-dihydro-1H-pyrazol-1-yl)thiazole. Rationalization of intermolecular contacts may,
for example, reveal information about possible interactions with binding sites in ther-
apeutic application. A potential application of 4 and 5 and related compounds is as
therapeutics. An example is 4-(4-chlorophenyl)-2-(5-(4-fluorophenyl)-3-(5-methyl-1-p-tolyl-
1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole, which displays antimicrobial
activity [48]. However, the focus of this work was the synthesis and characterization of
new materials.

2. Materials and Methods
2.1. General

IR spectra of compounds 4 and 5 were recorded on a AIM-9000 Shimadzu spectrometer.
1H (500 MHz) and 13C NMR (125 MHz) spectra of compounds 4 and 5 were recorded on
JEOL spectrometers in DMSO-d6 as solvent. Compound 1 was synthesized following a
reported procedure [49]. The IR, 1H and 13C NMR spectra, CIFs and checkcif reports for
compounds 4 and 5 are available in the supplementary material.

2.2. Synthesis of 2

A mixture of 1 (1.20 g, 5.0 mmol) and 4-fluorobenzaldehyde (0.62 g, 5.0 mmol) in
EtOH (15 mL) containing NaOH (0.8 g) was stirred for 4 h at room temperature. The solid
obtained was added to an ice/water (100 mL) mixture, filtered, dried and recrystallized
from dimethylformamide to produce colorless crystals of 2 (M.p. 168–170 ◦C) in 90% yield.

2.3. Synthesis of 3

A mixture of 2 (0.97 g, 3.0 mmol) and thiosemicarbazide (0.30 g, 3.0 mmol) in EtOH
(15 mL) containing NaOH (0.30 g, 2.5 mol) was refluxed for 2 h. The solid formed upon
cooling was filtered, dried and recrystallized from dimethylformamide to produce colorless
crystals of 3 (M.p. 229–231 ◦C) in 87% yield.
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2.4. Synthesis of 4 and 5

A mixture of 3 (0.40 g, 1.0 mmol) and 4-chloro- or 4-bromophenacyl bromide (1.0 mmol)
in dry EtOH (15 mL) was refluxed for 2 h. The solid produced was filtered, dried and
recrystallized from dimethylformamide to produce 4 (M.p. 267–268 ◦C) in 82% yield or
5 (M.p. 275–276 ◦C) in 85% yield, respectively, as pale-yellow crystals. Compound 4: IR
(KBr) νmax: 1544 (C=N) and 1604 (C=C) cm−1. 1H NMR: δ 2.47 (s, 3H, Me), 3.42 (dd,
J = 3.5 and 17.2 Hz, 1H), 4.16 (dd, J = 11.3 and 17.2 Hz, 1H), 5.66 (m, 1H), 7.18 (t, J = 7.7 Hz,
2H, Ar), 7.36–7.39 (m, 3H, Ar), 7.46–7.49 (m, 4H, Ar) and 7.70–7.71 (m, 4H, Ar). 13C
NMR: δ 10.47, 44.85, 63.16, 105.78, 115.91 (d, JC–F = 21.5 Hz), 117.25 (d, JC–F = 22.7 Hz),
127.71, 128.31 (d, JC–F = 8.4 Hz), 129.08, 129.34 (d, JC–F = 8.3 Hz), 132.34, 132.53, 134.69 (d,
JC–F = 88.2 Hz), 137.86 (d, JC–F = 78.7 Hz), 148.28, 149.86, 161.58 (d, JC–F = 121.6 Hz), 162.55
(d, JC-F = 122.5 Hz) and 165.18. Compound 5: IR (KBr) νmax: 1572 (C=N) and 1602 (C=C)
cm−1. 1H NMR: δ 2.47 (s, 3H, Me), 3.43 (dd, J = 3.6 and 18.1, 1H), 4.15 (dd, J = 11.4 and
18.1 Hz, 1H), 5.65 (m, 1H), 7.18 (t, J = 7.8 Hz, 2H, Ar), 7.38 (s, 1H, Ar), 7.49–7.52 (m, 6H, Ar),
7.62 (d, J = 7.8 Hz, 2H, Ar) and 7.64–7.65 (m, 2H, Ar). 13C NMR: δ 10.48, 44.84, 63.14, 105.87,
115.91 (d, JC–F = 21.5 Hz), 117.25 (d, JC–F = 22.7 Hz), 121.12, 128.01, 128.30 (d, JC–F = 8.3 Hz),
129.36 (d, JC–F = 8.3 Hz), 131,99, 132.33, 134.36 (d, JC–F = 45.3 Hz), 137.86 (d, JC–F = 78.7 Hz),
148.29, 148.29, 149.90, 161.57 (d, JC–F = 120.4 Hz), 163.53 (d, JC–F = 121.3 Hz) and 165.17.

2.5. X-ray Crystal Structure

Single-crystal XRD data were recorded at ambient temperature on an Agilent Super-
Nova Dual Atlas diffractometer (mirror monochromator, MoKα (λ = 0.71073 Å) radiation).
Crystal structures were solved by direct methods using SHELXS [50] and refined using
SHELXL2018 [51]. Non-hydrogen atoms were refined with anisotropic displacement pa-
rameters. Hydrogen atoms were inserted in idealized positions and refined using a riding
model with Uiso(H) set to 1.2 or 1.5 times the value of Ueq(C) for the atoms to which they
are bonded. CCDC 2077559 and 2077560 contain the supplementary crystallographic data
for this paper. Hirshfeld surfaces were calculated using CrystalExplorer [52,53].

3. Results and Discussion
3.1. Synthesis of Compounds 4 and 5

Compounds 4 and 5 were synthesized using a multi-step reaction from 1-(1-(4-
fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)ethanone (1) via 3-(4-fluorophenyl)-1-(1-(4-
fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)prop-2-en-1-one (2) and 5-(4-fluorophenyl)-3-
(1-(4-fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazole-1-carbothio
amide (3) as intermediates. Reaction of 3 and 2,4’-dibromoacetophenone or 2-bromo-
4’-chloroacetophenone under reflux in ethanol (EtOH) produced 4-(4-chlorophenyl)-2-(5-(4-
fluorophenyl)-3-(1-(4-fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-
1-yl)thiazole (4) or 4-(4-bromophenyl)-2-(5-(4-fluorophenyl)-3-(1-(4-fluorophenyl)-5-methyl-
1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (5) in 82% or 85% yield, respec-
tively (Scheme 1).

The structures of compounds 4 and 5 were confirmed using IR, 1H and 13C NMR
spectroscopy. The IR spectra showed characteristic absorption bands in the 1544–1572 cm−1

and 1602–1604 cm−1 regions due to the stretching vibrations of the C=N and C=C groups,
respectively. The 1H NMR spectra showed separate peaks for the methylene protons in
the pyrazoline moiety, indicating that they are diastereotopic. In addition, the 13C NMR
spectra confirmed the coupling between carbon and fluorine atoms and showed overlap
between the signals of some carbons.
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Scheme 1. Synthesis of 4 and 5.

3.2. Crystal Structures of 4 and 5

Compounds 4 and 5 are isostructural as evidenced by their similar unit cell parameters
and triclinic, PĪ, symmetry (Table 1). The molecules of 4 and 5 comprise linked systems
of rings (Figure 1). The rings are chloro/bromo-phenyl [A (C1-C6, Cl1/Br1), (C28-C33,
Cl2/Br2)], thiazolyl [B (C7-C9, N1, S1), (C34-C36, N7, S2)], pyrazolyl [C (C10-C12, N2,
N3), (C37-C39, N8, N9)], fluorophenyl [D (C13-C18, F1), (C40-C45, F3)], methyltriazolyl
[E (C19-C21, N4-N6), C46-C48, N10-N12)] and a second fluorophenyl [F (C22-C27, F2),
(C49-C54, F4)].
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Figure 1. Ring systems in compounds 4 and 5.

The asymmetric unit in both structures contains two independent molecules (Figure 2a,b).
Products 4 and 5 were obtained as racemic mixtures and the two molecules in the asym-
metric unit are enantiomers with C10 and C37 as chiral centers. In all the molecules, rings
A, B, C and E are almost coplanar with twist angles between adjacent rings in the range
3.58(1)◦ to 13.38(13)◦ (Table 2). Ring F is twisted by ca 30◦ and D is almost perpendicular to
the plane of A, B, C and E. The two independent molecules in each structure have similar
conformations although they are not identical. Additionally, molecular conformations are
similar in both crystal structures.
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Table 1. Crystal and structure refinement data for 4 and 5.

4 5

Formula C27H19ClF2N6S C27H19BrF2N6S
Formula weight 532.99 577.45
Temperature/K 293(2) 293(2)
Wavelength/Å 0.71073 0.71073
Crystal system Triclinic Triclinic

Space group PĪ PĪ
a/Å 7.7344(6) 7.7607(3)
b/Å 18.2778(12) 18.2950(11)
c/Å 19.4909(12) 19.5252(14)
α/◦ 116.181(6) 115.910(6)
β/◦ 96.410(6) 96.971(4)
γ/◦ 92.091(6) 92.567(4)

Volume/Å3 2445.9(3) 2460.2(3)
Z 4 4

Density (calculated)/Mg m−3 1.447 1.559
µ/mm−1 0.287 1.801

F(000) 1096 1168
Crystal size/mm3 0.270 × 0.065 × 0.026 0.623 × 0.148 × 0.118

Reflections collected 23,275 23,703
Independent reflections 11,546 11,617

R(int) 0.0496 0.0448
Data/parameters 11,546/670 11,617/669

Goodness-of-fit on F2 1.014 1.032
R1 [I > 2σ(I)] 0.0652 0.0669

wR2 [I > 2σ (I)] 0.1239 0.1722
R1 (all data) 0.1802 0.1364

wR2 (all data) 0.1666 0.2137
Extinction coefficient 0.0012(3) n/a

Largest diff. peak and hole/e.Å−3 0.238 and −0.243 0.689 and −0.680

Table 2. Inter-ring twist angles (◦) and centroid-to-centroid distances (Å). (The centroid-to-centroid
distances shown are longer than is conventionally shown for π–π contacts but are used in this case for
ease of comparison of the structures. (i) and (ii) refer to the first and second independent molecules).

Inter-Ring Twist Angle 4(i) 4(ii) 5(i) 5(ii)

A–B 9.44 (11) 13.38 (10) 9.68 (13) 13.36 (14)
B–C 3.58 (14) 5.30 (15) 5.17 (17) 5.03 (20)
C–D 88.15 (1) 84.53 (13) 88.15 (16) 84.17 (16)
C–E 10.39 (15) 10.78 (16) 10.86 (18) 10.53 (21)
E–F 33.09 (9) 32.59 (10) 35.39 (11) 31.86(13)

Centroid-centroid distance 4 5

d1 3.75(1) 3.73(1)
d2 4.05(1) 4.09(1)
d3 3.81(1) 3.79(1)
d4 4.14(1) 4.20(1)

The following discussion applies to the structures of both 4 and 5, although only the
former is used for illustration. In the crystals, the molecules are stacked parallel to the a-axis
(Figure 3). In the stack, the mean plane of the fragment containing rings A, B, C and E is
parallel to (10-1) in one stack and to (201) in the adjacent stack in the direction of the b-axis
(Figure 4). Within a given stack, there is very limited π–π interaction between aromatic rings
of neighboring molecules. The closest rings in the stack are fluorophenyl/chlorophenyl
in 4 (Figure 5) and fluorophenyl/bromophenyl in 5 and the distances between the ring
centroids are in the range from 3.73 Å to 4.20 Å (d1–d4 in Table 2). The planes of the rings
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involved are not parallel and the angles between the rings of neighboring molecules are
12.18◦ and 14.42◦ for 4 and the corresponding angles are 12.95◦ and 13.70◦ for 5.
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Generally, an asymmetric unit comprising one molecule would be expected in such
a structure as the second enantiomer can be generated by inversion symmetry. However,
the structures of 4 and 5 comprise two independent molecules with slightly different
conformations in order to attain the most efficient molecular packing in the crystal. An
alternative method to maximize packing efficiency would be by the incorporation of solvent
molecules, for example.

The crystals of 4 and 5 are isostructural despite the different halogen substituents,
which are Cl and Br, respectively. The difference in the calculated densities of 1.447 Mg m−3

and 1.559 Mg m−3 is consistent with the presence of chlorine and bromine atoms in
the structures. Despite the different halogen substituents, the molecules have assumed
essentially the same crystal structure but with slight adjustment of conformation and
intermolecular contacts by virtue of the larger size of the Br atom rendering the molecular
volume of 5 about 1% greater than that of 4.
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For the title compounds, the substituents on rings A, D and F are (4: Cl, F and F)
and (5: Br, F and F). Crystal structures have also been reported for molecules with other
substituents on the same rings, namely (6: Cl, F and Me) [48], (7: H, Cl and Me) [54], (8: Br, F
and Me) [55] and (9: H, F and Me) [56]. Molecular conformation in structures 6–9 is similar
to that in 4 and 5 since rings A, B, C and E are roughly coplanar, ring F is twisted and ring
D is oriented out of the plane. However, unlike 4 and 5, the other crystal structures have
just one molecule in the asymmetric unit. Exchanging F for methyl (5 vs. 8) and (4 vs. 6)
results in different crystal structures, as does the replacement of Cl by F (7 vs. 9). In contrast,
the crystal structures in which Cl and Br are exchanged (6 vs. 8) are identical, which is an
observation consistent with the results obtained in this work for 4 and 5.
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The Hirshfeld surfaces show different intermolecular contacts for the two independent
molecules of each structure. The surfaces are shown in Figure 6b,d for 4 and Figure 7b,d for
5. The red regions clearly indicate that the intermolecular contacts are not identical for the
two independent molecules of the same structure. Conversely, the contacts are essentially
the same for the corresponding molecules in 4 and 5. Highlighted in the fingerprint plots
in Figure 6a,c for 4 and Figure 7a,c for 5 are the contributions by chlorine and bromine. The
plots follow the same pattern as the Hirshfeld surfaces; the two independent molecules
of the same structure show differences whereas comparable molecules from different
structures have similar characteristics. The contributions in 4 by Cl are 3.7% and 4.1% for
the two independent molecules and 3.9% and 4.2% by Br for 5.
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Figure 7. (a): Two-dimensional fingerprint plot for one independent molecule of 5 with Br interactions highlighted; (b): the
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highlighted; (d): the associated Hirshfeld surface.

4. Conclusions

Two materials, 4-(4-chlorophenyl)-2-(5-(4-fluorophenyl)-3-(1-(4-fluorophenyl)-5- methyl
-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (4) and 4-(4-fluorophenyl)-2-(5-(4-
fluorophenyl)-3-(1-(4-fluorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-
yl)thiazole (5), have been synthesized in high yields and characterized spectroscopically.
The materials have been recrystallized using dimethylformamide as the solvent and their
structures have been established by single crystal diffraction. The two materials are isostruc-
tural and contain two independent molecules in the asymmetric unit. The two independent
molecules in each structure have similar conformations although they are not identical.
The crystal structures of 4 and 5 are identical but with slight adjustments necessary to
accommodate the different halogen (Cl and Br) substituents. Comparison with related
materials shows similarity in molecular conformation but with different crystal packing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11070795/s1, IR, 1H and 13C NMR spectra, CIFs and checkcif reports for compounds 4
and 5.

https://www.mdpi.com/article/10.3390/cryst11070795/s1
https://www.mdpi.com/article/10.3390/cryst11070795/s1
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