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Abstract

People with Alzheimer’s disease (AD) are 6-10 times more likely to develop seizures than

the healthy aging population. Leading hypotheses largely consider hyperexcitability of local

cortical tissue as primarily responsible for increased seizure prevalence in AD. However, in

the general population of people with epilepsy, large-scale brain network organization addi-

tionally plays a role in determining seizure likelihood and phenotype. Here, we propose that

alterations to large-scale brain network organization seen in AD may contribute to increased

seizure likelihood. To test this hypothesis, we combine computational modelling with

electrophysiological data using an approach that has proved informative in clinical epilepsy

cohorts without AD. EEG was recorded from 21 people with probable AD and 26 healthy

controls. At the time of EEG acquisition, all participants were free from seizures. Whole

brain functional connectivity derived from source-reconstructed EEG recordings was used

to build subject-specific brain network models of seizure transitions. As cortical tissue excit-

ability was increased in the simulations, AD simulations were more likely to transition into

seizures than simulations from healthy controls, suggesting an increased group-level proba-

bility of developing seizures at a future time for AD participants. We subsequently used the

model to assess seizure propensity of different regions across the cortex. We found the

most important regions for seizure generation were those typically burdened by amyloid-

beta at the early stages of AD, as previously reported by in-vivo and post-mortem staging of

amyloid plaques. Analysis of these spatial distributions also give potential insight into mech-

anisms of increased susceptibility to generalized (as opposed to focal) seizures in AD vs

controls. This research suggests avenues for future studies testing patients with seizures,

e.g. co-morbid AD/epilepsy patients, and comparisons with PET and MRI scans to relate

regional seizure propensity with AD pathologies.
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Author summary

People with Alzheimer’s disease (AD) are more likely to develop seizures than cognitively

healthy people. In this study, we aimed to understand whether whole-brain network struc-

ture is related to this increased seizure likelihood. We used electroencephalography (EEG)

to estimate brain networks from people with AD and healthy controls. We subsequently

inserted these networks into a model brain and simulated disease progression by increas-

ing the excitability of brain tissue. We found the simulated AD brains were more likely to

develop seizures than the simulated control brains. No participants had seizures when we

collected data, so our results suggest an increased probability of developing seizures at a

future time for AD participants. Therefore functional brain network structure may play a

role in increased seizure likelihood in AD. We also used the model to examine which

brain regions were most important for generating seizures, and found that the seizure-

generating regions corresponded to those typically affected in early AD. Our results also

provide a potential explanation for why people with AD are more likely to have general-

ized seizures (i.e. seizures involving the whole brain, as opposed to ‘focal’ seizures which

only involve certain areas) than the general population with epilepsy.

Introduction

Alzheimer’s disease (AD) is a neurological disorder characterised by pathological accumula-

tion of amyloid-beta (Aβ) peptides and hyperphosphorylated tau protein in cortical tissue and

neurodegeneration, resulting in progressive cognitive decline [1]. AD patients have a 6–10 fold

increased risk of developing seizures compared to controls [2], with a prevalence of 10–22%

[3] (although estimates have ranged from 1.5–64% [2, 3]). In rodent models, seizure phenotype

has been related to hyperexcitable cortical tissue believed to be a consequence of AD pathology

[4–9]. Understanding seizures in AD is crucial for developing novel treatments and a fuller

understanding of both disorders, since the rate of occurrence of seizures are believed to be pos-

itively correlated with the rate of cognitive decline in AD [10–12].

A leading hypothesis for hyperexcitability in AD is that Aβ deposition leads to neurodegen-

eration and abnormal hyperactivity including seizures, which in turn result in increased amy-

loid burden, leading to a self-amplifying neurodegenerative cascade [7]. In rodents, it has been

observed that excessive neuronal activity can increase amyloid deposition [13, 14], while trans-

genic models of amyloidopathies often exhibit hyperexcitability [4–8] and synaptic degenera-

tion [15, 16]. Computational modelling of this activity dependent degeneration has recreated

alterations to electroencephalographic (EEG) recordings observed in humans with AD includ-

ing slowing of oscillations and altered functional connectivity [17]. Similar effects were

observed along with cortical hyperexcitability by targeting degeneration towards regions with

high Aβ burden in empirical PET recordings [18]. Tau pathology may also play a leading role

in epileptogenesis in AD [3] in a similar cycle of deposition to the one described above, since

evidence suggests that neuronal hyperactivity enhances propagation of tau [19] while excessive

tau may increase local network excitability via stimulation of glutamate release [20, 21]. Tau

levels may also mediate Aβ toxicity and synaptic impairments [22, 23], suggesting that these

mechanisms may be intertwined and that both amyloid and tau pathology may play a role in

the increased prevalence of epilepsy in AD [3]. Additional key factors which may influence sei-

zure likelihood in AD are vascular dysregulation, metabolic alterations and increased inflam-

mation, resulting in neuronal activity dysregulation [24, 25].
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While these hypotheses potentially explain increased excitability of local tissue in AD, evi-

dence suggests the propensity of a brain to generate seizures is not only a result of local net-

work excitability, but is also related to its large-scale functional network structure [26–31].

Alterations to large-scale functional network structure have widely been reported in AD based

on studies from neuroimaging modalities including electroencephalography (EEG) [32, 33],

magnetoencephalography [34–36], and functional MRI [37]. It is therefore possible that

altered long-range functional connectivity in AD may contribute to increased susceptibility to

seizures and, under the hypothesis of cyclical amplification of AD pathology and local excit-

ability, facilitate the spread of pathological cortical hyperexcitability. Similarities have been

observed between altered resting-state functional connectivity in humans with AD and epi-

lepsy [3], consistent with this hypothesis. Furthermore, epilepsy patients with co-morbid AD

have increased likelihood of generalized seizures than those without AD [3, 38], suggesting

that large-scale connectivity is likely to play a role in seizure genesis in AD.

In this manuscript, we hypothesise that the large-scale functional networks of people with

AD are more susceptible to seizures than those of cognitively healthy controls. To examine this

hypothesis, we use the brain network ictogenicity (BNI) computational modelling framework

[28, 39–41]. We assume that abnormal networks co-occur with increased cortical excitability

for seizures to emerge in people with AD, and hence we analysed electrophysiological data in

which functional network alterations have been observed in AD compared to controls [33]

(none of whom experienced seizures). To understand the effect that these alterations might

have on seizure generation, we used a mathematical model of seizure transitions in which cor-

tical excitability was a free parameter [31, 40–43]. Our aim was to simulate an increase in corti-

cal excitability in both healthy and AD brains and observe whether the concurrent abnormal

network structure and increased excitability makes people with AD more likely to generate sei-

zures in silico than controls. We also hypothesise that the regions primarily responsible for sei-

zure generation in AD participants (as suggested by the computational model) correspond to

those typically exhibiting high Aβ burden [44, 45]. We test this hypothesis by calculating node
ictogenicity (NI) [39–41], quantifies the degree to which a region governs susceptibility to sei-

zures in the model.

Materials and methods

Ethics statement

All procedures were approved by the National Research Ethics Service Committee South West

Bristol (Ref. 09/H0106/90). Participants provided written informed consent before participat-

ing and were free to withdraw at any time.

Methodology

The methodology of the study is outlined in Fig 1. Source-space functional connectivity

derived from the EEG was used to specify a network in a computational model of seizure tran-

sitions. To assess the susceptibility of the network to seizures, the excitability of cortical tissue

was increased, and the fraction of time the simulated neural dynamics spent in the seizure

state (called brain network ictogenicity, BNI) was calculated. The details of these calculations

are described below.

Data and functional networks

The current dataset has previously been analysed [33, 46], and pre-processing and functional

network construction follow previously described methods [33]. Below, a brief overview of the
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Fig 1. Calculation of BNI. Clockwise from top: Sensor EEG was source reconstructed using the eLORETA algorithm. The source solution was

parcellated into 40 ROIs given by the Brainnetome atlas. Functional networks were calculated from the parcellated time courses of the 40 regions using

theta-band phase locking factor. BNI was calculated by placing the network into a model of seizure transitions, and increasing the excitability of cortical

tissue in the model. For each value of the excitability parameter I0 (visualised by node size in the figure), the fraction of time spent in the seizure state by

the simulated dynamics was calculated. BNI was the area under the curve of fraction of seizure time against I0.

https://doi.org/10.1371/journal.pcbi.1009252.g001
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data and analysis pipeline are given. A very similar pipeline has been used to calculate func-

tional networks for modelling BNI in source-space from scalp EEG in epilepsy patients [41],

supporting the use of these methods for this study.

Participants. The cohort consisted of patients with a diagnosis of probable AD (n = 21, 13

female, 8 male) and age-matched cognitively healthy controls (n = 26, 12 female, 14 male). The

AD group was recruited from memory clinics in the South West of England on a consecutive

incident patient basis following clinical assessment. The diagnosis of probable AD was deter-

mined by clinical staff using the results of family interview, neuropsychological and daily living

skills assessment according to DSM-IV [47] and NINCDS-ADRDA guidelines [48] together

with neurological, neuroimaging, physical and biochemical examination. Age-matched con-

trols were recruited from the memory clinics’ volunteer panels; they had normal general health

with no evidence of a dementing or other neuropsychological disorder, according to NINCD-

S-ADRDA guidelines [48]. All participants were free from medication known to affect cogni-

tion and had no history of transient ischemic attack, stroke, significant head injury, psychiatric

disorder, or neurological disease with non-AD aetiology. All participants had no clinical his-

tory of seizures, but no extensive electrophysiological workup was performed to definitively

rule out subclinical epileptiform activity [49, 50].

Participant demographics have previously been reported [33, 51, 52], and are given in

Table 1. People with AD had significantly lower cognitive test scores than controls as assessed

with the mini-mental state examination (MMSE), and there was no significant difference in

age or sex between groups [52].

EEG acquisition and pre-processing. A single twenty second, eyes-open resting-state

epoch of 64-channel EEG sampled at 1 kHz was analysed per participant. Visual and cardiac

artifacts were manually rejected using independent component analysis, and data was band-

pass filtered at 1–200 Hz, demeaned, detrended, and re-referenced to average using the Field-

trip toolbox [53].

Source reconstruction. The Fieldtrip toolbox was used for source reconstruction. For all

participants, we used a template forward model implemented in Fieldtrip. The source-model

was the canonical cortical surface implemented in Fieldtrip consisting of 5124 dipoles distrib-

uted along the cortical sheet. Dipoles were oriented normal to the surface [54, 55]. The volume

conduction model was Fieldtrip’s template 3 layer boundary element method model [56].

Template head models have been demonstrated to perform well compared to individual mod-

els derived from MRI [57].

Source reconstruction used exact low resolution electromagnetic tomography (eLORETA)

[58, 59], which is a linear, regularized, weighted minimum norm estimate with zero localiza-

tion-error. eLORETA is suited to the study of whole-brain phase synchronization [60, 61],

analysis of resting-state data [46, 62], and source-spaced modelling of BNI from scalp EEG

[41].

The 5124 dipole source-space was parcellated into 40 regions of interest (ROIs) based on

the Brainnetome atlas [63] by assigning each ROI the time course corresponding to the first

principal component of dipoles within that ROI [33]. The time course of the first principal

component of all voxels in the ROI is a single time series whose value at each time point is

Table 1. Participant demographics. The columns showing age and mini-mental state examination (MMSE) scores show means and standard errors over participants.

Cohort Age (years) MMSE n Male Female

Controls 76±7 29±1 26 14 12

AD 79±9 23±3 21 8 13

https://doi.org/10.1371/journal.pcbi.1009252.t001
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minimally different to the activity of all voxels, i.e. it accounts for a maximal spatial variance.

For the list of ROIs, see S1 Table.

Functional networks. Computation of functional networks used in this study followed

previously described methods [33]. Time courses of ROIs were bandpass filtered into the

theta-band (4–8 Hz), and the Hilbert transform used to estimate instantaneous phases. Func-

tional networks were constructed by calculating the phase locking value (PLV) [64] between

the filtered time courses of pairs of ROIs. Potentially spurious edges were rejected based on a

null distribution of PLV values constructed from 99 pairs of iterative amplitude adjusted Fou-

rier transform surrogates [65]. PLV values that did not exceed 95% significance vs the surro-

gates were rejected. Furthermore, to reduce the likelihood of spurious connections due to

source leakage, PLV values with zero phase-lag were rejected. Zero-phase lag here corresponds

to a mean phase difference smaller than the phase resolution at 4 Hz, given the sampling rate,

i.e. if the mean phase difference was less than (2π × 4)/fsample = 0.008π radians, the edge was set

to zero. The Dijkstra algorithm was used to compute the length of the shortest path between all

pairs of nodes, and edges with an indirect shortest path (i.e. the shortest path is not the single

edge between the pair of nodes) were also rejected [27]. Surrogate-corrected PLV derived from

resting-state EEG have been shown to be useful for BNI modelling in both sensor- [28, 42] and

source-space [41] in patients with epilepsy.

Computational model of seizure transitions

Computational model. To test the hypothesis that altered network structure and

increased cortical excitability makes people with AD more prone to develop seizures than

healthy controls, we used a phenomenological model of seizure transitions in which we could

control cortical excitability, namely the theta-model [31, 40–42, 66], a phase oscillator model

where stable phases represent resting brain activity and rotating phases represent seizure activ-

ity (see Fig 1 in [40]). Each ROI is described by a phase oscillator θi whose activity is given by

_y i ¼ ð1 � cosyiÞ þ ð1þ cosyiÞIiðtÞ: ð1Þ

Ii(t) is an input current received by ROI i at time t,

IiðtÞ ¼ I0 þ sx
ðiÞ
ðtÞ þ

K
N

X

i6¼j

aji½1 � cos ðyj � y
ðsÞ
Þ�; ð2Þ

which comprises the excitability I0 of the ROI, noisy inputs ξ(i)(t) from remote brain regions,

and the interaction of ROI j connected to i as defined by the adjacency matrix A = (aji) (i.e. the

PLV values of the functional network). K is a global scaling constant weighting network inter-

actions relative to cortical excitability and noise. N is the number of ROIs. θ(s) is a stable phase

to which the oscillators converge in the absence of noise and interaction (see e.g. [40] for more

details). A phase oscillator is at rest if Ii(t)< 0 or rotating if Ii(t)> 0. The transition at Ii(t) = 0

corresponds to a saddle-node on invariant circle (SNIC) bifurcation (see Fig 1 in [66]).

For simplicity, we assumed that all ROIs had the same cortical excitability I0 and conse-

quently the same θ(s). The noise ξ(i)(t) was modelled as Gaussian noise with zero mean and

unit standard deviation, with noise magnitude σ = 6 as in previous studies [31, 40–42]. Simula-

tions used a stochastic Euler method with time step δt = 10−2 (arbitrary units) and total inte-

gration time T = 4 × 106. All parameters used for simulations and their descriptions are given

in Table 2.

Brain network ictogenicity (BNI). We are interested in the effect of increasing I0 on the

propensity of a network to generate seizures. To quantify this seizure susceptibility, we used

the concept of brain network ictogenicity (BNI) [28, 31, 39, 40]. First, we defined the average
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proportion of time spent in seizures, Psz, for a given I0 as

PszðI0Þ ¼
1

N

XN

i¼1

tðiÞsz ðI0Þ
T

; ð3Þ

where tðiÞsz ðI0Þ is the time that ROI i spends in the rotating phase (i.e. in the seizure state) during

a simulation time T (we used T = 4 × 106 (arbitrary units) as in previous studies [41, 42]).

Psz(I0) is in the range zero (no seizures) to one (always in the seizure state). We computed the

BNI as

BNI ¼
Z l2

l1

PszðlÞ dl; ð4Þ

where the range [λ1, λ2] was chosen so that all brain networks assessed had Psz varying from

zero to one. Increasing I0 results in increasing the input currents of all the oscillators in the net-

work, which in turn makes them more likely to rotate. Our hypothesis is that networks from

people with AD may require a lower I0 for their Psz to be higher than 0 than healthy people.

Consequently, we expect the BNI from people with AD to be higher than the BNI from healthy

people, since the inflection point of the BNI curve would occur for smaller values of I0. For the

comparison between the two groups to be meaningful, the BNI was computed using the same

parameters K, λ1 and λ2 for all participants.

Node ictogenicity (NI). Each ROI has its own unique set of connections to other ROIs

implying that each ROI may have a different contribution for the network’s ability to generate

seizures. To measure the contribution of each ROI to BNI, we computed the node ictogenicity

(NI) [39, 40]. The calculation of NI consists of measuring the BNI upon the removal of a ROI

from the network to infer the ROI’s importance for the generation of seizures. The NI of ROI i
is given by

NIðiÞ ¼
BNIpre � BNIðiÞpost

BNIpre
; ð5Þ

where BNIpre is the BNI before removing ROI i, whereas BNIpost is the BNI after removing

ROI i (and all its connections) from the network.

NI can be interpreted as follows. If node i has no influence on seizure generation, then

there will be no change in BNI following removal of the node and hence BNIðiÞpost ¼ BNIpre and

NI(i) = 0. Conversely if node i is entirely responsible for seizure generation in the network,

Table 2. Parameters, their meanings, and their standard values used in the simulations. All parameters have arbi-

trary units.

Parameter Meaning Value

I0 Excitability of ROIs Range [-1.7,0.5]

K Global coupling strength 10

N Number of ROIs 40

A Connectivity matrix between regions PLV from data

θ(s) Stable steady state in absence of noise or connections cos� 1 1þI0
1� I0

� �

σ Standard deviation of noise 6

T Total number of simulation steps 4 × 106

δt Time step for simulation 10−2

https://doi.org/10.1371/journal.pcbi.1009252.t002
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then seizures are suppressed completely following the removal of the node, and hence

BNIðiÞpost ¼ 0 and NI(i) = 1. In most real cases, removal of an ROI will reduce seizure propensity

but not completely suppress seizures, and hence 0 < BNIðiÞpost < BNIpre and 0< NI(i) < 1,

where larger values indicate seizures are more suppressed following removal of the node. A

negative value of NI(i) suggests that this node suppresses seizures, and hence removal of the

node increases seizure propensity (i.e. BNIðiÞpost > BNIpre).
To assess group averages it is convenient to further define a normalised NI (nNI),

nNIðiÞ ¼
NIðiÞ

PN
j¼1

NIðjÞ
; ð6Þ

which preserves the relative importance of each ROI for seizure generation, while removing

potential differences in absolute NI values between different networks.

Statistical analysis

All statistical analysis used non-parametric measures, which do not rely on assumptions about

the distribution of the data. All pairwise comparisons used the Mann-Whitney U test, for

which we report the U-statistic and its z-score [67] as a measure of effect size of the changes.

For paired group-level statistics we use Friedman tests and report χ2 as a measure of effect size.

For testing which ROIs contribute most significantly towards the generation of seizures, we

use a null hypothesis that all nodes contribute equally, and use a non-parametric bootstrap to

calculate a null distribution under this null hypothesis. Specifically, if the empirical data is rep-

resented as Nparticipant × NROIs nNI values, we generate 10,000 surrogate nNI data sets with the

same dimensions but with entries bootstrap-sampled from the original data. This destroys any

effect of ROI on the nNI distribution. We then compare the median (over participants) nNI

value for each ROI against the same statistic from the surrogates to obtain a p-value, which is

then controlled for multiple comparisons using the Benjamini-Hochberg false discovery rate

procedure.

For comparisons of NI/nNI distributions between groups, multi-variate pattern analysis

(MVPA) was performed with the MVPA-Light toolbox [68], using the spatial distributions of

NI/nNI as features. Classification used logistic regression, with the 5-fold cross-validated area

under the ROC curve (AUC) as the performance metric. 20 repetitions of this procedure were

performed and the average AUC was used in subsequent analysis (i.e. statistical testing via per-

mutation analysis, described below). The AUC metric is reported as mean ± standard devia-

tion across folds and repetitions. Permutation testing was used to assess significance of

differences between groups, following the same methodology as the original data (e.g. the

same cross-validation folds and number of repetitions). No regularization or feature selection

was used to reduce overfitting, and hence MVPA classification rates may not be robust or gen-

eralizable to new populations of data. However, each permutation used the same cross-valida-

tion folds and hence the degree of overfitting is equal in the original and permuted data sets.

Therefore any difference in AUC between permuted and empirical data suggests that there is

an association between NI/nNI distribution and disease group in the empirical data which is

not present after permutation.
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Results

Elevated brain network ictogenicity in AD

We first tested whether brain networks in people with AD had a higher propensity to generate

seizures than controls by quantifying BNI. BNI was calculated as the area under the curve of

percentage of time spent in seizure as cortical excitability (I0) is increased. The lower bound

for I0, which we term λ1, was chosen to be a value at which no participant exhibits seizures in

the simulation. This reflects the fact that at the time of EEG acquisition no participants exhib-

ited seizures. Therefore baseline excitability in the model, i.e. I0 = λ1 (black arrow in Fig 2B),

represents a non-seizure state for all participants.

We found that BNI was significantly larger for AD than controls (U = 403, z = 2.7710,

p = 0.0056; Fig 2A, with median BNI curves shown in Fig 2B). Hence, as we increase cortical

excitability in the model, AD patients develop seizures for smaller values of I0 than controls.

Since the only individual differences in the model are the functional brain networks, this sug-

gests AD brain networks are more susceptible to seizure generation. A consequence of this

result is that for a given level of cortical excitability (e.g. the yellow arrow in Fig 2B), an AD

simulation is statistically more likely to have seizures than controls.

The global coupling constant K is a free parameter of the model. For the results shown in

Fig 2, we used K = 10. S1 Fig shows that the results are consistent for other values of K. For the

remainder of the analysis, we therefore focus on K = 10.

Spatial distribution of regions responsible for seizures in AD simulations

Having identified that brain networks from AD participants have a greater propensity to gen-

erate seizures than controls, we next studied which ROIs are responsible for emerging seizures

in the simulations for these patients. To do this, we calculated the NI of each ROI in the net-

work, which quantifies the importance of ROIs for simulated seizure generation by quantifying

the reduction in seizures after removing the ROI from the network. To avoid weighting results

Fig 2. Functional brain networks in AD are more susceptible to seizure generation in response to increase cortical

excitability than controls. (A) Violin plots of BNI in people with AD and controls. BNI is significantly higher in AD.

(B) Plots of seizure likelihood, Psz, against excitability, I0. Lines show median values over all participants within a

group, while shaded regions show interquartile ranges. Circles show the grid of values on which I0 was simulated. The

values of BNI shown in subplot A are the area under these curves for each participant. The black arrow shows a

hypothetical ‘current’ baseline, in which no participants have seizures. The yellow arrow shows that if cortical

excitability increases, AD participants are more likely to experience seizures than controls. Parameters: K = 10, λ1 =

−1.7, and λ2 = −0.5.

https://doi.org/10.1371/journal.pcbi.1009252.g002
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more strongly towards participants with higher total NI, we normalised NI distributions to

unit sum for each participant, i.e. we used nNI values (Eq 6).

We first tested whether there were ‘seizure driving’ ROIs in the AD participants, i.e.

whether certain ROIs had consistently higher nNI across AD participants than others, and

therefore the distribution of nNI was not homogeneous over the cortex. A Friedman test

found this to be the case, since nNI score significantly depended on ROI (χ2 = 75.87,

p = 3.69 × 10−4). We therefore subsequently examined which ROIs contributed most to seizure

generation in the AD simulations. Fig 3A shows the distribution of nNI values over the cortex.

To test the degree to which different regions deviate from the null hypothesis of homo-

geneously distributed nNI, we used a non-parametric bootstrap test (see Materials and meth-

ods). The null median nNI scores were normally distributed (S2 Fig), so for visualization of

deviation from the null distribution we show z-scores for each ROI against the surrogate distri-

bution in Fig 3B. The bilateral cingulate, orbital, and fusiform cortices had the largest devia-

tions, with bilateral cingulate, right fusiform, and left orbital exceeding the 5% significance

level against the null distribution (Benjamini-Hochberg corrected non-parametric bootstrap).

Interestingly, as a group-level observation we note that these regions seem to be consistent

with those with the largest and earliest staged Aβ burdens in AD [44, 45], but this was not

Fig 3. Spatial distributions of seizure generating regions in AD simulations. (A) Median nNI over participants for each ROI. (B) z-scores of median

nNI against the surrogate distribution. Red scores suggest the nNI score was larger than expected from a homogeneous distribution, suggesting these

regions are most strongly responsible for generating seizures. (C) nNI values for regions sorted by median over participants by descending nNI.

Background colour shows z-score. The shaded grey region shows empirical 95% confidence intervals on the surrogate data, while the full (Gaussian)

probability density function of the surrogate data is shown on the right. ROIs marked by an asterisk were significant to (FDR corrected) p< 0.05. Full

names of ROIs along with the abbreviations given here are given in S1 Table. Parameters are those given in Fig 2.

https://doi.org/10.1371/journal.pcbi.1009252.g003
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tested statistically on the individual-level as no amyloid PET scans were available for our

participants.

Comparison of node ictogenicity with controls

Cognitively healthy participants may also develop epilepsy, so it is of interest to examine

whether the most likely ROIs to be responsible for seizure generation in our model are consis-

tent between the control and patient groups. Here we compare the spatial distribution of NI

values in people with AD against controls.

Fig 4 shows differences in NI distributions between groups. Both mean (U = 141, zU =

−2.81, p = 0.0049, Mann-Whitney U test; Fig 4A) and standard deviation (U = 149, zU = −2.64,

p = 0.0082, Mann-Whitney U test; Fig 4B) of NI were significantly lower in the AD partici-

pants. We next examined whether the spatial patterns (as opposed to global statistics such as

mean and standard deviation) differed between groups (Fig 4C). To do so, we used multivari-

ate pattern analysis (MVPA), treating NI scores at each ROI as features. MVPA demonstrated

a significant difference in the spatial distributions of NI (AUC = 0.7231 ± 0.165, p = 0.0060).

However, since MVPA identified no significant differences in nNI distributions (which con-

trols for mean NI) between AD and controls (AUC = 0.5220 ± 0.165, p = 0.4080), differences

between groups in spatial patterns were primarily due to the decrease in mean NI in AD rather

than different spatial topographies of NI values.

Fig 4. Analysis of NI scores in AD relative to controls. (A) Mean NI across nodes. (B) Standard deviation of NI

across nodes. (C) Effect sizes of differences in NI between AD and controls for each ROI, quantified by the z-score of

theU-statistic. Parameters are those given in Fig 2.

https://doi.org/10.1371/journal.pcbi.1009252.g004
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Discussion

In this manuscript, we used a computational model of seizure transitions in brain networks

[40] to examine the potential relationships between alterations to large-scale functional net-

work structure [33] and increased prevalence of seizures in AD.

At present, most conceptual models for development of seizures in people living with AD

focus on the mechanisms of increased local excitability of cortical tissue [3, 7]. However, large-

scale functional network structure also likely plays a crucial role in determining the propensity

of a brain to generate both focal and generalized seizures [26–31, 69]. A key result of our study

is that previously reported alterations to functional connectivity in AD [33] result in brain net-

works which more readily generate seizures in response to increased cortical excitability than

cognitively healthy controls. This was quantified using the brain network ictogenicity (BNI)

framework [28, 39–41].

This result fits closely with the self-amplifying cascade hypothesis for epileptogenisis in AD,

which suggests that AD pathologies induce hyperexcitability [4–9], while the resulting hyper-

activity drives an increase in the pathologies [13, 14]. For a review of this cascade hypothesis,

see the Introduction, [7], [3], and references therein. While at present this is an untested hypo-

thetical model, under this hypothesis we can interpret increased BNI in AD as follows. At base-

line, all participants have a level of cortical excitability such that no seizures are observed, here

modelled by setting I0 equal to λ1 for all participants (black arrow in Fig 2). As initial amyloid/

tau deposits form, cortical excitability is increased. The AD participants are more likely to

develop seizures than controls as a result of this increased excitability (yellow arrow in Fig 2).

The increased seizure propensity is a direct consequence of the altered functional network

structure, as this is the only difference between AD and control simulations in our study. This

hyperactivity mediates an increase in Aβ and tau burden [13, 14], which in turn may amplify

excitability [4–9]. Future work should involve testing this hypothetical self-amplifying cascade

within our model framework. It would be particularly interesting to longitudinally track the

evolution of BNI throughout cognitive decline, as it is currently unclear whether seizure likeli-

hood evolves with disease progression.

To quantify the importance of an ROI for ictogenesis in our model, we removed the ROI

and recalculated BNI. The resulting change in BNI is termed the node ictogenicity (NI) for

that ROI [39–41]. This was repeated for all ROIs, to calculate a distribution of local ictogeni-

city. Interestingly, the cingulate, fusiform, and orbital cortices had greatest NI (Fig 3). [44]

developed a neuropathological staging of AD related changes in the brain based on postmor-

tem analysis, finding that orbital and medial temporal (including fusiform) regions were the

earliest affected by Aβ pathology, while deposits in the cingulate regions appeared in the 2nd

stage. [45] recently performed amyloid-PET scans to develop an in vivo staging of Aβ, placing

cingulate, inferior temporal, and fusiform cortices in the earliest stage, while orbital cortex was

one of the earliest affected in stage 2. In our model, therefore, the ROIs which have the poten-

tial to most strongly drive seizures are those stereotypically found to have the earliest and

strongest Aβ burden in AD. These same regions are also those affected by tau burden at mid-

dling stages (Braak stages III-IV) of the disease [44]. Furthermore, [70] developed an in vivo
staging of cortical atrophy in AD, and in the earliest stages reported 20–30% cortical grey mat-

ter loss in the medial temporal, posterior cingulate, and orbitofrontal cortices, which similarly

align to the regions with largest NI in our model. However, a 15–20% loss of grey matter in the

temporoparietal region was additionally reported which does not correspond to our results.

These associations support a group-level relationship between seizure propensity and regions

stereotypically affected by AD at the earliest stages, which should be tested on an individual-

level using multimodal imaging in future work. When distributions of NI were controlled for
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individual mean effects, there was no difference in the NI distribution between AD and con-

trols. A potential interpretation of this result in our model is that the primary difference

between AD and control participants is that the cascade of excitability vs pathology happens

more quickly in AD due to large-scale network structure, and not that certain regions are

more strongly targeted than others e.g. as a result of pathology. Future work should examine

this hypothesis.

Another interesting finding from the local analysis was lower mean NI and spatial standard

deviation of NI distributions in AD participants than controls (Fig 4). Lower mean NI in AD

suggests that, on average, removing a single node from the brain network will be less likely to

suppress seizures in our simulations than in controls, and hence more distributed groups of

nodes are likely to be responsible for driving seizures. Lower standard deviation of NI distribu-

tions in AD suggests that there is more spatial homogeneity in the importance of nodes to

drive seizures than in controls (heterogeneity suggests some nodes play a key role in driving

seizures while other nodes have very minor role). Combined, these results are suggestive of a

generalized (as opposed to focal) mechanism for seizures in AD. For focal seizures, one might

expect the seizure onset zones to have higher NI than other ROIs and removal of these foci to

drastically reduce BNI, while other ROIs may be less influential, resulting in a high spatial vari-

ance in NI scores [31, 69]. In contrast, decreased variability in the importance of nodes for

generating seizures combined with an overall decreased mean NI suggests that ictogenicity is

more homogeneously distributed across the cortex in people with AD than controls, which in

turn may imply that people with AD are more susceptible to generalized seizures than controls.

In the general population of people living with epilepsy, generalized onset tonic-clonic seizures

are the main seizure type in approximately 10% of cases [71], while for an elderly population

with transient amnestic epilepsy (i.e. epilepsy with interictal transient amnestic dementia-like

symptoms without an AD aetiology) this prevalence is as low as 4% [3, 72]. Conversely, in peo-

ple with AD and other dementias with comorbid epilepsy, the prevalence of generalized onset

tonic-clonic seizures is 15–40% [3, 73–76]. These reports are therefore in line with our results,

and therefore large-scale brain network structure is likely an important factor in determining

seizure phenotype in AD.

Methodology

There are several methodological considerations to this study, as functional network structure

is likely to be dependent on analysis pipeline and influences the BNI/NI results [40]. Here, we

chose a priori a single pipeline that was appropriate to for the scientific question at hand. The

methods used for construction of functional connectivity were derived from a previous study

[33] which showed differences in functional connectivity between controls and AD using

graph theoretical metrics. A similar pipeline was additionally used in a previous source-space

study for BNI analyses demonstrating usefulness for the model-based ictogenicity analysis

[41].

We analysed a single 20 second epoch of resting-state EEG per participant. Studies of phase

locking have demonstrated reliable estimates can be made with as little as 12 second segments

of data [77], while the PLV has shown high test-retest reliability between recording sessions

[78]. However, it is also known that over periods of several hours or days there are fluctuations

in functional connectivity statistics [79–81], so future studies could examine whether BNI

measures differ within subjects from different recording segments/sessions.

Other methodological choices may influence the resulting functional network. These

included the choice of frequency band [82], source reconstruction algorithm [61], brain atlas

[83] including number of nodes [84], and functional connectivity metric [85] used to construct
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the functional network. The methodology used to construct the networks used in this study

was discussed in detail in previously work [33], but will be touched upon briefly here. The

alpha frequency band has been chosen for several studies using computational models to assess

seizure likelihood from functional connectivity [27, 42, 69, 86]. These studies were all per-

formed with eyes-closed data, where the alpha band dominates the EEG. However, this study

used eyes-open data, in which the alpha network is less powerful and differs in functional net-

work structure [87–89]. Therefore here the theta-band was used, motivated by past studies

which have demonstrated theta-band alterations to EEG functional connectivity in AD [33]

and epilepsy [27, 90–92], and a relationship between theta-band dynamics and cognitive

impairment in dementia [17, 33, 93]. eLORETA was used for source reconstruction. eLOR-

ETA has been demonstrated to outperform other source reconstruction algorithms for rest-

ing-state data [46, 61, 62] and is suitable for phase synchronization [60, 61], particularly in

studies with a similar number of electrodes (60–71) to the one presented here [60–62]. eLOR-

ETA has also been shown to be useful for computational modelling of BNI in source space

[41].

We used phase locking value (PLV) to calculate functional connectivity. A key limitation of

PLV is that it may be influenced by leakage in the source reconstruction solution. To minimize

the effects of leakage, we used a low resolution atlas consisting of only 40 ROIs [33] and set to

zero any PLV values that had on average zero phase-lag [27, 33]. This methodology is likely to

be less conservative than the use of leakage-correction schemes such as orthogonalization of

source time series [94, 95] or metrics such as the phase lag index [96] or the imaginary part of

coherence [97]. In spite of potential influence of leakage, PLV has been demonstrated to be a

powerful tool for source functional connectivity analysis. Simulation studies have demon-

strated that PLV (in the absence of leakage correction) can accurately capture functional con-

nectivity in the source space solution [61, 98, 99], and has high within-subject consistency

between recording sessions [78]. Furthermore, PLV is a useful measure of large-scale connec-

tivity for simulating seizure dynamics [28, 41, 42, 69, 86]. These results justify our use of PLV

in this study.

Limitations and future work

All participants in this study had no history of seizures at the time of data acquisition, and

while AD patients are 6–10 times more likely to develop seizures than controls [2], there is no

guarantee that our AD participants will develop seizures while the controls will not. Future

work should additionally introduce two cohorts of people with seizures—those comorbid with

AD and those without AD. While the work presented here potentially gives insights into the

network-level mechanisms of increased seizure prevalence in AD, the comparison between

people with AD who develop seizures and those who don’t would help further elucidate the

specific network mechanisms which contribute to seizure propensity in AD. Another key fac-

tor which should be examined in future work is APOE genotype, a known risk factor for both

Alzheimer’s disease and epilepsy [100, 101]. However, it is likely that later stage AD partici-

pants or people with epilepsy will be treated by potentially EEG-altering pharmacological

interventions; one key advantage to this study of early stage AD participants is that all partici-

pants were free from medication at the time of data acquisition.

In this work, we identified spatial distributions of regions with high seizure propensity in

AD, and observed a resemblance to stereotypical patterns of Aβ pathology in AD patients. A

limitation to further exploring this observation and quantifying statistical effects is the absence

of amyloid PET scans in our cohort. Future work should involve integration of multi-modal

neuroimaging data, including functional data (EEG/MEG/fMRI), structural MRI, and PET, to
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quantify the relationship between spatial patterns of NI and Alzheimer’s pathologies, cortical

atrophy, vascular dysregulation, metabolic alterations, inflammation, etc. on an individual

level.

A limitation of the modelling methodology is the use of a static functional network which is

independent of cortical excitability. This separation of local and network mechanisms has

been shown to be informative in previous applications to epilepsy [27, 39, 40, 43, 86]. It lies

between a standard functional connectivity analysis on the one hand, and the full inversion of

a biophysical model on the other. The latter would simultaneously estimate intrinsic excitabil-

ity of nodes and connectivity between them, thereby capturing the role of local dynamics in

shaping large-scale functional connectivity [102]. However, reliable estimation of the large

number of parameters in such a model is challenging.

In addition, future work involving more biophysically realistic modelling could incorporate

activity dependent degeneration [17], in which both the local dynamics and large-scale con-

nectivity between populations are altered along the simulated disease progression. Our model-

ling also assumes homogeneity of local dynamics across regions of the brain, which is also

likely to be of limited biophysical realism. Integration with other imaging modalities such as

PET/MRI would allow for spatial heterogeneity in local excitability related to statistics such as

amyloid/tau burden, vascular/metabolic dysfunction, inflammation, or neurodegeneration.

Conclusions

In this study we have demonstrated potential large-scale brain network mechanisms for

increased seizure propensity in people living with Alzheimer’s disease. In a computational

model in which functional connectivity was the only subject-specific parameter, AD partici-

pants were more likely to develop seizures than healthy controls in response to an increase in

excitability of cortical tissue. No patients in this study had seizures at the time of EEG acquisi-

tion, so results should be interpreted as a group-level probability of developing seizures at a

future time. Examination of ROIs necessary for seizure generation in the model uncovered

two main findings. Firstly, the most important ROIs for seizure generation were those typically

burdened by Aβ at the early stages of AD. Secondly, alterations to the large scale network

structure in AD potentially play a role in determining seizure phenotype, namely an increased

likelihood of generalized seizures in AD. Future work should involve contrasting seizure-free

AD participants with co-morbid AD/epilepsy participants, as well as integration of multimodal

neuroimaging data and biophysically realistic modelling to gain further insight into the mech-

anistic relationships between regional seizure propensity and AD pathology.

Supporting information

S1 Fig. Results are consistent across values of K. The plots on the left and centre recreate

Fig 2 for a range of values of global coupling constant K. The correlation matrix on the right

shows Spearman’s correlation of BNI scores across participants as different values of K are

used. All correlations were� 0.9665.

(TIF)

S2 Fig. Median nNI scores from bootstrapped samples of AD nNI scores are not signifi-

cantly different from a normal distribution. Probability density function (pdf; left) and

cumulative distribution functions (cdf; right) for the empirical data and best fit normal distri-

bution. A Kolmogrov-Smirnov test showed no significant differences between the empirical

and normal distributions (p = 0 using Matlab’s kstest function).

(TIF)
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S1 Table. A list of ROIs for parcellation of source data, based on the coarse grained Brain-

netome atlas [63] used in Tait et al. (2019) [33]. For each ROI, we give a full name, and the

abbreviation used in Fig 3.

(PDF)
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61. Finger H, Bönstrup M, Cheng B, Messé A, Hilgetag C, Thomalla G, et al. Modeling of Large-Scale

Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived

Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path. PLoS Com-

put Biol. 2016; 12(8):e1005025. https://doi.org/10.1371/journal.pcbi.1005025 PMID: 27504629

62. Liu Q, Ganzetti M, Wenderoth N, Mantini D. Detecting Large-Scale Brain Networks Using EEG: Impact

of Electrode Density, Head Modeling and Source Localization. Front Neuroinform. 2018; 12:4. https://

doi.org/10.3389/fninf.2018.00004 PMID: 29551969

63. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The Human Brainnetome Atlas: A New Brain

Atlas Based on Connectional Architecture. Cereb Cortex. 2016; 26(8):3508–3526. https://doi.org/10.

1093/cercor/bhw157 PMID: 27230218

64. Lachaux J, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum

Brain Mapp. 1999; 8:194–208. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.

0.CO;2-C PMID: 10619414

65. Schreiber T, Schmitz A. Improved Surrogate Data for Nonlinearity Tests. Phys Rev Lett. 1996; 77:635.

https://doi.org/10.1103/PhysRevLett.77.635 PMID: 10062864

66. Ermentrout B. Ermentrout-Kopell Canonical Model. Scholarpedia. 2008; 3(3):1398. https://doi.org/10.

4249/scholarpedia.1398

67. Gibbons JD, Chakraborti S. 6.6. In: Nonparametric Statistical Inference. 4th ed. New York: Marcel

Dekker; 2003. p. 268–273.

68. Treder M. MVPA-Light: A Classification and Regression Toolbox for Multi-Dimensional Data. Front

Neurosci. 2020; 14:289. https://doi.org/10.3389/fnins.2020.00289 PMID: 32581662

69. Woldman W, Schmidt H, Abela E, Chowdhury FA, Pawley AD, Jewell S, et al. Dynamic network prop-

erties of the interictal brain determine whether seizures appear focal or generalised. Sci Rep. 2020;

10:7043. https://doi.org/10.1038/s41598-020-63430-9 PMID: 32341399

70. Frisoni GB, Pestia A, Rasser PE, Bonetti M, Thompson PM. In vivo mapping of incremental cortical

atrophy from incipient to overt Alzheimer’s disease. J Neurol. 2009; 256(6):916–924. https://doi.org/

10.1007/s00415-009-5040-7 PMID: 19252794

71. Lowenstein DH. In: Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Sei-

zures and Epilepsy. New York, NY: McGraw-Hill Education; 2018. Available from: accessmedicine.

mhmedical.com/content.aspx?aid=1169120178.

72. Butler CR, Graham KS, Hodges JR, Kapur N, Wardlaw JM, Zeman AZJ. The syndrome of transient epi-

leptic amnesia. Ann Neurol. 2007; 61(6):587–98. https://doi.org/10.1002/ana.21111 PMID: 17444534

73. Rao SC, Dove G, Cascino GD, Petersen RC. Recurrent seizures in patients with dementia: frequency,

seizure types, and treatment outcome. Epilepsy Behav. 2009; 14(1):118–20. https://doi.org/10.1016/j.

yebeh.2008.08.012 PMID: 18782632

PLOS COMPUTATIONAL BIOLOGY Large-scale network mechanism of seizures in Alzheimer’s disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009252 August 11, 2021 19 / 21

https://doi.org/10.1038/s41598-020-74790-7
https://doi.org/10.1038/s41598-020-74790-7
http://www.ncbi.nlm.nih.gov/pubmed/33077823
https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
https://doi.org/10.1162/jocn.1993.5.2.162
https://doi.org/10.1162/jocn.1993.5.2.162
http://www.ncbi.nlm.nih.gov/pubmed/23972151
https://doi.org/10.1016/j.neuroimage.2003.07.031
http://www.ncbi.nlm.nih.gov/pubmed/14683731
https://doi.org/10.1016/S1388-2457(03)00059-2
https://doi.org/10.1016/S1388-2457(03)00059-2
http://www.ncbi.nlm.nih.gov/pubmed/12842715
https://doi.org/10.1016/S1388-2457(02)00030-5
https://doi.org/10.1016/S1388-2457(02)00030-5
http://www.ncbi.nlm.nih.gov/pubmed/11976050
https://doi.org/10.1098/rsta.2011.0081
http://www.ncbi.nlm.nih.gov/pubmed/21893527
https://doi.org/10.1371/journal.pcbi.1005025
http://www.ncbi.nlm.nih.gov/pubmed/27504629
https://doi.org/10.3389/fninf.2018.00004
https://doi.org/10.3389/fninf.2018.00004
http://www.ncbi.nlm.nih.gov/pubmed/29551969
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1093/cercor/bhw157
http://www.ncbi.nlm.nih.gov/pubmed/27230218
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
http://www.ncbi.nlm.nih.gov/pubmed/10619414
https://doi.org/10.1103/PhysRevLett.77.635
http://www.ncbi.nlm.nih.gov/pubmed/10062864
https://doi.org/10.4249/scholarpedia.1398
https://doi.org/10.4249/scholarpedia.1398
https://doi.org/10.3389/fnins.2020.00289
http://www.ncbi.nlm.nih.gov/pubmed/32581662
https://doi.org/10.1038/s41598-020-63430-9
http://www.ncbi.nlm.nih.gov/pubmed/32341399
https://doi.org/10.1007/s00415-009-5040-7
https://doi.org/10.1007/s00415-009-5040-7
http://www.ncbi.nlm.nih.gov/pubmed/19252794
http://accessmedicine.mhmedical.com/content.aspx?aid=1169120178
http://accessmedicine.mhmedical.com/content.aspx?aid=1169120178
https://doi.org/10.1002/ana.21111
http://www.ncbi.nlm.nih.gov/pubmed/17444534
https://doi.org/10.1016/j.yebeh.2008.08.012
https://doi.org/10.1016/j.yebeh.2008.08.012
http://www.ncbi.nlm.nih.gov/pubmed/18782632
https://doi.org/10.1371/journal.pcbi.1009252


74. Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, et al. Seizures and Epileptiform

Activity in the Early Stages of Alzheimer Disease. JAMA Neurol. 2013; 70(9):1158–1166. https://doi.

org/10.1001/jamaneurol.2013.136 PMID: 23835471

75. Cretin B, Sellal F, Philippi N, Bousiges O, Bitonto LD, Martin-Hunyadi C, et al. Epileptic Prodromal Alz-

heimer’s Disease, a Retrospective Study of 13 New Cases: Expanding the Spectrum of Alzheimer’s

Disease to an Epileptic Variant?. J Alzheimers Dis. 2016; 52(3):1125–33. https://doi.org/10.3233/JAD-

150096 PMID: 27104892

76. Sarkis RA, Dickerson BC, Cole AJ, Chemali ZN. Clinical and Neurophysiologic Characteristics of

Unprovoked Seizures in Patients Diagnosed With Dementia. J Neuropsychiatry Clin Neurosci. 2016;

28(1):56–61. https://doi.org/10.1176/appi.neuropsych.15060143 PMID: 26404175

77. Fraschini M, Demuru M, Crobe A, Marrosu F, Stam CJ, Hillebrand A. The effect of epoch length on

estimated EEG functional connectivity and brain network organisation. J Neural Eng. 2016; 13

(3):036015. https://doi.org/10.1088/1741-2560/13/3/036015 PMID: 27137952

78. Colclough GL, Woolrich MW, Tewarie PK, Brookes MJ, Quinn AJ, Smith SM. How reliable are MEG

resting-state connectivity metrics? Neuroimage. 2016; 138:284–293. https://doi.org/10.1016/j.

neuroimage.2016.05.070 PMID: 27262239

79. Honey CJ, Kötter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional

connectivity on multiple time scales. Proc Natl Acad Sci. 2007; 104(24):10240–10245. https://doi.org/

10.1073/pnas.0701519104 PMID: 17548818

80. Kuhnert MT, Elger CE, Lehnertz K. Long-term variability of global statistical properties of epileptic

brain networks. Chaos. 2010; 20(4):043126. https://doi.org/10.1063/1.3504998 PMID: 21198096

81. Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, et al. Emergence of stable

functional networks in long-term human electroencephalography. J Neurosci. 2012; 32(8):2703–13.

https://doi.org/10.1523/JNEUROSCI.5669-11.2012 PMID: 22357854

82. Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ. Frequency-dependent functional

connectivity within resting-state networks: An atlas-based MEG beamformer solution. Neuroimage.

2012; 59(4):3909–3921. https://doi.org/10.1016/j.neuroimage.2011.11.005 PMID: 22122866
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