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Mathematical models of cardiac ion channels have been widely used to study and

predict the behaviour of ion currents. Typically models are built using biophysically-based

mechanistic principles such as Hodgkin-Huxley or Markov state transitions. These

models provide an abstract description of the underlying conformational changes of

the ion channels. However, due to the abstracted conformation states and assumptions

for the rates of transition between them, there are differences between the models and

reality—termedmodel discrepancy or misspecification. In this paper, we demonstrate the

feasibility of using a mechanistically-inspired neural network differential equation model,

a hybrid non-parametric model, to model ion channel kinetics. We apply it to the hERG

potassium ion channel as an example, with the aim of providing an alternative modelling

approach that could alleviate certain limitations of the traditional approach. We compare

and discuss multiple ways of using a neural network to approximate extra hidden states

or alternative transition rates. In particular we assess their ability to learn the missing

dynamics, and ask whether we can use these models to handle model discrepancy.

Finally, we discuss the practicality and limitations of using neural networks and their

potential applications.

Keywords: neural networks, differential equations, electrophysiology, ion channels, mathematical modelling,

model discrepancy, human Ether-à-go-go-Related Gene, neural ODEs

1. INTRODUCTION

Electrophysiology modelling has provided insights insights into physiological mechanisms, from
the ion channel to whole organ scales. Mathematical models of many ion channels, pumps,
and exchangers form models describing the cellular action potential, based on the pioneering
work of Hodgkin and Huxley (1952). These models of ion channels are typically a collection of
mathematical functions governed by systems of ordinary differential equations (ODEs), using the
Hodgkin-Huxley formulation or the Markov model structure (Rudy and Silva, 2006; Whittaker
et al., 2020), and form the foundation of many cellular action potential, including neurons
(Hodgkin and Huxley, 1952; Traub et al., 1994; Kole et al., 2008; Hay et al., 2011), cardiomyocytes
(Noble, 1962; ten Tusscher et al., 2004; Grandi et al., 2011; O’Hara et al., 2011), pancreatic islet cells
(Chay and Keizer, 1983; Sherman et al., 1988; Fridlyand et al., 2003; Cha et al., 2011), etc.

Both formulations of ion channel models provide an abstract description for the underlying
conformational changes of the ion channels. The Hodgkin-Huxley formulation models the
channels as independently-acting channel “gates” which can be open and closed. For example, a
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commonly used model for potassium ion channels is a
combination of an activation gate and an inactivation gate.
As the names imply, each of the gates attempts to describe a
different behaviour that gives rise to the characteristic dynamics
of the currents.

Many ion channels involved in generating action potentials
are voltage-gated. A Hodgkin-Huxley gate for voltage-gated ion
channels is usually modelled as

closed
α(V)
−−−⇀↽−−−
β(V)

open, (1)

where α and β are the transition rates between the open and
closed states, and V is the membrane voltage. Then the open
probability of the gate, x, can be expressed as

dx

dt
= f (x,V), (2)

f (x,V) = α(V)(1− x)− β(V)x, (3)

α(V) = Aα exp(BαV), (4)

β(V) = Aβ exp(BβV), (5)

where f (x,V) represents a function for the rate at which
gating occurs. In the case of Equation (1), mass-action kinetics
dictate that f (x,V) takes the form shown in Equation (3)
in terms of α(V) and β(V) (as introduced by Hodgkin
and Huxley, 1952). A canonical form for α(V) and β(V) is
shown in Equations (4, 5), so that {Aα ,Bα ,Aβ ,Bβ} are the
four constants/parameters governing this gate. The voltage-
dependence shown in Equations (4, 5) is not always used for all
rates in Hodgkin-Huxley models [indeed in all three of the gates
in their original model Hodgkin and Huxley (1952) used this
form for only one of the two rates, fitting the other empirically]
but it has some biophysical justification in terms of Eyring
transition rate theory to support the exponential form of the
dependence on voltage (Lei et al., 2019a). Indeed it is more
common to see Equations (4, 5) used for Markov model state
transition rates, but we and others have found it works very well
for Hodgkin-Huxley models for a range of currents (Lei et al.,
2019a; Houston et al., 2020). One could also construct a model
with multiple closed states to describe different dynamics (see
section 2.6, and Rudy and Silva, 2006 for a review).

Often we find we have a more predictive model for some
of the processes than the others. For example, for the rapid
delayed rectifier current (IKr) a simple Hodgkin-Huxley gate
can describe the fast inactivation process better than the slower
activation process (Beattie et al., 2018; Lei et al., 2019a,b). We
might then wish to “correct” the model discrepancy of the slower
activation process, but “trust” the mechanistic model for the
faster inactivation process. We propose to use neural networks
as a universal approximator to learn the dynamics of individual
gating processes of ion channels. In such a case, we would then
alter just part of the model (some of the equations).

Neural networks have a kind of universality which can be used
to approximate any arbitrary (well-behaved) function (Cybenko,
1989; Leshno et al., 1993; Pinkus, 1999). One could attempt
to learn the output (current) or the discrepancy of the output

directly using such an approximator, similar to the modelling
approach for the discrepancy term described in Kennedy and
O’Hagan (2001). However, Lei et al. (2020c) investigated such
an approach and discussed its limitations, and suggested the
need for passing in the “history” of the simulation to the
approximator to predict the next time points when modelling
dynamical systems.

Recently, there has been a growing amount of research
in data-driven approaches or equation-learning methods for
(numerically) modelling dynamical systems. Some of which work
by approximating derivatives of states from data and regressing
on these variables (e.g.,Wu andXiu, 2019); whilst others combine
machine learning methods, such as deep neural networks, with
prior domain knowledge encoded in differential equations (Chen
et al., 2018; Rackauckas et al., 2020). A similar approach has
recently been applied tomodel a simple cardiac electrophysiology
system for replacing numerical integration of partial differential
equations (Ayed et al., 2019). Given the success of modelling
the dynamics of ion channels using a relatively simple ODE
system (for IKr, e.g., Beattie et al., 2018; Lei et al., 2019a,b), it
would make sense to approximate or improve the right-hand
side of the already “useful” ODE instead of trying to learn all the
already well-captured biophysics from scratch. Such an approach
is sometimes referred to as a neural ODE (Chen et al., 2018;
Bonnaffé et al., 2021) or ODE-Net (Zhong et al., 2020). Note that
we refer to “neural ODEs” as leveraging neural network terms
within ODEs, which is different to some of the classification
applications described in Chen et al. (2018) but similar to their
ODE applications.

In this paper, we use the human Ether-à-go-go-Related Gene
(hERG) potassium ion channel, which carries the cardiac
current IKr (Sanguinetti et al., 1995), as a working example
to demonstrate the feasibility and practicality of using neural
ODEs to model ion channel kinetics. We provide an alternative
modelling approach that could alleviate certain restrictions, such
as the exponential form of the transition rates and the linear
relationship of the states in Equation (3). We compare and
discuss multiple ways of using a neural network to approximate
the hidden states, the dynamics of hERG. Their ability to handle
model discrepancy is assessed through synthetic data studies.
We also apply variants of neural ODEs to real experimental
data. Finally, we discuss the practicality of this approach and its
potential applications.

2. MATERIALS AND METHODS

We first introduce a Hodgkin-Huxley ion channel model which
we adopt as our case study for this article. We then present the
neural network modifications to the mechanistic ODE models,
and methods to train the neural network models. Finally we
describe synthetic data studies that we performed, and an
application to real experimental data.

2.1. A Hodgkin-Huxley Ion Channel Model
We used a simple Hodgkin and Huxley-style hERG model
as the working model (as used in Beattie et al., 2018).
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In this model, the current is modelled with a standard
Ohmic expression,

I = g · a · r · (V − E), (6)

where g is the maximal conductance, a is a Hodgkin-Huxley-style
activation gate, and r is an inactivation gate. Both of these gates
have transition rates following the form shown in Equations (2–
5). E is the reversal potential for this potassium ion current,
also known as the Nernst potential, which is not inferred but is
calculated directly using

E =
RT

zF
ln

(

[K+]o

[K+]i

)

, (7)

where R is the ideal gas constant, T is the absolute temperature
(T = 294.55K for the data we use later), F is the Faraday
constant, and z is the valency of the ions (equal to 1 for
potassium ions). [K+]o and [K+]i denote the extracellular
and intracellular concentrations of potassium ions, respectively,
which are determined by the experimental solutions ([K+]o =

4mM and [K+]i = 110mM in the data we use later). The two
gates are (independently) modelled using Equation (3), giving a
total of 8 parameters, each of which is to be determined from the
experimental current recordings.

For hERG, the dynamics of inactivation (r gate kinetics)
happen on a time scale much faster than the activation (a gate). A
typical time scale of interest for action potential modelling is tens
to hundreds ofmilliseconds. As a result, we observemore obvious
errors in the dynamics of the a gate, provided the steady state
of r is sufficiently accurate. In the rest of this paper, we assume
the r gate equation and parameters after fitting to the data is
accurate and we correct only the dynamics of the activation—the
a gate—using the methods described in the next section.

2.2. Ion Channel Model With Neural
Networks
To relax the assumption of the linearity of the gate variable
relationship and the exponential rate constants we trialled
modelling the entire gating dynamics using a neural network,
replacing Equation (2) with:

dx

dt
= N(V , x), (8)

where N(V , x) denotes a neural network that takes the voltage V
and the state x as inputs (see next section for more details). This is
perhaps the most flexible way to describe a Hodgkin-Huxley gate,
as we allow a neural network to fully approximate the right-hand
side of a gate’s ODE (which we will call “NN-full” or “NN-f ”).

Instead of replacing the whole right-hand side of the ODE
with a neural network, we also trialled using a neural network
to model the discrepancy (“NN-discrepancy” or “NN-d”) between
the ordinarymechanistic model f and the data generating process
(or the true system), replacing Equation (2) with:

dx

dt
= f (x,V)+N(V , x). (9)

In this case f (x,V) = α(1 − x) − βx as in Equation (3), but it
could represent any other candidate model of the gate. The NN-d
approach is similar to the “augment incomplete physical models
for identifying and forecasting complex dynamics” framework
proposed by Yin et al. (2020). In theory, given the flexibility of the
neural network, as a universal approximator, Equation (9) should
be able to provide a similar approximation as Equation (8).

The first approach is a purely data-driven neural ODE, where
the entire dynamics are described by the neural network, making
good use of their universal approximator property. The second
approach utilises prior knowledge of the biophysics of the gating
process, which perhaps gives us a good initial guess of the neural
network should be around zero, treating the neural network as a
model discrepancy term.

2.3. Neural Networks
We used a feedforward neural network, a multi-layer perceptron
model (Goodfellow et al., 2016), to approximate the dynamics
(hidden states) and/or to correct its discrepancy. A feedforward
neural network defines a (nonlinear) map of an input vector to
an output vector. Let N be an operator for a feedforward neural
network with M hidden layers, such that it has p inputs and q
outputs (Rp −→ R

q). Given the inputs x = [x1, x2, . . . , xp]
T ∈

R
p, the weights Wm between the mth and the (m + 1)th layers,

and the activation functions hm :R −→ R for each “neuron” or
“node” in themth layer, the feedforward neural network computes
the outputs y = [y1, y2, . . . , yq]

T ∈ R
q. The mapping can be

expressed as

y = N(x;2) = WM+1 ◦ (hM ◦WM) ◦ · · · ◦ (h1 ◦W1)(x), (10)

where 2 is the parameters of the network weights, and ◦ denotes
operator composition. The weight matrices include the network
biases; the activation functions are applied in a component-
wise manner.

For the models specified in section 2.2, the inputs x were
the membrane voltage V and the ODE state x. The output y
was the derivative of the state dx/dt for Equation (8) or the
discrepancy in the derivative when using the mechanistic model
f for Equation (9).

There are multiple ways of training such a neural network
embedded within (part of) the right-hand side of the differential
equation system. Su et al. (2021) suggested using pairs of
consecutive time series data points as the training data for the
neural networks; an alternative would be the adjoint method
proposed by Chen et al. (2018), see section 4. The method
proposed by Su et al. (2021) is equivalent to estimating the
derivative of the data (without smoothing) using a first order
forward finite difference scheme. Here we propose an alternative
method that we term “state space estimation,” which can be
used to train the neural network for learning the dynamics of
the gating processes in a similar manner, as described in the
next section.

2.4. State Space Estimation
In voltage-clamp experiments, we measure the current from
the cell by holding the membrane voltage at various levels.
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The current model in Equation (6) can be generalised for any
Hodgkin-Huxley current as

I = g ·
∏

k

(xk)
nk · (V − E), (11)

where k indexes the distinct gating variables xk, each of which is
governed by its ownODE (Equation 2), and is raised to an integer
power nk, and g,E are constants as discussed above. We assume
that we are interested in estimating the state space of the gate xi,
and that we can model the other gates x!i (where the subscript
!i represents all k except i) and can observe only the current I
directly. Here for the models of interest, the state space of the
gate xi is its derivative dxi/dt as a function of xi and V (see later
Figure 2 that shows an example of the state space in the synthetic
data studies).

There are two ways of estimating the state space of the
gate xi. First, we can directly estimate the state by rearranging
Equation (11) in terms of modelled/known quantities

xi =

(

I

g ·
∏

k 6=i x
nk
k

· (V − E)

)
1
ni

. (12)

Then we can approximate the derivative of Equation (12)
by fitting either a spline or some differentiable closed-form
expression (such as sums of exponential functions for fixed
voltage levels), which gives us an estimate of dxi/dt as a function
of xi and V for V 6= E and xk 6= 0 for all k 6= i.
However, the denominator of Equation (12) can get arbitrarily
close to zero, which can amplify noise in the current I, causing
very different noise levels at different regions of the signal
for fitting.

Alternatively, to derive the derivative of xi, we assume we
have models which will provide the numerical derivatives for
all x!i; usually we have the analytical form of the derivatives
for all x!i. We would also need to estimate the derivative for I
numerically, for example by fitting a spline to I (usually we do not
have simple differentiable closed-form expression for I); we used
a univariate smoothing cubic spline provided by Python SciPy
(Virtanen et al., 2020), and we fitted a separate spline on each
discontinuous step in V to capture discontinuities in I as a result
of a sudden change in the driving term (V − E) in Equation (6).
An example of the spline fitting results is shown for the synthetic
data studies. By applying product rule to Equation (11) we notice
that the current derivative approximated by a spline is also
equal to

dI

dt
= g · (V − E) ·



nix
(ni−1)
i

dxi

dt

∏

k 6=i

x
nk
k

+ x
ni
i

∑

j

njx
(nj−1)

j

dxj

dt

∏

k 6=i,j

x
nk
k



+ g
∏

k

x
nk
k

dV

dt
, (13)

which can be rearranged to get an estimate for the derivative of
the state of interest

dxi

dt

∣

∣

∣

∣

(xi ,V)

=
1

nix
(ni−1)
i

∏

k 6=i x
nk
k





1

(V − E)

(

1

g

dI

dt
−
∏

k

x
nk
k

dV

dt

)

−
∑

j

njx
(nj−1)

j

dxj

dt

∏

k 6=j

x
nk
k



 . (14)

With Equations (14) and (12), we again obtain dxi/dt as a
function of xi and V for V 6= E and xk 6= 0 for all k 6= i.

These results of state space estimation can then be used as
the training data for the neural networks in section 2.2. This
method can also be useful to check either Equation (3) is a
good approximation to the gating dynamics (e.g., if dxi/dt is
linear in xi) or Equations (8) or (9) is needed to approximate the
surface dxi/dt.

2.5. Data Preparation and Network Training
The raw time series data were processed by using the state-space
estimation, giving a set of tuples (a,V , da/dt). We normalised the
data by a simple scaling normalisation by (1, 100, 1, 000) such that
each variable in the tuples isO(1), which is commonly advised to
preprocess neural network training data (Bishop et al., 1995). The
loss function is defined as the mean squared error,

Lf (2) =
1

T

T
∑

t=1

(

da

dt

∣

∣

∣

∣

t

−N(xt ,Vt;2)

)2

, (15)

for the NN-f model, where T is the number of data points; the
loss function for the NN-d model is

Ld(2) =
1

T

T
∑

t=1

(

da

dt

∣

∣

∣

∣

t

− f (xt ,Vt)−N(xt ,Vt;2)

)2

, (16)

where f is the candidate model for the activation a-gate specified
by Equation (3). By minimising the loss function, we obtained
a set of trained neural network parameters 2

∗. For any given
new initial conditions or voltage clamp, we can use the trained
model to perform predictions. The equations were solved using
the Runge-Kutta of order five of Dormand-Prince-Shampine
(dopri5) via the open source package torchdiffeq by Chen et al.
(2018), with tolerance settings for the solver set to atol = 10−6

and rtol = 10−8. All codes and data are freely available at:
https://github.com/chonlei/neural-ode-ion-channels.

For all the neural network models, we used a fully connected
network with five hidden layers, each of which has 200 nodes,
and with the leaky-rectified linear unit (ReLU) as the activation
function to account for the nonlinearity between the inputs and
outputs. The nodes in the input layer consisted of the scaled
state variable a (activation gate) and the scaled control variable V
(membrane voltage), and the output layer is the scaled derivative
of the state variable da/dt. Networks with different depth and
width have been investigated; grid search across {1, 5, 10} layers
and {10, 100, 200, 500} nodes were performed with the NN-f
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FIGURE 1 | Models of hERG used in synthetic data studies. studies. From left to right shows the original Hodgkin-Huxley model (candidate model), the activation

modelled using a neural network (NN-f), the activation with a neural network discrepancy term (NN-d), and the activation modelled with a three-state model (ground

truth). All models have the same (independent) inactivation.

FIGURE 2 | An example of the state space simulated in synthetic data studies. The state space of the candidate model (blue surface) is shown as blue surfaces. The

simulated activation steady-state protocol (Pr3, orange lines) and the simulated deactivation time constant protocol (Pr5, purple lines) are shown for (A) the candidate

model and (B) the ground truth model. Each dot at the two ends of the lines indicates a voltage step jump in the protocols.

model for the real cell dataset and the results are shown in
Supplementary Table 1. All neural network models were trained
using Adam’s algorithm (Kingma and Ba, 2017) via the open
source PyTorch library (Paszke et al., 2019).

2.6. Synthetic Data Studies
We performed synthetic data studies to assess whether the neural
network, in the forms of NN-f and NN-d, can approximate
the missing dynamics of the activation in the Hodgkin-Huxley
model in Equation (6). We used a different model, a “ground
truth” model, to generate the synthetic data, such that this
synthetic data study inherently had discrepancy between the
candidate model and the data; as well as using the ground
truth model to generate data (with model discrepancy), we
tested the approach using the candidate model (with no model
discrepancy) and showed that the neural ODE models were
fully capable of capturing the kinetics of the candidate model
(see later of this section). We used a three-state Markov
model for the activation to be the ground truth model for
generating the synthetic data. The simpler two-state model of
the activation was the candidate model, which cannot fully
capture the dynamics of certain parameterisation of the ground
truth model. This sets the challenge to use the methods in

section 2.2 to capture the missing dynamics. Figure 1 shows the
model structures of the two models (Markov representations of
these two models are shown in Supplementary Figure 1) and
schematics for the NN-f and NN-d models. Note that we do
not necessarily believe one model is better than the other, as
we noticed neither the candidate model nor the “ground truth”
model could capture the full dynamics of real experimental
hERG data.

We generated the synthetic data by simulating the current
I, with some fixed known parameter sets, voltage protocol
V(t), initial conditions, and sampling time (time-step). We
used the kinetic parameters identified from a previous study
(Lei et al., 2019b) in the synthetic data studies, as given
in Supplementary Table 2, whilst setting the maximum
conductance g to 1 µS. For the voltage protocol, we used
an activation steady state protocol (Pr3) and a deactivation
protocol (Pr5) from Beattie et al. (2018) for training the
activation process of the models—the same protocols will
later be used for the real data in section 2.7. Figure 2 shows
the state space of the activation a-gate model covered by the
training protocols. These protocols were designed to explore
the dynamics for the activation process in hERG, making them
an appropriate choice for training hERG activation kinetics;
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they were also able to elicit currents that allow identifiability for
the candidate hERG model parameters (see e.g., “Method 3” in
Clerx et al., 2019a). For the initial conditions, since the cells in
the experiments in Beattie et al. (2018) were held at −80mV
prior to running the voltage protocols, we use the steady state
values of −80mV as the initial conditions; we also used the
same sampling time points as the data. After simulating the
outputs using the ground truth model, we added independent
and identically distributed Gaussian noise (with zero nA mean
and 0.1nA standard deviation) to the outputs, to generate the
synthetic dataset.

We applied the state-space estimation methods to postprocess
the noisy time series data for training the neural networks;
Supplementary Figure 2 shows an example of the spline fitting
results. Figure 2B shows the discrepancy in the state space
between the candidate model and the ground truth model
simulated with the training protocols that the neural network
models will learn. The candidate model was fitted using a Python
open source package PINTS (Clerx et al., 2019b), with the fitted
parameters given in Supplementary Table 3. After training the
models, we further assessed the model by predicting unseen
protocols, including an inactivation time constant protocol
(Pr4), the “sinusoidal” protocol (Pr7), and a collection of
action potential wave forms (Pr6) that featured in Beattie et al.
(2018). This check ensures the models learned the appropriate
dynamics of the underlying system instead of simply overfitting
(Whittaker et al., 2020).

To demonstrate the neural network models are fully
capable of modelling the candidate model, we also repeated
this synthetic data study with data generated from the
candidate model (i.e., no discrepancy). The results are shown
in Supplementary Figures 3, 4, showing both neural network
models were able to fully capture the dynamics of the
candidate model.

2.7. Application to Experimental Data
We applied the neural network differential equation models,
NN-f and NN-d, to experimental data taken from Beattie et al.
(2018, Cell #5). In brief, manual patch-clamp recordings were
performed at room temperature (between 21 and 22◦C) in
Chinese hamster ovary (CHO) cells stably expressing hERG1a
which encodes the α subunit of the channel carrying IKr. The
experiments consisted of seven protocols, Pr1–Pr7 with the
numbering matching the original publication; see Beattie et al.
(2018) for details on postprocessing experimental data. Following
Beattie et al. (2018), capacitance artifacts were removed from
the experimental data by discarding the first 5ms after each
discontinuous voltage step.

Similar to the synthetic data studies, we applied the state-
space estimation methods to postprocess the time series data
measured with the activation steady state protocol (Pr3) and
the deactivation protocol (Pr5) for training the neural network
models. The trained models were then used to predict unseen
protocols: the inactivation time constant protocol (Pr4), the
sinusoidal protocol (Pr7), and a series of action potential wave
forms (Pr6).

3. RESULTS

3.1. Neural Network ODEs Capture Missing
Dynamics in Synthetic Data
In the synthetic data studies, we attempted to fit a standard
Hodgkin-Huxley a-gate model (Equation 3, candidate model),
the NN-f model (Equation 8), and the NN-d model (Equation 9)
to the synthetic data, where the data were generated using a three-
state activationmodel. The training results are shown in Figure 3,
comparing the ability of the neural ODE models to learn the
dynamic behaviour of the system under the training data sets: the
activation steady-state protocol (Pr3) and the deactivation time
constant protocol (Pr5). The candidate model (blue) was not able
to fit to some of the “two time constant” dynamics at the end
of the activation protocol (magnification shown in orange) and
the beginning of the deactivation protocol (magnification shown
in blue).

The NN-f model (orange), where the entire a-gate was
modelled with a neural network, was able to learn the dynamics
of hERG activation. This model is purely data-driven, without
any predefined mathematical equations, but is still able to
capture the dynamics of the ground truth model, slightly better
than the candidate model. The NN-d model (green), where a
neural network was used to model the discrepancy between the
candidate model and the data generating process (the ground
truth model), performed similarly to the NN-d model. There is
an inherent limitation to modelling the data-generating process
dynamics as it requires (at least) two ODEs (hence three states)
to fully describe the activation dynamics while we allow only one.
However, the neural network models were able to approximate
part of the dynamics via the nonlinear mapping between the state
variable and its derivative; whereas the candidate model assumes
a linear relationship between the state variable and its derivative.

The differences between the three models become even more
obvious when it comes to predicting unseen voltage-clamp
protocols. Figure 4A shows the first three steps of the inactivation
protocol (Pr4) in Beattie et al. (2018). The inactivation r-gate is
the same for all the models (including the ground truth model);
the differences are due to the activation a-gates. The ground
truth model is equivalent to a model with a second order ODE
(Supplementary Material, section S1), see section 4 for more
details, whose solution is a sum of two independent exponential
functions at constant voltage. Due to the linear relationship
between da/dt and a for the candidate a-gatemodel, by definition
the solution a for this model can exhibit only a single exponential
behaviour at a fixed voltage. Therefore, the candidate model
(blue) is incapable of predicting the large “two-time-constant”
deactivation current at the end of Pr4. Interestingly, the two
neural network models, NN-f (orange) and NN-d (green), were
able to predict those deactivation currents quite well, which is
thought to be due to the nonlinear da/dt-a relationship learned
by the networks.

For the sinusoidal protocol and the action potential protocol
in Figures 4B,C, the two neural network models (orange and
green) were able to predict slightly better than the candidate
model (blue), which can be seen in the magnifications of the
two protocol predictions. For example, a similar deactivation
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FIGURE 3 | Training results for the synthetic data studies. The training data generated using the ground truth model (grey) are compared against the original

candidate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows

the activation steady-state protocol (Pr3) and (B) shows the deactivation time constant protocol (Pr5). The top panels show the voltage-clamp protocols, the middle

panels show the currents, and the bottom panels show the magnification of part of the currents. All figures with a blue background are synthetic data examples.

current was elicited at the end of the sinusoidal protocol (the
thirdmagnification in Figure 4B, blue); the candidatemodel gave
a single-exponential behaviour whilst the two neural network
models closely matched the grey synthetic data generated by the
ground truth model. Moreover, there were parts of the sinusoidal
protocol and the action potential protocols where the candidate
model under-predicted the current, see for example the first
magnification in Figure 4B (green) and the last magnification
in Figure 4C (blue), whilst the predictions by neural network
models were closer to the data. Table 1 shows the mean absolute
error of the model simulations (compared against the synthetic
data) for each of the protocols (including both the training and
prediction results).

3.2. Applications to CHO Cell Data With
Neural Network ODEs
Next we applied the same approach we took in the synthetic
data studies to the experimental data collected from a CHO cell
overexpressing hERG1a (Beattie et al., 2018). The parameters
for the candidate model were adapted from Clerx et al. (2019a,
Method 3). The training results with the activation steady-state
protocol (Pr3) and the deactivation time constant protocol (Pr5)
are shown in Figure 5. The candidate model (blue) failed to
capture the transients to the steady state, during the long varying
holding steps in Pr3, as shown in the bottom left magnification
(green). The two neural network models on the other hand were
able to capture such transients to the steady state during the same
protocol. A larger magnification to this part of the protocol is
shown in Supplementary Figure 5.

The three trained models were used to predict unseen
voltage-clamp protocols measured in the same cell during
the experiments. Figure 6 shows the prediction results for
(Figure 6A) the first three steps of the inactivation protocol,
(Figure 6B) the sinusoidal protocol, and (Figure 6C) the action
potential wave form protocol. Similarly to the synthetic data
studies, the two neural network models were able to better
predict the first three steps of the inactivation protocol (Pr4),
demonstrating a better description of the deactivation process,
as shown in Figure 6A.

However, interestingly the two improved activation models
with the neural networks did not show any obvious improvement
for the sinusoidal protocol (Figure 6B) and the action potential
wave form protocol (Figure 6C); all the three models performed
similarly for predicting these two protocols. This could be the fact
that the sinusoidal protocol explores the faster dynamics of the
hERG current (Beattie et al., 2018), whilst the activation process
is rather slow compared to this; similarly for the series of action
potential wave forms, as demonstrated in the simulated “phase
diagrams” by Clerx et al. (2019a). Therefore, the two neural
networkmodels did not show any obvious improvement for these
two protocols. Table 2 shows the error of the model simulations
for each of the training and prediction protocols.

4. DISCUSSION

In this paper, we have demonstrated the use of neural networks
to model ion channel kinetics. We have shown two approaches
for doing this: the first one uses a neural network to fully model
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FIGURE 4 | Prediction results for the synthetic data studies. Comparison of the synthetic data generated using the ground truth model (grey) against the candidate

a-gate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows a

part of the inactivation protocol (Pr4), showing the first three steps of the protocol. (B) Shows the sinusoidal protocol. (C) Shows a protocol consists of a series of

action potentials. All figures with a blue background are synthetic data examples.
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the right-hand side of the ODEs; the second one uses a neural
network to model only the missing dynamics of the model—
discrepancy between a model and the true system. Assessing the
model discrepancy in ion channel kinetics is vital to constructing
accurate action potential models (Mirams et al., 2016; Clayton
et al., 2020; Pathmanathan et al., 2020), but most studies assume
correct ion channel kinetics models when fitting maximum
conductances of different current types in an action potential
model (Kaur et al., 2014; Groenendaal et al., 2015; Johnstone
et al., 2016; Lei et al., 2017; Pouranbarani et al., 2019). Previous
studies attempted to use different machine learning techniques
and statistical methods to model the differences between the
mechanistic model and the data. For example, Lei et al. (2020c)
used a Gaussian process and autoregressive-moving-average

TABLE 1 | Mean absolute error of the model simulations for the synthetic data

study.

Training Prediction

Pr3 Pr5 Pr4 Sinusoidal APs

Original 0.144 0.166 0.388 0.695 0.463

NN-f 0.113 0.110 0.167 0.453 0.299

NN-d 0.146 0.128 0.165 0.507 0.294

Comparing the original candidate model, the a-gate modelled using a neural network (NN-

f), and the a-gate with a neural network discrepancy term (NN-d) for training results: the

activation steady-state protocol (Pr3), and the deactivation time constant protocol (Pr5);

and the prediction results: the inactivation protocol (Pr4), the sinusoidal protocol, and the

action potential protocol (APs).

models, respectively, to account for the discrepancy term in
ionic currents, the observables, i.e., the differences between the
solutions of the ODE models and the data. Similarly Creswell
et al. (2020) used a flexible noise model to describe the
experimental noise, although the residual terms modelled by the
flexible noise model were thought to be both correlated noise and
model discrepancy. However, given the biophysical justification
of the differential equations, we believe the discrepancy is rooted
in the mathematical terms of the right-hand side of the ODEs,
instead of the solutions of the ODEs. Therefore, we included
the discrepancy term, the neural networks, into the ODEs—
neural ODEs.

One of the features of neural networks is their flexibility,
which is perhaps both an advantage and a limitation. This
flexibility enables neural networks to approximate (almost)
any function, making them a powerful universal approximator.
However, experimental data are generally imperfect; there
are experimental artefacts in the data, for example imperfect
series resistance and membrane capacitance compensations,
imperfect leak correction, etc., as discussed in Marty and
Neher (1995), Sherman et al. (1999), Raba et al. (2013),
Lei et al. (2020a,b), and Montnach et al. (2021). Unlike
(smaller) biophysical models, with limited flexibility, neural
networks might easily absorb such undesired, non-biophysical
artefacts into the model, hence making non-physiologically-
relevant predictions. It is worth noting that large biophysically-
inspired models could also run into the same overfitting issue
(Whittaker et al., 2020).

Clerx et al. (2019a) compared the performances of using
conventional protocols (such as Pr3, Pr4, and Pr5) and using

FIGURE 5 | Training results for the experimental data from Beattie et al. (2018). Comparison of the experimental data (grey) against the candidate a-gate model (blue),

the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows the activation

steady-state protocol (Pr3) and (B) shows the deactivation time constant protocol (Pr5). All figures with a green background are real data examples.
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FIGURE 6 | Prediction results for the experimental data from Beattie et al. (2018). Comparison of the experimental data (grey) against the candidate a-gate model

(blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows a part of the

inactivation protocol (Pr4), showing the first three steps of the protocol. (B) Shows the sinusoidal protocol. (C) Shows a protocol consists of a series of action

potentials. All figures with a green background are real data examples.
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TABLE 2 | Mean absolute error of the model simulations for the CHO cell data.

Training Prediction

Pr3 Pr5 Pr4 Sinusoidal APs

Original 0.044 0.027 0.066 0.035 0.060

NN-f 0.025 0.025 0.044 0.052 0.107

NN-d 0.029 0.027 0.049 0.035 0.087

Comparing the original candidate model, the a-gate modelled using a neural network (NN-

f), and the a-gate with a neural network discrepancy term (NN-d) for training results: the

activation steady-state protocol (Pr3), and the deactivation time constant protocol (Pr5);

and the prediction results: the inactivation protocol (Pr4), the sinusoidal protocol, and the

action potential protocol (APs).

a condensed protocol (such as the sinusoidal protocol) when
fitting an ion channel model. The authors concluded that it was
advantageous to use the sinusoidal protocol when fitting the
candidate Hodgkin-Huxley model of hERG used in this paper
(Figure 1). The biggest differences between the neural network
models and the candidate model are the predefined model
structure and the number of degrees of freedom. Some of the
condensed protocols, such as the sinusoidal protocol in Beattie
et al. (2018) and the “staircase” protocol in Lei et al. (2019a,b),
were designed to explore the dynamics of a given model rapidly.
However, in this case, given the lack of model structure for
the neural network models, these condensed protocol designs
may not be the most appropriate choices. When training neural
ODEs, it has been suggested to use large numbers of short
time series data (Chen et al., 2018; Zhong et al., 2020; Su
et al., 2021); however, it is often not practical to collect large
numbers of short time series by restarting the voltage-clamp
experiments, as it would require bringing the cell to steady
state many times in order to obtain reliable initial conditions
for solving the differential equations. The central idea of using
multiple shorter time series data is to explore different regions
of dynamics for the system to be modelled (Wu and Xiu,
2019; Su et al., 2021), which is the same as exploring the state
space in our approach. We therefore decided to choose training
protocols that cover the state space as much as possible; this also
ensures the trained neural network models do not extrapolate—
make predictions outside the training space (see later for a
demonstration of such a pitfall). Supplementary Figure 6 shows
the state space covered by the sinusoidal protocol, which is not
as wide as those shown in Figure 2. When training neural ODE
models it may therefore be more suitable to use protocols that
cover the possible input space as widely as possible—here a
combination of Pr3 and Pr5 for hERG activation appears to do
this well.

In this paper, we have proposed a novel way of estimating
the dynamics of the ion channel model, termed “state space
estimation.” The underpinning of the proposedmethod is similar
to some methods suggested in the literature for training neural
ODEs. For example, Su et al. (2021) suggested using pairs of state
variables at two adjacent time instants as the training data for
the neural networks, where their neural network structure is a
variant of residual networks. They were effectively approximating

the derivatives using the first-order forward finite difference
method with a fixed time step, although this would greatly
amplify any noise present in the data (Chartrand, 2011). We
have relaxed this limitation by allowing variable time steps
and have estimated the derivatives using splines, one could
also use different methods for estimating the derivatives under
our framework (such as Chartrand, 2011; Van Breugel et al.,
2020). Su et al. (2021) also assumed one could independently
observe all the gating variables, which is not feasible in
standard electrophysiology experiments that record only the
total current.

Another approach for training neural ODEs is the adjoint
method suggested by Chen et al. (2018), which back-propagates
the derivatives of the neural network parameters from the
solutions for constant memory cost. Such a method is an
attractive alternative to our method, however when modelling
typically long and dense time series data from voltage-clamp
experiments, training neural networks using backpropagation
through the ODE solutions is extremely slow. Our method
provides a computational speed up at a low memory cost, which
makes it even possible to train on CPUs.

Neural networks are excellent as a universal approximation
mechanism, but they are not a reliable function extrapolation
mechanism (Haley and Soloway, 1992; Chapter 6 of Livshin,
2019). That means these neural networks are excellent in
predicting the approximated function values within the training
space. However, they are not suitable for predicting the function
values outside the training space. To demonstrate this issue, here
we attempt to deliberately use a combination of the activation
steady state protocol (Pr3) and the inactivation protocol (Pr4),
which were not designed to thoroughly probe the activation of
hERG, to train our NN-f model.

Figure 7 shows the training (Figures 7A,B) and prediction
(Figure 7C) results, where the “badly trained” NN-f model
failed to predict the parts of the deactivation protocol (Pr5)
that are highlighted in red, whilst still performing very well
with the training protocols. To illustrate the probable cause,
Figure 8A shows a two-dimensional state space explored by
the training protocols (see also Supplementary Figure 7). We
see that there is a large “unexplored” region in the training
protocols Pr3/4. This region is used for predictions of Pr5,
and the worst predictions (indicated in red in Figures 7C, 8B)
are those toward the centre of the “unexplored” region. This
cautionary example suggests that Pr3/4 would be inappropriate
training for a neural ODE and it is particularly important that
we choose appropriate voltage-clamp protocols when training
a neural ODE model. That is, we believe the training space
should cover the full dynamics of interest within the state space,
such that when we use the model to perform “predictions,”
we are predicting a different state space trajectory within,
or very close to, the trained state space. Note that Figure 7

also shows that a mechanistic model (candidate model, blue)
fitted to Pr3 and Pr4 would give “reasonable” predictions
for Pr5, although not as good as those in Figure 5 (see
Clerx et al., 2019a). This performance is thought to be due
to the mechanistic equations appropriately restricting model

Frontiers in Physiology | www.frontiersin.org 11 August 2021 | Volume 12 | Article 708944

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lei and Mirams Neural ODEs for Ion Channels

FIGURE 7 | An example of neural ODE performance using an inappropriate choice of training protocols. Comparison of the experimental data (grey) against the

a-gate modelled using an “incorrectly” trained candidate model (blue) and neural network (NN-f, orange). The neural network was trained using (A) the activation

steady state protocol (Pr3) and (B) the inactivation protocol (Pr4), where only parts of the protocols are shown for visualization purpose. (C) Shows the mechanistic

candidate model makes reasonable predictions (blue) for this deactivation time constant protocol (Pr5) but the NN-f model failed to predict accurately, with four of the

currents under higher test voltages (−70 to −40mV) highlighted in red. All figures with red backgrounds are trained on Pr3/Pr4.

FIGURE 8 | Two-dimensional state spaces illustrating the inappropriate training protocol for a neural ODE. The lines on these diagrams indicate states occupied at

some point in time in simulations using the candidate model, with a dot for the state at the start and end of each voltage step. (A) Shows the state space spanned by

the Pr3 and Pr4 training protocols (blue). The grey dashed line highlights a large region of very sparse training data. (B) The same state space with trajectories required

by the prediction protocol, Pr5, highlighted (orange and red). The sections highlighted in red in Figure 7 with very bad predictions are also shown in red here. It is

evident that the neural ODE makes “bad” predictions when extrapolating into the centre of the sparse region of training samples. All figures with red backgrounds are

trained on Pr3/Pr4.
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predictions—resulting in far more reliable and biophysically-
based extrapolation.

In this paper we have used voltage-gated ion channels as an
example, one could also generalise the neural network model to
include other external effects or control variables in a similar
fashion as we demonstrated with the membrane voltage V in
voltage-clamp experiments. We can write the neural network
models in Equations (2) and (9) as

dx

dt
= N(x, u) (17)

and

dx

dt
= f +N(x, u), (18)

which explicitly includes an external control variable u. These
external effects could be for example compound concentration,
energy source (e.g., ATP concentration for pumps), luminance
levels for light-gated ion channels, etc. However, the drawback
of including more (input/control) variables to the model is
that we have to train a model in higher dimensions (see
discussion below).

The proposed ways of embedding a neural network into the
ODEs, NN-f, and NN-d, are two of many possible ways of
structuring the neural network models. For example Zhong et al.
(2020) and Yazdani et al. (2020) suggested replacing only part of
an ODE system with a neural network. For Hodgkin-Huxley or
Markov models, a way of doing this would be to relax the rate
assumptions. That is, instead of using an exponential form to
model the transition rates α(V) and β(V), we could model them
with a neural network such that Equation (3) becomes

f (x,V) = Nα(V)(1− x)−Nβ (V)x. (19)

Nα and Nβ are the outputs of a neural network N with an input
V . This form indeed imposes good mechanistic structure, and is
easier to interpret and train compared to the two proposed neural
network models in this work; this particular form implicitly
defines the bounds for the solution x to be [0, 1], making x can
still be interpreted as the open probability. However, depending
on the form of discrepancy, Equation (19) may not be flexible
enough to model the missing dynamics. It implicitly assumes that
the rate of the state dx/dt is linear in the state x, which is not
suitable to correct the differences shown in Figure 3 (two time
constants of deactivation) as our methods did.

In theory, we can evenmodel the gating dynamics using higher
order ODEs. For example, a second order ODE in general can be
written as

d2x

dt2
= N

(

V , x,
dx

dt

)

. (20)

This type of second order ODE can be solved as a system of first
order ODEs by considering it as

dv

dt
= N(V , x, v) (21)

dx

dt
= v, (22)

which is a type of augmented neural differential equation
(Norcliffe et al., 2020). Such a model is equivalent to a
generalised three-state Markov model with one open state
(Supplementary Material, section S1 shows how to rewrite a
three-state model into a second order ODE, where its right-hand
side is replaced by a neural network in a similar fashion to the
NN-f model). In general, to model an nth order ODE, we could
have a neural ODE of the form

dnx

dtn
= N

(

V , x,
dx

dt
, . . . ,

dn−1x

dtn−1

)

. (23)

We therefore run back into a model selection challenge, which
is one of the main challenges within conventional ion channel
modelling—which model is the most suitable one to use—except
we need to select the model in terms of the order of the neural
ODEs and how to best include the neural network in the ODEs.
Another challenge is that the higher the order, the higher the state
space dimension (for an (n + 1)th order ODE, we have (n + 2)-
dimensions: V , x, dx/dt, . . ., dnx/dtn) and the harder it is to
train a neural network. With the concept of covering the state
space for training the dynamics, we are faced with the curse of
dimensionality as we go to higher orders, because it is practically
impossible to collect training data that cover a large proportion
of the hyper-volume within the state space in high dimensions.
Also, neural ODE models of this form do not impose bounds to
the solutions in general, and predictions for probabilities by these
models could go outside [0, 1] during extrapolation.

On the note of model selection, Menon et al. (2009) attempted
to theoretically optimise model structure in addition to the
rate parameters through a genetic algorithm; Mangold et al.
(2021) suggested a systematic way of proposing a set of Markov
models by treating Markov structures as different graphs. Both
approaches try to deal with a large scale of model selection; in
particular Mangold et al. (2021) showed that there are more
than 108 unique graphs (Markov model structures) even for
only ten-state models. The number of possible unique graphs
combinatorially explodes as the number of states increases,
although a benefit of exploring differentMarkov structures is that
the obtained best model has a potentially-explainable biophysical
structure. On the other hand, for up to 10-state models, neural
ODEs would, in theory, simplify the model selection problem
from > 108 models to 10 models—by selecting the correct order
of the ODE, although we anticipate a neural network model
with nine hidden states would be extremely difficult to train
accurately. This simplification is achieved by absorbing the
selection of all the possible unique graphs for a given number
of states (the order of the ODEs) into a single optimisation
problem (i.e., training the neural network weights). Moreover,
using neural networks to model the right-hand side of the ODE
could allow some out-of-formalism behaviour (e.g., Lowen et al.,
1999)—if the real channels are doing anything more exotic than
the models assume. Although we see great potential in using
neural ODE modelling approaches that we demonstrated in this
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paper for ion channel modelling, we believe this approach is
still in its infancy; there are several limitations that we have
to overcome before these neural ODE models can be used as
confidently as the standard ion channel models.

5. CONCLUSION

In this paper, we have developed a method for training neural
ODEs for ion channel models. We assessed the performance
of neural ODEs with synthetic data studies and applied them
to experimental data for hERG. We found that the neural
ODEs were able to recover some of the missing dynamics in
the synthetic data studies, whilst they were not particularly
outperforming a standard Hodgkin and Huxley-style model used
in the literature when applied to experimental data. Neural
ODE modelling approach has great potential for handling model
discrepancy or misspecification, although currently it still has
strong limitations in terms of reliable extrapolation and training
for higher order ODEs.
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