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a b s t r a c t 

The optically pumped magnetometer (OPM) is a viable means to detect magnetic fields generated by human 

brain activity. Compared to conventional detectors (superconducting quantum interference devices) OPMs are 

small, lightweight, flexible, and operate without cryogenics. This has led to a step change in instrumentation for 

magnetoencephalography (MEG), enabling a “wearable ” scanner platform, adaptable to fit any head size, able to 

acquire data whilst subjects move, and offering improved data quality. Although many studies have shown the 

efficacy of ‘OPM-MEG’, one relatively untapped advantage relates to improved array design. Specifically, OPMs 

enable the simultaneous measurement of magnetic field components along multiple axes (distinct from a single 

radial orientation, as used in most conventional MEG systems). This enables characterisation of the magnetic 

field vector at all sensors, affording extra information which has the potential to improve source reconstruction. 

Here, we conduct a theoretical analysis of the critical parameters that should be optimised for effective source 

reconstruction. We show that these parameters can be optimised by judicious array design incorporating triaxial 

MEG measurements. Using simulations, we demonstrate how a triaxial array offers a dramatic improvement 

on our ability to differentiate real brain activity from sources of magnetic interference (external to the brain). 

Further, a triaxial system is shown to offer a marked improvement in the elimination of artefact caused by 

head movement. Theoretical results are supplemented by an experimental recording demonstrating improved 

interference reduction. These findings offer new insights into how future OPM-MEG arrays can be designed with 

improved performance. 
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. Introduction 

Magnetoencephalography (MEG) is the measurement of the mag-

etic fields generated at the scalp by current flow through neuronal as-

emblies in the brain ( Cohen, 1968 ). Mathematical modelling of these

elds (termed source reconstruction) enables the generation of 3D im-

ges showing moment-to-moment changes in neural current flow. In

his way, MEG offers a unique non-invasive window on brain func-

ion, enabling us to track activity within (and connectivity between)

rain regions in real time, as those regions become engaged to sup-

ort cognition ( Baillet, 2017 ). This provides a powerful tool for basic

euroscience and a useful clinical metric, particularly in disorders like

pilepsy ( Rampp et al., 2019 ) which involve abhorrent electrophysiol-

gy. 

The magnetic fields generated by brain activity are small – of or-

er 100 fT – and until recently the only viable tool for their measure-

ent was the superconducting quantum interference device (SQUID)
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 Jaklevic et al., 1964 ; Zimmerman et al., 1970 ; Cohen, 1972 ). In most

EG systems, a superconducting pick-up coil is placed close to the scalp,

nd orientated to measure the “radial ” (perpendicular to the scalp) com-

onent of neuromagnetic field. Each pick-up coil is inductively coupled

o a SQUID, which exploits quantum interference and a calibrated feed-

ack loop to measure magnetic field changes through the pick-up coil,

ith a noise level between 2 and 10 fT/sqrt(Hz). Around 300 separate

ick-up coils and SQUIDs surround the head, and this array allows mea-

urement of electrical brain activity with millisecond temporal precision

 Hamalainen et al., 1993 ). Following source reconstruction, images of

hanging neural current can be generated with spatial precision of a few

illimetres ( Barratt et al., 2018 ). 

These systems prove extremely effective for functional neuroimag-

ng. However, the requirement for cryogenics limits their utility. Since

oth the pick-up-coil and SQUID must be housed in a cryogenic vessel,

he sensor array is rigid, and one-size-fits-all. This means that there can

e no adaptability for different head sizes, resulting in inhomogeneous
arch 2021 
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nd sometimes poor spatial coverage. A thermally insulating gap must

e maintained between the scalp and the pick-up coils, which moves

he coils away from the head, reducing signal strength (in accordance

ith an inverse square law). Because the array is fixed, movement of

he participant during a scan results in a degradation of data quality.

inally, cryogenic infrastructure makes MEG systems complex and ex-

ensive. For these reasons, the uptake of MEG, particularly clinically,

as remained limited. 

In recent years, the MEG field has been changed fundamentally

y the introduction of a new generation of quantum-enabled mag-

etic field sensors. Optically pumped magnetometers (OPMs) offer field

ensitivity similar to that of SQUIDs (noise levels ~7–15 fT/sqrt(Hz))

ithout the requirement for cryogenic cooling ( Allred et al., 2002 ;

ominis et al., 2003 ). Miniaturisation has allowed OPMs to be made

mall and lightweight ( Allred et al., 2002 ; Kominis et al., 2003 ;

haskar et al., 2012 ; Sander et al., 2012 ; Johnson et al., 2013 ; Shah and

akai, 2013 ; Kamada et al., 2015 ; Sheng et al., 2017 ), making them per-

ect for MEG. Many studies have shown the suitability of OPMs for the

etection of neuromagnetic fields (e.g. ( Xia et al., 2006 ; Johnson et al.,

010 ; Sander et al., 2012 ; Kamada et al., 2015 ; Boto et al., 2017 )),

nd nascent systems incorporate up to ~50 sensors integrated into a

ightweight helmet which can be mounted on a subject’s head (e.g.

 Hill et al., 2020 ; Boto et al., 2021 )). Sensor mounting can be flexi-

le, meaning that different head shapes and sizes can be accommodated

 Hill et al., 2019 ). Moreover, assuming that the background magnetic

eld is controlled ( Holmes et al., 2018 ; Holmes et al., 2019b ), MEG

ata can be acquired whilst a subject makes large movements ( Boto

t al., 2018 ). This offers a step change in the utility of MEG; data acqui-

ition in individuals who would not fit in a conventional system (e.g.

abies) or who would find it challenging to remain still (e.g. patients

ith movement disorders) is possible. Likewise a wearable system en-

bles new possibilities for neuroscientific study, for instance allowing

rain activity to be measured whilst subjects are immersed in virtual re-

lity ( Roberts et al., 2019 ) or undertaking naturalistic tasks ( Hill et al.,

019 ). In addition, because sensors are closer to the brain (as no insu-

ating gap is required), OPM-MEG systems offer higher sensitivity, and

mproved spatial resolution ( Boto et al., 2016 ; Iivanainen et al., 2017 ;

oto et al., 2019 ). 

Many of the advantages of OPMs have been demonstrated. However,

ne untapped area relates to the flexibility of design. Most conventional

ystems use inductive sensors that measure field along a single orienta-

ion. For this reason, the neuromagnetic field is usually measured on the

adial axis. However, OPMs work in a fundamentally different way (see

 Tierney et al., 2019 ) for a review). In brief, an OPM contains a vapour of

lkali atoms whose atomic spins are aligned through optical pumping.

his alignment gives the vapour a bulk magnetic property which can

e altered by the presence of an external magnetic field, according to

he Bloch equations ( Shah and Romalis, 2009 ). By monitoring how the

trength of the laser beam is modulated as it passes through the vapour,

t is possible to gain very sensitive magnetic field measures. This de-

ign offers significant flexibility. For example, existing solutions allow

easurement of field components in multiple orientations ( Borna et al.,

020 ). Further refinement (e.g. splitting the laser beam and sending two

eams through the same cell, or using two different modulation frequen-

ies) offer the possibility of measuring the full (3D) field vector. Even us-

ng single axis sensors, their lightweight and flexible nature enables easy

lacement to measure field at different orientations. This allows new

ypes of sensor array to be conceived. Iivanainen et al. ( Iivanainen et al.,

017 ) simulated both dual axis and triaxial sensor arrays, showing them

o offer greater information content relating to the neuromagnetic field

and higher overall signal amplitude) compared to the use of radial sen-

ors. This extra information should provide improved characterisation

f neuromagnetic fields, and consequently (assuming source localisation

ethods are able to exploit this information) neuronal signals. 

Here, we investigate how an array comprised of flexibly placed tri-

xial OPMs might behave when source localisation via a beamformer
2 
patial filter (a popular source reconstruction algorithm ( Robinson and

rba, 1998 )) is applied. Specifically, we hypothesise that a system com-

rising ‘triaxial’ OPMs will offer more accurate source reconstruction,

articularly in the presence of external magnetic interference. The arti-

le is split into three sections. In Section 1 , we describe a MEG beam-

ormer, and via analytical assessment, determine the parameters of MEG

rray design that will affect its ability to reconstruct high fidelity signals.

e then explore how these parameters are affected by triaxial measure-

ent. In Section 2 , we confirm our analytical insights via simulations

hat show how a triaxial array will behave in the presence of interference

nd subject movement. Finally, in Section 3 , using a model of triaxial

easurement in which a small number of (single axis) OPMs are rotated,

e test experimentally the triaxial theory and its effect on real external

nterference. 

. Theory 

Throughout this paper, we will consider three hypothetical MEG

ensor arrays: 1) A 50 sensor system with radially orientated sensors

 Fig. 1 A). 2) A 50 sensor triaxial system in which each sensor offers

hree orthogonal measurements of magnetic field (meaning 150 chan-

els in total) ( Fig. 1 B). 3) A 150-channel radial only system ( Fig. 1 C). In

ll three cases we assume that the sensors are uniformly distributed over

he surface of a hemisphere (of radius 8.6 cm). For the triaxial system,

ensors are orientated to measure magnetic field in the radial ( 𝒆 𝒓 ), polar

 𝒆 𝜃) and azimuthal ( 𝑒 𝜙) orientations. 

.1. The beamformer spatial filter 

Source reconstruction is the process of deriving 3D images of electri-

al activity in the brain from measured magnetic field data. To under-

tand how source reconstruction (and consequently MEG results) might

iffer across different designs of sensor array, we will use a beamformer

pproach ( Robinson and Vrba, 1998 ). Using a beamformer, the electri-

al activity, 𝑞 𝜽( 𝑡 ) , at some location and orientation, 𝜽, in the brain is

econstructed based on a weighted sum of sensor measurements such

hat 

 ̂𝜃( 𝑡 ) = 𝒘 

𝑇 
𝜽
𝒃 ( 𝑡 ) , (1)

here 𝒃 ( 𝑡 ) is a vector of MEG data acquired across N channels at time t,

nd the ‘hat’ notation denotes a beamformer estimate of the true activ-

ty, 𝑞 𝜃( 𝑡 ) . 𝒘 

𝑇 
𝜽

are the weighting coefficients which would ideally be de-

ived to ensure that any electrical activity originating at 𝜽 is maintained

n the estimate, and all other activity supressed. To do this, we minimise

he variance of the estimate (i.e. 𝐸( ( ̂𝑞 𝜃( 𝑡 ) ) 
2 ) ) subject to the linear con-

traint that source power originating at 𝜽 must remain. Mathematically,

𝑖 𝑛 𝒘 𝜽𝐸 

((
𝑞 𝜃( 𝑡 ) 

)2 )
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒘 

𝑇 
𝜽
𝒍 𝜽 = 1 , (2)

here 𝒍 𝜽 is a model of the magnetic fields that would be recorded if there

ere a current dipole at 𝜽 with unit amplitude (i.e. 𝒍 𝜽 is the forward

odel). 𝐸( 𝑥 ) denotes expectation value. The solution to this is 

 

𝑇 
𝜽
= 

𝒍 𝑻 
𝜽
𝑪 

−1 

𝒍 𝑻 
𝜽
𝑪 

−1 𝒍 𝜽
, (3)

here 𝑪 is the data covariance matrix. 

.2. A single source with uncorrelated Gaussian sensor noise 

.2.1. Analytical breakdown 

For the purposes of this paper, we want to know the error between

he beamformer estimate ( ̂𝑞 𝜃( 𝑡 ) ) and the true source timecourse ( 𝑞 𝜃( 𝑡 ))
nd how this is impacted by array design. We start with the simplest

ossible case, where MEG data contain activity from a single source
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Fig. 1. Three hypothetical MEG systems. A) 50-sensor (and 50 channel) radial array. B) 50 sensor (150 channel) triaxial array. C) 150 sensor (150 channel) radial 

array. The circles show the sensor locations and the lines show the orientation along which field is measured. 

i  

s

𝒃  

w  

u  

t  

f  

m  

a  

u

𝑞  

w  

fi  

o  

p  

s

 

r  

t

𝐸  

w  

m  

b

𝐸  

𝜐  

i  

i  

h  

m  

m

2

 

w  

b  

a  

s  

a  

S  

h  

a  

o  

F  

o  

w  

c

 

c  ‖  

t  

f  

o

 

w  

s  

w  

T  

t

 

5  

o  

h  

c  

F  

a  

a  

fi  

b  

s  

B

 

s  

d  

c  

t  

t  

l

v  

a  

I  

t  

5  

f  

c  

 

s  

c  

s  

r  

m  
n the brain, with timecourse 𝑞( 𝑡 ) , and additive random noise at each

ensor, 𝒆 ( 𝑡 ) . Here, the MEG data can be expressed as 

 ( 𝑡 ) = 𝒍 𝑞 ( 𝑡 ) + 𝒆 ( 𝑡 ) , (4)

here 𝒍 is the forward field for the single source. We next assume that we

se the beamformer to focus on the true location of the source, and that

he source model is accurate (i.e. 𝒍 𝜽 → 𝒍 ). We also use an analytical form

or the data covariance matrix (i.e. we assume that the data covariance

atrix is a “perfect ” representation) Brookes et al., 2008 ). In this case,

 substitution of Eqs. (3) and (4) into Eq. (1) (see Appendix A) allows

s to write that 

̂ ( 𝑡 ) = 𝑞 ( 𝑡 ) + 

1 ‖𝒍 ‖2 𝒍 𝑇 𝒆 ( 𝑡 ) , (5)

here ‖𝒍 ‖ is the Frobenius norm of the forward field vector, 𝒍 . Here, the

rst term shows that the source estimate contains a true representation

f the source timecourse. The second term shows that, for each time

oint, the reconstructed data are contaminated by a projection of the

ensor noise through the forward field. 

Eq. (5) only represents a single point in time and a more useful met-

ic involves the summed square of the error across the reconstructed

imecourse, which can be written 

 𝑡𝑜𝑡 = 

1 √
𝑀 

√ √ √ √ 

𝑀 ∑
𝑖 =1 

(
𝑞 𝑖 − 𝑞 𝑖 

)2 
, (6)

here M is the total number of time points in the recording. Mathe-

atically, we can show (see Appendix A) that this total error in the

eamformer reconstruction collapses to the convenient expression 

 𝑡𝑜𝑡 = 

𝜐‖𝒍 ‖ . (7)

is the standard deviation of the noise at each sensor, which we assume

s equal across sensors and is an inherent property; i.e. we shall assume

t to be fixed (at around 10 fT/Sqrt(Hz) for OPMs). ‖𝒍 ‖ is a measure of

ow the sensor array is affected by the source, and it follows that, to

inimise the overall error in the beamformer projected timecourse, we

ust design an array to maximise ‖𝒍 ‖. 

.2.2. Simulation of the forward field norm 

To investigate how ‖𝒍 ‖ behaves across different array configurations

e calculated the magnetic field, 𝑙 𝑖 , generated by a 1 nAm source in the

rain at each sensor location/orientation, 𝑖 . For each 𝑖 , 𝑙 𝑖 was calculated

t the sensor locations as the dot product of the field vector with the

ensitive axis (or axes). This was done independently for each of the

rrays in Fig. 1 . The field was calculated based on the derivation by

arvas ( Sarvas, 1987 ), assuming the head to be a spherically symmetric

omogeneous conductor and that brain activity can be approximated as

 current dipole. ‖𝒍 ‖ computed as ‖𝒍 ‖ = 

√ 

𝑁 ∑
𝑖 =1 

𝑙 𝑖 , where N is the number
3 
f channels (i.e. 50 for the system in Fig. 1 A; 150 for the systems in

ig. 1 B and 1 C). Note that, for the triaxial system, 𝒍 is the concatenation

f fields for the three orientations (i.e. 𝒍 = [ 𝒍 𝒓 𝒂 𝒅 𝒊 𝒂 𝒍 , 𝒍 𝒑 𝒐 𝒍 𝒂 𝒓 , 𝒍 𝒂 𝒛 𝒊 𝒎 𝒖 𝒕 𝒉 ] )
hereas for the other two systems only radial fields are

onsidered. 

This calculation was run 6000 times, with the dipole at a different lo-

ations/orientations on each run. For each of the systems, we averaged

𝒍 ‖ over all realisations; we also computed the average (over realisa-

ions) of ‖𝒍 𝒓 𝒂 𝒅 𝒊 𝒂 𝒍 ‖ and ‖𝒍 𝒂 𝒛 𝒊 𝒎 𝒖 𝒕 𝒉 ‖. 𝐸 𝑡𝑜𝑡 was computed (as in Eq. (7) ) as a

unction of ‖𝒍 ‖ (concatenating values over all systems) to show how the

verall beamformer projected error behaves. 

For completeness, for radial sensors we looked at how ‖𝒍 ‖ varies

ith sensor count. An algorithm was used to place between 31 and 325

ensors equidistantly on a hemispherical surface. For each sensor count,

e simulated 25 source locations and computed the average value of ‖𝒍 ‖.

his was in order to derive, approximately, how ‖𝒍 ‖ for a 150 channel

riaxial system compares to ‖𝒍 ‖ for radial only arrays. 

Fig. 2 A shows an example forward field computed at each of the

0 sensors for the triaxial system. Fig. 2 B shows a visual representation

f the same example on a flattened representation of the head; the left

and map shows the distribution of radially orientated field, whilst the

entre-left and centre-right maps show the polar and azimuthal fields.

or comparison, the forward field for a 150-channel radial system is

lso shown on the right. Note that, for the tangential orientations (polar

nd azimuth) there is a significant departure from the ‘classical’ dipolar

eld pattern which is well known in MEG. Although these fields have

een calculated using a simple model, they are visually similar to mea-

ured tangential fields in previous MEG studies ( Haueisen et al., 2012 ;

orna et al., 2020 ). 

Fig. 2 C shows the variation of total error in a beamformer recon-

truction with the norm of the forward field. Each point represents a

ifferent realisation of the forward field simulation; values for the 50

hannel radial system are shown in blue, the 150 channel triaxial sys-

em in red, and the 150 channel radial system in green. The curve shows

hat (for this simple model) the 150 channel radial system offers the

owest beamformer reconstruction error. Fig. 2 D shows the mean ‖𝒍 ‖
alue across all realisations of source location, for radial, tangential, tri-

xial and 150 channel radial systems. Notice that, in agreement with

ivanainen et al. ( Iivanainen et al., 2017 ), ‖𝒍 ‖ is lower for the tangen-

ial orientations than for the radial orientation. Consequently, ‖𝒍 ‖ for a

0-sensor triaxial system (with 150 channels) tends to be higher than

or a 50-channel radial system (as one would expect given the increased

hannel count), but not as high as for a 150-channel radial only system.

Fig. 2 E shows how ‖𝒍 ‖ varies with channel count for a radial only

ystem. The shaded area indicates standard deviation across dipole lo-

ations). As expected ‖𝒍 ‖ increases approximately monotonically with

ensor count (the discontinuities are due to the way in which the algo-

ithm placed the sensors on the sphere). For comparison we show the

ean of ‖𝒍 ‖ for a 50-sensor radial array (blue), and a 50-sensor triaxial
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Fig. 2. Single source and sensor noise: A) vector magnetic fields generated by a single source with 1nAm amplitude. The same fields are shown viewed from three 

separate orientations. B) Field maps showing a different representation of the fields in (A). The left-hand map shows the fields projected along the radial direction; 

centre left shows the fields orientated along the polar axis; centre right shows fields orientated along the azimuthal axis. The right-hand map shows radial fields for 

a 150-channel radial system. C) Variation of total error in a beamformer reconstruction with the norm of the forward field. The curve follows the relationship in 

Eq. (7) . Blue, red and green show results for the 50 channel radial, triaxial, and 150 channel radial systems, respectively. D) Bar chart showing mean of the norms 

(error bars show standard deviation) across separate source locations. E) The red curve shows how the norm of the forward field changes with sensor count for a 

radially-orientated sensor MEG system. For comparison, the black dotted line shows the forward field norm for a 50 channel triaxial system. The blue dotted line 

shows the forward field norm for a 50-channel radial system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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rray (black). Based on this, ‖𝒍 ‖ for the triaxial system is approximately

qual to that for an 80-channel radial system. 

.3. Two sources with uncorrelated Gaussian sensor noise 

.3.1. Analytical breakdown 

The analysis above is oversimplified because, generally, there is

ore than one “active ” source contributing to the measured magnetic

eld. It therefore proves instructive to examine a mathematical model

ith two active sources. We assume that source 1 – with timecourse
4 
 1 ( 𝑡 ) and forward field 𝒍 1 – is our source of interest in the brain, whereas

ource 2 - with timecourse 𝑞 2 ( 𝑡 ) and forward field 𝒍 2 – represents inter-

erence (e.g. a source outside the brain). In this scenario, the MEG data,

 ( 𝑡 ) , are given by 

 ( 𝑡 ) = 𝒍 1 𝑞 1 ( 𝑡 ) + 𝒍 2 𝑞 2 ( 𝑡 ) + 𝒆 ( 𝑡 ) (8)

here again 𝒆 ( 𝑡 ) contains the sensor errors. As before we assume that

e reconstruct a source at the true location and orientation of source 1

o that, 

 ̂1 ( 𝑡 ) = 𝒘 

𝑇 
(
𝒍 1 𝑞 1 ( 𝑡 ) + 𝒍 2 𝑞 2 ( 𝑡 ) + 𝒆 ( 𝑡 ) 

)
= 𝑞 1 ( 𝑡 ) + 𝒘 

𝑇 𝒍 2 𝑞 2 ( 𝑡 ) + 𝒘 

𝑇 𝒆 ( 𝑡 ) . (9)
1 1 1 
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Note that, as with Eq. (5) , the estimate of the timecourse of source 1

 ̂𝑞 1 ( 𝑡 ) ) again contains the true source’s timecourse ( 𝑞 1 ( 𝑡 ) ), but now with

wo sources of error. For convenience we rewrite Eq. (9) as 

 ̂1 ( 𝑡 ) = 𝑞 1 ( 𝑡 ) + 𝛿𝑞 2 ( 𝑡 ) + 𝜖( 𝑡 ) , (10)

nd it is easy to see that the term 𝛿𝑞 2 ( 𝑡 ) represents interference from

ource 2 whilst 𝜖 is the error introduced by sensor noise. In designing a

EG array we must aim to minimise both terms. 

Again by exploiting a mathematical formulation of the data covari-

nce matrix ( Brookes et al., 2008 ) (see Appendix B) it becomes possible

o show that 

= 

‖𝒍 2 ‖‖𝒍 1 ‖ 𝑟 12 
[ 

1 − 𝑓 2 

1 − 𝑓 2 𝑟 
2 
12 

] 

, (11)

here 

 12 = 

𝒍 𝑇 1 𝒍 2 ‖𝒍 1 ‖‖𝒍 2 ‖ (12)

s a measure of the similarity of the lead field patterns for sources 1 and

. Geometrically this quantity represents the cosine of the angle between

he vectors 𝒍 1 and 𝒍 2 . Statistically it is related to the Pearson correlation

oefficient between the two forward fields; i.e. if sources 1 and 2 were

ompletely inseparable ( 𝒍 1 = 𝒍 2 ) then 𝑟 12 = 1 . If 𝒍 1 and 𝒍 2 look completely

ifferent (e.g. as might be the case if sources 1 and 2 were both brain

ources on opposite sides of the head) then 𝑟 12 = 0 . Note in this latter

ase, the interference from source 2 falls to zero. ( 𝑟 12 is similar to the

ead field correlation metric used in a previous study ( Iivanainen et al.,

017 ).) The quantity 𝑓 2 represents a scaled signal to sensor-noise ratio

nd is given by 

 2 = 

𝑄 

2 
2 ‖𝒍 2 ‖2 

𝜈2 + 𝑄 

2 
2 ‖𝒍 2 ‖2 , (13)

here 𝑄 2 is the standard deviation of 𝑞 2 ( 𝑡 ) across the duration of the

EG recording. Note that for very high signal to noise ratio, 𝑓 2 → 1 and

or very low signal to noise ratio 𝑓 2 → 0 . Eq. (11) is important since it

ells us how a beamformer separates two sources. It governs spatial res-

lution ( Barratt et al., 2018 ) (i.e. our ability to separate multiple sources

n the brain) and it also highlights the advantages of beamforming over,

.g. a dipole fit (see Appendix D). 

It is also possible to derive an expression for the error on the signal

ue to sensor noise by using a similar mathematical approach. Specifi-

ally, we can show (see Appendix B) that 

( 𝑡 ) = 

𝜈‖𝒍 1 ‖
[ 

𝑟 1 𝑒 ( 𝑡 ) 

( 

1 
1 − 𝑓 2 𝑟 

2 
12 

) 

− 𝑟 2 𝑒 ( 𝑡 ) 

( 

𝑓 2 𝑟 12 

1 − 𝑓 2 𝑟 
2 
12 

) ] 

(14)

here 𝑟 1 𝑒 ( 𝑡 ) = 

𝒍 𝑇 1 𝒆 ( 𝑡 ) ‖𝒍 1 ‖𝜈 denotes spatial correlation between the forward

eld of source 1, and the noise pattern. Similarly 𝑟 2 𝑒 ( 𝑡 ) = 

𝒍 𝑇 2 𝒆 ( 𝑡 ) ‖𝒍 2 ‖𝜈 denotes

patial correlation between the forward field of source 2, and the sensor

oise. 

This analytical description of additive noise on a beamformer recon-

truction is only valid for a single time point and so, as previously, it

s useful to quantify the total error across an entire timecourse. To do

his we again use the sum of the squared difference between the recon-

tructed and original timecourse, thus 

 

2 
𝑡𝑜𝑡 = 

𝑀 ∑
𝑖 =1 

(
𝑞 1 𝑖 − 𝑞 1 𝑖 

)2 
(15)

here i denotes the time point. As shown in Appendix B, assuming that

ensor noise and both sources are temporally independent, we can write

hat the total error on the timecourse ( 𝐸 

2 
𝑡𝑜𝑡 ) is given by the sum of the

rror from source 2, and the error from sensor noise, thus 

 

2 = 𝐸 

2 + 𝐸 

2 (16)
𝑡𝑜𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑖𝑠𝑒 

5 
here 

 

2 
𝑠𝑜𝑢𝑟𝑐𝑒 = 

𝑄 

2 
2 ‖𝒍 2 ‖2 ‖𝒍 1 ‖2 𝑟 2 12 

[ 

1 − 𝑓 2 

1 − 𝑓 2 𝑟 
2 
12 

] 2 

(17)

nd 

 

2 
𝑛𝑜𝑖𝑠𝑒 = 

𝜈2 ‖𝒍 1 ‖2 
⎛ ⎜ ⎜ ⎝ 
1 + 𝑓 2 2 𝑟 

2 
12 − 2 𝑓 2 𝑟 2 12 (

1 − 𝑓 2 𝑟 
2 
12 
)2 ⎞ ⎟ ⎟ ⎠ . (18)

Notice that in the case where either source 2 does not exist ( 𝑓 2 =
 12 = 0 ) or where the two sources are separable ( 𝑟 12 = 0 ) then the inter-

erence from the second source collapses to zero, and 𝐸 

2 
𝑛𝑜𝑖𝑠𝑒 

= 

𝜈2 ‖𝒍 1 ‖2 . 
The above analysis shows that, at least in theory, beamformer accu-

acy is governed by a relatively small number of parameters; some of

hose parameters are invariant to system design – e.g. 𝑄 1 is set by the

rain; 𝑄 2 by the nature of the interference; 𝜐 is inherent to the OPM

esign. However, other parameters can be altered by the way in which

he array is structured. For example, ‖𝒍 1 ‖ and ‖𝒍 2 ‖ will both increase

ith channel count; and as we have seen in Fig. 2 , ‖𝒍 1 ‖ will typically be

arger for radially orientated sensors. Likewise, the correlation of field

opographies ( 𝑟 12 ) may be altered by judicious array design. For this

eason, an understanding of Eqs. (17) and (18) becomes important for

nderstanding how these parameters relate to overall MEG reconstruc-

ion accuracy. 

Fig. 3 provides visualisations of Eqs. (17) and (18) . We have assumed

hat ‖𝒍 1 ‖ and ‖𝒍 2 ‖ take a realistic range of values for the three systems

n Fig. 1 and 𝑟 12 was allowed to vary between 0 and 1. The sensor noise,

, was set to 100 fT and both source amplitudes ( 𝑄 1 and 𝑄 2 ) were set to

 nAm. The left, centre and right columns show the errors from source

nterference, sensor noise, and total error respectively. The upper row

hows how error behaves when varying ‖𝒍 1 ‖ and 𝑟 12 . The middle row

hows error variation versus ‖𝒍 2 ‖ and 𝑟 12 . Finally, the lower row shows

rror versus ‖𝒍 1 ‖ and ‖𝒍 2 ‖. 

According to this theoretical model, the two most important param-

ters for minimising total beamformer error are ‖𝒍 1 ‖ and 𝑟 12 ; if a system

an be optimised such that 𝑟 12 is minimised, whilst ‖𝒍 1 ‖ is maximised,

his can result in a huge reduction in overall error. Note that, for a

xed value of 𝑟 12 , error decreases monotonically with increasing ‖𝒍 1 ‖
nd varying ‖𝒍 2 ‖ has relatively little effect. 

.3.2. Triaxial measurement and r 12 
To understand how 𝑟 12 relates to array design we undertook a final

alculation. Using a model of a current dipole in a conducting sphere

 Sarvas, 1987 ), we measured how 𝑟 12 changes given the three differ-

nt systems shown in Fig. 1 . On each iteration of this calculation we

imulated one source of interest in the brain, and one source of inter-

erence. Brain sources were simulated at a depth of between 2 cm and

.4 cm from the sphere surface with (randomised) tangential orienta-

ion. We simulated two types of interference source: First, we consid-

red an internal source, which comprised a current dipole within the

onducting sphere. This would model a second source (of no interest) in

he brain. The distance between the source of interest and interference

ource was derived from a uniform distribution, and was between 20

nd 60 mm. The orientation of the second source was also tangential.

econd, we simulated a source of interference external to the brain. For

onvenience, external sources were also taken to be current dipoles and

ere located between 0.2 m and 0.6 m from the centre of the sphere.

Note that, for these distances, the fields generated by these current

ipoles would be approximately equivalent to those from a magnetic

ipole.) For both internal and external interference we measured 𝑟 12 .

5,000 iterations of this calculation were run with the source locations

hanging on each iteration. 

Fig. 4 A shows 𝑟 12 values averaged over iterations for internal (left)

nd external (right) interference sources. Whilst for internal interfer-

nce, the improvement offered by a triaxial system is modest, for ex-

ernal interference the improvement is dramatic. The reason for this is
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Fig. 3. Theoretical analysis of the errors in beamformer reconstruction. We have assumed a simple model of two sources (1 and 2, with source two representing 

unwanted interference) and uncorrelated sensor noise. The left, centre and right columns show interference from source two, sensor noise, and total error respectively. 

The upper row shows error as a function of ‖l 1 ‖ and r 12 (with ‖𝑙 2 ‖ set to 1 × 10 − 13 T). The middle row shows error versus ‖𝑙 2 ‖ and r 12 (with ‖𝑙 1 ‖ set to 1 × 10 − 13 T). 

The lower row shows error versus ‖𝑙 1 ‖ and ‖𝑙 2 ‖ (with r 12 set to 0.5). Sensor noise was assumed to be ν = 100 fT and both source amplitudes were 1 nAm. Note the 

critical importance of both ‖𝑙 1 ‖ and r 12 in determining the overall beamformer error. 
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ummarised in Figs. 4 B and 4 C. Fig. 4 B shows a single example of the

agnetic field vectors measured at an array of 150 sensors; neuromag-

etic field from a current dipole in the brain is shown in black. Fields

rom an external source are in blue. As shown, the vector fields differ

ramatically. However, when just taking the radial projection of these

eld vectors – which are shown in the left-hand maps of Fig. 4 C, the two

eld patterns look similar. Likewise, the field patterns for the polar and

zimuthal field projects look similar. However, whilst the radial compo-

ents are positively correlated, both of the tangential components are

egatively correlated. This means that when the radial, polar and az-

muthal projections are concatenated, correlation will be reduced com-

ared to use of any one projection alone. Whilst this is only one example,

t illustrates the reason why the value of 𝑟 12 is reduced in the triaxial sys-

em, compared to the simulated radial systems for external sources of

nterference. This idea will be addressed further in our discussion. 

.3.3. Interim conclusion 

Our analyses show that beamformer error depends on two critical

arameters: ‖𝒍 1 ‖ (the Frobenius norm of the field measured from the

ource of interest) and 𝑟 12 , (the similarity between the field patterns for

he sources of interest and interference). The former should be max-

mised whilst the latter minimised. Maximising ‖𝒍 1 ‖ is easily achieved

y adding sensors; adding tangential measurements (i.e. replacing ra-

ial sensors with triaxial sensors) increases ‖𝒍 1 ‖ by virtue of effectively

ripling the channel count. However, the increase is not as large as that
6 
roduced by adding an equivalent number of radial sensors, since on

verage, the polar and azimuthal fields are smaller than radial fields.

owever, this theory also suggests that the addition of triaxial sensors

as a dramatic effect on 𝑟 12 , for sources of interference outside the brain.

e argue that this outweighs the relatively modest effect on ‖𝒍 1 ‖, and

onsequently, particularly in cases where large external interference is

xpected, a triaxial system will offer a marked advantage over a radial

ystem, even if the latter has a very high channel count. This theory thus

rovides the basis for the simulations presented in Section 3. 

. Numerical simulation 

.1. Effect of interference on beamformer reconstruction 

Based on our analytical insights, we hypothesised that a 150-channel

adial system should outperform a 50 sensor triaxial system in the ab-

ence of interference (a consequence of the higher forward field norm).

owever, if interference is introduced (external to the brain), we would

xpect that the triaxial system would offer improved performance (due

o its ability to better separate source topographies (diminish 𝑟 12 ). We

ndertook simulations to test this hypothesis. 

.1.1. Methods 

Simulations were based on the systems shown in Fig. 1 . For all sim-

lations we employed a spherical volume conductor head model. The

imulation comprised three stages: 
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Fig. 4. The effect of array design on r 12 . A) mean r 12 values across 25,000 dipole realisations, as a function of array type. Left hand plot shows the case for internal 

sources; right hand plot shows the case for external sources. B) Example magnetic field vectors for a single internal source of interest (black) and external source 

of interference (blue). Green dot shows the source of interest C) The same fields decomposed into radial ( r), polar ( θ) and azimuthal ( 𝜙) components and shown as 

topographical maps. Note the external interference field is smaller due to it’s proximity to the head array (we have modelled a current dipole strength of 1 nAm in 

both cases). Obviously in practice the dipole strength for an external source is larger. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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• Single Source simulation: A single source of interest was simulated

in the brain. The source was located between 2 cm and 2.4 cm from

the surface of the head (sphere) to mimic activity in the cortex. Apart

from its depth, the source location was random. Source orientation

was tangential to the radial direction, but otherwise random. The

source timecourse comprised Gaussian distributed data sampled at

600 Hz, and the root-mean-square amplitude was set to 1 nAm. The

forward field was based on a current dipole. 
• Interference generation: We used two different realisations of in-

terference; external and internal to the brain (i.e. the former repre-

senting e.g. laboratory equipment and the latter representing ‘brain

noise’). 

○ For external interference , we generated 80 sources of magnetic

field, at distances ranging from 20 cm to 60 cm from the cen-

tre of the head. Source timecourses comprised Gaussian random

data and their locations were randomised. All sources were as-

sumed to be current dipoles orientated perpendicular to the vec-

tor joining the centre of the head to the dipole location. The

source strength was calculated in proportion to the strength of

the source of interest. Specifically, assuming ‖𝒍 𝑠 ‖ is the forward

field norm of the source of interest, ‖𝒍 𝑖𝑛𝑡 ‖ is the forward field

norm of the interference, and 𝑄 𝑠 is the source amplitude, then

the interference amplitude was set as 𝑄 𝑖𝑛𝑡 = 𝛼𝑄 𝑠 
‖𝒍 𝑠 ‖‖𝒍 𝑖𝑛𝑡 ‖ where 𝛼

controls the relative strength of interference. 
f  

7 
○ For internal interference , we generated 15 dipoles in the head.

These interference sources could take any location, but source

orientation was constrained to a tangential plane (defined rel-

ative to their location within the sphere). Interference sources

were positioned at a minimum of 20 mm, and a maximum of

60 mm from the source of interest (Euclidean distance). Source

timecourses were Gaussian random data, and the source ampli-

tudes were set in proportion to the source of interest. 
• Additive noise: Sensor noise was assumed to be Gaussian random

noise, independent, but with equal amplitude, across sensors. This

was added with an amplitude of 30 fT. 

A total of 300 s of data were simulated in this way. For each iteration

f the simulation, different source and interference locations were used

nd 𝛼 took values ranging from 0 to 1.4 in steps of 0.1 to increase the

mpact of interference on the MEG data. (Different source/interference

imecourses, and different noise realisations were used for each 𝛼.) 25 it-

rations of the simulation were run. Source and interference timecourses

ere the same for each system type (50-channel radial, triaxial, and 150-

hannel radial) although different sensor noise was used for the three

ystems. 

Each dataset, for each system, was processed using a beamformer.

rior to beamforming, we simulated a coregistration error on the sen-

or locations such that the location and orientation of the sensors used

or beamforming were not the same as those used to simulate the data.
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pecifically, sensor locations and orientations underwent a 2 mm trans-

ational, and 2° rotational affine transformations whose directions were

andomised. 

Data covariance was calculated in the 0–300 Hz frequency window,

nd a time-window encompassing the full 300-s simulation. No regular-

sation was used. To image the source, we adopted a pseudo-Z-statistic

pproach, which contrasts beamformer projected power to noise. Im-

ges were generated within a cube with 12 mm side length, centred on

he true source location. The cube was divided into voxels (of isotropic

imension 1 mm) and for each voxel the source orientation was esti-

ated using the direction of maximum signal to noise ratio. A single

mage was generated per simulation. In each case, the peak pseudo-Z

tatistic was found and its location used to reconstruct the timecourse

f peak activity. We derived three measures of beamformer accuracy. 

1 Localisation accuracy: We found the location of the peak in the

beamformer image and computed its displacement from the true

source location. This provided a measure of localisation error. 

2 Timecourse error: We calculated the sum of squares of the dif-

ferences between the reconstructed timecourse (at the peak in the

beamformer image) and the true timecourse. 

3 Timecourse correlation: At the location of the peak in the beam-

former image we calculated the temporal Pearson correlation be-

tween the beamformer-projected source timecourse and the simu-

lated timecourse. 

.1.2. Results 

Fig. 5 A shows example beamformer images and reconstructed time-

ourses for the three MEG systems. In the left-hand panel there was no

nterference ( 𝛼 = 0 ). In the right-hand panel, 80 sources of interference,

xternal to the brain, have been added; each with amplitude equiva-

ent to that of the source of interest ( 𝛼 = 1 ). In both cases the top, cen-

re and bottom panels show the 50-sensor radial, 50-sensor triaxial and

50-sensor radial systems, respectively. As expected with no external in-

erference all three systems faithfully reconstruct the source (the small

ocalisation error likely results from the simulated coregistration error).

owever, when interference is added, for both radial systems the beam-

ormer image and the source reconstruction are degraded. The triaxial

ystem, in contrast, maintains a faithful representation. 

These results are formalised in Figs. 5 B, C and D which show time-

ourse correlation, timecourse error and localisation accuracy, as a func-

ion of interference amplitude. As interference is added, both radial sys-

ems begin to degrade in performance. In contrast, the triaxial system

emains unaffected by the external interference. Note that, with no inter-

erence, the 150-channel radial system outperforms the triaxial system

s expected. However when interference is introduced, the triaxial gains

n advantage. 

Fig. 6 shows our summary metrics plotted against interference am-

litude for internal sources of interference (i.e. brain noise). Here, the

easurement of vector fields with a triaxial system does not help to

istinguish between sources and consequently, a triaxial system offers

ess improvement. Whilst 50 triaxial sensors outperform 50 radial sen-

ors (likely a consequence of the increased lead field norm), 150 radial

ensors, in this case, result in a more accurate reconstruction. In fact,

urther work (not shown) infers that the 50 sensor triaxial device per-

orms approximately equivalently to 80 radial sensors in the presence

f internal interference sources. (See also Fig. 2 ). 

.2. Effect of head movement on beamformer reconstruction 

Perhaps the biggest advantage of an OPM system is that the use of

ightweight sensors makes it possible for the system to be integrated

nto a wearable helmet, allowing subjects to move during data acqui-

ition ( Boto et al., 2018 ; Hill et al., 2019 ). This robustness to motion

akes the MEG environment better tolerated by many people. However,

n the presence of a background field, motion causes magnetic artefacts
8 
ince the sensors rotate relative to the background field (or translate in a

eld gradient). Significant work ( Holmes et al., 2018 ; Iivanainen et al.,

018 ; Holmes et al., 2019a ) has been directed at minimising these back-

round fields/gradients, usually via a combination of advanced passive

agnetic screening (i.e. housing the system within a room made from

ultiple layers of high permeability material) and electromagnetic coils.

sing such methods, background fields can be made as low as 1 nT.

owever, even in these very low field environments, artefacts may still

e similar in magnitude to brain activity, and so better ways to supress

otion will be important for OPM-MEG to reach its true potential. 

In principle, the motion artefact behaves somewhat like external in-

erference, and so given the results in Fig. 5 , one might expect a triaxial

ystem to facilitate removal of such artefacts more effectively than a ra-

ial system. However, unlike external interference, which typically re-

ults in a spatially static field, movement artefact manifests as an appar-

ntly moving field. This introduces non-linearly changing field patterns

hich makes it hard to model. For this reason, we undertook a simula-

ion to assess the performance of our three system types for movement

rtefact suppression. 

.2.1. Methods 

To simulate motion artefacts, we first generated a set of movement

arameters. As with any rigid body, we assumed 6 degrees of freedom

or the simulated helmet/head – translation in x, y and z, and rotation

bout x y and z. For each degree of freedom, we simulated a ‘motion time

eries’ which collectively would define how the helmet moved relative

o a static background field. Motion time series comprised Gaussian ran-

om data which were frequency-filtered to the 4 to 8 Hz frequency band

since movement was assumed to be mostly low frequency). Each of the

ix motion time-series comprised a single common signal (i.e. modelling

ommon movement about multiple axes at the same time) and a separate

ndependent signal (i.e. modelling temporally-independent movements

n each axis). The amplitude of the common signal was 5 mm transla-

ion and 3° rotation; the amplitude of the independent signal was 2 mm

ranslation and 2° rotation. Following construction of the time series,

he motion was applied to the helmet via affine transformation. 

We assumed three different conditions for the background field. 1)

o field (i.e. so movement will have no effect). 2) A static and uniform

ackground field of 𝑩 ( 𝒓 ) = [5 5 5] nT (where 𝒓 represents position) (i.e.

otations will cause artefacts, but translations will have no effect). 3) A

tatic but non-uniform background field. Here 𝑩 ( 𝒓 ) = 𝑩 𝑜 + 𝑮 . 𝒓 : 𝑩 𝑜 ( = [5

 5] nT) is a spatially uniform background field and 𝑮 is a 3 × 3 matrix

hich describes the linear magnetic field gradients with 𝐺 𝑖𝑗 produc-

ng the field component 𝐵 𝑟 𝑖 
= 𝐺 𝑖𝑗 𝑟 𝑗 where 𝑟 𝑖,𝑗,𝑘 = 𝑥, 𝑦, 𝑧 . We assumed

 = [ 
10 5 8 
5 10 5 
8 5 −20 

] 𝑛𝑇 𝑚 

−1 ; note the reflectional symmetry and zero

race of the matrix is imposed by the Maxwell equations. For each time

oint, the location and orientation of every sensor in the helmet was

alculated according to the motion timecourse, and the local field vec-

or calculated. The field ‘seen’ by the sensor was then estimated as the

ot product of the sensitive sensor orientation(s) with the field vector,

 ( 𝒓 ) . 
OPM sensors come equipped with on-board electromagnetic coils

hich zero the field at the measurement location; this is a requirement

ince OPMs must operate close to zero field. This means that, at the start

f an experiment (i.e. with the head in its starting position) the fields

easured will be zero. At this point, the currents applied to the on-

oard coils are locked. To simulate this, the artefact was assumed to be

he measured field shift between the first timepoint, and all other time-

oints. An example of this process is shown in Fig. 7 A, for a 150-channel

ystem. 

A single dipolar source of 1 nAm-amplitude was simulated at a depth

f between 20 mm and 48 mm from the surface of the spherical conduc-

or, with random orientation in the tangential plane. The source was

angentially-orientated and its location randomised. The source time-
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Fig. 5. Beamformer performance with 80 external interference sources. A) Example beamformer images of a simulated source of interest. Line plots show recon- 

structed timecourses (in nAm) from the peak of the image (coloured lines) overlaid on the true source timecourse (black). Three rows show the three different 

simulated systems whilst the two columns show results produced with (right) and without (left) interference. B) Correlation between the reconstructed and true 

source timecourse, as a function of interference amplitude. C) Error on the beamformer timecourse versus interference amplitude. D) Localisation error versus 

interference amplitude. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o  
ourse comprised Gaussian random noise, which was frequency filtered

o the 4–8 Hz band to mimic a situation where the source of interest

s obfuscated (in terms of frequency) by the movement artefact. Sen-

or noise corresponding to 15 fT/rHz was also added. This sensor noise

as also filtered to the 4–8 Hz band, leading to a standard deviation

f 30 fT. For each of the three separate background field conditions,

he simulation was run 50 times using a different source of interest on

ach iteration. To assess the extent to which the beamformer can recon-

truct the source we again measured timecourse correlation, timecourse

econstruction error, and localisation error. 

.2.2. Results 

In Fig. 7 B, our three separate performance metrics are shown in the

hree rows. The left, centre and right columns show 50-sensor radial,

he 50-sensor triaxial, and 150- sensor radial systems, respectively. As in

ig. 5 , we see a degradation in performance of the two radial systems as

he motion artefact is added, and then made more complex. As would be

xpected, the 150-channel system performs better than the 50-channel
9 
adial system. However, the triaxial system outperforms both, with little

r no loss in performance as the motion artefact is added. 

.2.3. Interim conclusions 

The simulations confirmed our theoretical analyses that a triaxial

EG system can offer extremely attractive advantages in terms of inter-

erence rejection. In particular, the ability to better distinguish sources

f interference (external to the brain) from the neuromagnetic field

eans that whilst radial arrays are adversely affected by external in-

erference, the triaxial array is much less affected once a beamformer

as been applied. In a similar way, if a wearable OPM array is used in

hich a subject rotates and translates their head in a background field,

he effects of the resulting artefact can be better supressed by a triaxial

rray compared to a radial only array. 

. Experimental verification 

The above simulations demonstrate the theoretical advantages

f a triaxial MEG system. Obviously experimental verification of
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Fig. 6. Beamformer performance with 15 internal interference sources. A) Correlation between the reconstructed and true source timecourse, as a function of 

interference amplitude. B) Error on the beamformer reconstructed timecourse versus interference amplitude. C) Localisation error versus interference amplitude. 
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hese advantages would be attractive but, whilst triaxial OPMs exist

 www.quspin.com ), at the time of writing they have not yet been pro-

uced in sufficient quantities to support a MEG array. For this reason,

e aimed to experimentally verify the triaxial “principle ”, using a more

onventional OPM-MEG array. The fundamental idea behind the triaxial

rinciple is that orienting sensors in different ways helps to differentiate

ources of magnetic field inside and outside the brain (by reducing 𝑟 12 ).

his being the case, we surmised that a similar effect might be achiev-

ble by taking a radial-only array and rotating the sensitive axis of a

mall number of sensors through 90°. 

.1. A system with rotated sensors - simulation 

Fig. 8 A shows two simulated 50-channel systems; in both cases the

ensor locations are identical, however in the system on the right, 5 sen-

ors have had their sensitive axis rotated (sensors circled in black) into

he azimuthal orientation. For both systems, we simulated 25 sources of

nterest in the brain (1 nAm, dipolar, orientated tangentially and loca-

ion randomised.) For each internal source we simulated 80 sources of

xternal interference (also current dipoles, at a distance between 20 cm

nd 60 cm from the centre of the head, strengths set as per our previ-

us simulations using the parameter, 𝛼). For each pairing of a source of

nterest and interference source, we measured the correlation between

heir spatial topographies (i.e. 𝑟 12 ) for the radial and ‘rotated’ systems. 

Fig. 8 B shows a single example of one source pair. The maps show

he topographies of the measured fields from the internal and external

ources; notice how the external source topography is altered by the sen-

or rotation and this leads to a drop in the 𝑟 12 value. Fig. 7 C shows all

 12 values for the radial system, plotted against the equivalent 𝑟 12 values

or the system with some rotated sensors. If the rotation of sensors had

o effect, then these values would fall along the 𝑦 = 𝑥 line (shown in

lack). However, they consistently fall beneath it (line of best fit shown

n blue), implying that 𝑟 12 is, on average, lowered by sensor rotation.

hilst this effect is marginal, we point out that beamformer estimated

rror is a non-linear function of 𝑟 12 , meaning that even a marginal re-

uction could yield a relatively large improvement in beamformer per-

ormance. 

In Fig. 8 D, E and F, we have repeated the simulation shown in Fig. 5 ,

sing the radial and rotated systems. As expected, even rotating 5 sen-

ors has a relatively large effect, with a significant improvement in per-

ormance. Obviously, this effect is not as dramatic as that expected for a

omplete triaxial system (compare e.g. Fig. 8 E with Fig. 5 B). Neverthe-

ess this theoretical improvement provides a basis for a simple exper-

ment with an existing 50-channel OPM-MEG array. We hypothesised
10 
hat an experimental array with 5 rotated sensors might enable better

uppression of interference by a beamformer. 

.2. A system with rotated sensors – experiment 

.2.1. Methods 

A single subject (male, aged 25 years, right-handed) took part in the

xperiment, which was approved by the University of Nottingham Med-

cal School Research Ethics Committee. On each trial of the experiment,

he participant was shown a visual stimulus (a picture of a hand) for 2 s;

his was followed by 3 s rest. Whilst the stimulus was on the screen, the

articipant was asked to make continuous abductions of their left index

nger. The experiment comprised 50 trials and was repeated 4 times.

his paradigm gives a robust response in the beta (13–30 Hz) frequency

and. 

MEG data were recorded using a 45 channel OPM-MEG array; this

rray has been described in previous papers ( Hill et al., 2020 ). Sensors

ere manufactured by QuSpin Inc. and formulated as magnetometers.

hey were mounted in a 3D printed rigid helmet and their location and

rientation with respect to brain anatomy was found using a combina-

ion of the known geometry of the 3D printed helmet (which gives sensor

ocations and orientations relative to the helmet, and each other) and

 head digitisation procedure, based upon optical scanning ( Hill et al.,

020 ) (which provides a mapping of the helmet location to the head).

ost importantly, in the first and third run of the experiment, sensors

ere orientated radially (see Fig. 9 A, left hand side), while in the second

nd fourth runs of the experiment, 5 sensors were rotated through 90°

 Fig. 9 A, right hand side). This gave a similar experimental setup to that

imulated in Fig. 8 . Note that the axis of rotation was constrained by the

D printed helmet, and the rotation itself affected simply by changing

he sensitive readout axis of the OPM. 

.2.2. Sensor space analysis 

Sensor space data were frequency-filtered into the beta band and

egmented into trials. For each sensor, and each trial, data were Fourier

ransformed to provide an amplitude spectrum. We then averaged over

ll trials, and sensors, in order to visualise how the beta band data were

ontaminated by artefacts. A source of external interference (caused by

earby laboratory equipment outside the MSR) was found at ~16.7 Hz.

he spatial topography (across sensors) of this artefact was measured

y taking the magnitude of the amplitude spectrum, at this frequency,

cross all sensors. 

http://www.quspin.com
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Fig. 7. Motion artefact suppression. A) An example of the simulated motion artefact. In each of the 3D plots, the red circles show the original sensor locations at 

time zero. The black circles show the sensor locations at 4 consecutive points in time (with time increasing vertically). Note the rotation of the head. The red lines 

show the direction of the background field at each sensor at each timepoint. The inset field maps show the artefact, which is the change in field between time zero 

and the current time point. B) Performance of 3 simulated systems in supressing motion artefact. The three columns show the 50-sensor radial, 50-sensor triaxial, 

and 150-sensor radial systems. The top, centre and bottom rows show timecourse correlation, timecourse error and localisation error respectively. Within each plot 

we show the associated performance metric for no background field, a uniform field, and a non-uniform field. Notice that performance metrics decline for both radial 

systems but not for the triaxial device. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.2.3. Source space analysis 

Data were projected into source space using a beamformer. We com-

uted data covariance in the beta band. Data were segmented into trials

nd, in order to avoid discontinuities between trials affecting our co-

ariance estimate, a separate covariance matrix was calculated for each

rial, and the average over trials used. No regularisation was applied.

he forward field was based on a spherical volume conductor model,

sing the best fitting sphere to the subject’s head shape, and the dipole

pproximation. Data were reconstructed to 78 locations in the cortex,

ach corresponding to the centroid of a cortical region, defined based

n the Automated Anatomical Labelling (AAL) brain atlas. For each AAL

egion, we computed the data for each trial. Associated amplitude spec-

ra were derived and averaged across trials and regions. This analysis

as independently applied to each of the four experimental runs. 

To approximate 𝑟 12 in experimental data, for each of the 4 runs, we

orrelated the source space topography of the interference pattern with

he best fitting forward field for each AAL region. This was done inde-

endently for each run and we plotted averaged values from runs 1 and

, against averaged values from runs 2 and 4. 
11 
Finally, we included a conventional analysis whereby, at each AAL

egion, we contrasted oscillatory amplitude in an active window (1–

 s) to oscillatory amplitude in a control window (3–4 s). This was

ormalised by the value for the control window to estimate fractional

hange in beta amplitude induced by the task. We also plotted the trial-

veraged beta amplitude for an AAL region in right motor cortex. 

.2.4. Results 

Fig. 9 B shows the sensor-space data. The line plot shows Fourier-

erived amplitude spectra averaged over channels, with a clear artefact

t ~16.7 Hz. Data from runs 1 and 3 (radial sensors) are shown in black

nd blue; runs 2 and 4 data (radial and tangential sensors) are shown in

ed and green. Note that the artefact is consistent across all four runs.

he spatial topography of the artefact is shown inset. 

The equivalent amplitude spectra for the source-space-projected

ata are shown in Fig. 9 C. In all four cases, the 16.7 Hz artefact

as been reduced in relative amplitude compared to channel-space

ata, however this reduction is more pronounced in the data recorded

ith the five rotated sensors. The distribution of this improvement
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Fig. 8. the effect of sensor rotation – simulation: A) two simulated OPM MEG arrays. Both have 50 channels with sensors in identical locations. However, the system 

on the left has all channels orientated radially, whereas the system on the right has 45 radial and 5 tangential sensors (rotated sensors circled in black). B) Example 

simulated field patterns for a source internal to the brain (upper row) and external to the brain (lower row) measured using the radial (left) and rotated (right) 

systems. Note that the smaller scale of the external source is due to it’s proximity to the array; i.e. we maintain the dipole amplitude at 1 nAm for both brain and 

interference sources, the interference amplitude is then set by the parameter, 𝛼. C) r 12 values for the radial system (x-axis) versus rotated system (y axis). Each 

point (red) represents a different internal/external source pair. Black line shows y = x . blue line shows line of best fit to the data. D) Timecourse correlation versus 

amplitude of external interference. E) Timecourse reconstruction error versus amplitude of external interference. F) Localisation error versus amplitude of external 

interference. In D, E and F the blue line shows the radial system and the red line shows the system with 5 rotated sensors. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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cross the brain is shown in the inset image (calculated as a relative

hange). This provides experimental evidence that the primary find-

ngs of the theory and simulations presented above can be realised.

stimated 𝑟 12 are shown in Fig. 9 D; note that, on average, the for-

ard fields from the AAL regions are more similar to the spatial to-
12 
ography of the artefact for the radial system compared to the rotated

ystem. 

Finally, for completeness Fig. 9 E shows the beta modulation pro-

uced by the task: blue indicates a loss of beta power during the time

indow where the subject was making controlled left index finger move-
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Fig. 9. Experimental results: A) Two experimental OPM arrays. The left-hand array has only radial sensors; the right-hand array has 40 radial and 5 tangential sensors. 

B) Trial- and sensor-averaged Fourier amplitude spectra showing the beta-band-filtered data with an artefact due to external interference at 16.7 Hz. Spatial topography of 

the interference peak is shown on the right-hand side. C) Trial- and region-averaged Fourier amplitude spectra in source space, showing the beta band filtered data with an 

artefact due to external interference at 16.7 Hz. Note the clear difference in 16.7-Hz artefact between the radial and rotated sensor layouts. Cortical distribution of improvement 

afforded by sensor rotations are shown on the right. The spectral difference is calculated as the difference in mean amplitude of the 16.7 Hz peak for the radial and rotated 

systems, divided by the sum of the same quantities D) An approximation of correlation between internal sources (lead fields) and interference topography. Red markers show 78 

regions with 𝑟 12 for the radial system plotted on the x axis, and 𝑟 12 for the rotated system on the y axis. E) Task-induced beta modulation across 78 AAL regions. Blue indicates 

a decrease in oscillatory power during movement compared to rest. Inset timecourses show trial averaged beta amplitude envelope in right motor cortex. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ents. Note that the main effects are well localised to sensorimotor cor-

ices. Both the radial, and rotated systems offer reasonable localisation.

he inset line plots show beta modulation in right motor cortex, av-

raged over trials, with the expected loss in beta power during move-

ent (the movement-related beta decrease – MRBD) and an increase

above baseline) immediately following movement cessation (the post-

ovement beta rebound – PMBR) clearly delineated. 

. Discussion 

A number of recent studies have shown that OPMs offer a potential

tep change for MEG technology, however one area that has not been

ell documented is that the flexibility of placement of OPMs, coupled

ith new designs of sensor, might offer array designs which can aid mag-

etic source imaging. Cryogenic sensors rely on pick up coils which can

e bulky, and whilst vector field measurements have been made success-

ully using SQUID technology ( Haueisen et al., 2012 ; Nurminen et al.,

013 ), the physical limitations of coils makes it difficult to measure 3

eld orientations at the same location, and triaxial SQUID systems have

ot reached mainstream use. In contrast, OPM design can facilitate co-

ocalised, vector-field measurements at relatively little extra cost or com-

lexity ( Borna et al., 2020 ), making a multi-channel whole-head triaxial

ystem possible. Even with single axis OPMs, their miniaturised design

nd the flexibility to easily change the orientation of the sensitive axis

ffers a means to alter MEG arrays in a way that can offer improved per-

ormance. In this paper, our aim was to demonstrate how this flexibility

an be exploited. 

Our analytical models provided insights into how a MEG array

hould be optimised to maximise the benefits of spatial filtering. Our

ingle-source model showed that a key parameter is ‖𝒍 ‖ – the norm of

he forward field of the source of interest. This can be thought of as the
13 
otal amount of signal picked up across the array from an active source.

e showed that the total error in a beamformer reconstruction goes as

/ ‖𝒍 ‖, meaning that as ‖𝒍 ‖ increases, the error will be diminished. The

asiest means to increase ‖𝒍 ‖ is via the addition of extra sensors to an

rray and so, by effectively tripling the channel count, a triaxial system

mmediately adds value. However, we also showed, in agreement with

revious work ( Iivanainen et al., 2017 ), that there is an advantage to ra-

ially orienting the sensitive axes of the additional sensors, since radial

elds are larger than the tangential fields. This led to the finding that a

riaxial system with 50 sensors has an approximately equivalent perfor-

ance to a radial system with 80 sensors, in the absence of interference . 

Analytical analyses using two sources showed that the second key

arameter to consider when designing a MEG array is 𝑟 12 – the forward

eld correlation between the two sources. This tells us that if a source

f interference has a similar sensor space topography to the source of

nterest, then this will lead to a large error in reconstruction. However,

sing a beamformer, the total error on a reconstruction is a non-linear

unction of 𝑟 12 meaning that even a modest improvement (reduction)

n 𝑟 12 can yield a relatively large drop in error. (This is in contrast to

ther source localisation algorithms, such as dipole fitting, where re-

onstruction error would be a linear function of 𝑟 12 – this in itself shows

he advantage of the beamformer’s adaptive nature.) This non-linearity

eans that even a relatively small manipulation of the array lay-out can

esult in a small reduction in 𝑟 12 , and large improvement in reconstruc-

ion accuracy. Further analysis showed that the introduction of triaxial

ensors can have a large effect on 𝑟 12 , and consequently the addition of

riaxial sensors, or even rotation of a few unidirectional sensors, enables

etter interference rejection. 

The means by which array manipulation affects 𝑟 12 is shown by the

imple cartoon in Fig. 10 . Here we show a very simple three sensor

rray. In the upper schematic we see a field (blue arrows) generated
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Fig. 10. Schematic showing how two very different fields can appear similar 

when measured by radially orientated sensors. Upper plot shows a field origi- 

nating from a source in the brain. Lower plot shows a uniform field originating 

outside the brain. In both cases the blue arrows show the field orientation; red 

arrows show the effective field picked up by a radially orientated sensor. (For 

interpretation of the references to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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y the brain. Assuming radially orientated sensors then sensor 1 would

easure a field directed out of the head (a positive field – red arrow);

ensor 3 would detect a field directed into the head (a negative field

red arrow); sensor 2 would pick up nothing. In the lower schematic

e see a very different uniform field generated by an external source.

owever, because of the orientation of the radial sensors, again sen-

or 1 measures a positive field, sensor 3 a negative field, and sensor 2

othing. This means, despite very different fields, the measured topog-

aphy would be highly correlated. In contrast, if we simply rotated the

ensitive axis of sensor two so that it measures tangentially, it’s easy

o see that the measurements made would show that the two fields

re in opposite directions. This would cause a reduction in the corre-

ation. This is the basic premise of the effects shown throughout this

aper. 

The analytical insights enabled formulations of hypotheses regard-

ng beamformer behaviour, which have been tested in simulations.

ig. 5 shows that the introduction of triaxial measurements has a marked

ffect on the ability of a beamformer to cancel external sources of in-

erference – such sources could be caused by nearby laboratory equip-

ent, or even sources of magnetic field in the body such as the heart

r skeletal muscles. In conventional MEG systems, two techniques to re-

ove external interference have become common, either software ap-

roaches ( Taulu and Simola, 2006 ) (see also below) or reference arrays

 Vrba and Robinson, 2001 ). In the latter case, one typically constructs

 separate array of magnetometers that are far enough from the sensors

o be (mostly) insensitive to the neuromagnetic field, but close enough

o measure similar interference. Such arrays are extremely successful in

educing background interference and are commonplace in many cryo-

enic systems. Similar strategies have also been used for OPM measure-

ents ( Boto et al., 2017 ). However, building a reference array on a wear-

ble helmet is a challenge since one needs sensors displaced from the

calp surface which would likely make the helmet design impractical.

evertheless the need for interference rejection is critical, particularly

iven that most OPMs are formed as magnetometers which are more

usceptible to external interference than the more commonly employed

radiometers in cryogenic systems. The fact that a triaxial system offers

 marked improvement in noise characteristics is therefore important;

t potentially allows a means to eliminate the need for bulky and costly

eference arrays. 
14 
In addition to an enhanced ability to supress external interference,

ur results suggest that the triaxial array is similarly advantageous when

ancelling the effect of subject head movement in a background mag-

etic field. This finding is also likely to be important: one of the major

dvantages of OPM-MEG over conventional MEG is that the system can

e fabricated inside a wearable helmet enabling head movement during

 scan. However, in the presence of a background field, such movement

ends to generate interference – particularly at low frequency. A triaxial

ystem enables better differentiation of the neuromagnetic field from the

nterference generated by movement, and a beamformer exploits this to

upress the motion artefact in a way that it cannot when considering

nly radial field measurements. This again suggests that a triaxial ar-

ay design could be extremely advantageous for wearable OPM based

echnology, where subjects can move. 

At the time of writing, whilst the viability of triaxial OPMs has been

emonstrated, these sensors do not yet exist in sufficient quantities to

abricate a complete working MEG array. For this reason, our practical

emonstration was limited to rotating a small number of sensors in a

tandard OPM array. Simulations showed that even this relatively small

hange should yield a measurable reduction in error on a beamformer

econstructed source, and our experimental verification showed that,

s predicted, the amplitude of a known interference peak was reduced.

his simple demonstration provides confidence that the findings of our

nalytical work can be realised experimentally. 

There are a number of limitations of the current study. First, every-

hing above is considered for the case in which source reconstruction is

ndertaken using a beamformer spatial filter. Beamforming is popular,

ut it is by no means the only method to process MEG data and it remains

o be seen whether similar advantages could be realised for other algo-

ithms. However, a brief analysis of the mathematics of dipole fitting

uggests that 𝑟 12 is again a critical parameter. It would be extremely un-

ikely that the reduction in 𝑟 12 afforded by the triaxial array does not lead

o advantages for other approaches to source localisation. In addition,

revious work ( Nurminen et al., 2013 ) has shown that tangential field

easurements markedly improves the performance of signal space sepa-

ation (a commonly used interference rejection algorithm). Specifically,

urminen et al. showed that the addition of 18 tangentially orientated

ensor elements (each containing a magnetometer and 2 gradiometers)

o a 306 channel cryogenic MEG system afforded a 100% increase in

oftware enabled interference reduction. It is therefore highly likely that

oth source localisation methods, and interference rejection algorithms,

ould benefit from triaxial measurement. 

A second limitation relates to the choice of forward field model.

ere, we used a simple spherical volume conductor forward model

hich served as a useful approximation; it enabled an appreciation of

he scalp level topography of the magnetic field vectors generated by

eural current, and how these spatial patterns differ from those gener-

ted by external interference sources. For both radial and tangentially

rientated sensors, the field patterns produced by this simple model

re visually similar to those measured experimentally ( Haueisen et al.,

012 ; Borna et al., 2017 ) and (most importantly) the critical property

that the addition of tangential field measurements helps differentiate

eural sources from external interference – is unlikely to change even if

lternative forward models were used. However, in experimental prac-

ice the single sphere model will lead to errors when modelling fields

rom a real brain. This is particularly the case for tangentially orien-

ated fields, which are more affected by volume currents than the radial

eld. Indeed, for the simple sphere model, if only the radial compo-

ent of field is considered then the volume current term tends to zero

 Sarvas, 1987 ). If tangential fields are measured, volume currents do

ontribute; they are implicitly incorporated into the expression for to-

al field ( Sarvas, 1987 ) but are independent of conductivity using the

imple spherical model ( Sarvas, 1987 ; Van Uitert et al., 2003 ). How-

ver, for realistic head shapes, volume currents do become dependant

n conductivity and the importance of modelling this is now well estab-

ished ( Van Uitert et al., 2003 ; Stenroos et al., 2014 ; Iivanainen et al.,
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017 ). Indeed, taking into account the difficulty in modelling volume

urrents alongside the lower overall field amplitude, Iivanainen et al.

 Iivanainen et al., 2017 ) argue that radial measurements remain the

ptimal choice for MEG. However, the attractive interference rejection

roperties demonstrated here suggest that triaxial measurement is likely

dvantageous. But to realise this advantage, in future experimental im-

lementations it will be critical to use advanced forward field solutions.

ith realistic forward models (e.g. BEM) readily available in most open

ource toolboxes, this is unlikely to prove a significant barrier. 

Finally, a significant practical limitation relates to the fact that OPMs

re subject to errors caused by crosstalk; that is, the measurement at one

ensor is affected by the presence of nearby sensors. This is true for all

ensor arrays but is likely to be particularly problematic for triaxial sen-

ors due to the orientation of modulation fields. Specifically, the pres-

nce of other sensors in close proximity causes changes to both the gain

nd sensitive access of an OPM. If not controlled, these errors would

ikely render MEG forward modelling inaccurate, and consequently the

fficacy of source localisation algorithms like beamforming would be

educed dramatically. It is therefore likely that exploitation of a com-

lete triaxial array, in the way described in this paper, would require a

olution to the crosstalk problem. However, this again is not an insur-

ountable barrier; the physics of crosstalk within an OPM array should

e relatively straightforward to characterise, and so this is unlikely to

rove fatal to triaxial MEG design. 

onclusion 

An untapped advantage of OPM-MEG is that OPMs enable the si-

ultaneous co-localised measurement of field components along multi-

le axes, and thus characterisation of the magnetic field vector. Here, we

ave shown that this extra information can significantly improve images

r timecourses of electrical activity, reconstructed using an adaptive

eamformer. Using simulations, we have demonstrated that the effect

f an optimised array on our ability to differentiate real brain activity

rom sources of magnetic interference (external to the brain) is dramatic.

urther, a triaxial system has been shown to offer a marked improve-

ent on elimination of artefact caused by head movement in ambient

agnetic fields. Theoretical results have been supplemented by a real

xperimental recording demonstrating improved interference reduction

uring a motor task. These findings offer new insights into how future

PM-MEG instrumentation can be designed with vastly improved per-

ormance. 
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PPENDIX A: Analytical analysis of a single source with Gaussian 

ensor noise 

Here, we aim to derive an expression for the accuracy of a beam-

ormer reconstruction of a single dipolar source in the brain with Gaus-

ian noise at the MEG sensors. We assume that the location and orienta-

ion, 𝜽, chosen for the beamformer coincides with the true location and

rientation of the source. We also assume an accurate forward model,

eaning that 𝒍 𝜽 → 𝒍 . Via substitution of Eq. (4) into Eq. (1) , we get 

̂ ( 𝑡 ) = 𝒘 

𝑻 𝒍 𝑞 ( 𝑡 ) + 𝒘 

𝑻 𝒆 ( 𝑡 ) . (A1)

Here, 𝑞 ( 𝑡 ) represents the beamformer estimated reconstruction of the

rue source timecourse 𝑞( 𝑡 ) , and 𝒘 is the N-dimensional vector of beam-

ormer weights tuned to the true source location and orientation. 𝒆 ( 𝑡 )
epresents sensor error. By definition (see Eq. (2) ) 𝒘 

𝑻 𝒍 = 1 , and so 

̂ ( 𝑡 ) = 𝑞 ( 𝑡 ) + 𝒘 

𝑇 𝒆 ( 𝑡 ) (A2)

nd inserting Eq. (3) we find that 

̂ ( 𝑡 ) = 𝑞 ( 𝑡 ) + 

𝑳 

𝑇 𝑪 

−1 𝒆 ( 𝑡 ) 
𝑳 

𝑇 𝑪 

−1 𝑳 

(A3)

Eq. (A3) shows that the beamformer-estimate is a true reflection

f the real source timecourse, 𝑞( 𝑡 ) , but with additive noise projected

hrough the beamformer weights. 

We now consider the analytical form of the data covariance, 𝑪 and

ts inverse 𝑪 

−1 . For the simple case of a single source, if we assume that

he source timecourse is temporally uncorrelated with the sensor noise,

e can write 

 = 𝐸 

(
𝒃 𝒃 𝑻 

)
= 𝐸 

(
( 𝒍 𝑞 ( 𝑡 ) + 𝒆 ( 𝑡 ) ) ( 𝒍 𝑞 ( 𝑡 ) + 𝒆 ( 𝑡 ) ) 𝑇 

)
≈ 𝑄 

2 𝒍 𝒍 𝑇 + 𝜐2 𝑰 (A4)

here 𝑄 represents the standard deviation of 𝑞( 𝑡 ) . Using the Sherman-

orrison-Woodbury matrix inversion lemma, we can show that 

 

−1 = 

1 
𝜈2 

( 

𝑰 − 𝑓 
𝒍 𝒍 𝑇 ‖𝒍 ‖2 

) 

(A5) 

here 

 = 

𝑄 

2 ‖𝒍 ‖2 
𝜈2 + 𝑄 

2 ‖𝒍 ‖2 (A6)

s a measure of the effective signal to noise ratio of the source, and scales

etween 0 and 1. The quantity ‖𝒍 ‖ = 

√
𝒍 𝑇 𝒍 is the Frobenius norm of the

orward field vector. 

We now let 𝑃 = 𝒘 

𝑇 𝑪 𝒘 = 

1 
𝒍 𝑇 𝑪 −1 𝒍 

and we substitute Eq. (A5) into

q. (A3) , thus, 

̂ ( 𝑡 ) = 𝑞 ( 𝑡 ) + 𝑃 𝒍 𝑇 
( 

1 
𝜈2 

( 

𝑰 − 𝑓 
𝒍 𝒍 𝑇 ‖𝒍 ‖2 

) ) 

𝒆 ( 𝑡 ) = 𝑞 ( 𝑡 ) + 

𝑃 

𝜈2 

( 

𝒍 𝑇 𝒆 ( 𝑡 ) − 𝑓 
𝒍 𝑇 𝒍 𝒍 𝑇 𝒆 ( 𝑡 ) ‖𝒍 ‖2 

)
(A7) 

Recognising that ‖𝒍 ‖2 = 𝒍 𝑇 𝒍 and simplifying we see that 

̂ ( 𝑡 ) = 𝑞 ( 𝑡 ) + 

𝑃 
2 𝒍 

𝑇 𝒆 ( 𝑡 ) ( 1 − 𝑓 ) (A8)

𝜈
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We now also recognise that P depends on the data covariance and

o 

 

−1 = 𝒍 𝑇 𝑪 

−1 𝒍 = 𝒍 𝑇 
( 

1 
𝜈2 

( 

𝑰 − 𝑓 
𝒍 𝒍 𝑇 ‖𝒍 ‖2 

) ) 

𝒍 = 

1 
𝜈2 

( 

𝒍 𝑇 𝒍 − 𝑓 
𝒍 𝑇 𝒍 𝒍 𝑇 𝒍 ‖𝒍 ‖2 

) 

= 

‖𝒍 ‖2 
𝜈2 

( 1 − 𝑓 ) (A9) 

So combining Eqs. (A8) and A9 we see that our beamformer esti-

ated timecourse becomes 

̂ ( 𝑡 ) = 𝑞 ( 𝑡 ) + 

1 ‖𝒍 ‖2 𝒍 𝑇 𝒆 ( 𝑡 ) . (A10)

To simplify matters further, we can also write that the vector 𝒆 ( 𝑡 ) ,
hich represents the sensor noise across the N sensors can be written as

𝜺 ( 𝑡 ) , where 𝜐 is the standard deviation of the sensor noise and we model

 as a Gaussian random process with unit standard deviation. The final

xpression for 𝑞 ( 𝑡 ) then becomes, 

̂ ( 𝑡 ) = 𝑞 ( 𝑡 ) + 

𝜐‖𝑳 ‖2 𝒍 𝑇 𝜺 ( 𝑡 ) . (A11)

This equation relates only to a single timepoint, and to compute error

ver all time, 𝐸 𝑡𝑜𝑡 , we calculate the square root of the sum of squared

ifferences between the reconstructed and the true timecourse as per

q. (6) . Combining Eq. (A1) 1 and Eq. (6) we get 

 𝑡𝑜𝑡 = 

𝜐√
𝑀 ‖𝒍 ‖2 

√ √ √ √ 

𝑀 ∑
𝑖 =1 

(
𝒍 𝑇 𝜺 𝑖 

)2 = 

𝜐√
𝑀 ‖𝒍 ‖2 

√ √ √ √ √ 

𝑀 ∑
𝑖 =1 

( 

𝑁 ∑
𝑗=1 

𝑙 𝑗 𝜀 𝑖𝑗 

) 2 

(A12)

here M is the number of time points and N is the number of MEG chan-

els. Fortunately, the term ( 
𝑁 ∑
𝑗=1 

𝑙 𝑗 𝜀 𝑖𝑗 ) 2 is simplified considerably because

 𝑖𝑗 is a random process. This means that the cross terms in the square

ill likely sum to close to zero and can be ignored. Also, noting that

( 𝜀 2 
𝑖𝑗 
) = 1 , this means that 

 𝑡𝑜𝑡 = 

𝜐‖𝒍 ‖ . (A13)

In other words, the total error in our beamformer reconstruction, for

 single source with random noise, scales linearly with noise amplitude

as one might expect) and is inversely proportional to the Frobenius

orm of the forward field from the source. 

PPENDIX B: Analytical analysis of 2 sources with Gaussian noise 

Whilst the analysis in Appendix A is instructive, it is not realistic to

xpect only a single source to be ‘active’ in MEG data. It is therefore

elpful to extend our analytical treatment to the case of two sources

ith Gaussian sensor noise. As shown in the main text, in this case the

eamformer reconstruction is given by 

 ̂1 = 𝑞 1 + 𝒘 

𝑇 
1 𝒍 2 𝑞 2 + 𝒘 

𝑇 
1 𝒆 = 𝑞 1 + 𝛿𝑞 2 + 𝜀. (B1)

Note the two error terms. The first ( 𝛿𝑞 2 = 𝒘 

𝑇 
1 𝒍 2 𝑞 2 ) is interference gen-

rated by the second source, and the second ( 𝜖 = 𝒘 

𝑇 
1 𝒆 ) is due to pro-

ected sensor noise. We now deal with these two error terms separately.

rror from source 2 

The magnitude of interference from source 2 is modulated by 𝛿 =
 

𝑇 
1 𝒍 2 . Substituting for the beamformer weights we can write that 

= 

𝒍 𝑻 1 𝑪 

−1 𝒍 

𝒍 𝑻 1 𝑪 

−1 𝒍 1 
= 𝑃 1 𝒍 

𝑻 
1 𝑪 

−1 𝒍 2 (B2)

Where 𝑃 1 = 

1 
𝒍 𝑻 1 𝑪 

−1 𝒍 1 
is the projected total power at the loca-

ion/orientation of the source. To find an expression for 𝛿, we need an

nalytical form of both the covariance matrix and its inverse in the case

f two sources with Gaussian noise. Assuming no temporal correlation
16 
etween either of the two source timecourses, or the sensor noise, then

 = 𝑞 2 1 𝒍 1 𝒍 
𝑻 
1 + 𝑞 2 2 𝒍 2 𝒍 

𝑻 
2 + 𝜐2 𝑰 (B3)

nd by the matrix inversion lemma, 

 

−1 = 

1 
𝜈2 

[ 

𝐼 − 

1 
1 − 𝑓 1 𝑓 2 𝑐𝑜 𝑠 

2 
(
𝜆12 

){ 

𝑓 1 
𝒍 1 𝒍 

𝑇 
1 ‖𝒍 1 ‖2 + 𝑓 2 

𝒍 2 𝒍 
𝑇 
2 ‖𝒍 2 ‖2 

− 𝑓 1 𝑓 2 𝑐𝑜𝑠 
(
𝜆12 

) 𝒍 2 𝒍 𝑇 1 + 𝒍 1 𝒍 
𝑇 
2 ‖𝒍 1 ‖‖𝒍 2 ‖
} ] 

. (B4) 

As before, 𝑓 1 and 𝑓 2 represent ratio of signal to sensor noise for the

wo sources (see Eq. (13) ). The quantity 

𝑜𝑠 
(
𝜆12 

)
= 

𝒍 𝑇 1 𝒍 2 ‖𝒍 1 ‖‖𝒍 2 ‖ = 𝑟 12 (B5)

s reflective of the similarity of the forward fields for sources 1 and 2; it is

athematically related to Pearson correlation. Substituting Eq. (B4) into

q. (B2) we find that 

= 

𝑃 1 
𝜈2 

[ 

𝒍 𝑇 1 𝒍 2 − 

1 
1 − 𝑓 1 𝑓 2 𝑟 

2 
12 

{ 

𝑓 1 
𝒍 𝑇 1 𝒍 1 𝒍 

𝑇 
1 𝒍 2 ‖‖𝒍 1 ‖‖2 + 𝑓 2 

𝒍 𝑇 1 𝒍 2 𝒍 
𝑇 
2 𝒍 2 ‖‖𝒍 2 ‖‖2 

− 𝑓 1 𝑓 2 𝑟 12 
𝒍 𝑇 1 𝒍 2 𝒍 

𝑇 
1 𝒍 2 + 𝒍 𝑇 1 𝒍 1 𝒍 

𝑇 
2 𝒍 2 ‖‖𝒍 1 ‖‖‖‖𝒍 2 ‖‖

} ] 

(B6) 

Which simplifies to 

= 

𝑃 1 ‖𝒍 1 ‖‖𝒍 2 ‖
𝜈2 

[ 

𝑟 12 
(
1 − 

(
𝑓 1 + 𝑓 2 

)
+ 𝑓 1 𝑓 2 

)
1 − 𝑓 1 𝑓 2 𝑟 

2 
12 

] 

(B7) 

Noting that 

 

−1 
1 = 

1 
𝜈2 

[ 

𝒍 𝑇 1 𝒍 1 − 

1 
1 − 𝑓 1 𝑓 2 𝑟 

2 
12 

{ 

𝑓 1 
𝒍 𝑇 1 𝒍 1 𝒍 

𝑇 
1 𝒍 1 ‖𝒍 ‖1 2 + 𝑓 2 

𝒍 𝑇 1 𝒍 2 𝒍 
𝑇 
2 𝒍 1 ‖𝒍 ‖2 2 

− 𝑓 1 𝑓 2 𝑟 12 
𝒍 𝑇 1 𝒍 2 𝒍 

𝑇 
1 𝒍 1 + 𝒍 𝑇 1 𝒍 1 𝒍 

𝑇 
2 𝒍 1 ‖𝒍 ‖1 ‖𝒍 ‖2 

} ] 

(B8) 

hich simplifies to 

 

−1 
1 = 

‖𝒍 1 ‖2 
𝜈2 

[ 

1 − 𝑓 1 + 

(
𝑓 1 𝑓 2 − 𝑓 2 

)
𝑟 2 12 (

1 − 𝑓 1 𝑓 2 𝑟 
2 
12 
) ] 

(B9)

We can now substitute for 𝑃 1 in Eq. (B7) giving 

= 

‖𝒍 2 ‖‖𝒍 1 ‖ 𝑟 12 
[ 

1 − 

(
𝑓 1 + 𝑓 2 

)
+ 𝑓 1 𝑓 2 

1 − 𝑓 1 + 

(
𝑓 1 𝑓 2 − 𝑓 2 

)
𝑟 2 12 

] 

(B10) 

Which simplifies to 

= 

‖𝒍 2 ‖‖𝒍 1 ‖ 𝑟 12 
[ 

1 − 𝑓 2 

1 − 𝑓 2 𝑟 
2 
12 

] 

(B11) 

This expression therefore shows that the extent of interference from

ource two is critically dependant on 𝑟 12 . 

rror from sensor noise 

𝜖, represents the noise from the MEG sensors projected through the

eamformer weights. This is analogous to the sensor noise in the single

ipole case (second term in Eq. (A1) 1), but is complicated because the

eamformer weights are now based on data from 2 sources. Mathemat-

cally, 𝜖 is given by 

 = 𝑃 𝑳 

𝑻 
1 𝑪 

−1 𝒆 , (B12)

nd substituting for 𝑪 

−1 we get 



M.J. Brookes, E. Boto, M. Rea et al. NeuroImage 236 (2021) 118025 

𝜀

w

𝜀

 

 

t  

e  

t  

s

𝜀

𝜀  

E

a  

t  

S

𝐸  

w  

l

𝐸  

 

s

𝐸  

 

b

𝐸  

w  

t

𝐸  

𝑟  

a  

i  

b  

s

𝐸  

𝑟  

 

p  

e

t  

fi

𝐸  

𝐸  

𝐸  

𝐸  

A

 

s  

E

𝒘  

i  

d  

r  

m  

(  

(  

c

𝑞  

𝑞  

𝑞  

 

r  

t  

s  

s  

1  

t  

t  

w

 = 

𝑃 1 
𝜈2 

[ 

𝒍 𝑇 1 𝒆 − 

1 
1 − 𝑓 1 𝑓 2 𝑟 

2 
12 

{ 

𝑓 1 
𝒍 𝑇 1 𝒍 1 𝒍 

𝑇 
1 𝒆 ‖‖𝒍 1 ‖‖2 + 𝑓 2 

𝒍 𝑇 1 𝒍 2 𝒍 
𝑇 
2 𝒆 ‖‖𝒍 2 ‖‖2 

− 𝑓 1 𝑓 2 𝑟 12 
𝒍 𝑇 1 𝒍 2 𝒍 

𝑇 
1 𝒆 + 𝒍 𝑇 1 𝒍 1 𝒍 

𝑇 
2 𝒆 ‖‖𝒍 1 ‖‖‖‖𝒍 2 ‖‖

} ] 

, (B13) 

hich can be written as 

 = 

𝑃 1 ‖‖𝒍 1 ‖‖√𝑁 

𝜈

[ 

𝑟 1 𝑒 − 

1 
1 − 𝑓 1 𝑓 2 𝑟 

2 
12 

{
𝑓 1 𝑟 1 𝑒 

(
1 − 𝑓 2 𝑟 

2 
12 
)
+ 𝑓 2 𝑟 12 𝑟 2 𝑒 

(
1 − 𝑓 1 

)}]
(B14) 

Here 𝑟 1 𝑒 = 

𝒍 𝑇 1 𝒆 ‖𝒍 1 ‖‖𝒆 ‖ represents the sensor space correlation between

he spatial topography of source 1, and the vector representing sensor

rror. Likewise 𝑟 2 𝑒 = 

𝒍 𝑇 2 𝒆 ‖𝒍 2 ‖‖𝒆 ‖ represents the sensor space correlation be-

ween the spatial topography of source 2, and the sensor error. Now

ubstituting for 𝑃 1 gives 

 = 

𝜈
√
𝑁 ‖‖𝒍 1 ‖‖

[ 

𝑟 1 𝑒 

( 

1 − 

𝑓 1 − 𝑓 1 𝑓 2 𝑟 
2 
12 

1 − 𝑓 1 𝑓 2 𝑟 
2 
12 

) 

− 𝑟 2 𝑒 

(
𝑓 2 𝑟 12 − 𝑓 1 𝑓 2 𝑟 12 

)
1 − 𝑓 1 𝑓 2 𝑟 

2 
12 

] 

[ 

1 − 𝑓 1 𝑓 2 𝑟 
2 
12 

1 − 𝑓 1 + 

(
𝑓 1 𝑓 2 − 𝑓 2 

)
𝑟 2 12 

] 

(B15) 

Which simplifies to give 

 = 

𝜈
√
𝑁 ‖‖𝒍 1 ‖‖

[ 

𝑟 1 𝑒 

( 

1 
1 − 𝑓 2 𝑟 

2 
12 

) 

− 𝑟 2 𝑒 

( 

𝑓 2 𝑟 12 

1 − 𝑓 2 𝑟 
2 
12 

) ] 

(B16)

rror over all time 

Unfortunately, Eq. (B1) 6 only relates to a single timepoint (i.e. 𝑟 1 𝑒 
nd 𝑟 2 𝑒 change on each noise realisation, and 𝑞 2 is a function of time. For

his reason, it is useful to consider the total error across all timepoints.

ubstituting Eq. (B1) into Eq. (15) we find that 

 

2 
𝑇 𝑜𝑡 

= 

1 
𝑀 

𝑀 ∑
𝑖 =1 

(
𝛿𝑞 2 𝑖 + 𝜖𝑖 

)2 
, (B17)

here i indexes time. Assuming that 𝑞 2 𝑖 and 𝜖𝑖 are temporally uncorre-

ated, we can write the total error as two independent terms, thus 

 

2 
𝑇 𝑜𝑡 

= 

1 
𝑀 

𝑀 ∑
𝑖 =1 

[(
𝛿𝑞 2 𝑖 

)2 + 

(
𝜖𝑖 
)2 ]

. (B18)

Noting that 𝐸 ( 𝑞 2 𝑖 ) 2 = 𝑄 

2 
2 , the total error due to interference from the

econd source is given by 

 

2 
𝑠𝑜𝑢𝑟𝑐𝑒 = 

1 
𝑀 

𝑀 ∑
𝑖 =1 

(
𝛿𝑞 2 𝑖 

)2 = 𝛿2 𝑄 

2 
2 = 

𝑄 

2 
2 
‖‖𝒍 2 ‖‖2 ‖‖𝒍 1 ‖‖2 𝑟 2 12 

[ 

1 − 𝑓 2 

1 − 𝑓 2 𝑟 
2 
12 

] 2 

. (B19)

Error due to sensor noise is somewhat more complex to deal with,

ut from Eq. (B1) we can write that 

 

2 
𝑛𝑜𝑖𝑠𝑒 = 

1 
𝑀 

𝑀 ∑
𝑖 =1 

(
𝜀 𝑖 
)2 = 

1 
𝑀 

𝑀 ∑
𝑖 =1 

𝜈2 𝑁 ‖‖𝒍 1 ‖‖2 
(
𝑎 𝑟 1 𝑒 − 𝑏 𝑟 2 𝑒 

)2 
(B20)

here 𝑎 = ( 1 
1− 𝑓 2 𝑟 2 12 

) and 𝑏 = ( 𝑓 2 𝑟 12 
1− 𝑓 2 𝑟 2 12 

) = 𝑓 2 𝑟 12 𝑎 . Expanding the square

his becomes 

 

2 
𝑛𝑜𝑖𝑠𝑒 = 

1 
𝑀 

𝑀 ∑
𝑖 =1 

𝜈2 𝑁 ‖‖𝒍 1 ‖‖2 
(
𝑎 2 𝑟 2 1 𝑒 + 𝑏 2 𝑟 2 2 𝑒 − 2 𝑎𝑏 𝑟 1 𝑒 𝑟 2 𝑒 

)
(B21)

To simplify this, we first note that 

 1 𝑒 𝑟 2 𝑒 = 

𝒍 𝑇 1 𝒆 ‖‖𝒍 1 ‖‖‖𝒆 ‖ 𝒍 𝑇 2 𝒆 ‖‖𝒍 2 ‖‖‖𝒆 ‖ = 

𝒍 𝑇 1 𝒆 𝒆 
𝑻 𝒍 2 ‖‖𝒍 1 ‖‖‖‖𝒍 2 ‖‖‖𝒆 ‖2 , (B22)

nd because 𝒆 is a Gaussian random process, when summed over many

terations 𝐸( 𝒆 𝒆 𝑻 ) = 𝜐2 𝑰 . ‖𝒆 ‖, the Frobenius norm of the error is given
17 
y 𝐸( ‖𝒆 ‖) = 

√
𝑁 𝜐2 where 𝑁 is the total number of MEG channels. Con-

equently, we can write 

 

(
𝑟 1 𝑒 𝑟 2 𝑒 

)
= 

𝒍 𝑇 1 𝒍 2 ‖𝒍 1 ‖‖𝒍 2 ‖𝑁 

= 

1 
𝑁 

𝑟 12 . (B23)

Next, we examine 𝑟 2 1 𝑒 and note that 

 

2 
1 𝑒 = 

(
𝒍 𝑇 1 𝒆 

)2 
‖𝒍 1 ‖2 ‖𝒆 ‖2 (B24)

Again we take advantage of the fact that 𝒆 is a Gaussian random

rocess, so we can write ( 𝒍 𝑇 1 𝒆 ) 
2 = ( 

𝑁 ∑
𝑠 =1 

𝑙 1 𝑠 𝑒 𝑠 ) 2 ≈
𝑁 ∑
𝑠 =1 

( 𝑙 1 𝑠 𝑒 𝑠 ) 2 because on av-

rage the cross terms in the square will sum to zero. Because 𝐸( 𝑒 2 𝑠 ) = 𝜐2 

hen 
𝑁 ∑
𝑠 =1 

( 𝑙 1 𝑠 𝑒 𝑠 ) 2 = 𝜐2 
𝑁 ∑
𝑠 =1 

( 𝑙 1 𝑠 ) 2 = 𝜐2 ‖𝒍 1 ‖2 . Further, since 𝐸( ‖𝒆 ‖2 ) = 𝑁 𝜐2 we

nd that 

 

(
𝑟 2 1 𝑒 

)
= 

1 
𝑁 

. (B25)

The same argument can be made to show that 

 

(
𝑟 2 2 𝑒 

)
= 

1 
𝑁 

. (B26)

Substituting Equations B25, B26 and B23 into B21 we see that 

 

2 
𝑛𝑜𝑖𝑠𝑒 = 

1 
𝑀 

𝜈2 𝑁 ‖𝒍 1 ‖2 
(
𝑀 𝑎 2 

1 
𝑁 

+ 𝑀 𝑏 2 
1 
𝑁 

− 𝑀2 𝑎𝑏 1 
𝑁 

𝑟 12 

)
(B27)

Substituting for a and b this then simplifies to give 

 

2 
𝑛𝑜𝑖𝑠𝑒 = 

𝜈2 ‖𝒍 1 ‖2 
⎛ ⎜ ⎜ ⎝ 
1 + 𝑓 2 2 𝑟 

2 
12 − 2 𝑓 2 𝑟 2 12 (

1 − 𝑓 2 𝑟 
2 
12 
)2 ⎞ ⎟ ⎟ ⎠ . (B28)

PPENDIX C: Analytical analysis for a dipole fit 

For most source reconstruction algorithms, the reconstructed source

ignal can be written as a weighted sum of sensor measurements, as in

q. (1) . For a dipole fit, the weights are given by 

 

𝑇 
𝒅 𝜽

= 

𝒍 𝑻 
𝒅 𝜽

𝒍 𝑻 
𝒅 𝜽
𝒍 𝒅 𝜽

, (C1)

.e. they are a scaled version of the lead field and do not depend on the

ata covariance – as in a beamformer. To understand how this affects

econstruction error, we can apply these weights to the analytical for-

ulation of the MEG data for the case of 2 sources with random noise

i.e. combine Eq. (8) and Eq. (C1) ). Assuming an accurate lead field

 𝒍 𝒅 𝜽 → 𝒍 1 ) (i.e. source location and orientation have been estimated ac-

urately from the data), 

 ̂1 = 

𝒍 𝑻 1 

𝒍 𝑻 1 𝒍 1 
𝒍 1 𝑞 1 + 

𝒍 𝑻 1 

𝒍 𝑻 1 𝒍 1 
𝒍 2 𝑞 2 + 

𝒍 𝑻 1 

𝒍 𝑻 1 𝒍 1 
𝒆 (C2)

Substituting 𝑟 12 = 

𝒍 𝑇 1 𝒍 2 ‖𝒍 1 ‖‖𝒍 2 ‖ , we see that 

 ̂1 = 𝑞 1 + 

‖𝒍 2 ‖‖𝒍 1 ‖ 𝑟 12 𝑞 2 + 

𝒍 𝑻 1 𝒆 ‖𝒍 1 ‖2 (C3)

Or alternatively 

 ̂1 = 𝑞 1 + 

‖𝒍 2 ‖‖𝒍 1 ‖ 𝑟 12 𝑞 2 + 

‖𝒆 ‖‖𝒍 1 ‖ 𝑟 1 𝒆 (C3)

Note that the error generated by the contribution of source two to the

econstruction is a linear function of 𝑟 12 , whereas for the beamformer,

he equivalent term ( 𝛿, Eq. (B1) 1) is non-linear. These two functions are

hown plotted in Fig. A1 , for the case where ‖𝒍 1 ‖ = ‖𝒍 2 ‖ = 1 × 10 − 13 T,

ource amplitudes are 1 nAm and sensor noise takes values of 30, 50 and

00 fT. The nonlinearity in Eq. (B1) 1 means that the beamformer is bet-

er able to suppress interference from a second source, even if the source

opographies are highly correlated. However, this effect is diminished

ith higher sensor noise. 
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Fig. A1. Projected interference from a second source. Case for a Beamformer 

in red and a dipole fit in black. 
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