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Universal mobility characteristics of graphene
originating from charge scattering by ionised
impurities
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Pristine graphene and graphene-based heterostructures can exhibit exceptionally high elec-

tron mobility if their surface contains few electron-scattering impurities. Mobility directly

influences electrical conductivity and its dependence on the carrier density. But linking these

key transport parameters remains a challenging task for both theorists and experimentalists.

Here, we report numerical and analytical models of carrier transport in graphene, which

reveal a universal connection between graphene’s carrier mobility and the variation of its

electrical conductivity with carrier density. Our model of graphene conductivity is based on a

convolution of carrier density and its uncertainty, which is verified by numerical solution of

the Boltzmann transport equation including the effects of charged impurity scattering and

optical phonons on the carrier mobility. This model reproduces, explains, and unifies

experimental mobility and conductivity data from a wide range of samples and provides a

way to predict a priori all key transport parameters of graphene devices. Our results open a

route for controlling the transport properties of graphene by doping and for engineering the

properties of 2D materials and heterostructures.
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The unique electrical properties of graphene, such as high
carrier mobility, µ > 104 cm2/Vs, at room temperature1–3,
offer significant advantages for applications ranging from

fast electronics to touch screens and ultrasensitive photon
detection4–6. However, the emergence of graphene electronics on
the market is limited by the absence of cost-effective large-scale
production of high-quality graphene with reproducible electronic
properties. The best results have been achieved in exfoliated
suspended single-layer graphene (SLG) samples a few micro-
metres across, in which µ is limited only by the scattering of
charge carriers (electrons and/or holes) by intrinsic phonons7,8.
Epitaxial growth of graphene by chemical vapour deposition
(CVD)9,10 or SiC-surface growth11,12 methods provides cost-
effective growth of large (>10 mm) SLG layers. However, the
mobility of suspended sheets of graphene is markedly different to
that of graphene deposited on a substrate13,14. The presence of
charged impurities near the graphene significantly reduces µ due
to the associated long-range Coulomb-scattering centres7,15. If
impurities are present, they often ionise and form charge-
scattering centres, which deflect the trajectories of electrons and
holes in the two-dimensional (2D) layer, thereby degrading the
mobility. Often scattering by charged impurities has the domi-
nant effect on the transport properties of graphene and effects
due to ballistic transport are negligible16. Charged impurities are
introduced in the substrate and/or in the SLG-capping layer
during the device processing, e.g., created by the diffusion of
metallic ions present in the solvents or etching solutions used17.
Recent studies indicate that resonant impurities18 and neutral
impurities and defects limit graphene mobility15,19,20 and can
dominate at carrier densities away from neutrality point, resulting
in a sub-linear dependence of the conductivity on carrier
concentration.

Various theoretical models have been proposed to explain the
effect of impurities on the carrier mobility in SLG. It is commonly
accepted that µ is inversely proportional to the charged impurity
density, nimp, but is independent of carrier density n21,22. Scat-
tering by charge-neutral point defects can also affect µ, which in
this case is inversely proportional to the carrier density23,24,
making it the dominant scattering mechanism at large carrier
densities. To date, qualitative and semi-quantitative models have
been developed to describe the conductivity minimum; however,
the physical mechanism for the minimum conductivity is not yet
fully understood21,25. Owing to the 2D nature of SLG, the
mobility is sensitive to the surrounding environment, in parti-
cular to the presence and position of the charged impurities.
However, there is still limited understanding of the effect of the
stand-off distance, d, of the impurities from the graphene plane
on the carrier mobility and other transport parameters. Addi-
tional complications arise in graphene-based heterostructures
where SLG is sandwiched between two other materials with the
same or different dimensionality (three-dimensional (3D) bulk,
2D layers and/or 0D quantum dots (QDs)2,26–28).

Here we report a theoretical and experimental study of the
effects of charged impurities and optical phonons on the charge
transport properties of graphene. We develop a conductivity
model for graphene based on the convolution of carrier density,
which accounts for temporal and spatial fluctuations of the carrier
density. This model accurately reproduces the experimental data
and provides a robust, simple way to model the graphene con-
ductivity as a function of the impurity density and carrier con-
centration. We show that the experimentally measured parameter
δn, which is the full width at half maxima of the ρ(Vg), enables us
to fit the whole conductivity curve σ(Vg) and to determine the
exact shape of the conductivity minimum plateau for a wide

range of graphene devices. Hence, several properties of electron
transport in graphene can be determined using δn including the
mobility and concentration dependence on Vg. This model is
verified by numerical k-space simulations of carrier transport. We
use the Discontinuous Galerkin (DG) technique to numerically
solve the Boltzmann transport equation and investigate the effect
of charged impurity scattering on the electron/hole mobility. We
demonstrate that such processes give rise to universal mobility
characteristics over a wide range of carrier densities and in the
presence of multiple sources of scattering. The calculations are
supported by experimental results obtained on both pristine and
surface-decorated graphene devices, which have the following
structures Si/SiO2/Graphene and Si/SiO2/Graphene/2D(0D),
respectively. Our investigations show how these scattering pro-
cesses give rise to mobility characteristics, which are universal
over a wide range of graphene devices, and thus potential sources
of scattering. Our results enable new understanding, based on
first-principles calculations, of the link between different trans-
port parameters, which are of fundamental and applied interest.

Results and discussion
Modelling the transport properties of graphene. In our work,
we consider graphene sheets with charged impurities at a dis-
tance, dimp, from the plane of the graphene and optical phonons
with energy ħω (Fig. 1a). We model the effect of impurities and
optical phonon scattering on the following transport properties of
graphene: the carrier concentration (n), mobility (µ), conductivity
(σ) and resistivity (ρ) at the Dirac point (σmin and ρmax, respec-
tively). The graphene conductivity in the vicinity of the Dirac
point can be strongly affected by a number of different phe-
nomena besides impurity scattering, including ballistic transport
effects29, quantum capacitance7,30 and temperature31,32. As a
result, the device conductivity and carrier density are non-zero
even when the Fermi energy, εF, is at the Dirac (charge neutrality)
point. Therefore, a simple model for the Drude conductivity:

σD ¼ eμnc; ð1Þ
with a constant mobility, µ, is not applicable for small gate vol-
tages, Vg, assuming the classical capacitance model for the gra-
phene’s carrier number density

nc ¼ CVg=eþ n0

��� ���; ð2Þ
where n0= nc(Vg= 0) is the sheet density of the graphene doping
(Supplementary Note 1). Spatial fluctuations of the local elec-
trostatic potential in the graphene layer and the presence of
electron and hole ‘puddles’ (Fig. 1b) are thought to explain the
non-zero conductivity and resistance (σmin and ρmax in Fig. 1c, d)
observed at the Dirac point21,33. Electrons and holes play equal
roles in determining the graphene conductivity with no scattering
at the borders between the n- and p-type graphene areas due to
the Klein paradox34.

We now consider spatial fluctuations in the carrier number
density and their dependence on the gate voltage. Combined with
the Drude conductivity, this model accurately describes the shape
of the measured ρ(Vg) curve (Fig. 1d).

To first approximation, the carrier number density at a given
gate voltage, n(Vg), can be modelled as the moving average
(convolution) of nc (Eq. (2)) over a window of width δn, which is
the characteristic amplitude of the carrier density fluctuations in
the graphene layer. This is equivalent to the convolution of the
nc(Vg) function with a box function f(nc) of width δn (see
Supplementary Video (convolution2.avi) and detailed description
in Supplementary Note 1), which gives n ¼ nc* f ðncÞ, where
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f ðncÞ ¼
1
δn for� δn

2 <nc<þ δn
2

0 for� δn
2 >nc or nc>þ δn

2

�
. Using the linear nc(Vg)

dependence in Eq. (2) gives

n Vg

� �
¼

δn
4 þ n2c Vgð Þ

δn for ncðVgÞ< δn
2

nc Vg

� �
for ncðVgÞ> δn

2

8<
: : ð3Þ

This expression for n(Vg) is equal to the constant-capacitance
model for gate voltages where ncðVgÞ> δn

2 and has a parabolic

form for gate voltages close to the Dirac point, where ncðVgÞ< δn
2 .

Using Eq. (3), we can determine the conductivity as

σf ðVgÞ ¼ eμnðVgÞ: ð4Þ
From this expression, it can be shown that δn equals the full

width half maximum of the peak resistivity around the Dirac
point. In addition, when nc= 0, δn= 4nNP, where nNP= σmin/eμ,
is the residual carrier density at the Dirac (neutrality) point. Our
model thus provides a simple expression which enables us to
extend the linear conductivity model8 to values of n close to the
Dirac point, which was not possible with previous models21.
Thereby, the full observed σ(Vg) and ρ(Vg) dependences can be
accurately reproduced (Fig. 1c, d).

To model δn(Vg) and μ(Vg) curves in more detail, we consider
semi-classical k-space simulations of the electron and hole

dynamics. Graphene has a linear energy-wavevector dispersion
relation, with electron energy in graphene ε= ±ħv|k|, where v=
106 ms−1 is the speed of electrons in graphene, for the electrons
and holes at the two inequivalent valleys, K and K′, in reciprocal
space. Charge carriers undergo diffusive scattering transport,
which we describe using a semi-classical Boltzmann transport
approach. The influence of perturbations, such as impurities and
phonons on the scattering of electrons is calculated using the
Fermi golden rule for transition rates between states. The
electrons are initially assumed to obey a Fermi–Dirac distribu-
tion, f0(k). Inter-band transitions are neglected such that the
valence band is assumed to be full throughout the time evolution
when the gate voltage is positive, i.e., when the chemical potential
lies within the conduction band. We assume full ionisation of all
the impurities and their distribution to be independent on gate
voltage. In the high-gate voltage regime, this assumption is
confirmed by the linear dependence of n(Vg), where the value of n
is determined using the equation for the field effect capacitance
and verified using the Hall effect measurements.

The spatially homogeneous Boltzmann transport equation,

∂f ðt; kÞ
∂t

¼ � e
�h
E � ∇kf t; kð Þ þ ∂f t; kð Þ

∂t

� �
coll

; ð5Þ

describes the evolution of the occupancy, f(t, k), of state k at time
t. The first term on the right-hand side of Eq. (5) describes the
acceleration of electrons under an applied electric field, E, and the
collision term is given by the detailed balance equation,

∂f t; kð Þ
∂t

� �
coll

¼
X
k0

Sk0!kf ðt; k0Þ 1� f ðt; kÞð Þ½

� Sk!k0 f ðt; kÞ 1� f ðt; k0Þð Þ�;
ð6Þ

where Sk→k′ is the transition rate of carriers from a state of crystal
momentum ħk to a new state with momentum ħk′. Equation (6)
represents the collision integral. In the particular case of elastic
scattering, Sk→k′= Sk′→k and the products of the two distribu-
tions cancel. We solve Eq. (5) using the DG approach35 (for
detailed solution, see Supplementary Note 2) for the steady-state
distribution function, f(k). We then determine the mobility, μ, for
an applied electric field, E, from the drift velocity:

vd ¼
1

nπ2�h

Z
f kð Þ∇kε kð Þdk ¼ μE: ð7Þ

Alternatively, to find approximate analytical solutions to Eq. (5),
we can assume a small shift in the initial distribution function, f0(k),
proportional to the ensemble momentum relaxation time, τm. This
results in the linearised Boltzmann (LB) approximation36 for the
mobility, which, at zero-temperature, is related to the relaxation
time at the chemical potential, εF, via

μ ¼ eτm εFð Þv2=εF: ð8Þ
We calculate the momentum relaxation time, τm(k), as the sum

over all possible transition rates, Sk→k′, modified by the deflection
angle, θk,k′, between the incoming and outgoing vectors:

1
τm kð Þ ¼

X
k0

Sk!k0 ð1� cosθk;k0 Þ

� A

2πð Þ2
Z

Sk!k0 ð1� cosθk;k0 Þdk0;
ð9Þ

where A is the area of graphene unit cell.
The effect of screening by the electron and hole gases is

included by introducing a random phase approximation for the
dielectric screening function37,38

ϵsc ¼ 1� ~v2DΠ qð Þ; ð10Þ

Fig. 1 Convolution model. a Schematic diagram showing the impurity
position with respect to the graphene sheet and a pictorial representation of
spatio-temporal (angular frequency, ω) phonon oscillations over one unit
cell. b Spatial inhomogeneity in the impurity potential and the resulting
broadening of the energy distribution of electrons and holes near the Fermi
level (Dirac cones). Conductivity (c) and resistivity (d) of graphene plotted
vs. gate voltage. Field effect mobility, μFE, is estimated from the gradient of
σ(Vg) dependence. Circles show experimental data, blue lines show linear
fits, using Eq. (1), dashed pink curves are fits to the data found by including
a short-range scattering resistivity, and red curves result from the
convolution fit.
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where ṽ2D= e2/2ϵ0ϵrq is the unscreened Coulomb potential in
Fourier space, Π(q) is the static polarisation function and the
reciprocal space variable q= |k′− k|. As the conduction band
distribution function changes throughout the simulation, the
screening function should be carefully considered. However, the
valence band distribution is constant throughout as the band is
assumed to be full. The polarisation function for screening by a
full valence band is38

Πval ¼ � q
4�hv

: ð11Þ
For the conduction band, at T= 0, maximum screening occurs

in the Thomas–Fermi limit, q→ 0, and is given by

ΠTF ¼
Z

D εð Þ ∂f
∂ε

dε ¼ � 2

π �hvð Þ2
Z

f dε ¼ � 2

π �hvð Þ2 εF; ð12Þ

where D(ε)= 2ε/π(ħv)2 is the density of states. Throughout the
simulation, the integral in Eq. (12) does not change, due to
conservation of charge. As both Eqs. (11) and (12) are
independent of the evolution of the distribution function, we
define a time-independent two-regime screening function, where
Thomas–Fermi screening is assumed for low energy scattering
and the valence electron screening is assumed for high-energy
electrons21, i.e., we set

ϵsc ¼
1þ qs

q for q≤ 8
π kF

1þ πrs
2 for q > 8

π kF

(
; ð13Þ

where rs= e2/(4πϵ0ϵrħv) and qs= 4kFrs. For graphene on SiO2, we
take ϵr ≈ 2.4522. A Coulombic scattering potential is assumed for
charged impurities near the graphene plane:

UðrÞ ¼ e2

4πϵ0ϵr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2imp

q ; ð14Þ

where dimp is the distance of the impurities from the graphene
plane. It is noteworthy that in this model we consider randomly
distributed impurities and disregard any possible spatial correla-
tion of charges below and above the graphene plane39,40. Then,
the transition rate is

Simp
k!k0 ¼ n0

π

A�h
2πe2e�qdimp

κqϵsc qð Þ
����

����
2

1þ cosθk;k0
� �

δ εk0 � εkð Þ; ð15Þ

where q= 2k sin(θk,k′/2) for elastic scattering. Defects that
perturb the band structure over a small spatial area are
characterised by the short-range scattering potential U(r)=U0H
(R− r), where H is the Heaviside step function and R gives the
spatial extent of the perturbation. This potential represents any
charge-neutral point defects within the lattice. The rate of carrier
scattering transitions due to such defects is

Ssrk!k0 ¼ nsr
π

A�h
AsrU0

ϵsc qð Þ
����

����
2

1þ cosθk;k0
� �

δ εk0 � εkð Þ; ð16Þ

where Asr= πR2 is the effective cross-section of defects with an
areal density nsr.

In our calculations, we assume a low temperature and a
phonon occupation of N ≈ 0 (kBT≪ ħω) and perform our
numerical calculations using an initial Fermi-distribution of low
finite temperature, T= 20 K, to avoid discontinuities over the
discretised k-space. Therefore, one might not expect phonons to
have a significant effect on the transport properties compared to
that of scattering by impurities7. However, for low carrier
densities, we find carriers can be accelerated to high energies
(~100 meV) resulting in a ‘hot electron’ distribution (Joule
heating), as was observed previously, e.g., in metals41. In this case,
inelastic optical phonon scattering becomes important in relaxing

the energy of the carriers. Hot electron phenomenon is a
particularly important consideration for transport in graphene
due to weak electron-acoustic phonon scattering and relatively
high optical phonon energies. Our calculations show that the hot
electron effect is significant even for electric fields as low as ~100
V/m, comparable to commonly used experimental values (for
steady-state characteristics of the Boltzmann equation, see
Supplementary Note 3). We use the optical phonon scattering
rates calculated using density functional theory in refs. 42,43. Near
the Γ− points of the reciprocal lattice, the energy and coupling
strength of both transverse and longitudinal optical phonons are
reported to be ħωO ≈ 165 meV and βO ≈ 10 eV/Å, respectively44.
Therefore, we can combine the transition rates of the two modes
to obtain a single overall optical scattering rate

SOk!k0 ¼
2πβ2O
AρmωO

δ εk0 � εk þ �hωOð Þ: ð17Þ

Phonons at the K-points cause inter-valley scattering at a rate

SKk!k0 ¼
2πβK2

AρmωK
1� cosθk;k0

� �
δ εk0 � εk þ �hωKð Þ; ð18Þ

where ħωK ≈ 124 meV and βK ≈ 3.5 eV/Å44, and ρm= 7.6 × 10−7

kg/m2 is the mass density of graphene.
We consider a residual charge density of electron-hole puddles

at the Dirac point, due to inhomogeneity in the impurity-induced
potential (Fig. 1b), which limits the minimum conductivity. To
calculate the residual charge, and thus the minimum chemical
potential in our calculations, we use Eq. (8) in ref. 21, derived
assuming a random distribution of impurities. Here we assume
that the transition from the residual charge-dominated minimum
carrier concentration to the linearly Vg-dependent concentration
occurs when the gate-induced charged density, n(Vg− V0), is
equal to the residual charge density, nNP, where V0 is the position
of the Dirac point.

For all numerical simulations, we apply an electric field, E=
104 V/m (0.1 V drop across a 10 µm-long SLG), corresponding to
a regime of low-field mobility, where μ is independent of the
applied electric field strength (for details of numerical simula-
tions, see Supplementary Note 3). For comparison, we also
calculate the mobility using the LB formalism, Eq. (8), with the
scattering time calculated using Eq. (9), in which the integrals are
evaluated numerically. The LB method gives exact solutions when
the electric field is sufficiently small and the hot electron effects
are negligible. However, for small densities, carriers can be
accelerated to high energies resulting in a hot carrier distribution
which is far from thermal equilibrium. In this case, the LB
approximation diverges from the accurate numerical solution
provided by the DG approach (for details of DG approach, see
Supplementary Note 3).

Figure 2a shows the calculated dependence of μ on n for n >
nNP. The low carrier mobility μ(n ≈ nNP) corresponds to the
regime where the chemical potential is near the Dirac point.
With increasing n, we observe an initial increase of μ. This is
followed by a peak and a monotonic decrease of μ at large n.
This dependence arises from the competition between scatter-
ing by long-range Coulombic impurities and short-range
defects. Short-range defect scattering is found to be dominant
at large n, as expected from comparison of the momentum
relaxation time for short-range defects, τsr ~ n−1/2, calculated
using the Born approximation, and long-range impurities, τimp

~ n1/2. Beyond the Born approximation, for sufficiently strong
defect scattering, the exponent of n in the momentum
relaxation time, τsr, can increase towards that of long-range
impurity scattering33. The dependence of mobility on carrier
concentration, μ(n), is affected by the density of impurities, n0,
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and by their distance from the graphene, dimp. Hence, both δn
and the low carrier mobility, μ(n ≈ nNP), depend on n0 and dimp.
As shown in Fig. 2b, the mobility increases as dimp is increased.
Furthermore, for low impurity densities, and thus small
residual charge densities, the mobility given by the DG
simulations differs from that obtained from the LB calculations,
whereas the two methods give μ values that converge at higher
impurity densities.

Both the LB model and the DG simulations assume that
initially, at t= 0, the electron gas is in thermal equilibrium and
obeys the Fermi–Dirac distribution. Equation (8) assumes a linear
shift in the momentum of the ensemble, proportional to the
ensemble relaxation rate, τ(εF), whereas the DG simulations
include the time evolution of the momentum distribution,
described by the full Boltzmann transport equation, Eq. (5).
Therefore, the discrepancy between the two methods seen at low
impurity densities can be understood by consideration of the
steady-state distribution functions. Figure 2c, d shows the final
distribution of electrons obtained for a small impurity density,
using the DG simulation. We obtain similar results by Monte
Carlo simulations35,45 (Monte Carlo simulations are described in
part (A) of Supplementary Note 2) as shown in Fig. 2d. In both
the DG and Monte Carlo simulations, with increasing t we
observe continuous spreading of the electron distribution in k-
space, until the occupied k-values become limited by inelastic
phonon scattering (see also Supplementary Note 3). Hence, a hot
electron regime is realised, which is not captured within the LB
approximation.

The effect of dimp on the electrical properties of graphene is
summarised in Fig. 3. Our calculations demonstrate that the
linewidth δn of the ρ(Vg) curve broadens with decreasing dimp

(Fig. 3a). Combining the results of Figs. 2b and 3a, the mobility
decreases with increasing δn (Fig. 3b), with the broadening of δn
being larger for smaller dimp at a given value of mobility. At small
values of δn, and hence small impurity densities n0, we observe

discrepancy between the DG and LB calculations of μ (as shown
in Figs. 2b and 3b). Despite the discrepancy in μ(n0) and μ(δn),
we find that both methods yield a similar δn(n0) profile. We now
compare our calculations to experimental measurements.

Universal mobility characteristics. We apply our analysis to
experimental results reported previously for >20 devices fabri-
cated using exfoliated and CVD-grown graphene deposited on Si/
SiO2 substrate. We use both pristine graphene devices and gra-
phene heterostructures incorporating 2D layers (InSe, hBN) or
0D nanostructures (colloidal QDs, inorganic perovskites)46–48

(Fig. 3a). In these devices, impurities at a distance, dimp, from the
2D plane of graphene act as scattering centres. We fit the mea-
sured σ(Vg) dependencies and determine values of μ and δn (fit of
σ(Vg) is described in Supplementary Note 1 and phenomen-
ological fit of experimental data is in Supplementary Note 4). As
shown in Fig. 3b, the mobility increases with decreasing δn.
The experimental values measured in pristine graphene devices
are in good agreement with the results of our DG simulations
with dimp= 2 nm. Interestingly, our model provides good fit for
high-mobility exfoliated graphene, where other scattering
mechanisms could play a significant role. Since the convolution
model is based on experimentally determined value of δn, it
accounts for all different scattering mechanisms (for universality
of analytical convolution model, see Supplementary Note 5).

We note that our fit (Fig. 3b) uses δn calculated from the full
width at half maximum of the σ(Vg) curve rather than from the
value of n0 extracted from the gate voltage at which σ(Vg)= σmax.
By using Eq. (4) and assuming the universal minimum
conductivity for pristine graphene as σmin ≈ 4e2/h29 and constant
mobility (with respect to carrier density), we obtain a simple
inverse power law for the dependence of μ on δn.

μ ¼ 4σmin

eδn
¼ 16e

hδn
: ð19Þ

Fig. 2 Boltzmann equation results for the mobility characteristics of doped graphene. a Mobility, μ, calculated using our Discontinuous Galerkin (DG)
model as a function of gate-induced carrier density, n, beyond the minimum carrier density, nNP (vertical dashed line), for varying short-range scattering
strengths. The impurity density is n0= 0.6 × 1016 m−2. b Mobility, μ, calculated as a function of impurity density, n0, for several stand-off distances, dimp.
Dashed curves are calculated using the linearised Boltzmann (LB) approximation, using Eq. (8), the solid green curve shows the constant-capacitance
approximation from ref. 21, where α= 20e/h. c Final distribution of electron momentum calculated for a small impurity density, n0= 0.025 × 1016 m−2, at a
distance dimp= 1 nm and carrier density, n= nNP= 0.016 × 1016 m−2 found using the DG simulation. Orange dashed circle represents the K-phonon level
and the orange dashed-dotted circle represents the Γ-phonon level. d Cross-section of c for ky= 0 (solid blue line) compared to the result of Monte Carlo
simulations. The Fermi wavenumber, kF, marks the bounding limit of the initial low temperature distribution.
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Equation (19) includes one measured parameter δn, which
simplifies the data analysis, as demonstrated on the experimental
data from a wide range of devices (experimental results are
included in Supplementary Note 4). Overall, our model, which
considers the effect of impurity scattering to be dominant on
mobility, describes well all examined types of graphene: high-
mobility exfoliated graphene and low-mobility CVD-grown
graphene. We stress that, remarkably, even in devices where
other transport mechanisms are important, e.g., ballistic transport
in high-purity exfoliated graphene, their electronic properties can
be determined using the measured value of δn.

Recently, the decoration of graphene devices with other low-
dimensional materials, such as 0D (colloidal PbS quantum dots46 or
CsPbI3 perovskite47) and 2D (InSe flakes)48 materials has been used
to functionalise these devices, e.g., for photon sensing5,47,48. The
properties of the graphene heterostructures are greatly affected by
both the unintentional presence of charge impurities in the vicinity
of graphene (as described above by dimp) and those deliberately
introduced by the top layer (dtop) in graphene heterostructures
(Fig. 4a), which we model as a distribution of impurities at an
effective distance, deff. We note that in surface-decorated graphene

devices, the distance between the graphene plane and the top layer
can be controlled, e.g., by introducing a dielectric layer such as hBN,
thus providing a tool for tailoring the electrical properties. The
relationship between mobility and the gate-voltage offset is μ∝ 1/n0
for most pristine devices21. However, for devices with high densities
of correlated unipolar charges39,40 or uncorrelated bipolar
charges49, spatial correlation between charges must be considered.
This is particularly important when the dopants are mobile and able
to adopt low energy, correlated configurations. Such effects were
recently demonstrated for quantum dot-decorated graphene and
validated using Monte Carlo simulations40,49.

Despite the different μ(n0) characteristics of decorated and
pristine graphene, remarkably, we find that both types of devices
exhibit the universal scaling behaviour shown in Fig. 4b. Different
surface-decorated devices follow a common trend observed in
pristine graphene. In particular, the experimental results for the
InSe, perovskite and PbS decorated SLG are best fitted by DG
calculations when deff= 1 nm. Therefore, we find that the relation-
ship between μ and δn is consistent throughout all of the devices, as
can be expected from the analytical expression given in Eq. (19),
with modifications to only the effective distance of the impurities.
Flexibility to modify composition and/or geometry of a hetero-
structure offers opportunities to tune the distribution and stand-off
distance of ionised impurities, hence changing deff and providing a
tool to control transport properties of these devices. We note, that
our model is valid for all devices where the position of ionised

Fig. 3 Mobility and conductivity characteristics of graphene devices.
a Dependence of the FWHM of resistivity, δn, on impurity density, n0,
for different stand-off distances dimp=0.5 nm (blue curves), 1.0 nm (red
curves), 2.0 nm (black curves). b Calculated mobility, μ, vs. the full width at
half maximum (FWHM), δn, curves (dashed and solid curves) compared to
data from pristine graphene samples grown by chemical vapour deposition
(CVD) (filled circles) or exfoliated (filled triangles). The dashed lines are
obtained from the linearised Boltzmann (LB) approximation, using Eq. (8), the
solid lines are obtained using the Discontinuous Galerkin (DG) simulations.

Fig. 4 Mobility characteristics of graphene devices and heterostructures.
a Schematic diagram showing the position of impurities and surface-
charges, due to 0D structures (e.g., perovskites) and 2D structures (e.g.,
InSe), with respect to the graphene sheet. b Relationship between mobility,
μ, and the full width at half maximum (FWHM), δn, obtained using the
Discontinuous Galerkin (DG) simulations, taking deff= 1.0 nm. In surface-
decorated devices, the effective impurity distance, deff, describes combined
effect of charges below (dimp) and above (dtop) graphene layer compared to
data from multiple modified graphene samples (data points for each sample
type are labelled as shown in the inset legend).
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impurities is not affected by Vg. In rare cases, at high Vg regime, the
ionisation of donor impurities can be affected by applied gate
voltage (e.g., see ref. 50) and the corresponding change of dimp

would need to be accounted for.
Our model links together three key transport parameters of

SLG devices: μ, n0 and δn, where δn can also be used to calculate
ρmax and σ(Vg) (for phenomenological equations for graphene
transport parameters, see Supplementary Note 6). Remarkably,
this model can be used to extrapolate the whole R(Vg)
dependence from a single R(Vg)= Rmax measurement and for a
wide range of different graphene devices (see Fig. 1c, d). Our
approach is based on experimental value of δn, which accounts
for presence of scattering centres, but does not distinguish their
nature. We envisage that majority of ionised scattering centres
present in our devices originates from substrate impurities and
from impurities introduced from top layer (2D or 0D). The effects
of other types of ionised impurities (substitutional doping,
functional groups, etc.51) merits further studies.

Of particular interest is the applicability of our model to a wide
variety of different graphene types and to different device structures
and geometries. Consequently, the model has the potential to both
predict and explain the observed behaviour of newly emerging
device concepts and graphene types. Recently, the need for
upscaling of graphene growth and device manufacturing has led
to significant research focus on Molecular Beam Epitaxial growth52,
liquid exfoliation of 2D materials53 and additive manufacturing (3D
printing) of graphene devices54,55. Our preliminary results indicate
that our model can be optimised and expanded to explain and
predict the properties of 3D printed graphene devices, by
accounting for flake-to-flake hopping of charges56.

Conclusions
We have developed a universal analytical convolution model of
electron transport in graphene and graphene heterostructures,
supported by numerical time-dependent analysis of the charge
carrier distributions. Our model includes the effects of impurities
and optical phonons on the observed charge transport properties
of graphene devices. We find that the properties of a wide range
of devices, from high-quality graphene with low carrier density to
graphene-based heterostructures, exhibit universal behaviour that
can be accurately described with this model. Our calculations
combine multiple parameters that affect charge transport in
graphene and facilitate the design, accurate ab initio prediction of
key transport parameters and analysis of future electronic and
optoelectronic devices based on 2D materials. Furthermore, our
results may be generalised to predict and improve the electrical
behaviour of 2D multilayers made by 3D printing or from
reduced graphene oxide, which are promising candidates for the
scalable high-yield manufacture of large-area optoelectronic
devices that harness the unique properties of 2D materials.

Data availability
All relevant data are available from the authors upon request. Contact authors are Mark
Fromhold (Mark.Fromhold@nottingham.ac.uk) and Lyudmila Turyanska (Lyudmila.
Turyanska@nottingham.ac.uk).
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