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We demonstrate that there are theories that exhibit spontaneous scalarization in the strong gravity
regime while having General Relativity with a constant scalar as a cosmological attractor. We
identify the minimal model that has this property and discuss its extensions.

At the time of writing, there are 13 confirmed detec-
tions of compact object mergers via their gravitational
wave emission [1–3]. This number is expected to rise to
the hundreds in the coming years and this will allow us
to probe the structure of neutron stars and black holes
to unprecedented accuracy. We can then confront the
predictions of General Relativity (GR) with observation
and test the theory itself in the strong gravity regime.
However, one might ask: is it reasonable to expect sig-
nificant deviations from GR in the strong field regime,
considering that the theory has been tested to extremely
high precision in the weak field?

Spontaneous scalarization is perhaps the most direct
manifestation of new physics that stays dormant in the
weak field regime and yet leads to large deviation from
GR in the strong field regime. The first model that
exhibits the spontaneous scalarization phenomenon was
proposed by Damour and Esposito-Farèse (DEF) in [4].
Here, a direct coupling between a scalar field φ and the
Ricci scalar, R (or equivalently the matter in a different
conformal frame), generates at linear level an effective
mass for φ. As the compactness of an objects increases,
this effective mass can become negative and trigger a
tachyonic instability. The scalar field then grows un-
til nonlinear effects kick in and quench the instability,
thereby leading to a “scalarized” object: a neutron star
that is dressed with a scalar configuration and, hence, has
different structure than its GR counterpart.1 Since the
effective mass is proportional to R in the DEF model, no
instability can be triggered around black holes that are
solution of GR.2 In fact, the DEF model is covered by
no-hair theorems [9–11].

A coupling between the scalar and the Gauss-Bonnet
invariant G ≡ R2 − RµνR

µν + RµνρσR
µνρσ has been

known to evade no-hair theorems and lead to scalar hair
[12–21]. Recently, it has been shown that, in models that
fashion such a coupling but also admit GR solutions with
constant φ, black hole and neutron star scalarization can

1 In the DEF model this is simply due to the backreaction of the
scalar and the effect this has on the star, but in principle one
could have additional couplings to matter that alter the micro-
physics within the star as well [5, 6].

2 A subtle exception are black hole that have matter configurations
in their vicinity [7, 8].

occur [19, 20]. Hence, scalarization is not specific to neu-
tron stars or to the DEF model. Further investigations
have demonstrated that the properties of the scalarized
object are sensitive to nonlinear interactions [22–24]. The
onset of scalarization is instead controlled only by in-
teraction terms that contribute to linear perturbations
around a GR background, as scalarization commences as
a linear tachyonic instability.

Schematically, linearizing around a GR solution and
neglecting backreaction, one has

�eff φ
(1) −m2

eff[αi, φ(0), g(0)
µν ]φ(1) + NL = 0. (1)

where g
(0)
µν is the GR background with φ(0) =constant,

φ(1) is the linear scalar perturbation, αi collectively de-
notes the coupling constants of the theory, and NL stand
for nonlinear interactions that can be neglected at linear

order. �eff is the d’Alembertian of either g
(0)
µν or some

effective metric and m2
eff can be seen as an effective mass

squared, whose value is controlled by the coupling con-
stant but also the background. Hence, when the coupling
constants and the background satisfy certain conditions,
m2

eff can become sufficiently negative and the scalar un-
dergoes a tachyonic instability, as mentioned earlier in
the context of the DEF model. The nonlinear terms
cease to be negligible, quench the instability and deter-
mine its endpoint. One can follow this reasoning and pin
down the most general set of terms that will contribute to
�eff and m2

eff and thereby to the onset of the instability
in scalar-tensor theories [25]. The mechanism could be
generalized to non-gravitational couplings [26] and other
fields [27, 28].

Spontaneous scalarization models rely on the fact that
m2

eff depends on curvature. This allows for objects char-
acterized by high curvature to scalarize, while objects
charactirized by low curvature will be described by GR
solutions with φ = φ(0). There is a thorny subtlety
though: if one treats these objects as isolated and hence
asymptotically flat, as usual, then one can always assume
that φ = φ(0) asymptotically. However, in a more real-
istic setup the value of φ far away from the object is
actually determined by cosmological considerations. As
it turns out, when the coupling constant of the DEF
model is such that scalarization can occur for neutron
stars, GR solutions with φ = φ(0) are not attractors in
late time cosmology [29], see also [30] for a more recent
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detailed analysis. Similarly, models that exhibit black
hole scalarization due to a coupling between the scalar
and the Gauss-Bonnet invariant also exhibit exponential
growth of the scalar during cosmological constant dom-
ination [31]. Hence, without severely fine-tuning initial
conditions in cosmology, localized matter configurations
in the late universe could not be described by GR with
φ = φ(0) and scalarization models would be effectively
ruled out.

The aim of this paper is to instead point out that (gen-
eralized) scalar-tensor theories that have GR as a cosmo-
logical attractor and still exhibit scalarization at large
curvatures actually exist. We will first demonstrate this
by means of a simple (perhaps the simplest) example and
argue intuitively why this is expected. We will then pro-
ceed to discuss the cosmology of such models a bit more
thoroughly, discuss how generic our results are and ex-
plain how they would change in more general classes of
scalarization models.

Let us consider the following action,

S =
1

2κ

∫
d4x
√
−g
[
R+ 4X − 2βφ2R+ 2λL2 φ2G

]
(2)

where X = −(∂φ)2/2 is the kinetic term of the scalar
field, β, λ are coupling constants and L is an additional
lengthscale that one needs to choose. We assume that
the metric is minimally coupled to matter. The corre-
sponding scalar equation of motion is

�φ+ (λL2G − βR)φ = 0. (3)

The couplings with R and G generate an effective mass
for the scalar field,

m2
eff = βR− λL2G . (4)

We are interested in models that exhibit spontaneous
scalarization around compact objects so we need to de-
mand that m2

eff becomes negative at high curvature in or-
der to trigger a tachyonic instability. For the time being
our goal is to just demonstrate that this simple model
can exhibit spontaneous scalarization for some type of
compact objects and still have GR as a cosmological at-
tractor. So, we restrict attention to spherical black holes.
Our GR solution will then be the Schwarzschild solution,
for which we have R = 0 and G = 12r2

s/r
6. As mentioned

earlier, G is then sign-definite and the condition for hav-
ing a negative m2

eff becomes λ > 0 [20]. For scalarization
to be relevant to astrophysical black holes we need to
choose L to be of the order of the characteristic length-
scale of the compact object, so we choose L ∼ 10 km.
Finally, we stress that for GR solutions to be admissi-
ble in the model under consideration, one should have
φ = φ(0) = 0. Hence, this is the asymptotic value that φ
would need to take for unscalarized configurations.

Next, we turn our attention to studying this theory on
cosmological scales. Assuming a flat Friedman-Lemâıtre-
Robertson-Walker metric, the equation of motion for φ

is,

φ̈+ 3Hφ̇+m2
eff(t)φ = 0 , (5)

where m2
eff(t) is given by eq. (4) and depends on the cos-

mological background. To get the evolution of the scale
factor a(t) we study the tt component of the modified
Einstein Equations

Gtt = κ (ρφ + ρa) , (6)

where ρa denotes the energy densities of the various con-
ventional components of the cosmic fluid and ρφ is an
effective energy density associated with the scalar field,
given by

ρφ = κ−1
[
φ̇2 + 6βH2φ2 + 12Hφφ̇

(
β − 4λL2H2

)]
.

(7)
The cosmic fluid is well approximated by a barotropic
fluid whose pressure is given by pa = waρa, with the in-
dex a = r,m, de and wa = 1/3, −1, 0 for radiation dom-
ination (RD), matter domination (MD) and dark energy
domination (DED) respectively.

We do not require φ to play any role in late universe
cosmology, so we will assume that it is subdominant with
respect to ρa. This assumption helps avoid the gravita-
tional wave constrains on Dark Energy theories (see [32–
36]), as discussed in detail in [31]. Under the condition
ρφ � ρa Eq. (6) simplifies to the usual Friedmann equa-
tion, H2 ≈ κρa/3. This, together with the continuity
equation, ρ̇a + 3Hρa(1 + wa) = 0 allows us to simplify
the expressions for the curvature terms

R = 6(2H2 + Ḣ) = κ ρa (1− 3wa), (8)

G = 24H2(H2 + Ḣ) = −4

3
(κ ρa)2(1 + 3wa), (9)

and hence the expression for the effective mass.
Let us now return to (5) and consider the behaviour

of the scalar in different cosmological eras. Table I sum-
marizes the signs of the Ricci scalar, R, and the Gauss-
Bonnet invariant, G, during each era. Note that these,
together with the signs of the coupling constants β and
λ, control the sign of the effective mass. It is also worth
emphasising that R and G have different dimensions and
hence different scaling with time, with G being clearly
dominant at earlier times.

Radiation Matter Dark Energy

G < 0 < 0 > 0
R 0 > 0 > 0

TABLE I: Signs of the Ricci scalar and the Gauss-Bonnet
invariant during different cosmological eras.

During RD, R effectively vanishes and, hence, the mass
of the scalar field is entirely controlled by the G term,
with m2

eff ' −λL2G ≈ 24λH4L2 ∝ 1/t4, since H ∝ 1/t.
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At very early times m2
eff will dominate over the friction

term in Eq. (5). However, m2
eff decays much faster than

the Hubble friction and the latter will rapidly take over
and drive φ to a constant. The time that φ takes to
freeze is approximatively given by the time at which the
potential is comparable with the Hubble friction. After
this point, it only takes a few Hubble times for φ̇ to
effectively vanish. More concretely, meff . H ⇒ H(z)×
L . 1, which happens very early, around the redshift
z ≈ 1011 for our choice of L. As a result, the scalar field
is already frozen to a constant solution well before MD.

At the onset of MD, φ starts evolving again. This
is because R no longer vanishes on cosmological scales
and thus it provides a non-negligible contribution to m2

eff.
The contribution of the G term in m2

eff has actually be-
come largely subdominant to that of the R term of their
different scaling. During MD, H � L−1.

As has been pointed out in [25], action (2) with λ = 0
is related by a simple field redefinition to a linearized
version of the DEF model. In fact, we have defined β
such that 8β = βDEF in the appropriate limit. Nonlin-
earities are not important in our regime. As a result, one
expects that once the G term in our theory has become
negligible, cosmological evolution will match that of the
DEF model. Interestingly, the latter actually exhibits
our desired cosmological behaviour for β > 0 [29]: GR is
a cosmological attractor! Hence the scalar field will nat-
urally be driven to φ = 0. The transition to DED does
not chance the dynamics of the scalar qualitatively and
GR with φ = 0 continues to be the attractor.

All of the above can be verified by studying the scalar
dynamics quantitatively. In this regard it is better to
express Eq. (5) in terms the redshift, in which case it
takes the following form:

φ′′(a) + faφ
′
(a) + qaφ(a) = 0, (10)

where prime denotes differentiation with respect to z,
with

fa(z) =
H ′(z)

H(z)
− 2

z + 1
, (11)

qa(z) =
12L2H(z)2(λ+ 3λwa) + 3β(3wa − 1)

(z + 1)2
. (12)

We begin our numerical analysis at zi = 1010, just before
Big Bang Nucleosynthesis (BBN). To set the initial con-
ditions for the scalar field and its derivative, we assume
that φ is just coupled with the thermal bath. There-
fore a natural initial value is φi ' H(zi)/κ � 1. The
initial value φ′i can be, instead, derived from φ̇in: we
expect φ̇i ' H(zi)φi ⇒ φ′i ' φi/zi, which is, again,
much smaller than unity. These two conditions ensure
that ρφ(zi) � ρr(zi) and are hence consistent with the
assumption that φ is cosmologically subdominant. We
stress that φ ∼ 1 would imply Planckian energy scales in

our units and hence initial conditions with φi � 1 do not
constitute fine tuning.

Fig. 1 shows the evolution of the scalar and of the ratio
ρφ/ρa for z < zi. ρφ remains subdominant as expected
and the plots confirm the qualitative behaviour described
previously. In particular, φ remains constant throughout,
with the exception of transitions between cosmological
eras.

The value φ takes at late times does depend crucially
on β. For β = 0, φ effectively remains frozen to the value
it has in the early RD era. Unless this value is set to be
extremely close to zero by fine tuning initial data, any
local configuration in the late universe will have to be
scalarized because cosmological asymptotics will be in-
compatible with having unscalarized configurations. As
discussed in the introduction, this would clash with weak
field constraints. For β > 0 instead, φ → 0 during MD
and GR with φ = 0 becomes a cosmological attractor. To
approach this attractor fast enough, β should be of order
unity so that the oscillations seen in Fig. 1 at the onset of
MD are nearly critically damped. These oscillations cor-
respond to changes on the effective Newton’s constant
that will, in principle, affect the formation of Large Scale
Structures. However, the time scale of the oscillations is
very large, of order of the Hubble rate. Moreover, the
corrections to Newton’s constant would be ∝ |β|∆φ2,
and hence negligible. In summary, cosmic evolution is
expected to be almost identical to GR for late times.

Fig. 2 shows the evolution of ρφ and φ for z > zi and
the very early epochs before recombination. As antici-
pated in our qualitative analysis, for z � 1011, the signif-
icant contribution of the G term to the effective mass re-
sults in a sinusoidal behaviour. The oscillation is damped
by Hubble friction when we move forward in time. ρφ
also shows oscillatory behaviour and, moving to higher
redshift, the oscillations are amplified. Eventually, our
approximation that φ is subdominant ceases to be valid.
It is worth emphasising that ρφ does not need to remain
positive, as it is just an effective energy density.

All of the above referred to λ, β > 0. Next we discuss
the case β > 0, λ < 0. On astrophysical scales, λ < 0
leads to spontaneous scalarization triggered by a tachy-
onic instability in the interior of neutron stars [20]. As
the previous analysis has already shown, on cosmological
scales the λ term has an impact only at very early times,
before z ' 1011. Indeed, numerical analysis confirms that
flipping the sign of λ makes no difference during BBN and
at later times. However, as seen from Table I, for λ < 0,
the λG contribution to m2

eff will be negative and will lead
to exponential growth of φ once one reaches sufficiently z
for the mass contribution to dominate over Hubble fric-
tion. As shown in Fig. 3, ρφ/ρa grows exponentially fast
and reaches 1 a lot earlier than when λ > 0.

Note that, since scalarization relies on curvature cou-
plings, it is rather intuitive that the terms that trigger
it will become relevant in the very early universe. The
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FIG. 1: Top panel: Effective energy density of the scalar ρφ over the energy density of the cosmic fluid ρa as a
function of redshift. Bottom panel: Evolution of the scalar field φ in units of its a reference value φi, fixed at

z = 1010.

FIG. 2: Same as Fig. 1 but for very high redshifts.

FIG. 3: Same as Fig. 2 but for λ = −1.

coupling with the Gauss-Bonnet invariant is the domi-
nant one at large curvatures and its coupling constant
is dimensionful. As such, it controls the curvature scale
at which departure from standard cosmology would ap-
pear. This would happen when the universe is of the
size of a few kilometres, well before BBN, for values of
the coupling that are compatible with compact object
scalarization. At earlier times, departures from standard
cosmology would be significant, as our results show, and
as has been pointed out in the literature [37]. However,
it is quite a stretch to consider these models as good
effective field theories, and hence take their predictions
seriously, all the way to energy scales where the universe

is the size of kilometres. Instead, it seems sensible to try
to embed them in a suitable UV completion with suitable
inflationary cosmology.

Finally, we consider β < 0. For λ = 0, one expects
to recover the results of Refs. [30]. In fact, for any value
of λ one will have a tachyonic instability on cosmological
scales at late times. This instability will be very slow, so
it is not particularly threatening in its own right. How-
ever, without an attractor mechanism at late times, se-
vere tuning of initial conditions would be needed to have
GR configurations locally (see β = 0 case) and the insta-
bility would only make things worse.

To conclude, we have demonstrated, using a specific
model as an example, that the phenomenon of sponta-
neous scalarization around compact objects is compati-
ble with having an attractor mechanism to GR on cos-
mological scales. In fact, our result show that fairly sim-
ple scalarization models can track GR cosmology over a
vast range of redshift and all the way back to BBN. The
key feature that leads to the desired behaviour is that
the scalar can couple in two different ways to curvature
— through the Gauss-Bonnet invariant and through the
Ricci scalar — with one coupling triggering scalarization
locally and the other providing a late time attractor cos-
mologically.

The action we have considered is rather minimal, as
it only includes terms that contribute to linearized per-
turbations around GR solutions with constant scalar. It
is perfectly sufficient to discuss the onset of scalarization
and whether GR is cosmological attractor. However, the
properties of scalarized solutions will be controlled by
the nonlinear (self)interactions of the scalar that one can
add to our action [23–25]. Hence, there is actually a
wide variety of scalarization models with the desired cos-
mological behaviour at late time and different properties
for compact objects. We leave the study of more elab-
orate models and the properties of compact objects in
such models for future work.
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