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Abstract 

Relational structure is ubiquitous in complex systems but very hard to implement in machines. Traditionally 
relational structures were hand-crafted using logic-based methods including various relational approaches to pattern 
recognition. Today the hope is that machines will find relational structures automatically by techniques of deep 
learning. Both approaches require new methods for representing relational structure for dynamic complex 
multilevel systems. We use the platform of robot soccer to investigate these ideas. This paper follows a previous 
paper which presented new dynamic structures for evolving tactics and strategies in team robotics. Here the 
notation is extended to include structures of structures of structures. For example a red defender robot r1 may 
closely mark a blue attacker robot b2 to create a structure < r1, b2; Rclosely_mark>. This may be part of another 
structure < < r1, b2; Rclosely_mark>, b3; Rdefenders_dilemma > as another robot b3 joins in to change the relational structure. 
This approach is illustrated by a RoboCup simulation game. Our next step is to build a competitive player to show 
that the ideas are operational and may give tactical and strategic advantages. 

 

Keywords: hypernetworks, hypergraphs, connectivity, robot soccer, design, multilevel dynamics.  

1. Introduction 

A previous paper presented new dynamic structures for 
evolving tactics and strategies in team robotics1. The 
motivation for this research is to develop a coherent 
methodology for the planning, design, management and 
control of complex socio-technical systems such as 
cities, hospitals, airlines and banks, and to formulate 
socio-economic policy at local, national and 
international levels. 
Team robotics provides an excellent laboratory subject 
for complex systems research since agent interaction  

can be studied ‘from the outside’ which avoids the 
complication of reflexivity when humans study human 
systems ‘from the inside’. 
 
The challenge of robot soccer can be simply stated as 
“By the middle of the 21st century, a team of fully 
autonomous humanoid robot soccer players shall win a 
soccer game, complying with the official rules of FIFA, 
against the winner of the most recent World Cup.2 ”. 
The RoboCup Simulation League used for illustration in 
this paper provides an excellent international platform 
for complex systems research. 
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Our approach to robot soccer follows Atkin’s method of 
analysing chess3. For example, Figure 1 shows the final 
moves in the ‘Immortal Game’ between Anderssen and 
Kierseritzky held on 21st June 1851. In this remarkable 
game white sacrifices most of it major pieces including 
the Queen on square f6 (Fig. 1(a)). However when the 
black knight takes the queen the white bishop moves to 
square e7 for checkmate. 
 
 
 
 
 
 
 
 
 
 
  (a) after Qf6+                               (b) after Nxf6 and Be7# 

Fig. 1. The final moves in the 1851 Immortal Game 

     (source: https://en.wikipedia.org/wiki/Immortal_Game) 

Although there are sixty-four squares on the board, only 
<d5, e5, d6, e6, f6, c7, d7, e7, f7, g7, c8, d8, e8, f8, g8> play a 
part in the checkmate. We enclose them in the angular 
brackets < and > to show that they form a structure. 
This can be made more precise by making explicit the 
relation R1 that assembles them (Fig. 2(a)). Figure 2(b) 
shows the squares assembled by a hypothetical relation, 
R2, to form a different structure – a row of squares.  
 
 
 
 
     (a)  R1                                             (b) R2 
 

 

 

 
     (c) R3                                 R4                                  R5 

Fig. 2. (a) Squares d5, e5, d6, e6, f6, c7, d7, e7, f7, g7, c8, d8, e8, f8, 

g8 assembled by relation R1, (b) these squares assembled by 

R2 into a linear structure, (c) The squares and pieces 

assembled into structures by the relations R3, R4 and R5. 

 

The two structures in Figure 2(a) and 2(b) can be 
represented symbolically as: 
< d5, e5, d6, e6, f6, c7, d7, e7, f7, g7, c8, d8, e8, f8, g8; R1> and  
< d5, e5, d6, e6, f6, c7, d7, e7, f7, g7, c8, d8, e8, f8, g8; R2> 

As a technicality an expression of the form <a, b, c, d> 
is called a simplex and the elements a, b, c, and d are 
said to be its vertices. The expression <a, b, c, d; R> is 
called a hypersimplex since it gives not just a list of 
vertices but also specifies the way these elements are to 
be assembled into a structure – the relational structure 
made explicit by the symbol R. A collection of 
hypersimplices is called a hypernetwork 4. 
 
In much network theory the relational structure is 
implicit. A major methodological requirement of 
hypernetwork theory is that relations must be explicit 4. 
This is done by listing the vertices followed by the 
semicolon symbol and one or more symbols to represent 
the relation.  E.g. Figure 2(c) includes the structure       
< <kNight, g8; Roccupies>, <Queen, f6; Roccupies>; Rattacks> 
meaning that the black knight can take the white queen. 
Black has no choice but to accept this sacrifice (Fig. 
2(b)) enabling the white bishop to move to f6 to form 
the structure 

< <K, d8; Roccupies>, <B, f7; Roccupies>, <N, g7; Roccupies>, 
<N, d5; Roccupies>;  Rcheckmate>. 

This example illustrates the multilevel nature of the 
representation. <kNight, g8; Roccupies> means the 
structure formed by combining kNight and g8 by the 
occupation relation. This structure exists independently 
of anything else. As a whole, <kNight, g8; Roccupies> 
exists at a higher level of assembly to its parts. If the 
parts are said to exist at Level N, then the assembly 
<kNight, g8; Roccupies> exists at Level N+1. Similarly the 
expression 

< <kNight, g8; Roccupies>, <Queen, f6; Roccupies>; Rattacks> 

exists at level N+2 since it assembles two Level N+1 
structures. 
 
Even systems with small number of elements can have 
astronomic numbers of relational combinations. The 
challenge is formulate a way to represent the system in a 
parsimonious way. One way to do this is to name 
structures, e.g. let <kNight, g8; Roccupies> = BNg8. Then 
BNg8 is a Level N+1 structure formed from the Level N 
black knight and the square g8.  <BNg8, WQf6; Rattacks> 
is a Level N+2 structure formed from the two Level 
N+1 structures BNg8 and WQf6. This way of forming 
structures provides a rich structural language for the 
multidimensional dynamics of complex systems. 
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frequency of %age pitch occupation 

2. Fundamental elements and relationships 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The centres of the 105 x 68 soccer pitch cells 
 
The soccer pitch is represented by a set of discrete 
square cells. The centres of the cells are shown in Fig. 3. 
The cells are fundamental elements of our soccer system. 
Others include the ball and the sets of eleven blue and 
eleven red soccer players. 
 
The fundamental relationships include the spatial 
relationships between the players and the ball, and the 
closeness of the players and the ball to the centres of the 
cells.  In contrast to the static ranks and files of chess, 
the salient areas of the pitch emerge and change rapidly 
in robot soccer as the players and the ball move. 
 
The cells closest to the players form polygons (Figs 4(a) 
and (b). The red team plays from left to right. The cells 
closest to each red player form a grey polygon with a 
red boundary. The polygons for the blue players are 
white bounded by blue lines. The ball is shown in black. 
 
The occupation of the pitch depends on the positions of 
the players, e.g. in Figure 4(a) the red team occupies 79% 
of the pitch while in Figure 4(b) the blue team occupies 
68% of the pitch. In general it is better for a team to 
occupy as much of the pitch as possible, and winning 
teams usually occupy the majority of the pitch for the 
majority of the game5. 
 
Figure 5 shows that in this game the red team occupied 
the majority of the pitch with a much greater frequency 
that the blue team. Red won by three goals to nil. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) the red team occupies 79% of the pitch 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
(b) the blue team occupies 68% of the pitch. 
 
Fig. 4. Areas of the pitch as emergent features 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5. During the game the red winning team occupies the 
majority of the pitch cells significantly more frequently than 
the losing blue team. 
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3. Analysing a robot soccer game. 

Of course, it is not just pitch occupancy that matters – it 
is the way the players position themselves to form 
favourable structures. It also depends on the position 
and motion of the ball. 
 
This section concerns a robot soccer game between the 
Gliders2016 and CYRUS teams. The data set for this 
consists of the x-y positions of all the players and the 
ball for 6000 one-tenth second ticks of the clock – 
games last for ten minutes. Figures 6 to 14 show a 
remarkable sequence of structural development that is a 
precursor to the red team scoring a goal. It is 
characterised by the creation of ‘islands’ of ownership 
and passes between the islands creating an irresistible 
structure from which the red team scores a goal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 6. time 94: < <r11, ball; ownership>, r5; pass>  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.  time 105: <<r5, ball; Rownership>, r8; Rpass> 
 

In Figure 6 red player number 6, denoted r6, is at the 
centre for the kick-off. It possesses the ball to form the 
structure <r6, ball; Rpossession>. It passes to r11 to form the 
structure < <r6, ball; Rpossession>, r11; Rpass>. This is 
followed by < <r11, ball; Rpossession>, r5; Rpass>. 
 
Two important changes occur between times 94 and 105 
when r5 receives the ball. The first is that r6 and r11 
move forward towards b6 and b11 to form the 
hypersimplex <r6, r11, b6, b11; Rclose_together > on the 
forward edge of red’s space (Figs 6 and 7). The second 
is that r10 moves past b9 creating an island around b9 in 
red’s half but also giving r10 a significant near-island in 
blue’s half. At first sight this might seem to be even 
trade-off, but it is not since red has the initiative and the 
ball is moving into blue’s half. Already the blue team 
has suffered a serious structural weakness (Figs 7 & 8). 
 
Player r8 receives the ball at time 114 to form the 
hypersimplex <r8, ball; Rownership>. r10 has moved 
forward to create a detached red island in blue’s half, 
enabling the structure <<r8, ball; Rownership>, r10; Rpass>. 
This is a bad position with poor prospects for blue. 
 
What happens off the ball between times 114 and 127 at 
the centre of the pitch is quite remarkable – b11 moves 
towards the red goal. This inexplicably bad move 
enables red to form the structure <r6, r7, r11; Risland> 
which is very strong for red and very weak for blue. At 
the same time b6 hardly moves as the red island moves 
past it towards the blue goal (Figs 8 and 9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. time 114:  <<r8, ball; Rownership>, r10; Rpass> 
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Fig. 9. time 127:  <<r10, ball; Rownership>, r11; Rpass> 

 
 
 
 
 
 
 
 
 
 
 
 
 
   
  Figure 10. time135:  <<r11, ball; Rownership>, r10; Rpass>       

                        
 
 
 
 
 
 
 
 
 
 
 

 

 

  Fig.11. time 159: <<r11, ball; Rownership>, r10; Rpass>                                     
 
Although red is playing a very strong attacking game, 
between times 114 and 127, r5 moves down to deny b9 
the space it enjoyed – a strong defensive move (Fig. 9). 

Red presses home its attack between times 114 and 127. 
<r6, r7, r11; Risland>  occupies more of the pitch and r8 
moves fast towards r10 to create <r8, r10; Risland> on its 
right wing (Fig. 9). 
 
At time 127 (Fig. 9) r10 receives the ball to form the 
structure <r10, ball; Rownership>, creating the possibility of 
a pass structure <<r10, ball; Rownership>, r11; Rpass>. 
 
Between times 114 and 127 b4 moves towards r10 to try 
to form <r10, b4; tackle>. However (Fig. 9) b4 encounters 
the defender’s dilemma: b4 has two choices (i) tackle r10 
to try to gain the ball, giving r10 the possibility of 
passing to r8 within the island <r6, r8; Risland> or passing 
the ball into the newly formed <r6, r7, r11; Risland>, or (ii) 
moving away from r10 to try stop these passes. Here b4 
chooses to try to tackle r10, but r10 passes the ball into 
the island  <r6, r7, r11; Risland>. 
 
There are two defenders dilemma structures in Figure 9: 
<b4, r10, r8; Rdd> and <b4, r10, r11; Rdd>. The first is weak 
because <b9, r8; Rclose> and a pass to r8 could lose the 
ball. <b4, r10, r11; Rdd> is safer and r10 passes to r11. 
 
Between times 127 and 135 b4 makes the error of letting 
r10 move pass it towards the goal (Fig. 10). This gives 
r10 control of a large part of its left wing, and lets it 
connect with <r6, r7, r8, r11; Risland> to form <r6, r7, r8, r11, 
r10; Risland>.  Although b4 subsequently moves back to 
try to improve the defensive position on red’s right wing 
it has lost a tempo and cannot stop the advance of r10. 
 
Red’s dominant structure at time 135 within blue’s half 
is a great weakness and enables r11 to consider a pass to 
r10 deep in the blue half (Fig. 10). 
 
The pass is made and r10 makes a fast run down the 
wing to receive it at time 159. By now red’s position has 
become very strong (Fig 11). 
 
The red island <r6, r7, r8, r11, r10; Risland> is moving 
towards the blue goal and by time 159 has surrounded it 
to create a much weaker defensive island <b1, b2, b3; 
Risland> with attackers outnumbering defenders by 6 to 2 
(excluding the goalkeeper). 
 
By time 170 red has an immensely superior position and 
following a sequence of thrilling short passes within the 
red attacking island, <r10, r11; Rpass> between times 159 
and 170, <r11, r9; Rpass> between times 170 and 172,  <r9, 
r7; Rpass> between times 172 and 174, with r9 shooting at 
time 174 to create the structure <r9, ball, blue_goal; 
Rgoal_scored> (Figs 12, 13, 14) at time 180. 
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Fig. 12. time 170:  <<r10, ball; Rownership>, r11; Rpass> 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 13. time 172. :  <<r11, ball; Rownership>, r9; Rpass> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. time 174. :  <<r9, ball; Rownership>, r7; Rpass> 

 

 

 
 
Discussion 
 
This is a sad story for blue, but could the outcome have 
been avoided? 
 
Figure 15 shows a critical state in red’s development at 
time 105. Figure 16 shows, counterfactually, that if blue 
players b3, b4, b5, b9 and b11 had moved differently 
between times 94 and 105 they could have denied red 
the structure from which it launched its attack.  
 
In particular the movements of b9 and b10 disconnect 
red’s structure isolating r10 from r5 so that the pass   <<r5, 
ball; Rownership>, r8; Rpass> is no longer a feasible option. 
Nor is the alternative <<r5, ball; Rownership>, r10; Rpass>. 
See the green circles in Figure 16. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The position at time 105 given in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.16. time 105: Counterfactual movements of b9 and b10 
could have disconnected the red structure and denied red the 
pass structure <<r5, ball; Rpossession>, r8; Rpass> and the pass  
structure <<r5, ball; Rpossession>, r10; Rpass> 
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Figures 17 and 18 show the counterfactual outcome if 
blue players b6, b9 and b11 had moved differently 
between times 105 and 114. Then the structure would 
again be less favourable for the red team and deny it the 
pass  <<r8, ball; Rownership>, r10; Rpass>. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17. The position at time 114 given in Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. Counterfactually, blue can achieve a better position 

at time 114 if b9, b10 and b11 move differently. 

4. Conclusions 

In [2] we give three research questions concerning our 
approach to robot soccer. The first was whether some 
hypersimplices are particularly disposed to scoring 
goals? Our recent research suggests that the ability to 
force a defender’s dilemma indicates that teams are 
disposed to win 5.  
 
In this paper we have focused on the hypersimplex 
notation and the requirement to make relations explicit. 
What is new about this is that have shown how to form 

higher level relational structure between lower level 
relational structures of the form 
 
<  <a, b, c; R1>, < <x, y; R2>, z; R3>>, d, e, f; R4 > 
 
Also it has been shown that using this notation can be a 
bridge between free format speaking to analyse 
multilevel systems and the precise notation required for 
machines to manipulate the structures. This relates to 
the second question in [2] which concerned machine- 
learning the relational structure of hypersimplices.  For 
machine learning it is necessary to have a way of 
representing structures that can be implemented in 
computers. 
 
Our approach to robot soccer is explicitly relational and 
follows the approach taken by Atkin for computer chess. 
It has been illustrated that the highly dynamic 
connectivity of the relationships between the cells of the 
pitch, the players and the ball has an important role in 
robot soccer. This provides a tentative answer the third 
question in [2] about exploiting the multidimensional 
connectivity of hypersimplices to develop tactics and 
strategies in robot soccer. 

5. Further work 

Having spent a considerable effort developing the ideas 
presented in this and previous papers, the next step is to 
develop a competitive RoboCup robot soccer player. 
We expect to report progress on this at ICAROB 2021. 
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