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Abstract

Adsorption-based heat transformation systems are studied from the twentieth century;
however, their performance is low to replace conventional systems. Metal-organic frameworks
(MOFs) are providing a new class of micro- and nano-porous organic adsorbents. These have
adjustable geometry/topology with a large surface area and pore volume. A comparison of the
coefficient of performance (COP) between the MOFs and conventional adsorbents-based cooling
systems is made for the years 1975-2020. Conventional adsorbents achieve COP of 0.85, whereas
it is improved to 2.00 in the case of MOFs. The main bottleneck in the lower COP level is the low
adsorption equilibrium amount. This study is aimed to provide comprehensive detail of water-
vapor adsorption equilibrium and physicochemical properties of hydrophilic MOFs. Zn based
MOFs are not stable in the presence of water-vapors, whereas MIL series, Zr, Ni, and Cu based
MOFs are relatively more stable. Among the studied MOFs, MIL-101(Cr) possesses the highest
adsorption uptake of 1.45 kg/kg at 25°C (saturation condition) and outperformed for heat
transformation applications. Its uptake can be increased to 1.60 kg/kg by coating with graphite
oxide. For water desalination, MIL-53(Al) exhibits specific daily water production of 25.5
m3/ton.day (maximum) with a specific cooling power of 789.4 W/kg. Both MIL adsorbents are

found promising which can be considered for various adsorption applications.

Highlights

* An insight is provided on MOFs suitability for heat transformation applications
» Physical/crystal properties of MOF/water pairs are reviewed and compared

* High-uptake MOFs are explored for cooling, air-conditioning and desalination

* Adsorption equilibrium data are compared, and isotherm models are discussed

Keywords: MOFs; water vapors adsorption equilibrium; cooling; air-conditioning;

desalination.
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MOF
n

P

P/P,
PHCM
Po
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RH
SCHE
SCP
SDWP
SEM
SHG
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adsorption potential [kJ/kg]

aluminum fumarate

constant of Sips adsorption model [-]
Brunauer-Emmett-Teller

coefficient of performance [-]
coefficient of performance of heating [-]
coefficient of performance of refrigeration [-]
Dubinin-Astakhov

desiccant air-conditioning
dehumidification effectiveness

dual site langmuir-freundlich

Duban University of Technology
desiccant wheel

activation energy [kJ/kg]

graphite oxide

constant of Freudlich adsorption model [kg/kg]
International Union of Pure and Applied Chemistry
MOF coated heat exchanger

Material Institute Lavoisier
metal-organic framework

D-A model constant [-]

vapor pressure [kPa]

relative pressure [-]

precise humidity control material
saturated vapor pressure [kPa]
pressure-temperature-concentration
general gas constant [kJ/kg.K]

relative humidity [-] or [%]

SGB coated heat exchanger

specific cooling power [W/kg]

specific daily water production [ton/day/ton-ads]
scanning electron microscopy
second-harmonic generation
temperature [°C, K]

temperature of condenser [°C] or [K]
temperature of evaporator [°C] or [K]
inlet temperature [°C] or [K]

University of Oslo

adsorption uptake [kg/kg]

maximum adsorption uptake [kg//kg]
dehumidification effectiveness [-]
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1. Introduction

Adsorption cooling and air-conditioning systems could be energy-efficient solutions for
various applications compared to conventional technologies [1,2]. The performance of these
systems is directly linked with adsorbent-adsorbate interactions [3,4] and the type of adsorption
isotherms [5—7]. Thereby, the adsorbents' structure has a significant role in developing useful
technologies [8,9]. Various adsorbent-adsorbate pair have been studied in the literature [10-12].
In this regard, the highest uptake was recorded by adsorption of difluoromethane (HFC-32) onto
phenol resin-based adsorbent [13]. Water vapor adsorption has been studied for various adsorbents
[14,15] e.g. silica-gel [16—-18], activated carbon [19,20], polymers [21-24] and zeolite [25-28].
These hydrophilic adsorbents are investigated for many applications e.g. silica-gel for greenhouse
air-conditioning [29], drying of agricultural products [30,31], thermal energy storage system [32],
and adsorption cooling/air-conditioning [16,33]; activated carbons and silica gel for greenhouse
air-conditioning [29], adsorption refrigerator [34,35], air-conditioning [36], and ice-making [37];
polymers for desiccant air-conditioning (DAC) [38]; and zeolites for heat storage [26] and air-
conditioning [39,40]. The adsorbents' hydrophobicity is greatly concerned with surface area and
volume of macro-, meso-, micro and nano-pores to welcome incoming molecules of water-vapors
[41]. In this regard, metal-organic frameworks (MOFs) are a new class of micro- and nano-porous
adsorbents with exclusive adsorption properties [14,42]. These are known as porous coordination
polymers, metal-organic materials and organic coordination polymers [43—46].

The MOFs are hybrid adsorbents in which organic linkers connect with inorganic metal ions
by coordination; metal ions provide more stability to crystals and enhance their hydrophilic
character. Metal nodes in MOFs increase flexibility and side spaces [49], providing many ways to
synthesize many adsorbents with the same organic linker. According to the Cambridge database
[47], nearly 12,000 MOF structures have been synthesized until now using 102 organic linkers
with different metal nodes. They have a more flexible structure design with the greater ability to
control pore functionalization than other organic adsorbents like zeolite and polymers.
Furthermore, the MOFs have an organic part in their solid structure formation, making them more
versatile than zeolite [48]. A simple schematic of the MOFs formation is shown in Fig. 1. It can
be observed that MOFs crystal formed cage-like 3-dimensional open-spaced structure due to the
support of metal ions and possess huge accessible free space to attract water molecules. A simple

schematic of crystal formation and adsorption of water-vapor for CPO-27(Ni) and aluminium
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fumarate (AlFs) is also shown in the figure. It can be observed that these adsorbents possess more
fluctuations in structure and crystal design while interaction with water vapors. Many experimental
studies showed that MOFs had higher water-vapor uptake than conventionally used adsorbent, e.g.
silica-gel [49,50]. There is a functional relationship between the adsorbent structure and the
amount of adsorption equilibrium investigated in the literature [51-53]. Moreover, the surface
area, pores volume, and structural stability of the MOFs may significantly affect the water-vapor
adsorption equilibrium [54-56]. Water-vapor adsorption uptake can be improved by coating the
adsorbents with other metal(s) [57]. For example, adsorption uptake of MIL-101(Cr) has increased
1.07 times when coated with graphite oxide (GO) at 25°C and 0.90 relative pressure, as its surface
area increased from 2489 to 3522 m?/kg [58-60].

Various studies has been conducted to synthesized and characterized the MOFs in term of
water-vapor adsorption equilibrium e.g. MOF-5 [43,61,62], HKUST-1 [56,63], CPO-27(Ni, Cr,
Cd, Mg) [49,52,53,64,65], MIL-(101, 100, 125) [54,66,67] and zirconium-based MOFs [68,69].
Therefore, this study aims to provide a brief comparison of the MOF adsorbents that can be helpful
in selecting a suitable adsorbent according to thermophysical and thermodynamic properties.
Several studies on MOFs/adsorbates interaction have been reported in the literature using close
and open-cycle adsorption cycles [70] for cooling [71-74] and air-conditioning [53,60]
applications. In the case of open-cycle applications, MOFs adsorption uptake is supposed to be
limited to water-vapors [60], whereas, in the case of close-cycle applications, MOFs adsorption
have been reported with various adsorbates, e.g. water-vapors [53,72], ethanol [75-77] and
methanol [73,78]. However, in each case, adsorption equilibrium uptake and adsorption kinetics
are key adsorption properties for developing a real system [79]. Adsorption uptake of ethanol onto
MIL-101 has been reported as high as 1.10 kg/kg (at 25°C) [77] and 0.74 kg/kg (at 25°C) ) [75]
and methanol onto HKUST-1 and MIL-101 yielded 0.55 kg/kg (at relative pressure of 0.90) and
1.20 kg/kg (at relative pressure of 0.80), respectively [73]. Similarly, MOF yielded higher
methanol adsorption uptake and performance at lower heat rejection and evaporator temperature
than activated carbon. This higher adsorption uptake of ethanol significantly increases the
coefficient of performance (COP) and specific cooling power (SCP) of the systems. In each case,
MOFs possess higher cyclic stability e.g. MIL-101/ethanol stable after 60 adsorption/desorption
cycles [75] and MIL-101(Cr)/methanol can be applicable up to 1000 adsorption/desorption cycles
[73].
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Fig. 1. Fundamental of MOFs crystal formation along with water-vapor interaction (left). The
basic unit of crystal formation and change in crystal after water-vapor adsorption for CPO-27(Ni)

(top right), and aluminium fumarate (bottom right), reproduced from [50,80].

Hydrophilic MOFs have been reported many close-cycle applications including water
desalination [50,52,81], adsorption heat pump and adsorption chillers [49,55,82], heat
transformation and storage [67,69,83,84], solar energy storage [85], humidity control [86],
adsorption cooling and air-conditioning [53,71,72,87], pollutant removal [88], and ice-making
[81]. In an experimental study [53], CPO-27(Ni) has 1.23 times higher water-vapor adoption
uptake than silica-gel when investigated for automobile air-conditioning, resulting in COP and
SCP of the system as 0.26 and 105 W/kg, respectively. Similarly, hydrophilic MOFs have been
investigated for many open-cycle application, e.g. water harvesting [89,90], moisture sensing [91],
wastewater treatment [92,93] and air-conditioning [60]. In a simulation study [60], MIL-101(Cr)
investigated for open-cycle air-conditioning purposes and results showed that MIL-101(Cr)
outperformed silica-gel.

In this regard, many studies have been reported in the literature to investigate the performance

of these materials, highlighting their potential use in many applications. This study aimed to review
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the water-vapor adsorption equilibrium of hydrophilic MOFs available in the literature and their

potential to use for adsorption based cooling and air-conditioning applications.

2. Adsorption characteristics of MOF/water pairs

This study reviewed various kinds of MOF based hydrophilic adsorbents which were
synthesized and characterized in the literature e.g. MIL-101 [50,83,94,95], MIL-53 [50,66,92,96],
MIL-100 [97,98], MIL-125 [99,100], MIL-96 [101], MIL-127 [102], MIL-101 Cr/SrBr2 [85],
MOFEF-1 [103] , MOF-5 [43,61,62,104], MOF-14 [105], HKUST-1/MOF-199 [55,56,63,104,106],
CPO-27 [52,64,107-111], CAU-10-H [112], MOF-177 [104], Fe-BTC [55], MOF-801 [68],
PIZOF [113,114], MOF-806 [68], UiO-66 [68,99,113,115-117], MOF-802 [68], MOF-88 [118],
Ui0-67 [117], MOF-808 [68], DUT-67 [69,119]. The details of the adsorbents are provided in Fig.

Metal-organic frameworks (MOFs)

1
i !
! 1
! 1
: MIL serics Others |
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|
! MIL-101 [50,83,94,95] MOF-801 [68] CPO-27 [52,64,107 111] '
1
! 1
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! 1
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! 1
|
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1
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Fig. 2. Overview of the MOF adsorbents studied in the literature.

7|Page



186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

2.1. Physical characteristics and chemistry

The MOFs are formed by the coordination of organic linkers and metal ions. These metal ions
act as a base, while organic linker act as a bridging unit. The strong coordination between metal
ions and organic linkers is a key factor to make a stable crystal. The crystal stability makes these
adsorbents more versatile and unique than other adsorbents. Crystal and structural properties of
MOFs based adsorbents with good water vapors adsorption uptake are shown in Table 1. Many
crystals have uniformly connected each other to form a huge molecule with empty spaces.
However, the presence of empty spaces on each side makes these adsorbents more reactive and
unstable. They can easily react to chemicals and moisture present in the air during their preparation
process. Therefore, it is necessary to achieve control conditions in the laboratory during their
preparation. Water molecules get attached to the crystals when these adsorbents are completely
synthesized. Heat treatment is required to remove excessive water molecules from the crystals
[120]. This heat treatment inactivates the adsorbents and makes them more thermally and
chemically stable, e.g. HKUST-1 and MIL-101 have thermal stability of 240°C and 275°C,
respectively [63,95].

Various studies highlighted hydrophilic character and higher hydrothermal stability of these
adsorbents, e.g. nickel-based CPO-27 [50,53,107]. Some of the MOFs may be hydrophobic and
possessed a higher attraction for other adsorbate molecules. For example. MOF-5 is not moisture
stable, but it can be utilized for gas separation applications [61]. The hydrophilic and hydrophobic
character can be determined by the type of metal ions and nature of interaction with the organic
linker and metal ions. Fig. 3(a)-(d) [128] gives a brief insight into the geometries of clusters
transition states upon ligand hydrolysis/displacement reaction in MOF-5, HKUST-1, MIL-101 and
ZIF-8, respectively. Besides, a simple water stability map of different MOFs materials is shown in
Fig. 3(e) [121]. Some of the adsorbents of this class are moisture sensitive and degraded when
exposed to water-vapors. It is because of the type of metal node, e.g. Zn metal-based MOFs are
moisture sensitive [ 104]. Similarly, MOF-5 is not stable in the presence of moisture and degraded
at a relative humidity (RH) of more than 4% [61]. Additionally, some of the adsorbents are stable
at lower relative pressure range and start to degrade at high relative pressure, e.g. HKUST-1 (also
known as CuBTC/MOF-199 [65]) is more moisture stable at lower relative pressure [56]. It is due
to the presence of copper (Cu) metal ions which are moisture stable. The bond length (Cu-Cu

bond) starts to elongate when water-vapors contact with its crystal [59], and bond length elongation
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increases continuously when the number of water-vapour molecules increases. Therefore,
HKUST-1 shows relatively higher water-vapor uptake at lower relative pressure and unstable at
higher relative pressure. However, changing metal ions with the same organic linker can alter
adsorptive and physical characteristics. For example, MOF-74 [111], also known as CPO-27
[64,65], developed by the coordination of 2™ group transition metal ions (Mg, Ni, Cd, Cu and Cr)
with 2,5-dioxide-1,4-benzenedicarboxlyte organic linker [64,107—-109]. Moisture stability in CPO-
27 is determined by metal and oxygen (M-O) bond strength [122]. Bond length elongation is large
in the case of Cr, Cd, Mg and Cu metals. While the M-O bond elongation is negligible in Ni metal
ion and crystal retained its original position when it dehydrated. Hence, CPO-27(Ni) found to be
more stable in the presence of water-vapors [107].

Crystal formation/deformation in the presence of water-vapors in the MIL series is observed,
which is quite different from other studied MOFs adsorbents. Most of the MIL series's adsorbents
attracted fewer water-vapors at lower relative pressure ranges (0.10 to 0.30) compared to higher
relative pressure (0.50 to 0.90) [59,71,94]. For examples, MIL-101 and MIL-100 have started to
absorb water-vapors at relative pressure ranging from 0.30 to 0.40. Similarly, aluminium (Al) and
gallium (Ga) metal(s)-based MOFs were found to be water-vapor stable as compared to other metal
ions-based adsorbents. For example, AlFs [92] showed a honeycomb-like flexible structure with
more surface area due to long repeating (-Al-O-Al-O-Al-O-Al-) chains. Therefore, water-vapors
can easily attach to the crystal without deformation. Thus, the crystal retained their original
position when dehydrated or thermally treated. Similarly, zirconium (Zr)-based MOFs like UiO-
66 is formed from the octahedral group of ZrsO4(OH)4 with BDC linker has possessed higher
moisture stability [123].
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2.2. Water-vapor adsorption equilibrium

The MOFs usually exhibit continuous water-vapor adsorption uptake at all RH ranges due to
the macro, meso and micro pores' availability in their crystals. Water vapors were firstly settled
into macropores, followed by meso and micro pores. The MOFs usually exhibited various types
of water-vapor adsorption isotherms.

MOFs of the MIL series are extensively studied in the literature, which exhibited adsorption
isotherms of type-IV and type-V as per IUPAC classification. Water-vapor adsorption uptake of
Al-based MIL-53 (known as AlFs) was investigated in the literature [50]. Al and Ga metal-based
adsorbents were found to be more stable for water vapor adsorption due to Al and Ga metals' water
stability. MIL-53(Al) showed uptake of 0.36 kg/kg at relative pressure of 0.90 with adsorption
isotherm of type-IV [49,50,129]. Dubinin-Astakhov (D-A) based equations (Table 3) were used
depending upon the adsorption potential range to model the adsorption equilibrium data. The
adsorption uptake behaviour of MIL-53(Ga) was quite different from MIL-53(Al) due to the
presence of a large number of hydrated nano-pores in its crystals [130]. Moreover, iron (Fe) and
chromium (Cr) based MIL-53 have not shown good water vapour adsorption uptake [55]. The Cr
and Fe metal ions have shown more attraction for water-vapors than the organic linker and resulted
in adsorbents degradation. Chromium-based MIL-101 possessed an uptake of 1.45 kg/kg at
relative pressure of 0.90 [50]. It exhibited type-V adsorption isotherm, and D-A based equations
(depending upon relative pressure range) were used to fit adsorption equilibrium data as presented
in Table 3.

The adsorption properties can be improved by changing/adding functional groups/ coating
material with other hydrophilic metal(s) [94,131]. For example, the adsorption uptake of MIL-101
was improved to 1.60 kg/kg at a relative pressure of 0.90 when coated with GO to form MIL-
101(Cr)@GO [58,60,98]. Similarly, water-vapor adsorption uptake of MIL-100 was investigated
with aluminium and iron metals ions [132][96]. MIL-100(Fe) shown maximum uptake of water
vapors of 1000 cm?/g (at 273K) and exhibited type-V adsorption isotherm, which is relatively
higher (i.e. 0.70 kg/kg) as compared to MIL-100(Al) (i.e. 0.48 kg/kg) at 273K and relative pressure
of 0.90. MIL-100(Fe) had large hysteresis at the same temperature and relative pressures. It had
high hydrothermal stability as it is stable after 40 adsorption/desorption cycles and 5 hours per
cycle at the temperature range from 40 to140 °C [97]. MIL-125 with functional group H>N shown
uptake of 0.60 kg/kg (at a relative pressure of 0.9 and 273K) and owning to adsorption isotherm
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of type-IV [99]. A detailed comparison of water-vapor adsorption isotherms for MIL series-based
MOFs is provided in Fig. 4 (a). MIL-101 with Cr templet has shown the highest water-vapor
adsorption uptake than all other adsorbents of the MIL-series. A noticeable increase in the
adsorption uptake can be observed when MIL-101(Cr) was coated with Graphite oxide (GO) that
increased adsorption uptake ability and stability.

Similarly, Zr-based MOFs, e.g. MOF-801, MOF-805, MOF-806, MOF-802, MOF-841, MOF-
812 and MOF-808, were also investigated, which shown reasonable water-vapor adsorption uptake
[68,114]. Adsorption behavior of some Zr-based adsorbents was compared in a study [68] UiO-66
[115,117,119] with PIZOF-2 [113] and DUT-67 [119]. A detailed comparison of water-vapor
adsorption isotherms for Zr-series-based MOFs is provided in Fig. 4(b). UiO-66 shown water-
vapor uptake of 525 cm?/g at a relative pressure of 0.90 and temperature of 293K. However, UiO-
66 did not possess cyclic stability; hence, it was not suitable for cyclic use applications. On the
other hand, MOF-801 and MOF-841 exhibited good water-vapor adsorption uptake with cyclic
stability. These adsorbents could exhibit the same adsorption uptake for many cycles, and thereby
MOF-801 was found more promising adsorbent for cooling application [82].

In addition to MIL and Zr-series, many other hydrophilic MOFs were investigated in the
literature, as summarized in Fig. 4(c). In a study [53], CPO-27 with nickel (Ni) metal node
possessed a high attraction for water-vapors. The D-A equation was used to fit the adsorption
equilibrium data [49,50,52,53]. The D-A model equations are provided in Table 2, whereas the
corresponding values for the optimized parameters are exhibited in Table 3.

Fig. 4(c) shows that type-1 adsorption isotherm can be seen with maximum uptake of 0.45
kg/kg at a relative pressure of 0.90 and a temperature of 25°C. The CPO-27 possessed cyclic
stability for adsorption uptake even after 50 adsorption/desorption cycles [53]. Water-vapor
adsorption equilibrium for HKUST-1 and Fe-BTC has been experimentally investigated in the
literature [55]. Langmuir and Sip equations were used to model adsorption equilibrium data.
HKUST-1 showed type-1 adsorption isotherm and maximum uptake of 0.60 kg/kg at a relative
pressure of 0.90, thereby finding a more suitable adsorbent [37]. In another study [106], Dual-
Sided Langmuir-Freundlich (DSLF) equation (Table 2) was used to fit water-vapor adsorption data
for HKUST-1. However, Fe-BTC showed type-I1I adsorption isotherm with a maximum uptake of
0.36 kg/kg at a relative pressure of 0.90. The optimized parameters for all models and all studied

adsorbents are provided in Table 3.
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317  Some of the MOFs reported in literature did not show good water-vapor adsorption uptake e.g.
318  Birm-1 [55], Birm-1-K [55], Birm-1-Li [55], MOF-5 [62] and MOF-14 [105]. However, they
319  performed better for other applications like gas separation.
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3. Applications of MOF/water pairs

In recent decade, the MOFs adsorbents are extensively investigated for the development of
open and close-cycle adsorption applications. Water is a typical adsorbate in case of open-cycle
system application [60,89,91-93,133], whereas, ethanol [75-77], methanol [73] and water
[49,50,52,53,55,67,72,81,83,97,99,134] are studied for closed-cycle system applications. Detail of

applications is summarized in Fig. 5.

Open-cycle applications

Close-cycle applications

adsorption heat pump

air-conditioning [60]

[49,55,82]

moisture sensing [91]

ice-making [81]

adsorption cooling

[73,75-77]

water desalination

[50,52,81]

watcr harvesting

[89,90]

adsorption cooling
[53,71,72,172]

wastcwater trecatment

[92,93]

heat transformation
[67,69,83,84,97,99,13

Solar-cnergy storage
[85]

There can be more
applications of MOFs
pair with
ethanol/methanol,
however, it is limited
here as per available
literature.

________________________________________________________________________

Fig. 5. Insights of applications of MOF adsorbents studied in the literature.

3.1. Adsorption cooling

Adsorption cooling systems are mainly closed-cycle systems consisted of an evaporator,
adsorption beds, expansion valve, condenser, and associated accessories. Fig. 6 (a,b) shows a
typical schematic diagram of a closed-cycle adsorption cooling system and a Pressure-
Temperature-Concentration (P-T-W) diagram demonstrating the ideal thermodynamic cooling

cycle. Various adsorption cooling technologies/systems based on different cooling cycles have
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been reported in the literature [135—-142]. It has been found that the COP and SCP of the system
are mainly affected by heating sources [143,144], adsorption equilibrium and adsorbent-adsorbate
interaction [3,145—147]. In this regard, MOFs are investigated with various adsorbates, e.g. water
[148], ethanol [149] and methanol for adsorption cooling applications. The MOFs showed high
adsorption uptake, even at lower concentrations [150]. For example, MIL-101(Cr) shown
maximum uptake of ethanol, methanol and water of 1.10 kg/kg [77], 1.20 kg/kg [73] and 1.45
kg/kg [49], respectively. The MIL-101(Cr)/ethanol pair has been experimentally investigated in
literature for adsorption cooling [77] and refrigeration [75] applications. MIL-101(Cr) possessed
a methanol uptake of 0.51 kg/kg, which is twice that of activated carbon (i.e. 0.234 kg/kg).
Adsorption equilibrium and kinetics have been experimentally tested, and the results revealed, it
could be a promising candidate for developing cooling devices [77]. In a study [75], MIL-101(Cr)
showed adsorption ability for many adsorption-desorption cycles (stable after 60 cycles) as the
reduction in BET surface area was only 3.30%. MIL-101(Cr)/ethanol is completely regenerated at
100°C, a relatively low regeneration temperature than activated carbons. Similarly, MIL-101(Cr)
and HKUST-1 were investigated for methanol adsorption update [73]. The results showed that
MIL-101(Cr) has higher performance when desorption temperature is less than 353K. However,
HKUST-1 has higher performance when evaporator temperature is greater than -5°C and
outperformed compared to activated carbons.

Hydrophilic MOFs have been investigated in the literature for single and two beds adsorption-
based air-conditioning and cooling systems. In a study [53], CPO-27(Ni) has been experimentally
tested to develop a single-bed adsorption refrigeration system and simulated for two beds
adsorption systems for automobile air-conditioning. This study also compared the performance of
CPO-27(Ni), RD-2060 and SAPO-34 to select appropriate adsorbent with higher COP and SCP
values. Results have shown that CPO-27(Ni) has good performance with SCP values ranging from
80 W/kg to 105 W/kg. However, SAPO-34 outperformed both cases with the SCP value of
440W/kg and a regeneration temperature of 130°C, which is quite higher than CPO-27(Ni). There
is an effect of condenser and evaporator temperature on SCP and COP of the system. In a study
[49], CPO-27(Ni) was investigated for adsorption heat pump applications where it was best
operated at low evaporator temperature (< 5°C). Similarly, HKUST-1 and seven more MOFs [55]
were investigated for adsorption chiller applications. The results showed that HKUST-1 has higher
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375 performance at lower evaporator temperature (< 5°C) and 185% more water-vapor uptake than

376  silica-gel.
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378 Fig. 6. (a) Schematic diagram of the adsorption cooling system, and (b) P-T-W diagram of the

379  adsorption cooling cycle.
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However, not all the MOFs need to require low evaporator temperature for good performance,
e.g. AlFs requires a high evaporator temperature of 20°C [49]. In the case of the adsorption heat
pump, the useful energy is heat used by the evaporator, condenser and adsorption beds/wheel.

COP;, can be calculated by Equation 1 [49].

COP, = QS—Q (1)
des

For an adsorption chiller, the evaporator energy is the useful energy from the device. COPrcris

calculated by Equation 2.

COPyr = o2 @)

des

The effect of regeneration temperature for CPO-27(Ni) and aluminium fumarate is shown in
Fig. 7. It can be observed that COP, and COP:ef of aluminium fumarate remain constant after 75°C.
However, in the case of CPO-27(Ni), it continuously increases up to 90°C then becomes constant
up to 115°C. In another study [71], MIL-125-H>N finds a promising candidate with SCP values
ranging from 0.4-2.8 kW/kg with high cyclic and hydrothermal stability and low regeneration
temperature. The feasibility of different hydrophilic MOFs and their use for closed-cycle

applications is given in Table 4.

1.8
CPO-27(Ni)
15 E COPref
12 ] aluminium fumarate
=00 ]
S 0.9 A
o ] CPO-27(Ni)
0.6 - a—Ah—h—h— A
| cop,
0.3 - [ S S S S ———
] aluminium fumarate
O i T T T T T T T T T T T
65 75 85 95 105 115 125

Regeneration temerature [°C]

Fig. 7. Effect of regeneration temperature on COP at Tcon=35°C and Teva=5°C reproduced from
[49].
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3.2. Desiccant air-conditioning

The desiccant air-conditioning (DAC) system usually consists of a desiccant unit (wheel/rotor
or block type), heat exchanger, heating source, a low-cost cooling source, and some associated
accessories [151]. A typical schematic diagram of a DAC system and the corresponding
psychrometric representation of the DAC cycle are shown in Fig. 8(a) and (b). In a study [60],
MIL-101(Cr)@GO has simulated for adsorption air-conditioning open-cycle system and results
were compared with conventionally used silica-gel based system. Different parameters were
investigated, e.g. rotational speed, cooling energy consumption, thermal energy consumption,
energy, environmental and economic analysis and dehumidification efficiency of the desiccant

wheel (DW). Dehumidification effectiveness (DE) is calculated by Equation 3 [60].

Wpro,in -Wpro,out Wpro,out
P p — 1 _p (3)

Ndeh =
Wpro,in Wpro,in

Dehumidification effectiveness was taken as a function of the process air RH.
Dehumidification effectiveness increases when temperature and RH of inlet air increases, as shown
in Fig. 9. The DE of MIL-101(Cr) is higher than silica-gel; this is because of the high uptake of
MIL-101(Cr).

In another study [152], a solar-driven HKUST-1 based DAC system was simulated. A
comparison between silica-gel (type B) coated heat exchanger (SCHE), and MOFs coated heat
exchanger (MCHE) at different outlet temperatures had made. The MCHE has 1.28 times more
dehumidification capacity than SCHE when cycle time 120s, as shown in Fig. 10. The
dehumidification capacity of MCHE rises with an increase in regeneration temperature at a cooling
water temperature range of 25°C and 30°C. In SCHE, the increase in dehumidification capacity is
very low, with an increase in regeneration temperature. MCHE was found to be more applicable

for a shorter cycle time than SCHE due to the low water holding capacity of HKUST-1.
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426 Fig. 8. (a) Schematic diagram of the desiccant air-conditioning system and (b) Psychrometric

427  representation of the desiccant air-conditioning cycle.
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3.3. Water harvesting and desalination

Water harvesting can be a promising application of the MOFs as they can adsorb water at low
concentration, and desorption occurs at relatively low temperature [133]. A Zr-based water
harvesting device for arid climate has been designed and investigated in a study, as shown in Fig.
11 [89]. It is estimated that currently, 150 countries are producing desalination water of about 30
billion m?/year by operating 18000 desalination plants [153,154]. Many studies have been reported
in the literature in which silica-gel and other conventional adsorbent have successfully investigated
for single-/ two-bed adsorption desalination systems [155-166]. However, the MOFs have been
utilized for water desalination application and freshwater production, ice and some amount of
cooling. In another study [52], CPO-27(Ni) has experientially investigated water desalination for
a one-bed adsorption-based desalination system. A schematic diagram of the single bed of
adsorption-based desalination system is shown in Fig. 12. The performance of the water
desalination system is assessed on the specific daily water production (SDWP), which can be

calculated by using Equation 4 [52].

SDOWP = [oe deena g, 4)

The SDWP of the system was affected by desorption and the condenser temperature, the effect
of regeneration temperature on the SDWP is shown in Fig. 13. SDWP at different condenser and
regeneration temperature reproduced from [52]. It can be observed that most of the MOFs shown
good results when operated at low condenser temperature, e.g. CPO-27(Ni) has maximum water
production of 22.8m?>/tone. ads/day and producing cooling of 219.9 Rton/tonne when operated at
maximum inlet condenser temperature of 5°C and inlet evaporator temperature of 40°C. Therefore,
reducing the condenser temperature and increasing the evaporator temperature results in maximum
water production and increased cooling capacity. In another study [50], three MOFs, CPO-27(Ni),
MIL-101(Cr) and aluminium fumarate (AlFs) have investigated for two beds adsorption-based
desalination systems. CPO-27(Ni) gave maximum water production at low condenser temperature
and high evaporator temperature with a regeneration temperature of >110°C. Similarly, AlFs
performed better at a high evaporator temperature of 20°C with water production of 6.3 m>/ton.day.
However, it required a low regeneration temperature of 70°C. In this regard, MIL-101(Cr)

performed good and shown exceptional results with maximum water production of 11 m*/ton.day.
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Fig. 13. SDWP at different condenser and regeneration temperature reproduced from [52].

CPO-27(Ni) is the best candidate for adsorption-based desalination system because of its shape
of adsorption isotherm and maintains its adsorption capacity when the relative pressure ratio is
maintaining. In another study [81], water desalination systems combined with ice-making with
one-bed adsorption system have been experimentally investigated. A schematic diagram of water
desalination combined with an ice-making system is shown in Fig. 12(b). CPO-27(Ni) used to
obtain maximum water and ice production is 1.8 ton/day/ton-ads and 8.3 ton/day/ton-ads,
respectively, to achieve a low evaporator temperature of 5°C. The applicability of different

hydrophilic MOFs for various applications is given in Table 5.
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4. Prospects of MOFs adsorption systems and barrier in the commercialization

Although the adsorption phenomenon is well-known for centuries, however, considering this
conception for cooling, air-conditioning and water desalination applications is started in the
twentieth century to replace environmentally harmful compressor-based systems. From that
moment, researchers worldwide are working to develop energy-efficient adsorption-based
technologies/systems. In this regard, their research's key focus is to develop optimum adsorbent
materials by which the overall efficiency/performance of the adsorption systems can be improved.
The optimum material should have the ability to adsorb a larger amount of adsorbate for a wide
range of system applications. The MOFs are a new class of micro- and nano-porous group of
adsorbents with exclusive adsorption and physical properties. Recently, MOFs have been
extensively investigated for the development of such systems. Fig. 14 shows a comparison between
the studied five groups of hydrophilic MOFs. It was found that MIL series-based MOF have greater
potential in various water adsorption and air-conditioning applications due to their stable structure
and higher adsorption uptake. On the other hand, Cu-based MOFs perform better at relatively low-
pressure and are highly dependent on pressure changes. Besides, Cu-Cu bond length elongates in

the presence of moisture, increasing the moisture stability of this group in lower pressure ranges.

(

® Zn-based are not stable in
moisture

® /r-based are relatively stable

e L ower adsorption uptake

Variations in cyclic stability

® CPO-27 is stable in moisture w
® Possesses type-1 adsorption ;

isotherm : /

® Possesses cyclic stability

" Hydrophilic
MOFs

y Possess stable structures

" @ Adsorption isotherms of type-
V&V

® Potential in various water

adsorption-based applications

Fig. 14. A comparison of adsorption characteristics between the studied groups of hydrophilic
MOFs, i.e. Ni-based, Cu-based, Zr-based, Zn-based and MIL series-based MOFs.
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A state-of-the-art comparison of COP between the MOFs and conventional adsorbents-based
cooling systems is developed in Fig. 15 from 1975 to 2020. The adsorbents used for this
comparison are reffered from following studies [8,10,17—
19,27,28,34,37,41,49,70,74,78,87,88,129,135-144,147-151,157,158,168-170]. The conventional
adsorbents-based systems are only able to achieve a COP level of 0.85 since 1975. However, the
majority of the MOFs based systems provide considerably higher performance as compared to
conventional adsorbent based systems. The main bottleneck in the lower COP level is the low
adsorption equilibrium amount. It has been found that conventional adsorbents possess low water-
vapor uptake, which results in low system performance and high system size. The MOFs exhibit
2 to 3 times higher water-vapor adsorption uptake as compare to conventional silica-gel. Some of
the MOFs result in adsorption uptake of 1.45 kg/kg, which can be increased to 1.60 kg/kg by
coating techniques. Therefore, this review is aimed to provide comprehensive detail of water-vapor
adsorption uptake by the hydrophilic MOF adsorbents available in the literature. The development
of high adsorbate uptake MOF materials helps to overcome the limitations of conventional
adsorbent systems, and the COP level is improved to almost 2. Similarly, the dehumidification
capacity of the MOF coated heat exchanger is found 1.28 times higher compared to the silica-gel
coated heat exchanger. The MOFs produce maximum desalination water of 25.5 m*/ton.day, which
is higher than silica-gel (i.e. 13.5 m?ton.day). The energy consumption and
environmental/economic analyses conducted in the literature show that the MOF systems are a
better option than conventional systems.

Based on crystal, structural properties and water-vapor adsorption equilibrium amount, it can
be summarized that the development of advance MOFs is strengthening the desperate attempts to
develop energy-efficient and high-performance adsorption systems. The MOF adsorption systems
are coming strongly to the commercial market and we may soon see one of these systems sold
commercially. However, a lots of future works are needed to commercialize them accordingly and
to replace the traditional technologies. Considering the above-mentioned prospectus of the MOF
adsorbents/systems, the recommended future works include: (i) Developing the optimum MOF
adsorbents with sophisticated thermo-physical properties including pore volume, surface area,
thermal conductivity, and crystal structure etc. (i1) Characterizing, measurement and treatments of
adsorbent-adsorbate pairs for the development of advance adsorption capacities (including

adsorption equilibrium, adsorption kinetics, and adsorption heat) for various heat transformation
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applications, (iii) Integration of advance MOFs in adsorption systems for establishment of multi-
bed and/or multi-stage strategies, and (iv) Optimizing operating parameters of the adsorption

systems depending upon the available waste heat and/or renewable energy options.

O Advance MOFs system A Conventional adsorbents system
2.5 [
L COP level improvement with MOFs development
2 P - ——— — — — — — — -—_———
i 0O
i O
A i
O - O
© | - Maximum COP level with conventional adsorbents
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Fig. 15. COP trend of conventional adsorbent based cooling system and improvement with
advance MOFs development. The adsorbents used for this comparison are referred from following

studies [8,10,17-19,27,28,34,37,41,49,70,74,78,87,88,129,135-144,147-151,157,158,168—170].

S. Conclusions

Metal-organic frameworks (MOFs) or porous coordination polymers are a highly porous class
of adsorbents with excellent structural and water-vapor adsorptive properties. These are new micro
to nano porous class of adsorbent with great potential to develop energy-efficient thermally driven
adsorption systems/technologies. The hydrophilic MOF adsorbents are critically studied in the
literature for the development of various adsorption-based applications. Thereby, this study
provides a comprehensive review of various hydrophilic MOF adsorbents concerning crystal

formation, structural stability, water-vapor adsorption equilibrium, adsorption chemistry, and
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associated potential applications, i.e. cooling, air-conditioning, and water distillation/harvesting.
Furthermore, a comprehensive comparison of the coefficient of performance between the studied
MOFs and conventional adsorbents is developed for the years 1975 to 2020. It has been found that
the majority of the MOFs based adsorption systems provide considerably higher performance as
compared to most of the conventional adsorbents-based systems. The study concludes that the
MOF based systems are coming strongly to the commercial market, and we may soon see one of
these systems sold commercially. The insights of the conclusions are as follows:

Zinc-based MOFs are not stable in the presence of water-vapors due to Zn metal's sensitivity
to water molecules, e.g. MOF-5 is not stable when water contents are more than 4%. Zirconium-
based MOFs are found relatively more stable in the presence of water-vapors; however, adsorption
uptake for most of the adsorbents of this category is quite low. In this regard, UiO-66 with
micropores possesses water-vapor adsorption uptake of 0.4 kg/kg at 25°C and saturation condition.
However, it has no cyclic stability, and the adsorption ability is perceptibly reduced after
continuous cyclic use, limiting its usage. On the other hand, MOF-801 and MOF-841 show
maximum uptake of 0.32 kg/kg and 0.53 kg/kg, respectively, at 25°C (saturation condition). The
MOF-801 is found a promising candidate for air-conditioning application due to cyclic stability.
It also shows good results for water harvesting application with maximum water production of
0.19 L/kg (considering kinetics losses) at a relative humidity of 40% and a regeneration
temperature of 85°C. Nickle-based CPO-27 is found stable in the presence of water-vapors and
provides type-I adsorption isotherm according to IUPAC classification with the uptake of 0.47
kg/kg (at saturation). It possesses cyclic stability and gives COP of 0.45 for automotive air-
conditioning application. It provides specific daily water production of 22.8 m*/tonne.ads/day and
cooling effect of 215.99 Rton/tonne in case of water desalination application for inlet temperature
of 40°C (condenser) and 5°C (evaporator). Copper-based HKUST-1 results adsorption uptake of
0.55 kg/kg at 25°C (saturation condition). It is a promising candidate for air-conditioning
application, whereas its stability reduces at a high relative pressure range due to Cu-Cu bond length
elongation.

On the other hand, MIL series-based MOFs possess stable structures and exhibit adsorption
isotherms of type-IV and type-V. In this regard, MIL-101(Cr) possesses the highest water-vapor
adsorption uptake (i.e. 1.45 kg/kg at 25°C on saturation condition) compared to the studied MOFs.

Based on the reported results, it performed better in air-conditioning, single-/ two-bed desalination
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and heat transformation applications/systems. It also shows good performance with different
refrigerants other than water, e.g. ethanol and methanol. Besides, adsorption uptake can also
increase from 1.45 to 1.6 kg/kg when coated with graphite oxide. Similarly, MIL-53(Al) exhibits
specific daily water production of 25.5 m?/ton.day (maximum) with a specific cooling power of
789.4 W/kg in water desalination application. It has been found that MIL-101(Cr) and MIL-53(Al)
are promising hydrophilic MOFs which can be considered for various water adsorption-based

applications.
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