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22 Summary
23  Meta-analyses enable synthesis of results from globally distributed experiments to draw general 

24 conclusions about the impacts of global change factors on ecosystem function. Traditional meta-

25 analyses, however, are challenged by the complexity and diversity of experimental results. We 
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26 illustrate how several key issues can be addressed via a multivariate, hierarchical Bayesian meta-

27 analysis (MHBM) approach applied to information extracted from published studies. 

28  We applied an MHBM to log-response ratios for aboveground biomass (AB, n = 300), 

29 belowground biomass (BB, n = 205), and soil CO2 exchange (SCE, n = 544), representing 100 

30 studies. The MHBM accounted for study duration, climate effects, and covariation among the AB, 

31 BB, and SCE responses to elevated CO2 (eCO2) and/or warming.

32  The MHBM revealed significant among-study covariation in the AB and BB responses to 

33 experimental treatments. The MHBM imputed missing duration (4.2%) and climate (6%) data, 

34 and revealed that climate context governs how eCO2 and warming impact ecosystem function. 

35 Predictions identified biomes that may be particularly sensitive to eCO2 or warming, but that are 

36 under-represented in global change experiments.

37  The MHBM approach offers a flexible and powerful tool for synthesizing disparate experimental 

38 results reported across multiple studies, sites, and response variables. 

39 Keywords

40 Bayesian meta-analysis, climate warming, global change experiments, elevated CO2, hierarchical 

41 model, incomplete reporting, multivariate meta-analysis
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42 Introduction

43 A plethora of manipulative field experiments have been conducted to evaluate the impacts of various 

44 global change factors—e.g., warming, elevated CO2 (eCO2), drought, or nitrogen deposition—on 

45 ecosystem structure and functioning of intact or managed ecosystems (e.g., Wu et al., 2011; Dieleman 

46 et al., 2012; Yue et al., 2017a; Gao et al., 2019; Komatsu et al., 2019; Song et al., 2019). Over the 

47 decades, global change experiments have been applied via a broad range of approaches and protocols, 

48 have tested different ranges and combinations of global change factors, and have been performed in 

49 diverse environmental contexts. Meta-analyses aim to provide quantitative syntheses of general 

50 ecosystem responses across a larger number of independently conducted experiments (Arnqvist & 

51 Wooster, 1995; Gurevitch et al., 2018). However, the incoherence across studies (datasets)—in terms 

52 of, for example, methods used, variables measured and reported, timing of measurements, intensity of 

53 measurements (sample sizes)— represents a major challenge for meta-analyses (e.g., Spake & 

54 Doncaster, 2017; Gurevitch et al., 2018).

55 Regardless, meta-analysis techniques are being increasingly applied to evaluate global or 

56 broad-scale responses to experimental manipulations of environmental conditions (e.g., Arnqvist & 

57 Wooster, 1995; Koricheva & Gurevitch, 2014). Many meta-analyses evaluate response ratios or 

58 related metrics (Koricheva & Gurevitch, 2014) of multiple response variables (e.g., above- and 

59 belowground biomass, soil carbon and nitrogen, CO2 fluxes) (Wu et al., 2011; Dieleman et al., 2012; 

60 Yue et al., 2017a; Song et al., 2019), but they typically treat these variables as independent. The 

61 assumption of independent response variables ignores the potential for covarying or coordinated 

62 responses (Nakagawa & Santos, 2012), and the fact that individual field experiments may produce 

63 data on simultaneously measured variables. While standard multivariate modeling approaches can be 

64 leveraged to account for correlations among response variables within a meta-analysis (Nakagawa & 

65 Santos, 2012; Komatsu et al., 2019), such multivariate meta-analyses are rare (Nakagawa & Santos, 

66 2012). For example, Pappalardo et al. (2020) reviewed 96 published meta-analyses focused on the 

67 ecological impacts of global change or climate change factors; 34 of the 96 studies analyzed multiple 

68 response variables, but only three employed a multivariate meta-analyses approach.

69 Moreover, while existing meta-analyses provide quantitative insight into overall responses 

70 across multiple studies (e.g., Arnqvist & Wooster, 1995)—e.g., the overall effect of eCO2 on soil A
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71 carbon (Hungate et al., 2009), plant biomass (Terrer et al., 2016), or plant C:N:P stoichiometry (Yue 

72 et al., 2017a)—it is difficult to fully account for site-level variables that partly explain differences 

73 among sites. Even if such meta-analyses do incorporate site-level covariates (e.g., Martin et al., 2018; 

74 Falaschi et al., 2019), potentially important covariates are unlikely to be available for each study 

75 (Ogle et al., 2013). Such missing information—related to issues of incomplete reporting (Gurevitch & 

76 Hedges, 1999; Ogle et al., 2013; Vicca et al., 2018)—often leads the researcher(s) to discard records 

77 lacking this information (e.g., Gurevitch & Hedges, 1999; Lajeunesse & Forbes, 2003; Shantz et al., 

78 2016) or to ignore potentially important covariates due to inconsistent reporting across studies (e.g., 

79 Vicca et al., 2018).

80 While classical meta-analysis falls short on accounting for multiple response variables, site-

81 level covariate data, and non-linear responses to global changes, hierarchical Bayesian modeling 

82 approaches can accommodate these issues via multivariate model components, even when faced with 

83 incomplete reporting (e.g., Nakagawa & Santos, 2012). Bayesian meta-analysis approaches are 

84 relatively new in ecology, with recent examples including evaluations of the impacts of multiple 

85 global change factors on plant community composition (Komatsu et al., 2019), the competitive 

86 abilities of non-native versus native plant species (Golivets & Wallin, 2018), the effects of nutrient 

87 loading on mutualism performance (Shantz et al., 2016), and functional traits of multiple species or 

88 functional groups (e.g., Lebauer et al., 2013; Ogle et al., 2013; Ogle et al., 2014; Shiklomanov et al., 

89 2020). Komatsu et al. (2019) and Shiklomanov et al. (2020) uniquely employed Bayesian multivariate 

90 models to account for potential covariation among multiple responses. However, these studies 

91 apparently ignored estimates of uncertainty associated with reported responses, and they did not 

92 incorporate incompletely reported covariate data. While these studies represent significant advances 

93 towards more flexible and powerful meta-analysis approaches, we are not aware of existing Bayesian 

94 meta-analyses that simultaneously accommodate multivariate responses, multiple treatment factors 

95 (e.g., both eCO2 and warming), and study- or site-level covariates that are incompletely reported. For 

96 example, in the review conducted by Pappalardo et al. (2020), only 3% of the meta-analysis studies 

97 used a Bayesian approach, and of this subset, only one meta-analysis employed a multivariate model. 

98 Here, we address this gap by demonstrating a multivariate, hierarchical Bayesian modeling approach 

99 that should advance ecological meta-analyses.A
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100 To illustrate the approach, we use a database on the responses of multiple ecosystem attributes 

101 to eCO2, warming, or their combined effects, which was previously employed to perform a traditional 

102 meta-analysis (Dieleman et al., 2012). The full database contains data summaries—treatment means, 

103 measures of uncertainty (standard deviations or standard errors), and limited covariates (e.g., duration 

104 of each study)—from over 150 manipulative experiments, distributed across a range of ecosystem 

105 types and climates. While the database contains information on multiple (at least nine) response 

106 variables (Dieleman et al., 2012), we focus on a subset of studies that reported aboveground biomass 

107 (AB), belowground biomass (BB), and soil CO2 exchange (SCE). The goal of this study is to describe 

108 and demonstrate a hierarchical, multivariate Bayesian meta-analysis approach using these data. We 

109 further illustrate the ability of this approach to produce posterior predictions, which can be used to 

110 quantitatively inform future experimental studies. We provide annotated code for this analysis and for 

111 a more generalized multivariate meta-analysis (accommodating a flexible number of treatment types).

112 Description

113 Database of global change manipulation experiments

114 We utilized a database of global change manipulative experiments (hereafter, the GCME database) 

115 originally compiled by Dieleman et al. (2012). The GCME database contains information on the 

116 responses of multiple ecosystem variables—various biomass and carbon pools and fluxes—to 

117 elevated CO2 (eCO2), warming, or their combination (eCO2  warming). The GCME database focuses 

118 on experiments that manipulated eCO2 only, temperature only, or both, with usually two levels each 

119 (e.g., ambient [“control”] versus elevated or warmed [“treatment”]). The database includes some 

120 studies that implemented watering or fertilization treatments, usually in combination with eCO2 

121 and/or warming. Here, we focused on the eCO2 and warming treatments, and restricted the data to 

122 ambient (control) moisture and nutrient treatments (i.e., no water or nutrient addition). Most of the 

123 data—i.e., treatment means, measures of uncertainty, and covariates (e.g., duration of each study)—in 

124 the GCME database were extracted from figures or tables in published journal articles, with some data 

125 obtained directly from researchers. The database as a whole contains information from >150 

126 manipulative experiments (“studies”), distributed across multiple ecosystem types and a range of 

127 climates. A
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128 We focused on three key ecosystem response variables: aboveground biomass (AB), 

129 belowground biomass (BB), and soil CO2 exchange (SCE) (or, “soil respiration”), and thus extracted 

130 a subset of records from the GCME database (many experiments did not report one or more of these 

131 responses). All extracted records are associated with both control and elevated responses, from which 

132 we derived the log-response-ratios (LRR) of AB, BB, and SCE (described below). The number of 

133 studies and number of records ultimately used in this study are summarized in Figure 1 and Table 1, 

134 respectively. 

135 While some (44%) studies provided both mean annual precipitation (MAP) and mean annual 

136 temperature (MAT) data, we used WorldClim data (Fick & Hijmans, 2017) aggregated at a 1 km 

137 spatial resolution and matched to the site location to obtain a standardized source of MAP and MAT 

138 for each study site, representative of the period 1970-2000. Some studies (6 out of 100) were 

139 associated with coordinates that resulted in unrealistic climate data when cross-referenced with the 

140 WorldClim database (e.g., grid cell dominated by a water body, or potential error in extracted 

141 coordinates), and thus their climate data were treated as missing.

142 Preparing data for the meta-analysis

143 Given the reported sample means (which are positive-valued for all AB, BB, and SCE records), 

144 standard deviations, and sample sizes for the control and “treatment” (e.g., elevated or warmed) 

145 groups, we computed the log-response-ratio (LRR) and pooled variance (2) for each LRR record i (i 

146 = 1, 2, …, 1049) based on Hartung et al. (2008) (Chapter 8):
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149 The T and C superscripts denote the treatment and control groups, respectively; y  is the sample 

150 mean, n is the sample size, and S is the sample standard deviation. Separate n for the treatment and A
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151 control groups were not readily available in the GCME database, but the number of sample replicates 

152 (n) was reported. Thus, we assumed nT = nC = n, and 2 in Eqn (2) simplifies to:

153 (3)
   

   
2 2

2
2 2

1 1

2

T C
i i

T Ci
i ii
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y yn
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154 Equations (1)-(3) are commonly employed by both classical and Bayesian meta-analyses. For 

155 the 1049 records considered here (Table 1), all of the required quantities ( y , n, and S) were reported 

156 in the GCME database; when standard errors (se) were reported instead of S, then (S)2 was computed 

157 as n(se2). However, it is common to find published studies that do not report S, se, or n (such studies 

158 were excluded from the GCME database, (Dieleman et al., 2012)). Ogle et al. (2013; 2014) show how 

159 a Bayesian meta-analysis can accommodate incomplete reporting of S, se, or n, and other imputation 

160 methods are also available (e.g., Kambach et al., 2020).

161 Hierarchical, multivariate meta-analysis model description 

162 Similar to classical and recent Bayesian approaches, we treated LRR and 2 (Equations (1) and (3)) as 

163 “known” data that we analyzed via a Bayesian meta-analysis model. Again, given that the AB, BB, 

164 and SCE responses and their associated LRR values may covary at the study level, we simultaneously 

165 analyzed these three variables to account for (and estimate) potential covariation among the 

166 responses. We also simultaneously analyzed data obtained for all three treatment categories (eCO2 

167 only, warming only, and eCO2  warming), rather than treating these as independent datasets. It is 

168 possible that site- and study-level covariates—such as climate and experiment duration—modulated 

169 the response of AB, BB, or SCE to eCO2 and/or warming. For example, other studies suggest that 

170 experiment duration (e.g., Hungate et al., 2004; Elmendorf et al., 2012; Wang et al., 2014; Mueller et 

171 al., 2016; Komatsu et al., 2019) and site-level environmental conditions (e.g., He et al.; Elmendorf et 

172 al., 2012; Song et al., 2019) affect reported responses to treatment factors. Thus, we accounted for 

173 potential effects of mean annual precipitation (MAP), mean annual temperature (MAT), their 

174 interaction (MAP  MAT), and experimental duration (Dur) on the reported LRR. 

175 Our Bayesian meta-analysis model is as follows. First, for record i, the likelihood of the LRR 

176 data is based on:A
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177 (4) 2~ ,i i iLRR Normal  

178 Where LRR and 2 are defined in Equations (1) and (3), and treated as “data” or known quantities. 

179 Each LRR is essentially “weighted” according to its corresponding variance term, 2. Equation (4) 

180 assumes conditional independence—conditional on (or given) the mean response, i, and the pooled 

181 variance, i
2 —of each variable’s computed LRR. We assumed independent likelihoods partly 

182 because individual studies (publications) often do not provide information about the covariance 

183 among different response variables, and thus we cannot obtain an analytical estimate of that 

184 covariance, but we do have estimates of the individual variances, i
2. However, we accounted for 

185 potential correlation among the different response variables at the latent, study level (see Equation 

186 (6)).

187 We defined the mean model for the predicted LRR as a linear regression on Dur, MAP, and 

188 MAT:

189 (5)( ), ( ), ( ) ( ), ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( )
Dur MAP MAT Int

i v i s i t i v i t i i v i t i s i v i t i s i v i t i s i s iDur cMAP cMAT cMAP cMAT              

190 v(i), s(i), and t(i) denote response variable v, study s, and treatment type t associated with record i, 

191 where, v = 1 for AB, v = 2 for BB, and v = 3 for SEC, and t = 1 for eCO2 only, t = 2 for warming only, 

192 and t = 3 for eCO2  warming. The conditional independence assumption, Equation (4), 

193 accommodates multiple records for a given variable, study, and treatment type; that is, records that 

194 share the same v, s, and t will share the same predicted mean, , but they are assumed to be 

195 conditionally independent given their shared mean. In the model for , v,s,t represents the study-level 

196 (latent) LRR for variable v, study s, and treatment type t. The  parameters represent the effect of Dur, 

197 MAP, MAT, and the MATMAP interaction. Note that cMAP and cMAT in Equation (5) represent 

198 centered values, where cX = X – mean(X), and the mean is computed across all studies. The covariate 

199 effects (v,t) vary by the covariate of interest (donated by superscripts, e.g., Dur, MAP, MAT, and Int 

200 (for interaction)), and are estimated for each response variable v and treatment type t.  

201 We might expect correlation among the three response variables at the study level. Somewhat 

202 similar to Komatsu et al. (2019), we assigned a multivariate, hierarchical prior to the study-level 

203 effects (), allowing for potential covariation among the study-level and treatment-type specific AB, 

204 BB, and SCE log-response-ratios:A
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 (6)

206 *
v,t is the overall or global (mean) LRR for variable v and treatment type t; this quantity is of 

207 particular interest, and we evaluated if the corresponding posteriors overlap zero (i.e., significant 

208 treatment effect). t is the 33 covariance matrix for treatment type t that describes among study 

209 variability in the LRR for the different variables (diagonals) and the pairwise correlation among the 

210 three study-level response variables (or covariances, off-diagonals), after having accounted for 

211 duration and site-level climate.

212 Following Gelman et al. (2014), we assigned fairly non-informative, standard priors to all 

213 remaining parameters, including the  terms, the * terms, and the precision matrices, -1:

214
,

*
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~ (0,10000)

~ (0,10000)
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X
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v t
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
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 (7)

215 Where 10000 in the normal priors is the variance, and R is the 33 identity matrix; for the superscript 

216 on , X = Dur, MAP, MAT, or Int as in Equation (5). In this study, the data sufficiently informed the 

217 above parameters, but this may not always be the case, and weakly or semi-informative priors may be 

218 required (e.g., Lemoine, 2019).

219 Likely common to many meta-analyses, we are missing some climate (MAP and MAT; 6% of 

220 studies) and duration (Dur; 4.2% of records) data. However, if we assume reasonable distributions for 

221 these covariates, the reported values can be used to inform the parameters of these distributions, 

222 which in-turn are used to impute missing covariate values (Ogle et al., 2013). Thus, rather than 

223 discarding records with missing covariate data, as would be typical of many classical meta-analyses, 

224 we employed simple hierarchical models for the covariate data, providing a mechanism for imputing 

225 missing values. Thus, for site s or record i:

226 (8)

2

2

2

~ ( , )

~ ( , )

~ ( , )

s MAP MAP

s MAT MAT

i Dur Dur

MAP Normal

MAT Normal

Dur Normal
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 
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227 We assigned relatively non-informative (wide) normal priors to the global (overall) means (’s) and 

228 wide uniform priors to the standard deviations (’s).

229 Another advantage of the Bayesian approach is the ability to easily obtain posterior 

230 distributions for derived quantities (i.e., quantities that are functions of stochastic parameters and 

231 potentially observed data) (Hobbs & Hooten, 2015). To illustrate, we obtained the posterior 

232 distributions for several derived quantities. To better understand the role of climate context, we 

233 evaluated the mean model, Equation (5), at a range of MAP and MAT values that span the climatic 

234 characteristics of the GCME studies, standardized for study duration (i.e., for Dur = 0 years [start of 

235 experiment] and Dur = 2.64 years [the average duration across all studies]). We also computed the 

236 study-level pairwise correlations in the AB, BB, and SCE log-response-ratios for each treatment type, 

237 such that for treatment t and variables v and v’ (v  v’, e.g., for v = AB and v’ = BB):

238 , , '
( , ')

( , ) ( ', ')
t

t v v
t t

v v
v v v v

 


 
 (9)

239 where (v,v’) is the covariance between variables v and v’, and (v,v) and (v’,v’) are the among 

240 study variances of variables v and v’, respectively, LRR values. 

241 Additionally, we calculated quantities to explore additive, synergistic, and antagonistic effects 

242 of the treatments. We obtained the posterior distributions for the predicted study-level LRRs under the 

243 eCO2  warming treatment if the eCO2-only (t = 1) and warming-only (t = 2) effects are additive 

244 (Add), and we also calculated the difference () in the actual eCO2  warming effect (t = 3) relative 

245 to the predicted additive effect:

246
, ,3 , ,1 , ,2

, ,3 , ,3 , ,3

Add
v s v s v s

Add
v s v s v s

  

  

 

  
 (10)

247 If the 95% credible interval for  does not contain zero, then this implies that the eCO2 and warming 

248 effects are non-additive. Lajeunesse (2011) provides an alternative method to evaluating an 

249 interaction between two different treatment factors (see also, Baig et al., 2015), but application of 

250 Equation (10) allows results from both single factor (e.g., eCO2 only) and multi-factor (e.g., eCO2 and 

251 warming) studies to inform this interaction. All derived quantities (i.e., , Add, and ) were 

252 computed within the Bayesian model to obtain posterior samples of these quantities.A
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253 The model, Equations (4)-(10), was implemented in JAGS 4.3.0 (Plummer 2003; Plummer 

254 2015) using the rjags package (Plummer 2013) in R. Three parallel Markov chain Monte Carlo 

255 (MCMC) sequences were run for a pre-defined burn-in of 106 iterations. The sequences were checked 

256 for convergence after 106 iterations using the Brooks-Gelman-Rubin diagnostic (Gelman & Rubin, 

257 1992; Brooks & Gelman, 1998) via the gelman.diag function in the coda package (‘rjags’) (Plummer 

258 et al., 2006) in R. Then, the JAGS model was updated for another 500,000 iterations and every 500th 

259 sample was stored to obtain 3,000 relatively independent samples from the three sequences. These 

260 samples were used to compute posterior statistics for quantities of interest (e.g., , *, , and ).

261 Results

262 Support for the hierarchical, multivariate model

263 To evaluate model fit, we quantified the ability of our model to replicate the reported (“observed”) 

264 log-response-ratio (LRR) values (see Chapter 6, Gelman et al., 2014). Across the six different 

265 combinations of treatment types (eCO2-only, warming-only, or eCO2  warming) and response 

266 variables (AB, BB, and SCE), regressions of predicted (replicated LRR values) versus observed LRR 

267 yielded coefficients of determination ranging from R2 = 0.14 (SCE response to eCO2) to R2 = 0.55 

268 (BB response to eCO2), with an overall R2 = 0.31 (for all treatment types and response variables 

269 combined). See Figures S1 and S2 in Supporting Information.

270 A multivariate approach appears appropriate, especially for AB and BB. The correlation 

271 between the study-level AB and BB responses is significantly positive under eCO2-only (the 95% 

272 credible interval [CI] does not contain zero; Table 2). However, the correlations among study-level 

273 AB and BB are not significantly different from zero under warming-only or eCO2  warming (Table 

274 2), partly due to wide CIs, which could reflect the reduced amount of information (fewer records) for 

275 these treatment types (Table 1, Fig. 1c,d). After having accounted for treatment type, climate, and 

276 duration, the SCE response is generally uncorrelated with the AB and BB responses (Table 2). This 

277 suggests that a univariate meta-analysis of SCE and a bivariate meta-analysis of AB and BB would 

278 have been valid in this case, but this was not known a priori, and repeating separate univariate and 

279 bivariate analyses would not provide further benefits.A
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280 Posterior estimates of effects parameters

281 The global estimates of the LRR for each variable (* terms, Equation (6)) suggest that eCO2 

282 stimulates AB, BB, and SCE relative to ambient levels (Fig. 2a,d,g). Warming effects are not as 

283 strong, but the trend is for warming to stimulate AB, BB, and especially SCE (Fig. 2b,e,h). Based on 

284 the limited number of studies, eCO2  warming led to inconsistent effects on the responses: it 

285 increased SCE, tended to reduce BB, but had little to no effect on AB (Fig. 2c,f,i). These global or 

286 overall LRR estimates, however, do not reflect variation among sites, or the influence of potential 

287 climate drivers and experimental factors (e.g., duration).

288 The covariate effects (’s, Equation (5)) are relatively tightly constrained (narrow 95% CIs) 

289 for the eCO2-only and warming-only treatments, but comparatively unconstrained (wide 95% CIs) 

290 under eCO2  warming (Fig. 3). These differences in the precision of the  estimates likely reflect 

291 differences in sample sizes among the treatment types (Table 1). The duration (Dur) effect was 

292 negative for the LRR of BB under eCO2 (Fig. 3a), AB and SCE under warming (Fig. 3c), and SCE 

293 under eCO2  warming (Fig. 3c), indicating that longer exposure to the experimental factor(s) reduced 

294 the difference between the control and treatment groups. Conversely, Dur had a positive effect on 

295 SCE under eCO2 (Fig. 3a). The effects of MAP and MAT varied, with a negative effect of MAP on 

296 BB under eCO2 (Fig. 3d) and a positive effect on SCE under warming (Fig. 3e), accompanied by a 

297 positive effect of MAT on BB under eCO2 (Fig. 3g) and negative effects of MAT on AB and BB 

298 under warming (Fig. 3h). The MAP  MAT interaction effect was generally non-significant, with the 

299 exception of a positive interaction for SCE under eCO2 (Fig. 3j).

300 Incorporation of covariates reveals importance of climate context

301 To understand how MAP and MAT may govern the responses of interest, within the MHBM model 

302 and MCMC routine, we computed the predicted LRR of AB, BB, and SCE under all three treatment 

303 types (, Eqn (5)), over a range of MAP and MAT values that span the climatic conditions of the 

304 study sites. The posterior predictions and uncertainties are visualized in a contour plot (Fig. 4); we 

305 focus on a subset of scenarios for illustrative purposes. For example, even though the MAT  MAP 

306 interaction was non-significant (Bayesian p-value = 0.24) for the AB response to eCO2 (Fig. 3g), A
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307 when considering the main effects of MAT (p = 0.17) and MAP (p = 0.12), along with their 

308 interaction, interesting non-linear responses emerge (Fig. 4b). The covariate effect estimates (Fig. 3) 

309 are based on summaries of their marginal posterior distributions and do not account for posterior 

310 correlations between those parameters. The posterior predictions (Fig. 4b-d), however, are simulated 

311 based on the joint posterior distribution of the effects parameters. Marginally, none of the climate 

312 effects (MAT, MAP, or the MAT  MAP interaction) are significant for AB under eCO2, but when 

313 the LRR of AB under eCO2 is simulated (to obtain posterior predictions), the posterior simulations 

314 account for covariation between the MAT, MAP, and MAT  MAP effects, which results in the non-

315 linear response (contours) in Fig. 4b, and a region of significant LRR values (blue shading).

316 The predicted LRR values indicate particular climate regions that are expected to lead to 

317 significant effects of eCO2 (in the absence of warming) on AB (e.g., blue region in Fig. 4b) and SCE 

318 (Fig. 4c), and significant effects of warming (in the absence of eCO2) on SCE (Fig. 4d). The climate 

319 regions leading to significant responses tend to be broader under eCO2 (Fig. 4b,c) compared to 

320 warming (Fig. 4d), indicating the potential for climate to be a more prominent controller of the AB 

321 and/or SCE responses to eCO2 compared to warming. In particular, eCO2 is expected to enhance both 

322 AB and SCE under moderate climates that align with temperate forests, woodlands / shrublands, 

323 tropical forest savanna, and temperate grasslands (Fig. 4a,b,c). Warming is expected to enhance SCE 

324 under a more restricted climate space characterized by high precipitation and moderate temperatures 

325 (e.g., relatively moist temperate forests) (Fig. 4a,d). The effects of eCO2 and warming on AB and 

326 SCE are highly uncertain and not well-characterized for biomes defined by more extreme climates 

327 (e.g., tundra and subtropical desert; Fig. 4).

328 The effect of climate context is also captured by the study-level LRR estimates. Ignoring 

329 climate and duration (as given by  in Equation (5)), the predicted (posterior mean) LRR for AB, BB, 

330 and SCE, and their uncertainties (e.g., 95% CI widths), are more similar among studies, for all three 

331 treatment types (Fig. 2, gray symbols). When we account for climate and duration (based on , 

332 Equation (5)), greater variability in the estimated study-level LRR values emerges (Fig. 2, colored 

333 symbols). The global-level LRR predictions (* terms, Equation (6)) are more constrained (narrower 

334 CIs) and represent the predicted LRR across all climate and duration conditions represented by the 

335 studies considered here (triangles, Fig. 2).A
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336 Additive vs synergistic vs antagonistic treatment effects

337 The Bayesian meta-analysis indicates that the large uncertainty in the combined eCO2 and warming 

338 effects (Fig. 2, Fig. 3) makes it challenging to distinguish the actual effects from an additive response 

339 (Fig. 5). For example, the uncertainty in the global estimates of each LRR is fairly large, such that the 

340 95% CIs tend to overlap the 1:1 line for the actual estimated effect (combined response; vertical CIs, 

341 Fig. 5). Conversely, the 95% CIs corresponding to the predicted global additive effects are generally 

342 narrower (horizontal CIs, Fig. 5) and barely overlap the 1:1 line for SCE, but not for AB and BB. This 

343 suggests that globally, across all studies, eCO2 and warming are generally additive for AB and SCE 

344 with a slight trend towards antagonistic for AB and synergistic for SCE. eCO2 and warming are 

345 generally antagonistic for BB, which is also supported by study-level BB estimates (posterior means) 

346 that all fall below the 1:1 line (Fig. 5). However, given that the vertical 95% CI overlaps the 1:1 line 

347 for the global BB response, which reflects the influence of the large uncertainty in the study-level 

348 estimates (not shown), this indicates that an additive response cannot be ruled out.

349 Discussion

350 Key attributes of an MHBM approach

351 We highlight six key attributes of the multivariate, hierarchical Bayesian meta-analysis (MHBM) 

352 approach described herein. The first four attributes relate to points (1)-(4), respectively, in Table 3. 

353 First, the Bayesian approach can easily accommodate a multivariate model for the response variables 

354 of interest, which can be extended to more than three response variables. If multiple response 

355 variables are measured in the same study, it is possible that they covary. For example, our analysis 

356 suggests that the a priori assumption of independence among different response variables (e.g., AB 

357 and BB in the GCME database) is invalid (Table 2), yet this assumption is regularly employed in 

358 classical meta-analyses, including Dieleman et al. (2012) and many recent analyses (e.g., Deng et al., 

359 2020; Hillebrand & Kunze, 2020; Li et al., 2020; Salazar et al., 2020). It is possible that individual 

360 observations of each response variable are correlated, especially if measured simultaneously or on the 

361 same sampling units. Unfortunately, relevant information for quantifying observation-level (or within-

362 study) covariance or correlation among multiple response variables is rarely provided in publications A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

363 (e.g., Jackson et al., 2011; Lin & Chu, 2018). However, we show that one can specify a multivariate 

364 model for latent, high-level LLRs, such as study-level values (see also, van Houwelingen et al., 

365 2002). Such a model would be appropriate for responses that are either dependent (covary) or 

366 independent as the multivariate specification (e.g., normal likelihood used here) allows one to 

367 evaluate independence (e.g., correlation coefficients that do not differ significantly from zero). 

368 Possible disadvantages of specifying a multivariate model include the potential for additional 

369 computational costs associated with matrix operations that arise from the multivariate specification, or 

370 imputation of missing response values when multiple response variables are aligned (e.g., Jackson et 

371 al., 2011; Lin & Chu, 2018).

372 Second, unreported sample sizes, measures of uncertainty (e.g., S or se), and covariate data are 

373 common in ecological meta-analyses (Kambach et al., 2020), and a Bayesian approach can easily 

374 accommodate simultaneous imputation of such missing information (e.g., Stevens, 2011; Ogle et al., 

375 2013). Here, we simply specify likelihoods for the covariate data (e.g., MAP, MAT, and Dur), which 

376 serve as priors for the missing values, conditional on the observed (response and covariate) data. This 

377 allows us to retain records with missing covariate data, and to propagate uncertainty associated with 

378 the missing values. Classical approaches often discard records with missing covariate data (e.g., 

379 Lajeunesse & Forbes, 2003; Kambach et al., 2020); in our analysis, this would have only resulted in 

380 9.4% of the records being discarded, but in other analyses, rates of incomplete reporting can be much 

381 higher (e.g., Ogle et al., 2013). The high level of reporting for the GCME database likely reflects 

382 initial selection criteria. A more sophisticated model may be required to account for the possibility 

383 that data are not missing at random (White et al., 2008), especially for high levels of incomplete 

384 reporting (e.g., Ogle et al., 2013). In summary, despite a push for comprehensive reporting (Gerstner 

385 et al., 2017), incomplete reporting will likely remain a challenge, especially if older studies are 

386 included in meta-analyses. Both classical and Bayesian meta-analysis approaches are capable of 

387 dealing with missing records via a variety of imputation approaches (Kambach et al., 2020). A fully 

388 Bayesian approach allows for retention of records with incomplete reporting such that information 

389 provided by these records, albeit incomplete, contributes to posterior estimates of study- and global-

390 level parameters, covariate effects, variance terms, and other unknown quantities. 
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391 Third, within the Bayesian meta-analysis, it is straightforward to model the predicted 

392 responses (e.g., LRR values) as functions of study- or site-level covariates, or covariates that vary at 

393 other levels that are compatible with the data. In this study, the LRR values for AB, BB, and SCE 

394 were modeled as functions of site-specific climate and record-level experiment duration; this was not 

395 done in the original Dieleman et al. (2012) analysis. The AB and SCE responses to warming and the 

396 BB response to eCO2 are predicted to be largest at the onset of the experiment and decrease with 

397 increasing duration, suggesting a time-dependent response to the associated treatment factor. Such 

398 duration effects have been reported for individual experiments (e.g., Hungate et al., 2004; Leuzinger 

399 et al., 2011; Mueller et al., 2016) and uncovered in formal meta-analyses (Elmendorf et al., 2012; 

400 Wang et al., 2014; Komatsu et al., 2019). Conversely, the SCE response to eCO2 is expected to 

401 intensify with increasing exposure to eCO2. 

402 Fourth, the Bayesian approach explicitly quantifies uncertainty in all unknown quantities, via 

403 the posterior distribution (Gelman et al., 2014). Interval estimates, such as a 95% credible interval 

404 (CI), are often used to quantify uncertainty and can lend insight into knowledge gaps. For example, 

405 the wide CIs for the study-level LRR for the eCO2  warming experiments (e.g., Fig. 3c,f,i,l) point to 

406 the need for more multi-factor studies that manipulate multiple treatment factors (e.g., both eCO2 and 

407 temperature). This was also suggested by a classical meta-analysis that was applied only to the eCO2 

408  warming records (Dieleman et al., 2012); yet, the Bayesian approach described here provides 

409 predictions, and associated uncertainties, for a broad range of climate conditions and biomes that are 

410 not represented in the GCME database.

411 Fifth, the Bayesian meta-analysis model can be used to obtain posterior predictions, which can 

412 be evaluated to understand the range of potential responses and to further identify information gaps. 

413 Such predictions reveal that the effect of eCO2 on BB and SCE and the effect of warming on all three 

414 responses (AB, BB, and SCE) depends on climate context, resulting in non-linear responses of AB 

415 and/or SCE to eCO2 (e.g., Fig. 4). In general, most studies in our meta-analysis fall in the middle of 

416 the climate space (Fig. 4), where eCO2 is expected to enhance AB and SCE, and warming is expected 

417 to have little or no effect on SCE.  However, the climate regions or biomes associated with the 

418 strongest (most negative or most positive) or most uncertain (leading to non-significant effects) 

419 predicted responses are also those that are generally under-represented in manipulative experiments. A
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420 For example, SCE is predicted to be stimulated by warming in wet regions (e.g., temperate 

421 rainforests, temperate forests, and tropical forest savanna), but reduced by warming in dry regions 

422 (e.g., temperate grassland and subtropical desert) (Fig. 4d). Yet, little data are available for these 

423 biomes in the GCME database. This points to the need for more studies in under-represented and 

424 potentially sensitive regions (see also, Song et al., 2019), to test the expectation that AB, BB, and 

425 SCE responses to eCO2, warming, or their combination vary among biomes and are governed by 

426 climate. Such research bias is not uncommon in meta-analyses, potentially restricting inferences to 

427 those ecosystems or biomes that are represented in the meta-analysis (Gurevitch & Hedges, 1999; 

428 Lowry et al., 2013).

429 Finally, unlike classical approaches, there are few/no canned software programs for 

430 implementing Bayesian meta-analyses. However, existing Bayesian software (e.g., JAGS, 

431 OpenBUGS, Stan, NIMBLE) can easily implement the Bayesian meta-analysis model described 

432 herein. We have provided the code and data from this study, which can be used as a starting point for 

433 other meta-analyses. If one is faced with incomplete reporting of standard errors or sample sizes, Ogle 

434 et al. (2013) provide theory and code for imputing missing n, S (or se), and other types of information 

435 (e.g., categorical covariates), in the context of univariate models for reported sample means (not LRR 

436 values), but the imputation procedure is broadly applicable. The ability to impute missing information 

437 provides greater flexibility and allows for compilation of more information (more records), versus 

438 discarding potentially useful studies because they do no report one or more desired quantities (e.g., 

439 Kambach et al., 2020). This will help to ensure that all available information is leveraged from 

440 experimental studies to discover general patterns.

441 Case study with the GCME database

442 We briefly compare a few key results from the original, classical meta-analysis reported by Dieleman 

443 et al. (2012) to those produced by the MHBM approach. Results are generally consistent, but a few 

444 potentially important differences emerge. In general, the global effect sizes (LRRs, *
v,t in Equation 

445 (6)) followed similar trends among the two analyses such that both produced similar magnitudes of 

446 effect sizes (compare Fig. 2 to their Fig. 1), with the exception being the estimated effect size for SCE 

447 under eCO2 and warming. Both indicate that eCO2 clearly stimulates AB, BB, and SCE, warming A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

448 tends to stimulate BB and SCE, and there is comparatively large uncertainty associated with the 

449 combined effect of eCO2 and warming. Conversely, Dieleman et al. (2012) reported that AB was 

450 significantly stimulated by warming and that the combination of eCO2 and warming significantly 

451 stimulated AB, BB, and SCE; although the mean effect sizes are similar, none of these effects were 

452 significant according to the MHBM. Differences in significance level between the classical approach 

453 and the MHBM approach is not surprising and is consistent with the Bayesian approach providing a 

454 more conservative quantification of uncertainty (e.g., Pappalardo et al., 2020). 

455 With respect to the combined effect of eCO2 and warming, both approaches suggest that, 

456 depending on site, eCO2 and warming can have an additive or slightly antagonistic effect on AB. 

457 Moreover, Dieleman et al. (2012) found a general trend for additive effects of eCO2 and warming on 

458 multiple ecosystem variables, and given the large uncertainty associated with the study-level 

459 estimates produced by the MHBM (Fig. 5), additive effects cannot be ruled out at the study level. This 

460 is generally consistent with other studies (Yue et al., 2017b; Song et al., 2019). However, the MHBM 

461 also provided global estimates of the combined effects (Fig. 5), whereas the classical analysis only 

462 provided study-level estimates, without uncertainty. Based on the global MHBM estimates, there is 

463 mild support for a synergistic effect of eCO2 and warming on SCE (Fig. 5) such that warming can 

464 enhance the stimulation of SCE by eCO2, or vice versa. The MHBM suggests the opposite for BB, 

465 whereby an overall antagonistic effect emerged. Evidence for additive, synergistic, or antagonistic 

466 effects of eCO2 and warming have implications for interpretation of the underlying mechanisms (e.g., 

467 role of nutrient- or water-limitation, leaf area feedbacks, changes in water-use efficiency) and will 

468 have consequences for projections of ecosystem responses to future conditions (Dieleman et al., 2012; 

469 Yue et al., 2017b).

470 Further considerations

471 We highlight additional considerations relevant to implementing an MHBM approach. First, the 

472 application of an MHBM requires some familiarity with Bayesian methods, but if one has an 

473 understanding of classical meta-analyses and relevant programming languages (e.g., R), it should be 

474 fairly straightforward to specify and implement a Bayesian version of the meta-analysis. Second, a 

475 Bayesian meta-analysis (e.g., MHBM) requires the analyst to explicitly define all equations and A
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476 underlying assumptions; this may be viewed as a benefit, but can also be challenging for those less 

477 familiar with statistical theory, probability distributions, or Bayesian methods. But, there are a myriad 

478 of resources (e.g., textbooks) for gaining familiarity in these areas, including, but not limited to 

479 Gelman et al. (2014), Gelman and Hill (2007), Hobbs and Hooten (2015), and Kruschke (2014). 

480 Third, implementation of a Bayesian meta-analysis model may lead to greater computational 

481 challenges relative to a classical approach. The MHBM implemented herein took about 1-hour to 

482 complete (i.e., to sample from the posterior), which is relatively fast; but, it is possible that other 

483 models could require longer simulation times and/or exhibit convergence issues (Pappalardo et al., 

484 2020) that could require additional troubleshooting and/or modification to the model or code (e.g., 

485 Ogle & Barber, 2020).

486 While we use the GCME database (Dieleman et al., 2012) to illustrate the MHBM approach 

487 for a relatively simple example, we anticipate that incorporation of additional predictor variables 

488 could improve model performance and inference. Independent of whether the meta-analysis is 

489 implemented in a Bayesian or classical framework, in the example considered here, potentially 

490 important predictors include plant functional type, soil characteristics, soil nutrient status, or other 

491 environmental conditions. However, many of these variables were not included in the GCME 

492 database, and potentially important predictors, such as nutrient availability, are often not reported in 

493 the publications from which the target response variables are extracted (Vicca et al., 2018). This 

494 further emphasizes the problem of research bias (Gurevitch & Hedges, 1999; Vicca et al., 2018) and 

495 the need for comprehensive reporting of results in the primary literature (Gerstner et al., 2017; 

496 Kambach et al., 2020), and the more general need for open science and data sharing (Hampton et al., 

497 2015; Powers & Hampton, 2019).

498 Finally, we return to the utility of the multivariate approach. Application of the MHBM to 

499 synthesizing the AB, BB, and SCE from the GCME database revealed lack of significant correlation 

500 between study-level SCE versus biomass metrics (AB and BB; Table 2). This suggests that a separate, 

501 univariate hierarchical Bayesian meta-analysis could be applied to the SCE records, and a bivariate 

502 model could be applied to the AB and BB records. We argue against this for a few reasons. First, we 

503 do not know a priori if such response variables are uncorrelated; this was revealed by the results of 

504 the multivariate model. Secondly, the three response variables share missing covariate data, and it A
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505 does not make sense to impute those missing values separately, within each individual meta-analysis 

506 model. Though, imputation of the missing covariate data could be achieved separately (e.g., Kambach 

507 et al., 2020), so that the same imputed values are employed in each meta-analysis. Third, the 

508 univariate model(s) would involve simple modifications to the MHBM approach; e.g., Equation (6) 

509 would be implemented as a bivariate normal model (for the AB and BB components) and a univariate 

510 normal model (for SCE), and the prior for the 33 covariance matrix in Equation (7) would be 

511 modified for a 22 covariance matrix (related to the AB-BB bivariate model) and a scalar variance 

512 parameter (for the SCE model). All other equations would remain the same. The analyses would then 

513 have to be repeated, requiring additional computational time and effort to synthesis the results, but the 

514 results and inferences should remain unaffected. Thus, we do not see an advantage of implementing 

515 separate models when we already have results from the more general MHBM model. There are 

516 situations, however, when an MHBM approach may not be appropriate to begin with, such as cases 

517 where response variables can a priori be assumed to be uncorrelated and when response variable data 

518 rarely overlap (e.g., response variable X and Y are rarely/never reported in the same study). In 

519 summary, the advantages of a Bayesian meta-analysis approach (Table 3) are likely to outweigh the 

520 disadvantages, but there are situations where a classical meta-analysis may be preferred, or may help 

521 guide the development and implementation of a more flexible Bayesian meta-analysis.
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Supporting information

Fig. S1. Predicted versus reported (“observed”) log-response ratio (LRR) values for each response 

variable and treatment type.

Fig. S2. Predicted versus reported (“observed”) log-response ratio (LRR) values for all records 

combined.
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Figure legends

Fig. 1. Venn diagrams summarizing the number of studies used in the meta-analysis (a) across all 

treatment types, and broken down by treatment type for (b) eCO2 only, (c) warming only, and (d) 

eCO2  warming. Focusing on the full dataset used in this study, (a) some studies only yield data for 1 

of the 3 response variables (e.g., 16 studies only have AB data), whereas others yield data for 2 of the 

3 variables (e.g., 24 studies give both AB and BB data), and 19 studies yield data for all 3 responses 

variables. A “study” represents a specific experimental study, and there may be multiple studies that 

occur at the same site, but that were not part of the same manipulative experiment. Response variables 

are aboveground biomass (AB), belowground biomass (BB), and soil CO2 exchange (SCE). For (a), 

the total number of studies reporting AB, BB, and SCE are 65, 58, and 52, respectively; the total 

number of studies used in the multivariate meta-analysis is 100, which is less than 65 + 58 + 52 = 175 

due to many (75) studies providing data on more than one response variable. Across all studies, 1049 

individual records were used (Table 1).

Fig. 2. Posterior estimates (mean and 95% CI) of the overall (across all sites, triangles, bottom of each 

panel; *, Eqn (5)) and study-specific (small squares) log-response ratios (LRR) for aboveground 

biomass (AB; a, b, c), belowground biomass (BB; d, e, f), and soil CO2 exchange (SCE; g, h, i) with 

respect to elevated CO2 (eCO2; left column, a, d, g), warming (middle, b, e, h), and eCO2  warming 

(right, panels c, f, i). The colored squares (AB = green, BB = brown, SCE = blue) denote study-level 

predictions specific to each site’s climate (i.e.,  in Eqn (5) evaluated at each site’s mean annual 

precipitation [MAP] and mean annual temperature [MAT]); the gray symbols in the background 

represent the study-level LRR under the same climate conditions (i.e., MAP and MAT set to their 

mean values, giving v,s,t in Eqn (5)). Red arrows point to overall effects that are deemed significantly 

different from zero (their 95% CI does not contain zero).

Fig. 3. Posterior estimates (mean and 95% CI) of the effects ( terms) of each covariate (rows) 

associated with each treatment type (columns). The covariate effects are shown for (a, b, c) study 

duration, (d, e, f) mean annual precipitation (MAP), (g, h, i) mean annual temperature (MAT), and (j, 

k, l) the MAP  MAT interaction, for the (a, d, g, i) elevated CO2 (eCO2), (g, e, h, k) warming, and A
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(c, f, i, l) eCO2  warming treatments. The dashed horizontal line is the zero line; 95% CIs that do not 

overlap the zero-line indicate a potentially significant effect of that covariate on the LRR of 

aboveground biomass (AB, green), belowground biomass (BB, brown), or soil CO2 exchange (SCE, 

blue) to the corresponding treatment factor. Bayesian p-values, which are somewhat less conservative 

than the 95% CIs for evaluating “significance,” are indicated with asterisks: p  0.01 (***), 0.01 < p  

0.05 (**), and 0.05 < p  0.1 (*). Note that MAP, MAT, and MAP  MAT effects were not included 

in the models for AB, BB, and SCE under eCO2  warming given data limitations.

Fig. 4. The range of mean annual precipitation (MAP) and mean annual temperature (MAT) 

considered in this study spans a diversity of (a) terrestrial biomes (based on 

https://github.com/kunstler/BIOMEplot; TR = temperate rainforest). Predicted effects of site-level 

MAP and MAT on the LRR of (b) aboveground biomass (AB) to eCO2 in eCO2-only experiments 

(i.e., under ambient temperatures), (c) soil CO2 exchange (SCE) to eCO2 in eCO2-only experiments, 

and (d) SCE to warming in warming-only experiments. Contour lines and associated numerical labels 

represent the predicted LRR (, Eqn (4)), standardized to an initial duration of Dur = 0 years (contour 

plots are nearly identical for an average duration of 2.64 years). Contour lines associated with  > 0 

(solid contour lines) imply that the treatment (eCO2 or warming) increases AB or SCE relative to the 

control (ambient); contour lines associated with  < 0 (dashed contour lines) imply that the treatment 

decreases AB or SCE relative to the control;  = 0 (thick blue contour lines) implies that the treatment 

has no effect on AB or SCE. Shaded blue regions indicate that  (predicted LRR) is statistically 

different from zero (95% CIs for  do not contain zero); gray regions indicate lack of significance. 

Red triangles indicate the location of the study sites in the MAP-MAT climate space (not all sites 

yielded AB and SCE data). Contour lines are scaled differently in each plot.

Fig. 5. The estimated, combined effect size (log response ratio, LRR) of the eCO2  warming 

treatment versus the potential additive effect size (LRR based on the sum of the eCO2 and warming 

single-factor effect sizes) for the three response variables of interest: aboveground biomass (AB), 

belowground biomass (BB), and soil CO2 exchange (SCE). Points (estimates) that fall above, below, 

or near the 1:1 line indicate synergistic, antagonistic, or additive effects, respectively, of eCO2 and 

warming. Small, filled symbols are the site-level estimates (posterior means), and large, open A
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triangles are the global, overall estimates; the 95% credible intervals (gray whiskers) are shown for 

the global estimates, but not for the site-level estimates given that they are generally very wide and 

the majority overlap the 1:1 line.
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Tables

Table 1. Number of individual, univariate log-response ratio (LRR) records, and number of studies 

producing those records (in parentheses), obtained from the GCME database that were used in the 

hierarchical Bayesian multivariate meta-analysis model. 

Treatment typeResponse

variable* eCO2-only Warming-only eCO2  warming Total

AB 127 (42) 141 (30) 32 (11) 300 (65)

BB 122 (46) 50 (20) 33 (10) 205 (58)

SCE 346 (38) 143 (21) 55 (10) 544 (52)

Total 595 (69) 334 (45) 120 (18) 1049 (100)

A total of 1049 records, obtained from 100 studies, were used in the analysis. See Fig. 1 for the 

definition of a “study.”

*  AB = aboveground biomass; BB = belowground biomass; SCE = soil CO2 exchange.
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Table 2. Posterior statistics (median and 95% credible interval [CI]) for the correlation between the 

study-level AB, BB, and SCE log-response-ratios (t,v,v’ in Eqn (9)).

Treatment type Response pair Median 95% CI

AB-BB (v = 1, v’ = 2) 0.567 (0.178, 0.795)

AB-SCE (v = 1, v’ = 3) -0.286 (-0.656, 0.231)

eCO2-only (t = 1)

BB-SCE (v = 2, v’ = 3) -0.274 (-0.685, 0.312)

AB-BB (v = 1, v’ = 2) 0.330 (-0.314, 0.781)

AB-SCE (v = 1, v’ = 3) -0.074 (-0.627, 0.595)

Warming only (t = 2)

BB-SCE (v = 2, v’ = 3) 0.260 (-0.341, 0.738)

AB-BB (v = 1, v’ = 2) 0.035 (-0.863, 0.825)

AB-SCE (v = 1, v’ = 3) -0.019 (-0.771, 0.768)

eCO2  warming (t = 3)

BB-SCE (v = 2, v’ = 3) 0.204 (-0.706, 0.821)
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Table 3. Summary of the unique attributes of the multivariate Bayesian meta-analysis modeling 

approach described in this study.

Attribute Description*

(1) Multivariate 

components

Implements a multivariate model for the study-level log-response ratios, which 

explicitly accounts for and estimates covariation among the AB, BB, and SCE 

responses. That is, since responses such as AB and BB, and potentially SCE, are 

often measured together in a study (see Fig. 1), it is unrealistic to assume that 

they are independent of each other, and the multivariate model accounts for such 

dependence.

(2) Retain all 

records

Retain all records such that records with missing covariate data or incomplete 

response variable data are not discarded. Missing covariate data are imputed 

within the model; the missing data are simultaneously “informed” by all 

observed covariate data and log-response ratio data of all three variables (AB, 

BB, and SCE), and for all three treatment types.

(3) Regression-

based 

approach

Employs a regression-based model for the log-response ratio data that includes 

the effects of multiple study- or site-specific covariates and their interactions. 

This allows us to explore how the log-response ratios vary as a function of these 

potential covariates, which could lend insight into potential non-linearities of the 

eCO2, warming, or combined eCO2 × warming treatment effects.

(4) Uncertainty 

quantification

Produces a posterior distribution for all quantities of interest (e.g., overall log-

response ratios, predicted additive effects of eCO2 and warming, correlations 

among AB, BB, and SCE responses, etc.). The posterior distribution explicitly 

quantifies uncertainty in quantities that we wish to make inferences about, 

without having to rely on procedures for approximating such uncertainties.

(5) Multiple 

treatment 

factors

Simultaneous analysis of the log-response ratio data obtained under different 

treatment types such that data from studies reporting the effects of eCO2-only, 

warming-only, or eCO2  warming treatments are analyzed together because they A
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are expected to share parameters that describe the overall (global) log-response 

ratios and the effects of the aforementioned covariates (see (3)).

*AB = aboveground biomass; BB = belowground biomass; SCE = soil CO2 exchange.
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