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ABSTRACT 

The pre-planning phase prior to construction is crucial for 

ensuring an effective and efficient project delivery. 

Realistic productivity rates forecasted during pre-

planning are essential for accurate schedules, cost 

calculation, and resource allocation. To obtain such 

productivity rates, the relationships between various 

factors and productivity need to be understood. Artificial 

neural networks (ANNs) are suitable for modelling these 

complex interactions typical of construction activities, 

and can be used to assist project managers to produce 

suitable solutions for estimating productivity. This paper 

presents the steps of determining the network 

configurations of an ANN model for bricklaying 

productivity.     

INTRODUCTION 

 

The productivity of the construction industry lags 

behind other sectors of the world’s economy (Barbosa et 

al., 2017). Due to this, productivity studies are vital, and 

indeed comprise a significant segment of construction 

research (Yi and Chan, 2014). Elaborate planning can lead 

to higher on-site productivity, and ultimately, to better 

performance for the industry. To this end, more accurate 

productivity rates are needed, which can be obtained by 

understanding the effects and functional relationships 

between various factors. 

The relationship between the factors and the 

productivity rate, and especially the factors’ combined 

effects are complex, thus making modelling challenging 

(Chao and Skibniewski, 1994). Owing to this, these 

studies can benefit from artificial neural networks 

(ANNs). ANNs can be trained to learn from even 

imperfect datasets, and provide quick and generalised 

solutions to a problem (Flood and Kartam, 1994a). ANNs 

can be used for modelling problems in which functional 

relationships between dependent and independent 

variables are subject to uncertainty, not understood, or 

may vary with time (Di Franco and Santurro, 2020). For 

all the above-mentioned reasons, they can perform better 

than traditional, statistical methods (Boussabaine, 1996) 

or even optimisation algorithms, which can operate 

slowly when the problem at hand involves a large number 

of variables (Flood and Kartam, 1994a) or when 

generalisation and patterns extracted from large datasets 

are the bottom line. Consequently, in this study, ANNs 

have been selected to analyse the effect of worker and 

wall characteristics on the bricklayers’ labour 

productivity. Understanding the impact can lead to more 

realistic schedules and more accurate resource allocation. 

After this section, the various applications of ANNs in 

the field of construction management are presented. Next, 

comes a short introduction of ANN. Then the steps of 

determining the network configurations of an ANN model 

for bricklaying productivity are presented together with 

the considerations of the various options. Finally, the 

directions of further model development are presented. 

USE OF ANN IN CONSTRUCTION 

MANAGEMENT STUDIES 

 

Artificial neural networks have been used in 

construction studies since the late 1980s (Flood and 

Kartam, 1994a; Adeli, 2001). There is a wide range of 

applications in the field of construction management. This 

section gives an overview of these. 

Gerek et al. (2015) created two ANN models to study 

the productivity of bricklaying gangs. They ranked the 

factors influencing productivity, and found that wall type 

and working time had the greatest effect (Gerek et al., 

2015). Moselhi and Khan (2012) performed significance 

ranking of influencing factors, as well. However, in their 

case, the chosen trade was concrete formwork installation. 

They compared the results gained by applying ANN, 

fuzzy subtractive clustering, and stepwise regression 

analysis. Temperature and the type of the structure ranked 

highest (Moselhi and Khan, 2012). The same data set and 

input variables were used by Nasirzadeh et al. (2020) and 

Golnaraghi et al. (2019). The former aimed to use ANN 

to gain prediction intervals for labour productivity, while 

the latter compared the results obtained with the help of 

four different network configurations (Golnaraghi et al., 

2019; Nasirzadeh et al., 2020). The output of the ANN by 

Portas and AbouRizk (1997) was also an interval (referred 

to as a zone) containing a small range of productivity 

values for concrete formwork operations. El-Gohary et al. 

(2017) and Mirahadi and Zayed (2016) sought to gain 

more accurate productivity rates for concrete works. 
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Tsehayae and Robinson Fayek (2016) analysed the 

productivity influencing factors for the same trade. To 

provide accurate productivity estimates for earthworks, 

Chao and Skibniewski (1994) used ANN, as well. Oral 

and Oral (2010) applied self-organising maps to 

investigate the effects of various influencing factors and 

to forecast construction productivity in the case of 

concrete works, formwork installation, and reinforcing 

works. Oral et al. (2016) compared the application of self-

organising maps and artificial bee colony to predict 

productivity rates for ceramic tiling works. Song and 

AbouRizk (2008) modelled steel drafting and fabrication 

with the help of ANN. Heravi and Eslamdoost (2015) 

analysed the factors affecting productivity for power plant 

projects. They found supervision, proper coordination, 

and effective communication to be the most important 

ones. Moselhi et al. (2005) also investigated projects as a 

whole, rather than specific trades, and developed a model 

to understand the effect of change orders on labour 

productivity.  

ANNs can be successfully used for purposes other 

than construction productivity analysis. Another area of 

application is cost estimation. Chao and Kuo (2018) used 

an ANN model to estimate the minimum rate of overheads 

and markup, while Moselhi et al. (1991) aimed to 

calculate the optimum markup. Oduyemi et al. (2015) 

modelled the life-cycle costs of existing buildings with the 

help of ANN.   

Problems in the area of health and safety can also benefit 

from ANNs. Patel and Jha (2015) modelled the safety 

climate of construction projects, while Ayhan and 

Tokdemir (2019) applied ANNs to predict the outcome of 

construction incidents, thus making their model part of an 

accident prevention system.  

Other applications include using ANNs for selecting 

the most suitable formwork system (Tam et al., 2005), 

showing the relationship between human values and 

motivation of construction managers (Wang et al., 2017), 

and determining the optimal performance measurement 

system to be used in off-site sheet metal fabrication shops 

(Said and Kandimalla, 2018). 

To enhance the capabilities of an ANN approach, it is 

possible to use it combined with another method, thus 

creating a hybrid model. For instance, there are numerous 

examples for neuro-fuzzy models, where fuzzy logic is 

used in the ANN model to better model subjective 

variables. The models of Portas and AbouRizk (1997) and 

Ayhan and Tokdemir (2019) have fuzzy output layers, 

while in addition to that, the input layer of Mirahadi and 

Zayed’s (2016) model also contains a couple of fuzzy 

variables. 

Another option could be to combine ANNs with 

construction simulation. Song and AbouRizk (2008) 

embedded ANNs into their discrete-event simulation 

model to estimate the duration of individual activities, 

while Chao and Skibniewski (1994) generated the activity 

durations fed into the ANN model with the help of 

discrete-event simulation. 

The next section presents how ANN models are 

developed for investigating construction productivity. 

ARTIFICAL NEURAL NETWORKS 

 

Artificial neural networks – similar to the human brain 

and the central nervous system – are able to learn and 

generalise from examples (Boussabaine and Kirkham, 

2008). The components of the network are called neurons, 

processing elements, or nodes (Moselhi et al., 1991; 

Boussabaine, 1996). These neurons are organised into 

three types of layers: input, hidden, and output layers. In 

any given network, there is one input layer, and one output 

layer, while the number of hidden layers varies. Figure 1 

shows the topology of an ANN model.          
 

 
Figure 1: ANN model architecture 

 

As can be seen in Figure 1, the neurons in the network 

are connected to each other. These links are weighted 

showing the strength of the connections (Boussabaine, 

1996) . The input variables are fed into the input layer, 

then the signal arrives to the nodes of the hidden layer 

through the links, and finally, it is transmitted to the 

output layer. However, the weights of the connections 

modify the signal that arrives at the output neurons (Flood 

and Kartam, 1994a). The learning method determines 

how the weights change over the course of the training 

(Boussabaine, 1996). Based on what the network has 

learnt, it will be able to predict the outcome when 

presented with new input data points (Boussabaine and 

Kirkham, 2008). ANNs work like a black box, where the 

magic happens in the hidden layer, hidden from the user 

(Boussabaine, 1996; Adeli, 2001). In construction 

management problems, the relationship between the input 

and the output is typically complex due to unknown 

combined effects (Chao and Skibniewski, 1994). ANNs 

are well-suited to handle such cases. 

 



APPLICATION OF ANN FOR 

PRODUCTIVITY ANALYSIS 

The steps of developing the ANN model for analysing 

the labour productivity of bricklaying works are shown in 

Figure 2.  

As with any other model, the process started with 

problem definition. In this case, the reason for 

developing this ANN model is to see how different factors 

affect the bricklayers’ productivity. This goal determines 

the input and output variables. In this case only those 

factors that can be known during the pre-planning phase 

of a construction project are considered, particularly 

worker and wall characteristics. These factors, which 

include, for example, the experience of the bricklayers 

and the type of brick used for the wall, comprise the input 

neurons of the ANN model. The output neuron is the 

forecasted productivity rate. Figure 3 shows the ANN 

model used in this research. 

 

 

 

Figure 3. ANN model of bricklaying labour productivity 

The selection of the variables informs the data 

collection. Patel and Jha (2015) suggest the minimum 

number of data points to be equal to the product of the 

neurons in each layer. According to this, at least 35 

samples would be needed for the model in Figure 1. Too 

few training data points can cause underfitting, meaning 

that the network is not able to learn properly (Flood and 

Kartam, 1994a).  In the case of productivity studies, 

especially if the data collection is done through work 

studies, it can be challenging to amass a substantial 

dataset. In this research, the data was collected at two 

construction projects by conducting a traditional work 

study. When the productivity rates were measured, note 

was made of the bricklayer working on the course, and the 

wall section where they worked. There are five worker 

characteristics, which are ordinal variables measured on a 

scale of one to three. For example, one is experience. In 

this case, one represents little, while three substantial 

experience. There are two wall attributes: difficulty is an 

ordinal variable measured on a scale of one to three with 

one being the easiest to construct and three being the most 

difficult; brick type is a categorical variable.  

Data processing includes producing the data table 

based on the measurements obtained during data 

collection. In every row of this table, there is one 

productivity rate measured in bricks/hour together with 

the corresponding worker and wall attributes. The data 

table is the basis of determining the input and target 

matrices. Since the variables are scaled differently, 

normalisation of the data is needed (Flood and Kartam, 

1994a, 1994b).    

Data division means that the collected dataset is 

sorted into training and testing datasets. Most of the 

papers mentioned in the previous section used one of the 

following training-testing ratios: 80-20%, 75-25%, or 70-

Figure 2: Steps of developing the ANN model 



30%. There often is a third set of data used for validating. 

In these cases, typically half of the testing set becomes the 

validating set. The number of data subsets is determined 

by the selected training algorithm. Normally, the dataset 

is divided randomly. However, it is essential that all 

subsets are representative of the collected data (Hagan et 

al., 2014).  In addition, Chao and  Skibniewski (1994) 

found that having extremes in the training dataset helped 

the performance of the model. In this research, first the 

dataset obtained through the data collection is divided 

randomly into training, testing, and validating subsets in 

a 70-15-15% ratio. Then the divisions producing similar 

results across the subsets can be used for further analysis. 

After the input and output variables are defined, the 

network type has to be chosen. One option is to select a 

basic network paradigm, another is to define a new one 

(Moselhi et al., 1991). The network can learn in three 

ways. In the case of supervised learning, both the input 

and the output dataset is presented to the network, which 

calculates a predicted output for each input set, and then 

it is compared to the desired output (Flood and Kartam, 

1994a). Another option is to provide a grade as an output, 

this is called reinforcement learning (Boussabaine, 1996).   

In the case of unsupervised learning, the targeted output 

dataset is not given to the network (Boussabaine, 1996). 

For example, self-organising maps belong to this category 

(Oral et al., 2016). Based on the direction of the 

connections, there are feedforward and recurrent 

networks. Feedback loops can be found in the latter 

(Forbes et al., 2004). The networks can also be static or 

dynamic. In the case of the former, the values of the input 

variables remain constant, while in the case of the latter, 

these values change over time (Flood and Kartam, 1994b). 

Deterministic and stochastic networks can be 

distinguished, as well. In probabilistic neural networks 

probability density functions are used (Specht, 1990). The 

advantage of probabilistic neural networks is that they can 

be trained fast on sparse datasets (Sawhney and Mund, 

2002; Tam et al., 2005). Feedforward backpropagation 

networks are the most commonly used ones, see, for 

example, El-Gohary et al. (2017), or Tsehayae and 

Robinson Fayek (2016). Moselhi et al. (1991) chose 

backpropagation for its high accuracy and high 

interpolative performance. Other types include the radial 

basis used by, for instance, Moselhi and Khan (2012). 

Gerek et al. (2015) compared the performance of these 

two types of networks, and found that the radial basis 

network was more appropriate for their bricklaying 

example. Golnaraghi et al. (2019) investigated the 

application of the general regression network, and the 

adaptive neuro-fuzzy inference system in addition to the 

two above-mentioned networks. The backpropagation 

network suited the formwork assembly activity the best as  

presented in their paper (Golnaraghi et al., 2019). Oral et 

al. (2016) used the self-organising map approach for a 

ceramic tiling activity. Bailey and Thompson (1990) 

presented the characteristics of many network paradigms. 

The previously mentioned input variables are static, 

they do not change over time. The target output was 

measured; therefore, the training of the network is 

supervised. There are no feedback loops in the network, a 

feedforward network is defined. Due to its accuracy and 

high interpolative performance, backpropagation is 

selected. 

The optimal network configuration can be obtained by 

following a trial-and-error approach, as there are no 

formal rules concerning this (Boussabaine and Kirkham, 

2008; El-Gohary et al., 2017). To determine the network 

architecture, decisions have to be made concerning the 

number of hidden layers and the number of neurons in 

each of these layers. It is worth starting with one hidden 

layer (Boussabaine and Kirkham, 2008). Two layers, 

however, can provide greater flexibility (Flood and 

Kartam, 1994a). Having too few hidden neurons in the 

network might lead to underfitting, and produce high error 

values (Flood and Kartam, 1994a; El-Gohary et al., 2017). 

On the other hand, too many hidden nodes can lead to 

overfitting, in which case the error values are low; 

however, the network cannot work well outside the 

training patterns (Flood and Kartam, 1994a; El-Gohary et 

al., 2017). At the start, the number of hidden neurons can 

be set at 2/3 or 70-90% of the input neurons, or at the 

average of the number of input and output nodes 

(Boussabaine and Kirkham, 2008; El-Gohary et al., 

2017). Having more than 2-2.5 times as many hidden 

neurons as input nodes might cause instability in the 

network (Patel and Jha, 2015; Ayhan and Tokdemir, 

2019). Probabilistic neural networks typically have one 

hidden layer with as many neurons as training patterns 

(Sawhney and Mund, 2002; Tam et al., 2005). One of the 

chosen network configurations can be seen in Figure 3. 

There are seven input neurons (one for each input variable 

mentioned before) and one output neuron (the forecasted 

productivity rate). There is one hidden layer. Based on the 

above recommendations, the number of hidden neurons is 

between 4 and 20. However, networks with a higher 

number of neurons (40, 100, 150) are also tested in the 

case of certain training algorithms. Furthermore, 

networks with two hidden layers with 5-40 neurons per 

layer are also examined. 

The training algorithm or learning rule determines 

the way in which the weights are recalculated over the 

course of training. Selection depends on many factors, 

including the network type, and the dataset. In the case of 

backpropagation networks, the application of the 

generalised delta rule used to be widespread (Bailey and 

Thompson, 1990; Adeli, 2001). Adeli (2001) 

recommended choosing the adaptive conjugate gradient 

algorithm instead. Several models use the Levenberg-

Marquardt algorithm due to it being fast and powerful, 

see, for example, Gerek et al. (2015). Another option is 

the Bayesian Regularisation algorithm suggested for 

small and noisy datasets, see, for example, Golnaraghi et 

al. (2019). Heravi and Eslamdoost (2015) compared the 

application of Bayesian Regularisation and scaled 



conjugate gradient learning rule, and found that the 

former had better generalisation performance. In the case 

of radial basis networks, the Gaussian function is the most 

commonly used (Adeli, 2001). For examples, see Gerek 

et al. (2015) and Moselhi and Khan (2012). Performance 

can be improved by allowing the learning rate to be 

modified during the training process; therefore use can be 

made of algorithms with adaptive learning rates 

(MathWorks United Kingdom, no date b). In this 

research, altogether six training algorithms are selected. 

The most frequently used Levenberg-Marquardt 

algorithm is the first choice for its speed and power. The 

Bayesian Regularisation algorithm recommended for 

noisy and small datasets is selected also for preventing 

overfitting. Two training algorithms (gradient descent 

with adaptive learning rate backpropagation and gradient 

descent with momentum and adaptive learning rate 

backpropagation) with adaptive learning rates are chosen, 

as well, for their ability to enhance performance by 

amending the learning rate. The Broyden-Fletcher-

Goldfarb-Shanno quasi-Newton backpropagation is 

selected for its speed (MathWorks United Kingdom, no 

date a). The scaled conjugate gradient algorithm is chosen 

for its efficiency (Hagan et al., 2014). 

Over the course of the training of the network, the 

difference between the targeted and the predicted output 

is calculated, typically, with the help of statistical tools. 

This will be later used to evaluate the performance of the 

given network configuration. The most commonly used 

performance measures are the mean squared error (or 

the root-mean-square error), the mean absolute 

percentage error, the mean absolute error, and the 

correlation coefficient. In this study, the mean squared 

error, the mean absolute percentage error, and the 

correlation coefficient are used to evaluate the network 

configurations. 

The output of the neurons is calculated based on the 

weights of the connections. Then a transfer or activation 

function is applied to this result (Flood and Kartam, 

1994a). These functions can be linear, threshold, or 

sigmoid, which is the most widely used  (Boussabaine and 

Kirkham, 2008). Portas and AbouRizk (1997) selected a 

sigmoid, while Tsehayae and Robinson Fayek (2016) 

applied a hyperbolic sigmoid transfer function. Heravi et 

al. (2015) experimented with different combinations of 

log-sigmoid, tangent sigmoid, and linear functions. They 

found that the log-sigmoid functions performed well with 

Bayesian Regularisation, while the tangent sigmoid 

function failed with the same algorithm (Heravi and 

Eslamdoost, 2015). Gerek et al. (2015) used saturating 

linear and linear activation functions in their two-layer 

feedforward network. Sigmoid functions are the most 

commonly used and best resemble the behaviour of 

biological neurons (Boussabaine and Kirkham, 2008). 

They are advised in the case of backpropagation by Bailey 

and Thompson (1990). Therefore, in this study, log-

sigmoid and tangent sigmoid activation functions are 

selected for the first, or in the case of two hidden layers, 

the first two layers, and a linear transfer function is 

applied for the final layer.   

After making the decisions regarding the initial 

settings of the network, the training and the testing could 

start. Next came the evaluation of the performance of 

the network configuration using the selected measures. If 

the performance is not satisfactory, there are two options. 

If the performance is below expectations, the network 

attributes need to be changed and the training and testing 

run again. The modifications are made one at a time to be 

able to observe the effect of the change. The other option, 

in the case of better performing networks, is to retrain the 

network with the same configuration to see if using 

different weights during training could help enhance the 

performance. This cycle continues until the optimal 

network configuration is found; the calibration is ready. 

When that happens, the network is ready, it can be used 

with new datasets to predict solutions and values (see 

Figure 2).   

CONCLUSIONS 

 

Investigating how different factors affect productivity 

is crucial for achieving higher levels of productivity on 

construction projects, and ultimately improving the 

performance of the sector. More realistic productivity 

rates lead to better schedules, cost calculations, and 

resource allocation. Artificial neural networks can be well 

used for such problems as they are able to provide 

solutions for complex problems involving non-linear 

relationships (Boussabaine, 1996). To help with model 

development for productivity studies, this paper 

summarises the decisions that need to be made and 

presents the considerations in the case of a model for 

bricklaying. 

With the definition of the exact problem, the input 

variables are determined. The output variable is the 

productivity rate. After choosing the most suitable 

network type, the possible network configurations need to 

be listed. This includes choosing the number of hidden 

layers, and the neurons in each layer, the division of the 

dataset into training, testing, and validating datasets, the 

selection of the learning rule, and the transfer function. 

The interested reader is referred to the detailed 

explanation on how to choose the parameters for the 

network configuration in the previous section.  

When the training and testing of all the networks are 

finished, they need to be compared and evaluated based 

on the chosen performance measures. In this way, the 

most optimal network configuration can be selected and 

used for predicting the productivity rate of the bricklaying 

activity.  

    In further stages of model development, the ANN 

model can be part of a discrete-event simulation model, 

where the bricklaying activity durations come from the 

ANN model component. This will be achieved based on 

the framework for creating hybrid simulation models, in 

which various simulation methods (such as discrete-event 



simulation) are combined with each other or other 

techniques (such as ANN), developed by Bokor et al. 

(2019). 

As discussed in this paper, ANN and algorithms based on 

ANN are approaches that look into capturing knowledge 

from datasets. These models have the potential to 

transform the construction industry with the use of data-

based solutions that can improve the way projects are 

delivered. In this particular case, ANN can be used to 

determine more realistic productivity rate predictions for 

accurate time and cost estimates, and improved project 

planning in bricklaying.  
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