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Abstract. River-level estimation is a critical task required for
the understanding of flood events and is often complicated
by the scarcity of available data. Recent studies have pro-
posed to take advantage of large networks of river-camera
images to estimate river levels but, currently, the utility of
this approach remains limited as it requires a large amount of
manual intervention (ground topographic surveys and water
image annotation). We have developed an approach using an
automated water semantic segmentation method to ease the
process of river-level estimation from river-camera images.
Our method is based on the application of a transfer learning
methodology to deep semantic neural networks designed for
water segmentation. Using datasets of image series extracted
from four river cameras and manually annotated for the ob-
servation of a flood event on the rivers Severn and Avon, UK
(21 November–5 December 2012), we show that this algo-
rithm is able to automate the annotation process with an ac-
curacy greater than 91%. Then, we apply our approach to
year-long image series from the same cameras observing the
rivers Severn and Avon (from 1 June 2019 to 31 May 2020)
and compare the results with nearby river-gauge measure-
ments. Given the high correlation (Pearson’s correlation co-
efficient > 0.94) between these results and the river-gauge
measurements, it is clear that our approach to automation of
the water segmentation on river-camera images could allow
for straightforward, inexpensive observation of flood events,
especially at ungauged locations.

1 Introduction

Fluvial flood forecasting systems often deploy hydrodynamic
inundation models to compute water level and velocity in
the river and, when the storage capacity of the river is ex-
ceeded, in the floodplain (e.g. Flack et al., 2019). Simula-
tion library approaches using pre-computed hydrodynamic
model solutions are also becoming more common for near
real-time flood mapping (e.g. Speight et al., 2018). Observa-
tions of fluvial floods are key to model improvement, both
to improve forecasts during the event via data assimilation
(e.g. Ricci et al., 2011; García-Pintado et al., 2013, 2015;
Di Mauro et al., 2021; Cooper et al., 2019) and to identify
model shortcomings and improvements in post-event anal-
ysis (e.g. Werner et al., 2005). Water-level observations are
often easier to obtain than streamflow observations, as they
do not require any information about the rating curve. Fur-
thermore, several studies have demonstrated their utility for
calibration of hydrological models (e.g. van Meerveld et al.,
2017; Seibert and Vis, 2016).

The main types of water-level observations possible
with current technologies include ground-based and remote-
sensing techniques. River gauges allow continuous monitor-
ing of river levels at point locations. However, their measure-
ments may not be valid if the gauge is overwhelmed in an
extreme flood. The network of river gauging stations is de-
clining globally (The Ad Hoc Group et al., 2001; Mishra and
Coulibaly, 2009; Global Runoff Data Center, 2016). Con-
sequently, many flood-sensitive areas are ungauged or must
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be studied through river gauges that can be located several
kilometres away (e.g. Neal et al., 2009), so they cannot accu-
rately describe the local situation.

Satellite and airborne images can be used to derive flood
extents and, when combined with a digital elevation model
(DEM), water levels along the flood edge (Grimaldi et al.,
2016). These images can be obtained using optical sensors or
synthetic aperture radar (SAR). Satellite and airborne optical
techniques are hampered by their daylight-only application
and their inability to map flooding beneath clouds and vege-
tation (Yan et al., 2015). On the other hand, SAR images are
unaffected by cloud and can be obtained day or night. Thus,
their use for flood mapping in rural areas is well established
(e.g. Mason et al., 2012; Giustarini et al., 2016). In urban ar-
eas, shadow and layover issues make the flood mapping more
challenging (e.g. Mason et al., 2018; Tanguy et al., 2017).
In addition, SAR satellite overpasses are infrequent (at most
once or twice per day, depending on location), so it is uncom-
mon to capture the rising limb of the flood (Grimaldi et al.,
2016).

Unmanned aerial systems (UASs) are an emerging tech-
nology increasingly being used for river observations (Tauro
et al., 2018). However, UAS deployment is subject to civil
aviation restrictions (e.g. Civil Aviation Authority, 2020).
Furthermore, there is a balance between instrument payload
and the need to land and refuel. Images are subject to UAS
drift and require complex orthorectification (Perks et al.,
2016).

Several studies have already attempted to use videos and
still-camera images in order to observe flood events. Surface
velocity fields can be computed using videos (e.g. Muste
et al., 2008; Le Boursicaud et al., 2016; Creutin et al.,
2003; Perks et al., 2020). Still images can be used to ob-
serve the water levels, either manually (e.g. Royem et al.,
2012; Schoener, 2018; Etter et al., 2020) or automatically,
for example by considering image processing edge detec-
tion techniques (Eltner et al., 2018). Under the right condi-
tions, these automated water-level estimation techniques can
provide good accuracy with uncertainties of only a few mil-
limetres (Gilmore et al., 2013; Eltner et al., 2018). However,
the performance of these approaches lacks portability (Eltner
et al., 2018).

There have been a number of citizen science projects that
investigated the use of crowd-sourced observations of river
level (e.g. Royem et al., 2012; Lanfranchi et al., 2014; Etter
et al., 2020; Lowry et al., 2019; Walker et al., 2019; Baruch,
2018). However, in our paper, the aim is to rely on “oppor-
tunistic data” (Hintz et al., 2019) from an existing network
of river cameras to observe flood events. River cameras typ-
ically continuously broadcast live images from waterways.
The cost of installation and maintenance of such cameras is
low as they only rely on the availability of electricity through
a power grid or (backup) batteries, and the upload of the im-
ages can be organised through standard and/or mobile broad-
band. Many of these cameras are installed at ungauged lo-

cations (Vetra-Carvalho et al., 2020b; Perks et al., 2020; Lo
et al., 2015), and they have become a common tool for the
monitoring of rivers for many private (e.g. fishing, tourism
and boating) and public (flood prevention and river manage-
ment) purposes. Thus, the use of existing cameras could offer
a good coverage of the river network.

By extracting the location of water-filled pixels from a
stream of river-camera images (water segmentation), it be-
comes possible to analyse flood events happening within the
field of view of a camera. Most attempts that have tried to
tackle the problem of automated water detection in the con-
text of floods have been realised through the histogram anal-
ysis of the image (Filonenko et al., 2015; Zhou et al., 2020)
unless the dynamic aspect of the video feed can be exploited
(e.g. 25fps in Mettes et al., 2014) or the camera is set to
observe a specific gauge or ruler (Pan et al., 2018), which
is not the case for the river cameras used in this work (1
frame per hour). These algorithms remain sensitive to lumi-
nosity and water reflection problems (Filonenko et al., 2015).
Deep learning approaches have been applied to flood detec-
tion using river cameras (Lopez-Fuentes et al., 2017; Moy de
Vitry et al., 2019). However, current flood-related studies us-
ing river-camera images are limited because the observations
made on the stream of images must be annotated manually
(Vetra-Carvalho et al., 2020b). An accurate, manual annota-
tion of such images is a long and tedious process that com-
pels the analyst to narrow the scope (number of images con-
sidered) of the study.

Over the last decade, transfer learning (TL) techniques
have become a common tool to try to overcome the lack
of available data (Reyes et al., 2015; Sabatelli et al., 2018).
The aim of these techniques is to repurpose efficient ma-
chine learning models trained on large annotated datasets of
images to new related tasks where the availability of anno-
tated datasets is much more limited (see Sect. 2 for more
details). Vandaele et al. (2021) successfully analysed a set of
TL approaches for improving the performance of deep wa-
ter segmentation networks by showing that they could out-
perform water segmentation networks trained from scratch
over the same datasets. This paper builds on the work of Van-
daele et al. (2021) and studies the performance of these wa-
ter segmentation networks trained using TL approaches for
the automation of river-level estimation from river-camera
images in the context of flood-related studies. In particular,
this work uses water segmentation networks trained using TL
approaches in order to carry out novel experiments realised
with new river-camera datasets and metadata that consider
the use of several methods to extract quantitative water-level
observations from the water-segmented river-camera images.

Section 2 motivates and details the approach that was used
to develop the river-level estimation method presented in this
work. Section 3 presents and analyses the results of the ex-
periments performed with this approach. Finally, Sect. 4 pro-
vides conclusions.
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2 Transfer learning for water segmentation and
river-level estimation

This section details the approach that was used to tackle the
problem of river-level estimation from river-camera images.
Section 2.1 provides explanations regarding the computer vi-
sion and deep learning concepts that were used in this work.
Section 2.2 details how the problem of water segmentation
is tackled. Section 2.3 explains how the water segmentation
can be used to estimate river levels.

2.1 Definitions

Three concepts need to be introduced to understand
the method presented in this work: water segmentation
(Sect. 2.1.1), deep learning (Sect. 2.1.2) and transfer learning
(Sect. 2.1.3). These explanations are kept short and oriented
towards the main goal of this work. We refer the interested
reader to additional information in computer vision and deep
learning literature (e.g. Goodfellow et al., 2016; LeCun et al.,
2015; Szeliski, 2010).

2.1.1 Water segmentation for water-level estimation

In this work, the problem of river-level estimation is tack-
led through the use of automated semantic segmentation al-
gorithms applied to river-camera images. We focus on auto-
mated river and water semantic segmentation. As shown in
Fig. 1, a water semantic segmentation algorithm will asso-
ciate a Boolean variable 1 (flooded)/0 (unflooded) to each
pixel of an RGB image, expressing whether or not there is
water present in the pixel. The Boolean mask will thus have
as many pixels as the RGB image.

While water segmentation masks do not allow for a direct
estimation of the river level, producing an automated water
segmentation algorithm is a major milestone in order to use
river-camera images for river-level estimation. Section 2.3
details how the water segmentation masks can be used to es-
timate the river levels.

2.1.2 Deep learning for automated water segmentation

As for most image-processing-related tasks, recent advances
in optimisation, parallel computing and dataset availability
have allowed deep learning methods, and specifically deep
convolutional neural networks (CNNs), to bring major im-
provements to the field of automated semantic segmentation
(Guo et al., 2018). CNNs are a type of neural network where
input images are processed through convolution layers. As
shown in Fig. 2 for convolutional neural networks, an im-
age is divided into square sub-regions (tiles) of size F ×F
that can possibly overlap. The image is processed through a
series of convolutional layers. A convolutional layer is com-
posed of filters (matrices) of size F×F×Ci , where Ci is the
number of channels of the input image at layer i. For each fil-
ter of the convolutional layer, the filter is applied on each of

the tiles of the image by computing the sum of the Hadamard
product (element-wise matrix multiplication) – also called a
convolution in deep learning – between the tile and the fil-
ter (Strang, 2019), which is then processed through an ac-
tivation function (e.g. ReLU (Nair and Hinton, 2010), sig-
moid or identity function). If the products of the convolution
operations are organised spatially, the output of a convolu-
tional layer can be seen as another image, which itself can be
processed by another convolutional layer; if a convolutional
layer is composed of N filters, then the output “image” of
this convolutional layers has N channels. CNN architectures
vary in number of layers and choice of activation function but
also in terms of additional layers. Typically, SoftMax layers
are added at the end of categorisation or classification tasks
(such as semantic water segmentation) to normalise the last
Ci channels into a probability distribution of Ci categories
or classes. Pooling layers are often used to reduce the dimen-
sion of a layer by computing the maximum (max-pooling)
or average (average-pooling) of partitions (non-overlapping
contiguous regions) of size P ×P of the input image.

During the training of the networks, the weights of the fil-
ters (the matrix values) are optimised. The idea is that the
filters will converge along the convolutional layers towards
weights, making the input image more and more meaningful
for the task at hand.

2.1.3 Transfer learning

Inductive transfer learning (TL) is commonly used to re-
purpose efficient machine learning models trained on large
datasets of well-known problems in order to address related
problems with smaller training datasets. Indeed, water seg-
mentation networks are typically trained on small datasets
composed of 100–300 training images (Lopez-Fuentes et al.,
2017; Steccanella et al., 2018; Moy de Vitry et al., 2019),
while more popular problems can be trained on datasets com-
posed of more than 15000 images (e.g, Caesar et al., 2018;
Zhou et al., 2017). In many cases, using inductive TL ap-
proaches for the training of CNNs instead of training them
from scratch with randomly initialised weights allows im-
provement in the network performance (Reyes et al., 2015;
Sabatelli et al., 2018).

For a typical supervised machine learning problem, the
aim is to find a function f :X→ Y from a dataset B =
{(xi,yi)

N
i=1 : xi ∈X,yi ∈ Y } of N input–output pairs such

that the function f should be able to predict the output of
a new (possibly unseen) input as accurately as possible. The
set X is called the input space and Y the output space.

With TL, the aim is to also build a function ft :Xt→ Yt
for a target problem with input space Xt, output space Yt and
a dataset Bt. TL tries to build ft by transferring knowledge
from a source problem s with input space Xs, output space
Ys and a dataset Bs.

https://doi.org/10.5194/hess-25-4435-2021 Hydrol. Earth Syst. Sci., 25, 4435–4453, 2021
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Figure 1. Example of a water segmentation mask (a) for a river-camera image (b). The mask corresponds to a pixel-wise labelling of the
original images between flooded pixels (in white) and unflooded pixels (in black), expressing whether or not there is water present in the
pixel.

Figure 2. Example of convolution layers inside a neural network.

Inductive TL (Pan and Yang, 2009) is the branch of TL
related to problems where datasets of input–output pairs are
available in both source (Xs,Ys) and target (Xt,Yt) domains
and where the source and target input spaces are similar
(Xs ≈Xt) but not the output space (Ys 6= Yt).

Note that the specific approach that is used to apply TL is
presented in Sect. 2.2.

2.2 Transfer learning for deep water semantic
segmentation networks

This section introduces the approach used for automated wa-
ter segmentation as well as the different techniques and ma-
terials related to its development. Note that a part of the water
semantic segmentation approach was presented in Vandaele
et al. (2021). The aim of this work is to provide a perspective

centred around the application of this method in hydrology.
The method is applied on new relevant datasets and its rel-
evance is evaluated in the context of water-level estimation.
All the results presented in this paper are novel.

2.2.1 Network architectures and source datasets

For this study, two state-of-the-art CNNs for semantic seg-
mentation (semantic segmentation networks) were consid-
ered.

The first network considered is ResNet50-UperNet (RU).
This network is an UperNet network with a ResNet50 im-
age classification network used as a backbone. ResNet50-
UperNet was trained on the ADE20k dataset (Zhou et al.,
2018). ResNet50 (He et al., 2016) is a typical CNN architec-
ture used for image classification tasks (at the image level)

Hydrol. Earth Syst. Sci., 25, 4435–4453, 2021 https://doi.org/10.5194/hess-25-4435-2021
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Table 1. Labels related to water bodies, and the number of images
that contain at least one pixel with the corresponding label.

ADE20k dataset COCO-stuff dataset

Labels # images Labels # images

water 709 river 2113
sea 651 sea 6598
river 320 water–other 2453
waterfall 80

that the UperNet architecture transforms into a semantic seg-
mentation network. ADE20k is a dataset designed for in-
door and outdoor scene parsing with 22 000 images semanti-
cally annotated with 150 labels, among which four are water-
related labels (see Table 1).

DeepLab (v3) is the second network that was considered.
This network was trained and has produced state-of-the-
art results on the COCO-stuff dataset (Chen et al., 2017).
DeepLab also uses a ResNet50 network as a backbone net-
work but performs the upsampling of the backbone’s last lay-
ers by using atrous convolutions (Chen et al., 2017). COCO-
stuff is a dataset made of 164 000 images semantically anno-
tated with 171 labels, among which three are related to water
objects (see Table 1).

2.2.2 Target datasets for water semantic segmentation

In order to apply transfer learning to the networks trained
on the source problems, two different target datasets were
considered.

– LAGO (named after the first author of the study pre-
sented in Lopez-Fuentes et al., 2017) is a dataset of
RGB images with binary semantic segmentation of wa-
ter masks. The dataset was created through manual col-
lection of camera images having a field of view captur-
ing riverbanks. The big advantage of this dataset is that
the images are directly for river segmentation (Lopez-
Fuentes et al., 2017). It is a dataset made of 300 images
with 225 used in training.

– WATERDB is a dataset of RGB images with binary se-
mantic segmentation of water and not-water labelled
pixels that was created by Vandaele et al. (2021) through
the aggregation of images containing label annotations
related to water bodies coming from the ADE20k (Zhou
et al., 2017) (water, sea, river, waterfall) and the COCO-
stuff (Caesar et al., 2018) (river, sea, water–other)
dataset (see Table 1). The dataset is made of 12684
training images.

While LAGO is a dataset that is more directly related to the
segmentation of river-camera images, it is also a dataset with
a much smaller set of images than WATERDB. By choosing
these two datasets, it is possible to determine if better results

are obtained when transfer learning is applied to the networks
over large datasets with images that are not always directly
related to the segmentation of water on river-camera images,
or conversely if better results are obtained by applying trans-
fer learning to the networks over smaller but more relevant
datasets.

2.2.3 Applying transfer learning to train the networks

In Vandaele et al. (2021), the most successful approach con-
sidered for applying transfer learning to the semantic seg-
mentation networks is fine-tuning. With fine-tuning, the fil-
ter weights obtained by training the network over the source
problem are used as initial weights for training the network
over the target problem.

The semantic segmentation networks that were chosen
are addressing semantic segmentation problems with 171
(COCO-stuff) and 150 (ADE20k) labels (see Sect. 2.2.1) and
use a SoftMax layer (see Sect. 2.1.2) to perform their seg-
mentation, which means that their last layer has as many fil-
ter as there are labels. However, the water semantic segmen-
tation problem is a binary segmentation problem with only
two labels: water or not-water. In practice, this means that
the dimensions of the last output layer of the source semantic
segmentation networks and the target semantic segmentation
networks might not be of the same size and will have a differ-
ent number of filters. In consequence, it is not possible to use
the weights of the last layer of the source network to initialise
the weights of the last layer of the target network. This is why
two fine-tuning strategies were considered in Vandaele et al.
(2021).

– WHOLE: fine-tuning the entire target network with all
the initial weights of all layers equal to the weights of
the source network except for a random initialisation of
the last binary output layers.

– 2STEPS: the last layer of the target network (with ran-
dom initialisation) is retrained first with all the other
layers frozen to the weights of the source network lay-
ers. Once the last layer is retrained, the entire target net-
work is fine-tuned.

2.2.4 Networks retained for the experiments

The discussion so far in Sect. 2.2 has presented differ-
ent types of deep-learning-based approaches to tackle the
automated water segmentation problem: CNN architecture,
source and target datasets, as well as fine-tuning strategies.
In particular, it has considered two network architectures pre-
trained over specific datasets (ResNet50-UperNet pre-trained
over ADE20k and DeepLab (v3) pre-trained over COCO-
stuff) and two fine-tuning strategies (WHOLE or 2STEPS)
applied on two different datasets (LAGO or WATERDB).
This means that eight different network configurations were
trained (see Fig. 3).

https://doi.org/10.5194/hess-25-4435-2021 Hydrol. Earth Syst. Sci., 25, 4435–4453, 2021
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Figure 3. Model configurations used with the TL methodology.

As explained in Vandaele et al. (2021), the training used
300 epochs in order to ensure full convergence for all the
networks. The initial learning rate value for the fine-tuning
was 10 times smaller than its recommended value (0.001)
in order to start with less aggressive updates. The other pa-
rameters (loss, update schedule and batch size) were chosen
as recommended by the authors of the networks (Zhou et al.,
2018; Chen et al., 2017). Both authors implemented their net-
work using the PyTorch library.

2.3 River-level estimation using water segmentation

The deep learning methodology presented in Sect. 2.2 allows
the estimation of a water mask from a river-camera image.
However, as explained in Sect. 2.1, it is not possible to di-
rectly extract the water level from the water masks. Hence,
this section details two approaches that can be used to ex-
tract river levels from water masks.

2.3.1 Static observer flooding index (SOFI)

The experiments presented in this work use the static ob-
server flooding index (SOFI) to track water-level changes.
Moy de Vitry et al. (2019) introduced the SOFI to extract
flood-level information from a deep semantic segmentation
network trained from scratch on an image dataset annotated
with water labels. The SOFI is related to the percentage of
pixels in the image that are estimated as water pixels by the
network as

SOFI=
#PixelsFlooded

#PixelsTotal
. (1)

This non-dimensional index allows the authors to monitor the
evolution of water levels in their datasets and can be com-
puted on the entire water mask or only a sub-region.

2.3.2 Landmark-based water-level estimation
(LBWLE)

The landmark-based water-level estimation (LBWLE) devel-
oped with this work aims at estimating the water level by us-

ing the landmark classification information. As suggested in
Fig. 4, this algorithm relies on landmark locations (points)
chosen specifically for a camera (e.g. near the river or in ar-
eas likely to get flooded) and for which the height is available
from a ground survey.

LBWLE estimates the water-level height ŵ as the average
of a lower bound landmark height hlb and an upper bound
landmark height hub, which is ŵ = hlb+hub

2 .
However, simply considering the lower bound lb as the

highest flooded landmark and the upper bound landmark ub
as the lowest unflooded landmark could be problematic. In-
deed, even if the water segmentation networks have relatively
high segmentation accuracy, this algorithm needs to man-
age the possibility that landmarks with lower heights are es-
timated as unflooded while landmarks with higher heights
might be estimated as flooded. This is why the LBWLE
method uses the following approach.

Let F̂ ∈ [0,1]N be the estimated flood state of the N land-
marks, sorted by increasing order of height hi , and k be the
index of the highest flooded landmark k =max{i|F̂i = 1, i =
1, . . .,N}. If U =

∑k
i=1(1− F̂i) is defined as the number of

unflooded landmarks between 1 and k, then the lower bound
index lb is defined as lb= dk−U U

k
e and the upper bound

ub is defined as ub= lb+1. With this algorithm, the idea is
to first consider the lower bound index lb as the index of the
highest landmark estimated as flooded, but switch to lower
landmark indices depending on the percentage of unflooded
landmarks between 1 and k. An example for the choice of the
lower bound index using LBWLE is given in Fig. 4.

The estimated river-level height ŵ will then be estimated
as the average between the heights of the landmarks defined
as the lower and upper bounds ŵ = hlb+hub

2 . If no landmark
is estimated as flooded, then the water level is set to ŵ = h1
(the lowest water level measured), and if all the landmarks
are estimated as flooded, then the water level is set to ŵ = hN
(the highest water level measured). Note that the accuracy of
LBWLE is dependent on the annotated landmarks as it can
only estimate the water level as the average height of two
landmark heights.

Hydrol. Earth Syst. Sci., 25, 4435–4453, 2021 https://doi.org/10.5194/hess-25-4435-2021
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Figure 4. Example application of the LBWLE algorithm. The prin-
ciple is that if some of the highest landmarks are estimated as
flooded but some lower height landmarks are estimated as un-
flooded, then the true water level is likely lower than the height of
the highest landmark estimated as flooded.

2.3.3 Comparison of SOFI and LBWLE

When compared to the SOFI, water-level estimation using
landmarks and LBWLE is at a disadvantage because of the
necessary and time-consuming ground survey of the location
observed by the camera. Furthermore, landmarks can mostly
only be used when the river is out-of-bank, so the approach
is not likely to capture drought events. However, the main
advantage of this approach compared to SOFI is that it al-
lows estimation of quantitative river levels in accepted units
of length (e.g. metres). The SOFI values are dimensionless
percentages and to convert them to a height measurement an
appropriate scaling must be obtained by calibration with in-
dependent data.

3 Experiments

Two experiments were carried out in this study.
The first experiment, presented in Sect. 3.1, is designed

to address the suitability of our approach for the automatic
derivation of water-level observations using river-camera im-
ages and landmarks from a ground survey. Landmarks and
associated manually derived water levels are available for a
2 week flood event (Vetra-Carvalho et al., 2020b). These data
allow us to validate our LBWLE approach for water-level es-
timation in accepted units of length (metres) with co-located
water levels estimated by a human observer.

With the second experiment, presented in Sect. 3.2, our
approach is applied to larger, 1 year datasets of camera im-
ages that include a larger range of river flow rates and stages.
This experiment allows us to better understand the suitability
and robustness of the LBWLE and SOFI water-level mea-
surements. However, manually derived co-located water lev-
els are not available for this period, so the nearest available
river-gauge data for validation was used instead. For some of
the cameras, the nearest gauge is several kilometres away.

3.1 Application on a practical case for flood
observation

3.1.1 River-camera datasets for a flood event on the
river Severn and the river Avon

For this experiment, four different cameras located along the
rivers Severn and Avon, UK, were considered: Diglis Lock
(DIGL), Tewkesbury Marina (TEWK), Strensham Lock
(STRE) and Evesham (EVES). The images capture a major
flood event that occurred in the Tewkesbury area between
21 November and 5 December 2012. This is a well-observed
and well-studied event (García-Pintado et al., 2015). Fur-
ther information about the camera locations can be found in
Vetra-Carvalho et al. (2020b).

The cameras are part of the Farson Digital Water-
cams (https://www.farsondigitalwatercams.com/, last access:
3 August 2021) network. The field of view of the cameras
stays fixed (no camera rotation or zoom). The images were
captured using a Mobotix M24 all-purpose high-definition
(HD) web-camera system with 3MP (megapixels) producing
2048× 1536 pixel RGB images. The images at our disposal
were all watermarked, but a visual inspection of our results
showed that those watermarks had near to no influence on the
segmentation performance.

For each camera, ground surveys have previously been
conducted in order to measure the topographic height of sev-
eral landmarks within the field of view of the camera (Vetra-
Carvalho et al., 2020b). Note that the number and spread of
measured landmarks over the camera’s field of view was con-
strained to locations that were accessible during the ground
survey. For each camera, daytime hourly images (around nine
per day) were retrieved and annotated by a human observer
using the surveyed landmarks as a reference in order to esti-
mate the water level as well as the accuracy of this estima-
tion (Vetra-Carvalho et al., 2020b). This also means that for
each landmark that was surveyed, it was possible to annotate
the landmark with flood information. It is flooded if the wa-
ter level is above the landmark’s height; otherwise it is not.
More details regarding the four datasets are given in Table 2.
A sample image for each location, annotated with the mea-
sured landmarks, is given in Fig. 5.

An inspection of the datasets and results showed that
the impact of camera movement was negligible. Machine-
learning-based landmark detection algorithms (e.g, Vandaele
et al., 2018) could have been used otherwise, but they are
unnecessary in the context of this study.

Also note that this work focuses on a simple process re-
lying on single pixel landmark locations annotated by Vetra-
Carvalho et al. (2020b). The use of landmarked areas of mul-
tiple pixels sharing the same height could likely help to in-
crease the detection performance and should be considered
for optimal use of this landmark-based approach.
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Figure 5. Sample camera image for each location with the measured landmarks annotated by red dots. Photo: Farson Digital Watercams.

Table 2. River-camera location and specific dataset information.

Dataset name Location # images # landmarks % flooded Camera location (northing, easting)
landmarks

DIGL Diglis Lock 141 7 24.11 (253402.08 m, 384691.15 m)
EVES Evesham 134 13 30.94 (243656.21 m, 402923.2 m)
STRE Strensham Lock 144 24 37.15 (240449.13 m, 391564.37 m)
TEWK Tewkesbury Marina 138 4 43.66 (233394.44 m, 389466.95 m)

3.1.2 Evaluation protocol

As explained in Sect. 3.1.1, the images in the datasets used in
these experiments are not annotated with binary masks that
would allow the pixel-wise evaluation of the semantic seg-
mentation networks. However, for our application, the land-
mark observations (Vetra-Carvalho et al., 2020b) provide the
binary flooding information for some of the most relevant lo-
cations in the image. In consequence, the most relevant way
to evaluate our approach is to consider it as a binary landmark
classification problem and use the typical evaluation criteria
related to binary classification (e.g. Gu et al., 2018; Bargoti
and Underwood, 2017; Salehi et al., 2017). Note that these
criteria are also commonly used in hydrology to evaluate the
performance of flood modelling methods for flood-extent es-
timation (e.g. Stephens et al., 2014). Therefore, this exper-
iment considers the set of criteria presented in Table 3 to
describe the performance of our networks and also provides
the corresponding contingency table. The contingency table

was computed between the class labels of the landmarks es-
timated by a human expert examining of the images (Vetra-
Carvalho et al., 2020b), and the class labels estimated by our
semantic segmentation networks (pixels corresponding to the
landmark locations in the images, estimated as flooded or un-
flooded).

As explained in Sect. 2.2, eight different network config-
urations were considered. For each network, the correspond-
ing water segmentation masks of each image of each dataset
were generated. The contingency table for the landmark clas-
sification for each dataset and each network was then com-
puted separately.

3.1.3 Landmark classification results

The results are presented in Table 4. For the DIGL, EVES,
STRE and TEWK datasets, the best approaches are the
DeepLab networks trained on the LAGO dataset. Indeed,
these networks are able to classify the landmarks with bal-
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Table 3. Metrics used to evaluate the algorithm’s performance. A, B, C and D respectively correspond to true flooded (landmark flooded
predicted as flooded), true unflooded (landmark unflooded predicted as unflooded), false flooded (landmark unflooded predicted as flooded)
and false unflooded (landmark unflooded predicted as flooded).

Name Equation Description

Balanced accuracy (BA) 0.5× A
A+D

+ 0.5× B
B+C

Range: [0,1]. Best possible score: 1

Bias A+C
A+B

Balance between flooded and unflooded land-
mark estimation. Range: [0,∞]. Best possible
score: proportion flooded

Hit rate (H) A
A+D

Fraction of observed flood landmarks correctly
predicted. Range: [0,1]. Best possible score: 1

False alarm rate (F) C
B+C

Fraction of observed unflooded landmarks in-
correctly predicted. Range: [0,1]. Best possible
score: 0

anced accuracy (BA) of 0.95,0.97,0.91 and 0.95 respec-
tively and they always obtain good scores for bias and false
alarms (F ). When comparing the corresponding bias (Ta-
ble 4) to the proportion of flooded landmarks (Table 2), these
best approaches (DeepLab networks trained on the LAGO
dataset) tend to estimate slightly more flooded landmarks
than expected. However, in comparison with the other net-
works, they tend to show the lowest false alarm rates (F )
and have slightly lower performance for hit rates (H ). This
shows that they are less prone to overprediction than the other
networks at the expense of a slightly higher number of false
unflooded (B) landmark predictions.

On average, the DeepLab architecture pre-trained over
COCO-stuff obtains better detection performance than the
ResNet50-UperNet architecture pre-trained over ADE20k.
The only criteria for which ResNet50-UperNet is competi-
tive with DeepLab is the hit rate (H ). This means that the
networks tend to predict landmarks marked as flooded with
an accuracy on par with DeepLab.

While 2STEPS and WHOLE fine-tuning strategies have
very similar performance with BA, 2STEPS shows overall
lower bias than WHOLE.

The networks fine-tuned over LAGO have a clear advan-
tage over the ones fine-tuned over WATERDB. This differ-
ence is especially noticeable on two out of four datasets,
mostly TEWK, but also STRE. For both STRE and TEWK
datasets, fine-tuning the networks over WATERDB decreases
the capacity of the network to detect the flooded landmarks.
Table 2 shows that the TEWK dataset contains the largest
number of flooded landmarks and STRE the second largest.
Since the WATERDB dataset contains a larger proportion of
images with small water segments (e.g. fountains, puddles,
etc.), the networks fine-tuned over WATERDB have more

difficulties generating large water segments than would be
necessary for STRE and TEWK.

Given these observations, using the DeepLab network
fine-tuned over the LAGO dataset with a 2STEPS strategy
is the best configuration to use.

3.1.4 Estimating the water level using the landmark
classification

Figure 6 shows the results of the LBWLE estimation method
(see Sect. 2.3.2) applied on the best performing network
(DeepLab-LAGO-2STEPS). For Diglis Lock, Evesham and
Strensham, Fig. 6 shows that for the evaluated 2 week flood
event period, LBWLE was able to give a good approximation
of the manually estimated water level. Indeed, LBWLE’s es-
timation and the water level estimated by a human observer
almost always have the same landmarks as the lower and up-
per bounds, which is as close as LBWLE’s performance can
achieve as it is limited by the heights of the landmarks that
were measured during the ground survey (the dotted lines in
Fig. 6). Only a few estimation mistakes were made on the
Tewkesbury Marina dataset; out of 138 images, only 5 esti-
mation mistakes were made. Those mistakes were due to a
landmark that was annotated on a platform close to a build-
ing. In this case, the networks stretched the unflooded seg-
mentation area (related to the building) to the landmark loca-
tion.

3.2 Performance evaluation for year-long water-level
analysis

3.2.1 Year-long river-camera images datasets

For this experiment, the same camera locations as those
used for the first experiment presented in Sect. 3.1.1 were
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Table 4. Landmark detection results (for the metric meanings, see Table 3). For each location and each metric, the best network results are
in bold. RU stands for the ResNet50-UperNet network.

Contingency table Metrics

A B C D BA bias H F

Diglis Lock (DIGL)

RU-LAGO-WHOLE 231 686 63 7 0.94 0.32 0.97 0.08
RU-LAGO-2STEPS 229 688 61 9 0.94 0.32 0.96 0.08
RU-WATERDB-WHOLE 238 657 92 0 0.94 0.37 1.00 0.12
RU-WATERDB-2STEPS 234 656 93 4 0.93 0.37 0.98 0.12
DeepLab-LAGO-WHOLE 230 704 45 8 0.95 0.29 0.97 0.06
DeepLab-LAGO-2STEPS 229 695 54 9 0.95 0.31 0.96 0.07
DeepLab-WATERDB-WHOLE 231 673 76 7 0.93 0.34 0.97 0.10
DeepLab-WATERDB-2STEPS 235 688 61 3 0.95 0.32 0.99 0.08

Evesham (EVES)

RU-LAGO-WHOLE 495 1145 58 44 0.94 0.34 0.92 0.05
RU-LAGO-2STEPS 494 1163 40 45 0.94 0.32 0.92 0.03
RU-WATERDB-WHOLE 505 1103 100 34 0.93 0.38 0.94 0.08
RU-WATERDB-2STEPS 454 1166 37 85 0.91 0.30 0.84 0.03
DeepLab-LAGO-WHOLE 521 1168 35 18 0.97 0.33 0.97 0.03
DeepLab-LAGO-2STEPS 516 1176 27 23 0.97 0.32 0.96 0.02
DeepLab-WATERDB-WHOLE 518 1090 113 21 0.93 0.39 0.96 0.09
DeepLab-WATERDB-2STEPS 490 1150 53 49 0.93 0.33 0.91 0.04

Strensham Lock (STRE)

RU-LAGO-WHOLE 1194 1866 306 90 0.89 0.49 0.93 0.14
RU-LAGO-2STEPS 1200 1882 290 84 0.90 0.48 0.93 0.13
RU-WATERDB-WHOLE 1260 1609 563 24 0.86 0.64 0.98 0.26
RU-WATERDB-2STEPS 1230 1658 514 54 0.86 0.60 0.96 0.24
DeepLab-LAGO-WHOLE 1200 1905 267 84 0.91 0.47 0.93 0.12
DeepLab-LAGO-2STEPS 1191 1923 249 93 0.91 0.46 0.93 0.11
DeepLab-WATERDB-WHOLE 1167 1866 306 117 0.88 0.49 0.91 0.14
DeepLab-WATERDB-2STEPS 1148 1869 303 136 0.88 0.48 0.89 0.14

Tewkesbury Marina (TEWK)

RU-LAGO-WHOLE 221 289 22 20 0.92 0.48 0.92 0.07
RU-LAGO-2STEPS 225 299 12 16 0.95 0.45 0.93 0.04
RU-WATERDB-WHOLE 214 247 64 27 0.84 0.60 0.89 0.21
RU-WATERDB-2STEPS 172 282 29 69 0.81 0.44 0.71 0.09
DeepLab-LAGO-WHOLE 233 288 23 8 0.95 0.49 0.97 0.07
DeepLab-LAGO-2STEPS 229 295 16 12 0.95 0.47 0.95 0.05
DeepLab-WATERDB-WHOLE 144 297 14 97 0.78 0.36 0.60 0.05
DeepLab-WATERDB-2STEPS 192 288 23 49 0.86 0.45 0.80 0.07

considered. However, a different, longer 1 year period from
1 June 2019 to 31 May 2020 was used. According to a gov-
ernment report (Finlay, 2020), three major flood events oc-
curred during this period. The first one, in November, was
due to heavy rainfall at the start of the month (7–8 Novem-
ber), followed by additional heavy rainfall between 13 and
15 November. The second major event happened in the sec-
ond half of December, with heavy rain pushing across the
southern parts of England and lasting until the New Year
2020. Finally, the storms Ciara, Dennis and Jorge swept

across the UK from 9 February 2020 to the early days of
March. Additionally, heavy rainfall occurred between 10–
12 June 2019.

Diglis Lock, Evesham, Strensham Lock and Tewkesbury
Marina datasets have 3081, 3012, 3067 and 3147 images re-
spectively. The difference in the number of images is due
to minor technical camera problems making some images
unavailable. The Diglis Lock and Tewkesbury Marina cam-
era mounting positions, orientation and fields of view were
changed in 2016 (Vetra-Carvalho et al., 2020b), so they are

Hydrol. Earth Syst. Sci., 25, 4435–4453, 2021 https://doi.org/10.5194/hess-25-4435-2021



R. Vandaele et al.: Transfer learning for river-level estimation 4445

Figure 6. Comparison of the water-level estimation method using the DeepLab-LAGO-2STEPS network (in blue) and using the landmarks
with the ground truth water levels directly extracted from the images (Vetra-Carvalho et al., 2020b) (in orange). The horizontal dashed lines
correspond to the heights of the landmarks ground surveyed on these locations (see Sect. 3.1.1) that can be used as lower and upper bounds
by the water-level estimation algorithm LBWLE (see Sect. 2.3.2). Note that the water-level estimation performed by manual examination of
the images (Vetra-Carvalho et al., 2020b) was not always available outside of the flood event itself (Diglis Lock, Evesham and Strensham).

different from the first experiment (see Fig. 5). The new fields
of view are presented in Fig. 7. The original RGB image size
for these datasets is 640× 480, which is a lower image res-
olution than in the first experiment. As the Diglis Lock and
Tewkesbury Marina camera locations were changed, the cor-
responding landmarks used in the first experiment can not be
considered for this experiment.

The water levels were not manually annotated on these
year-long datasets. In order to evaluate the relevance of the
algorithm presented in this paper on these datasets, water-
level information coming from nearby river gauges available
through the UK’s Environment Agency open data API (Envi-
ronment Agency, 2020) was used. The water-level informa-
tion from the river gauges is not expected to reflect the exact
situation observed at the camera location, but the water lev-
els should be highly correlated. The locations of the gauges
are given in Table 5 of Vetra-Carvalho et al. (2020b). The
distance from the camera to their nearest river gauge ranges
from 51 to 1823 m.

3.2.2 Evaluation protocol

Given that it is impossible to use the landmarks from the
ground survey on two of the four cameras that were used
in the first experiment and independent water-level informa-
tion for validation is from nearby rather than co-located river
gauges, the protocol developed for the first experiment (see

Sect. 3.1.2) cannot be used. Hence, after applying the water
semantic segmentation networks on the images, two experi-
ments were designed.

1. Landmark-based water-level estimation analysis. For
the images from the two locations for which the anno-
tated landmark locations are still valid (Evesham and
Strensham Lock), this experiment considers the corre-
lation between the water-level measurements from the
nearest river gauges and the water levels estimated by
applying the LBWLE algorithm (see Sect. 2.3.2) on the
water masks obtained by the water semantic segmenta-
tion networks.

The correlation between N estimations of water lev-
els, with w being the LBWLE estimation and g being
the corresponding nearest river-gauge water-level mea-
surement is computed using Pearson’s correlation coef-
ficient (Freedman et al., 2007), as defined in Eq. (2),

ρ =

∑N
i (wi −w)(gi − g)√∑N

i (wi −w)
2
√∑N

i (gi − g)
2
, (2)

where w = 1
N

∑N
i wi and g = 1

N

∑N
i gi .

2. Full-image SOFI analysis. For each of the four loca-
tions, this experiment considers the Pearson’s correla-
tion coefficient between the water-level measurements
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Figure 7. Fields of view from Diglis Lock and Tewkesbury Marina cameras for the period 2019–2020.

obtained from the nearest river gauge and the SOFI
(Moy de Vitry et al., 2019) computed on the segmented
images. The SOFI is defined in Eq. (1).

3.2.3 Landmark-based water-level estimation analysis

For the images from the two locations for which the anno-
tated landmark locations are still valid (EVES and STRE),
Table 5 shows the correlation between the nearest river-gauge
water-level measurements and our water-level estimation us-
ing the LBWLE algorithm presented in Sect. 2.3.2. For these
images, the networks that were trained on WATERDB obtain
among the highest correlations. This is especially the case
for the DeepLab networks. The DeepLab networks obtain
higher correlations than the ResNet50-UperNet networks.
The 2STEPS fine-tuning approach has a slight advantage
over WHOLE fine-tuning. However, these differences stay
relatively small as the camera location has a higher influence
on the correlation.

The locations have a more significant influence over the
results: the Strensham location always obtains higher corre-
lations than Evesham. However, Table 4 (computed for the
first experiment) shows that the Evesham landmarks get gen-
erally better detection results than the Strensham Lock land-
marks. Considering the corresponding time evolution of the
water levels in Fig. 8, it is possible to explain the highest
correlations at Strensham Lock by the fact that the Evesham
landmark heights do not allow tracking of the typical lower
water levels when the river is in-bank, while the landmarks
at Strensham Lock allow better tracking of the water level at
lower heights.

In addition, as the river gauge used for Strensham Lock
(Eckington Sluice) is 51 m away from the camera whereas
the nearest river gauge to the Evesham camera is 1823 m
away (Vetra-Carvalho et al., 2020b), it could be expected
that the water levels extracted from the nearest river gauge
at Strensham depict a more representative evolution of the

Table 5. Pearson’s Correlation Coefficients computed between the
landmark-based water-level estimation and the water levels from the
nearest river gauges on Evesham and Strensham Lock dataset.

Evesham Strensham
Lock Lock

(EVES) (STRE)

RU-LAGO-WHOLE 0.69 0.89
RU-LAGO-2STEPS 0.7 0.86
RU-WATERDB-WHOLE 0.71 0.88
RU-WATERDB-2STEPS 0.77 0.91
DeepLab-LAGO-WHOLE 0.65 0.91
DeepLab-LAGO-2STEPS 0.71 0.91
DeepLab-WATERDB-WHOLE 0.77 0.92
DeepLab-WATERDB-2STEPS 0.72 0.92

water levels at Strensham Lock than the river gauge used for
Evesham. Also, note that at Strensham, the lock can affect
the water level.

3.2.4 Full-image SOFI analysis

For each of the four cameras, Table 6 shows the correlation
between the SOFI computed on the images using our seg-
mentation method and the corresponding water levels from
the nearest river gauges. Figure 9 shows the corresponding
standardised water levels and the standardised SOFIs with
the highest and lowest correlation with the water level, pro-
duced with the corresponding networks shown in Table 6.
In this work, the term standardisation is used to describe the
process of putting different variables on the same scale. In
order to standardise the observed value xi of a variable X,
the standardisation process considers the difference of this
observed value xi with the mean (time-average) of the vari-
able X and divide this difference with the standard deviation
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Figure 8. Evesham and Strensham Lock year-long water levels measured using landmark annotations in comparison with water levels from
nearby river gauges. The best networks are DeepLab-WATERDB-WHOLE for Evesham and Strensham. The worst networks are RU-LAGO-
WHOLE for Evesham and RU-LAGO-2STEPS for Strensham.

of the variable σ(X). So, if xSi is the standardised observed

value corresponding to xi , then xSi =
xi−X
σ(X)

.
Table 6 shows that the correlations of the eight networks

with the river-gauge water levels are relatively similar and
that the difference between datasets is much more obvious.
The lowest correlation on Strensham is higher than the high-
est correlation obtained on Evesham. The lowest correlation
obtained on Evesham is higher than the highest correlation
obtained on Diglis and the lowest correlation on Diglis is
higher than the highest correlation on Tewkesbury. The cor-
relation results are especially low for the Tewkesbury Marina
location, where some correlations are close to zero or nega-
tive. For Strensham and Evesham, the correlations using the
SOFI are higher than the correlations obtained when using
the landmark information (see Table 5).

The higher correlations in Table 6 in comparison with Ta-
ble 5 can be explained by examining the evolution of the
water levels in Fig. 9. Figure 9 shows that the SOFI allows
the algorithms to provide a better estimate of the water level
when the river is in-bank than the landmark-based estima-
tion. However, the estimates, when the water levels are low,
stay fairly approximate and subject to small perturbations.
Indeed, at low water level there are changes in the SOFIs that
are not correlated with any particular event. By analysing the
results on the Tewkesbury Marina dataset, where that phe-
nomenon is the strongest, a visual inspection of the water
segmentation results showed that the segmentation networks
worked correctly. However, due to the new field of view of
the camera and the configuration of the location, floods were
not heavily increasing the number of water pixels in the im-
age, and thus did not result in a large increase of the SOFI.
The occlusion of some water segments in the image due to
passage or mooring of boats could have a significant influ-
ence on the SOFI results, thus explaining the uncorrelated
SOFI changes for this dataset. In all the locations, there are
also smaller, noisy perturbations of the SOFI when the water
level is low and steady. These perturbations are due to vari-
ous, smaller-scale problems: occlusions by boats or changes
in the lock configuration (there is a cable ferry at the Eve-

sham location and the other locations are all locks), small
segmentation errors or approximations from the segmenta-
tion algorithm. Besides, it is also likely that depending on
the site configuration (e.g, the slope of the area close to the
river) and the field of view of the camera, water-level changes
can have varied impacts on the SOFI.

3.2.5 Windowed image SOFI analysis

Given the remarks made in the previous section (Sect. 3.2.4)
regarding the impact of the field of view of a camera and the
possible occlusion of some water segments in the image, a
new technique to compute the SOFIs over smaller regions
(windows) within the image was developed with this work,
where the SOFI could give a more accurate description of the
water-level evolution.

For this experiment, the images were partitioned into a
4× 4 grid of windows of equivalent size (image height/4,
image width/4), and the window with the SOFI that was the
most correlated with the water level obtained from the near-
est river gauge was selected. If the correlation obtained using
the SOFI of the entire image was higher, then the SOFI of
the entire image was selected instead. In order to avoid over-
fitting the datasets during the selection of this window, the
choice was made using a validation dataset consisting of the
river-camera images and river-gauge levels dating from 2018
(every available image between 1 January 2018 and 31 De-
cember 2018).

The results of this last experiment are shown in Table 7 and
Fig. 10. At Diglis Lock, Evesham and Tewkesbury Marina,
the correlations with the nearest river gauges are higher than
in the previous experiment (see Table 6). This experiment
did not change the results for Strensham Lock as the SOFI
computed for the entire image was selected during validation.

For all the datasets, the standardised SOFI computed over
the water segmentation of the window is able to accurately
fit the standardised evolution of the water level obtained from
the nearby river gauges, both at low and high water levels. As
with the previous experiments, there is no clear dominance of
a particular CNN, fine-tuning dataset or methodology. This
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Table 6. Pearson’s correlation coefficients computed between the SOFI and the water levels obtained from the nearest river gauges.

Diglis Lock Evesham Strensham Lock Tewkesbury Marina
DIGL EVES STRE TEWK

RU-LAGO-WHOLE 0.69 0.89 0.94 −0.08
RU-LAGO-2STEPS 0.66 0.90 0.93 −0.03
RU-WATERDB-WHOLE 0.73 0.91 0.94 0.08
RU-WATERDB-2STEPS 0.71 0.80 0.93 0.19
DeepLab-LAGO-WHOLE 0.58 0.90 0.93 0.16
DeepLab-LAGO-2STEPS 0.60 0.91 0.93 0.09
DeepLab-WATERDB-WHOLE 0.72 0.87 0.93 0.16
DeepLab-WATERDB-2STEPS 0.67 0.86 0.93 0.07

Figure 9. Standardised SOFIs in comparison with standardised water levels from nearby river gauges. For each location, the best and worst
algorithms can be found in Table 6.

is highlighted in Fig. 10 where the best and worst algorithms
have very similar behaviour. This could be explained by the
fact that the choice of the best window is also conditioned
by the relative facility for the networks to segment the wa-
ter inside it. It can also be observed that there is a reduc-
tion in noise for low water levels compared with Fig. 9. The
choice of window has reduced the impact of occlusions and
the noise level is also likely influenced by the performance
of the network on the area.

Figure 11 shows the best windows selected during the val-
idation process by the eight different networks. The same
window location is selected for each of the networks for three
out of four locations. For Diglis, the only exception, both
windows offer similar perspectives in terms of water or land
surfaces. For Strensham, keeping the SOFI computed over
the entire image gives the best correlation. If such a window

location had to be chosen in a different context without a
nearby gauge for comparison, a possible heuristic could be
to choose a location with roughly equal areas of land or wa-
ter surfaces where the river level can increase progressively
over the land surface (land surfaces with small slopes are pre-
ferred).

4 Conclusions

This work addressed the problem of water segmentation us-
ing river-camera images to automate the process of water-
level estimation. We tackled the problem of water segmenta-
tion by applying transfer learning techniques to deep seman-
tic segmentation networks trained on large datasets of natural
images.
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Table 7. Pearson’s correlation coefficients computed between the SOFIs of the best window from the 4×4 grid and the water levels obtained
from the nearest river gauges.

Diglis Lock Evesham Strensham Lock Tewkesbury Marina
DIGL EVES STRE TEWK

RU-LAGO-WHOLE 0.90 0.97 0.94 0.96
RU-LAGO-2STEPS 0.90 0.97 0.93 0.96
RU-WATERDB-WHOLE 0.90 0.97 0.94 0.94
RU-WATERDB-2STEPS 0.92 0.95 0.93 0.95
DeepLab-LAGO-WHOLE 0.90 0.97 0.93 0.96
DeepLab-LAGO-2STEPS 0.90 0.98 0.93 0.96
DeepLab-WATERDB-WHOLE 0.94 0.94 0.93 0.97
DeepLab-WATERDB-2STEPS 0.94 0.96 0.93 0.95

Figure 10. Standardised SOFI of the best window from the 4×4 grid in comparison with standardised water levels from nearby river gauges.

The first experiment regarding the classification of land-
marks annotated with water-level information on small
2 week datasets showed that the best water segmentation net-
works were able to reach balanced accuracy greater than
91% for each of the studied locations, which proved the good
segmentation performance of our algorithm and showed its
potential in the context of flood-extent analysis studies.

The landmark-based water-level estimation (LBWLE) al-
gorithm was then developed for this work. It allows direct
estimation of the water-level from the classified landmarks.
The experiments performed with LBWLE showed that it was
possible to estimate the water level with the maximum accu-
racy this algorithm could reach, as it is inherently limited by
the heights of the landmarks used for the study. Given a cam-
era location and a detailed ground survey in the field of view
of the camera, this approach can, however, provide an accu-

rate estimation of the water level, in absolute units, without
any need for calibration at the camera location.

With the second experiment, much larger, year-long
datasets of images with no water-level annotations available
were created. This experiment used available water levels
from nearby river gauges as validation data and showed that
the water levels estimated using the LBWLE approach could
also be used in this context. Indeed, the approach developed
in this work was able to measure the water levels for the three
major floods that happened during the year.

This second experiment also investigated the use of the
static observer flooding index (SOFI) (Moy de Vitry et al.,
2019) applied on the entire image to show that results ob-
tained were strongly correlated with the water level from the
nearby river gauges. This showed that it was possible to use
the SOFI to track flood events and have a better tracking of
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Figure 11. Windows of the 4× 4 grid where the segmentation gives the best correlation with the water level for at least one of the eight
networks considered. The fractions correspond to the proportion of networks that selected the corresponding window as the one giving the
best correlation.

lower flows while the river is still in-bank than when using
LBWLE. However, for one location, occlusions occurring in
the field of view of the camera impacted the results.

Finally, a simple approach that computes the SOFI on
a specific window (sub-region) of the image was investi-
gated during this second experiment. This window is se-
lected through a simple validation procedure using older
images and water levels from the same locations. This ap-
proach allowed accurate tracking of large flood events as well
as smaller changes while the river is still in-bank on every
dataset. While this approach is the most accurate that was de-
veloped during this study, the choice of the window relies on
relatively close river gauges. However, some straightforward
guidelines in order to help the potential user to chose the win-
dow if nearby gauges are not available were suggested.

The algorithms and experiments presented in this study
show the great potential of transfer learning and seman-
tic segmentation networks for the automation of the water-
level estimations. These methods could drastically reduce the
costs and workloads related to the evaluation of water levels,

which is necessary for many applications, including the un-
derstanding of the ever increasing number of flood events.

Future work will focus on the merging of the water seg-
mentation results with lidar digital surface model (DSM)
data available at 1 m resolution over the UK (Environment
Agency, 2017). This would allow the water segmentation al-
gorithms to provide a direct estimate of the water levels in the
areas that are studied without requiring any ground surveys.

Code and data availability. The images and annotations used
in Sect. 3.1 are available in Vetra-Carvalho et al. (2020a)
(https://doi.org/10.17632/769cyvdznp.1). The networks used for
our experiments and the images used in Sect. 3.2 can be found in
Vandaele et al. (2020) (https://doi.org/10.17864/1947.282). The
river-gauge data can be found on the Environment Agency website
(https://environment.data.gov.uk/flood-monitoring/doc/reference,
Environment Agency, 2021).
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