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Communication in the Gig Economy: Buying and Selling in Online Freelance Marketplaces

Abstract

The proliferating gig economy relies on online freelance marketplaces, which support relatively 

anonymous interactions by text-based messages. Informational asymmetries thus arise that can 

lead to exchange uncertainties between buyers and freelancers. Conventional marketing thought 

recommends reducing such uncertainty. However, uncertainty reduction and uncertainty 

management theories indicate that buyers and freelancers might benefit more from balancing, 

rather than reducing, uncertainty, such as by strategically adhering to or deviating from common 

communication principles. With dyadic analyses of calls for bids and bids from a leading online 

freelance marketplace, this study reveals that buyers attract more bids from freelancers when 

they provide moderate degrees of task information and concreteness, avoid sharing personal 

information, and limit the affective intensity of their communication. Freelancers’ bid success 

and price premiums increase when they mimic the degree of task information and affective 

intensity exhibited by buyers. However, mimicking a lack of personal information and 

concreteness reduces freelancers’ success, so freelancers should always be more concrete and 

offer more personal information than buyers do. These contingent perspectives offer insights into 

buyer–seller communication in two-sided online marketplaces; they clarify that despite, or 

sometimes due to, communication uncertainty, both sides can achieve success in the online gig 

economy.

Keywords: online freelance marketplaces, gig economy, multi-sided platforms, business-to-

business exchange, uncertainty management, text analysis
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Online freelance marketplaces, such as Upwork, Fiverr, and PeoplePerHour, have already 

prompted massive transformations in business-to-business (B2B) markets (Constantinides, 

Henfridsson, and Parker 2018; Zhou et al. 2021). In particular, they allow buyers to post gigs, or 

short-term service projects, which initiate reverse auctions in which interested freelance workers 

submit bids to offer their services (Jap 2007). In these digital environments, buyers and 

freelancers often devote rather limited time and attention to detailed assessments and instead 

make choices on the basis of rational value expectations or prices (Ba and Pavlou 2002; Rajdeep 

et al. 2015). In addition, online freelance marketplaces suffer information asymmetries, because 

they rely on text-based messages, which can create uncertainty and hinder the exchange (Hong, 

Wang, and Pavlou 2016; Srivastava and Chandra 2018). Imagine a buyer wants to hire a 

freelancer to optimize its pet website’s search rankings, so it posts a call for bids, requesting 

“someone for an SEO job.” In response, Freelancer A might vaguely promise, “I have plenty of 

experience writing content that users find interesting to improve the quality and quantity of your 

traffic,” whereas Freelancer B more concretely states, “I have four years of experience writing 

articles and blogs that engage users and are SEO friendly. For example, I could focus on interest 

pieces like the everyday lives of pets.” The buyer and the freelancers’ communication create 

different degrees of uncertainty; likely impacting who applies and who gets hired.

Uncertainty regarding communication can lead to various negative outcomes on both sides, 

including high rates (more than 50%) of service gigs that go unfulfilled (Horton 2019), 

diminished bid success, or less-than-optimal pricing for freelancers (Ba and Pavlou 2002). Yet in 

general, parties to B2B exchanges also leverage uncertainty in their communication strategically 

to achieve more effective outcomes, such as when negotiators conceal information (Putman and 

Jones 1982) or ambiguous contracts help reduce litigation concerns and increase cooperation 
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(Zheng et al. 2020). Buyers and freelancers on online freelance marketplaces engage in a form of 

B2B exchange, so we propose that they similarly might balance their communication efforts by 

reducing and increasing uncertainty strategically to maximize their exchange success. In our 

previous example, by staying vague and without any specific direction from the buyer, 

Freelancer A might be trying to keep multiple options open and avoid overpromising outcomes. 

In addition to fundamental questions regarding how to manage uncertainty in B2B 

exchanges (Lawrence et al. 2019; Palmatier, Dant, and Grewal 2007), we seek to address the role 

of communication in such exchanges (Berger et al. 2020; Rajdeep et al. 2015; see also Web 

Appendices A and B). We integrate uncertainty reduction theory (Berger and Calabrese 1975) 

and uncertainty management theory (Brashers 2001) to predict that, in online freelance markets, 

various strategies for reducing and increasing the ability of message recipients to anticipate 

message senders’ meaning and actions can benefit the exchange (Bradac 2001). Using Grice’s 

(1975) communication principles, we argue that greater provision of task and personal 

information might reduce uncertainty in service exchanges (Ma and Dubé 2011) but also could 

relate to information overload or disagreements (Eisenberg and Witten 1987; Jones, Ravid, and 

Rafaeli 2004). Presenting information in a more concrete (cf. abstract) manner or with greater 

affective intensity also can reduce uncertainty (Grice 1975; Hamilton and Hunter 1998; Packard 

and Berger 2020). But again, too much concreteness or affective intensity might lead to 

restrictive communication that hinders exchanges (Eisenberg and Witten 1987; Hosman 2002). 

We apply this theoretical reasoning to exchanges in online freelance marketplaces, in 

which buyers post calls for bids to attract as many freelancers as possible to apply (Horton 

2019). These buyers face a trade-off, between reducing uncertainty for freelancers (e.g., provide 

more information, use less ambiguity) and still efficiently granting them sufficient interpretative 
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freedom. Theorists concur that principles for using relevant information or unambiguously often 

get deliberately flouted in conversation, such as to save face (Goffman 2008) or please a 

counterpart (Khosarvizadeh and Sadehvandi 2011). If different communication strategies might 

entice more freelancers to bid, we could establish optimal designs for the calls for bids. 

In response to those calls for bids, freelancers write and submit their bids. In doing so, 

these freelancers also must manage uncertainty. Thus, they might benefit from matching or 

mimicking the communication approach adopted by the prospective buyer that issued the call 

(Verbeke, Dietz, and Verwaal 2011). Communicative mimicry can evoke similarity perceptions, 

which tend to increase receivers’ sense of rapport and reduce their uncertainty (Soliz and Giles 

2014). Research on adaptive selling recommends matching the buyer’s communication (e.g., 

McFarland, Challagalla, and Shervani 2006; Singh, Marinova, and Singh 2020). Yet in some 

situations, deviations also may be beneficial (Afifi and Burgoon 2000), so we consider a more 

nuanced distinction, related to the level at which the similarity occurs. Furthermore, if 

freelancers compete on price, they may become enmeshed in a self-defeating value trap (Hong, 

Wang, and Pavlou 2016; Sridhar and Mittal 2020): They win more bids but earn less revenue. 

Strategically mimicking or deviating from a buyer’s communication might provide a viable 

means to win more gigs without being trapped. We accordingly suggest how freelancers should 

calibrate their bid formulations to improve their bid success and achieve a price premium.

Using a unique, large-scale data set of calls for bids and bids, obtained from a leading 

online freelance marketplace, along with a series of multilevel models that account for 

endogeneity, we establish three main contributions. First, we determine the effects of buyers’ 

strategic communication in two-sided online marketplaces (Berger et al. 2020). Rather than 

uncritically recommending that communication should always be informative and unambiguous, 
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we specify the diminishing, even adverse consequences that can result if buyers relay too much 

task or personal information in a very concrete, intense manner. Second, in an extension of 

research into adaptive selling (McFarland, Challagalla, and Shervani 2006; Verbeke, Dietz, and 

Verwaal 2011), we reveal how freelancers’ dyadic communicative mimicry affects bid success. 

Mimicry effects are contingent on the communicative aspect and the buyer’s relative uses of 

each aspect. As we show, mimicking buyers in terms of the provision of task information and use 

of affective intensity increases bid success. In contrast, we find that freelancers should always 

offer more personal information and be more concrete in their bid formulations than buyers’ calls 

for bids are. Third, we offer insights into how freelancers can avoid predatory pricing 

(Constantinides, Henfridsson, and Parker 2018) and escape a value trap (Sridhar and Mittal 

2020). By strategically managing uncertainty according to the information communicated, and 

the manner they use to do so, they can earn price premiums.

Online Freelance Marketplace Exchanges

Online freelance marketplaces that feature reverse auctions rely on a three-stage process 

(Hong, Wang, and Pavlou 2016; Jap 2007). First, in seeking a suitable freelancer, a buyer 

describes a gig or short-term service project in a call for bids. Second, multiple freelancers apply, 

by formulating and submitting bids that describe themselves, the service offering, and the price 

requested. Third, the buyer compares the bids and selects a freelancer to complete the gig. The 

outcome of each stage defines exchange success. That is, buyers’ success results from a large 

pool of viable freelance offers; a higher number of bids increase the chances of finding a suitable 

freelancer for the gig (Horton 2017, 2019). Freelancers’ success depends on whether their bids 

are chosen, preferably at a price premium (Hong and Pavlou 2017; Constantinides, Henfridsson, 

and Parker 2018). In this context, a price premium is the monetary amount in excess of the 
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buyer’s original payment offer (i.e., expected price; Grewal, Monroe, and Krishnan 1998; Singh 

and Sirdeshmukh 2000). Buyers might pay a premium beyond their original payment offer for 

various reasons, including their willingness or “need to compensate the seller for reducing 

transaction risks” (Ba and Pavlou 2002, p. 248). In competitive online markets, freelancers also 

might encounter value traps, such that they wind up selling more of their services at a lower price 

(Ba and Pavlou 2002; Sridhar and Mittal 2020). In this sense, freelancers’ success depends on 

winning the bid but also earning price premiums (or avoiding discounts). Unlike traditional B2B 

exchanges, buyers’ and freelancers’ success hinge on textual communication (Constantinides, 

Henfridsson, and Parker 2018; Horton 2019). Comparing theories on uncertainty and the role of 

communication in producing or reducing it, we delineate how both buyers and freelancers may 

best strike a balance between providing more information and reducing ambiguity versus 

preserving some uncertainty and maintaining interpretative flexibility. 

Conceptual Background

Uncertainty reduction theory (Berger and Calabrese 1975) and uncertainty management 

theory (Brashers 2001) draw on a central tenet of information theory (Shannon and Weaver 

1949), namely, that communication, information, and uncertainty are inextricably linked. Thus, 

uncertainty is inherent to any interaction. Goffman (1959) suggests uncertainty depends on the 

ability to draw inferences from provided information content and the manner in which it is 

provided. Whereas uncertainty reduction theory predicts how communication can reduce 

uncertainty, uncertainty management theory examines how people cope with uncertainty, which 

may include efforts to increase uncertainty to attain beneficial outcomes (Bradac 2001). Our 

conceptual development relies on these fundamental principles.
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Communication Principles in Online Freelance Marketplaces

In online freelance marketplaces, buyers and freelancers depend on one another; all else 

being equal, they want their mutual exchange to succeed. In such interactions, Grice (1975) 

suggests that four generalized cooperative communication principles (or maxims) apply. Three 

principles refer to what should be said: the quantity of information (“give as much information as 

is required, and no more than is required”), its quality (“do not say what is false or that for which 

you lack adequate evidence”), and its relevance. Then the fourth principle, manner (be clear and 

avoid ambiguity), pertains to “how what is said is to be said” (Grice 1975, p. 46). In our study 

context, neither a buyer nor a freelancer can know upfront whether the other party might be 

lying, so truthfulness would have to be assumed prior to the exchange. We also highlight that 

information does not have to be “correct” to influence uncertainty perceptions (Brashers 2001). 

Therefore, among the four maxims, we focus on the quantity of relevant information that buyers 

and freelancers offer and the manner in which they present it. 

Uncertainty Implications of Communication Principles

Communication outcomes are fundamentally uncertain (Berger and Calabrese 1975). 

When people vary their use of communication principles (Grice 1975), they create 

conversational implications, such that message recipients must infer what speakers are trying to 

imply with their wording. Accordingly, the (un)certainty that buyers and freelancers encounter 

while making inferences should depend on the degree to which call for bids and bids provide 

relevant information in an unambiguous manner, though the meaning of relevant information 

varies by context. In line with prior research (e.g., Berger et al. 2020), we define this degree as 

the proportion of specific lexical terms used, relative to the total number of words in a message.
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More information reduces uncertainty (Berger and Calabrese 1975) and increases 

receivers’ perceptions of its value (Weiss, Lurie, and MacInnis 2008). In service exchanges, the 

parties seek information about the task and the person who will complete it (Ma and Dubé 2011). 

A greater degree of task information should reduce uncertainty about functional service aspects 

(Ma and Dubé 2011). By self-disclosing greater degrees of personal information, a sender also 

provides a receiver with more information about the self (Derlega, Harris, and Chaikin 1973). In 

line with the quantity principle (Grice 1975), sparse provision of relevant task and personal 

information would make it difficult for the receiver to anticipate outcomes or distinguish among 

options, thus creating uncertainty (Engelhardt, Bailey, and Ferreira 2006).

Regarding the principle of manner (Grice 1975), greater degrees of concreteness and 

affective intensity should reduce ambiguity and enhance clarity. Concrete terms describe 

something in a perceptible, precise, specific, or clear manner (Brysbaert, Warriner, and 

Kuperman 2014; Larrimore et al. 2011; Packard and Berger 2020). A greater degree of 

concreteness reduces ambiguity because it makes it easier for receivers to perceive or recognize 

what it is that the message sender is implying (Brysbaert, Warriner, and Kuperman 2014; 

Hamilton and Hunter 1998; Packard and Berger 2020). Affective intensity instead reflects the 

proportion of affective terms included in a message (Hamilton, Hunter, and Burgoon 1990). 

More affective terms, as a proportion of the total word count, produces a greater degree of 

affective intensity, which increases receivers’ ability to make evaluative judgments (Hamilton 

and Hunter 1998; Hosman 2002).1 We provide examples of these principles in table 1. 

1 Task and personal information, concreteness, and affective intensity do not comprise an exhaustive list of all the 
lexical elements that might define relevant information content and communication manners. Various extensions are 
thus available for further research. However, we note the primacy of these elements in previous research and 
therefore prioritize them for this initial effort to establish how the communication principles relate to uncertainty 
perceptions and exchange outcomes in online freelance marketplaces. 
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[please insert Table 1 here]

Reducing and Maintaining Uncertainty in Communication Exchanges

Cross-disciplinary research provides ample evidence that conversational partners generally 

prefer to reduce uncertainty (Berger 2011). In B2B relationships, reducing uncertainty increases 

exchange effectiveness (Heide and Weiss 1995; Lawrence et al. 2019; Palmatier, Dant, and 

Grewal 2007). In online, freelance, relatively anonymous marketplaces specifically, the required 

coordination and dependence by rational buyers and freelancers may increase their need for 

information and clarity (Constantinides, Henfridsson, and Parker 2018; Hong, Wang, and Pavlou 

2016). Thus for example, reputation cues commonly appear in online freelance markets, as a way 

to reduce uncertainty and facilitate exchanges (Hong, Wang, and Pavlou 2016). More broadly, 

reducing uncertainty by adhering to Grice’s (1975) principles in dyadic, buyer–freelancer 

communications may boost exchange success. 

However, people experience uncertainty differently and do not always prefer to reduce it 

(Bradac 2001). Instead, according to uncertainty management theory (Brasher 2001), strategic 

communication choices that might not minimize uncertainty, and even cultivate it, can be 

effective and lead to better outcomes for consumers (Humphreys, Isaac, and Wang 2020), 

organizations (Eisenberg and Witten 1987; Homburg, Klarmann, and Staritz 2012), and 

interorganizational governance (Zheng et al. 2020). For example, Humphreys et al. (2020) find 

that a lack of concreteness aids consumers’ initial online searches, because such vague queries 

return a greater variety of search results. In collective bargaining settings, seasoned negotiators 

use concealment and ambiguity to enhance the likelihood of agreement (Putnam and Jones 

1982). In B2B exchanges, parties can use less information and more ambiguity strategically to 

accomplish specific goals (Bayer, Tuli, and Skiera 2017; Zheng et al. 2020). Even if such efforts 
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are not universally favored, uncertainty-cultivating communication provides benefits by allowing 

for multiple, simultaneous meanings, as understood by different receivers (Eisenberg and Witten 

1987). Moreover, communication theorists concur that people sometimes deliberately flout or 

violate Grice’s (1975) conversation principles, such as when they intentionally maintain 

uncertainty to save face (Goffman 2008) or please a counterpart (Khosarvizadeh and Sadehvandi 

2011). Subverting the principles is not necessarily less cooperative; furthermore, the purpose of 

communication is not always to be as informative and clear as possible. Arguably, cooperative 

principles encourage reasonable adherence, not compulsion. Thus, strategically allowing 

recipients to develop a broader range of possible interpretations, by maintaining some level of 

uncertainty, might facilitate buyer–freelancer exchanges. 

Research Propositions

Managing Freelancers’ Uncertainty in Calls for Bids 

Freelancers choose whether to offer their services in response to a buyer’s call for bids. 

The number of freelancers who choose to do so is consequential for the buyer, because more bids 

implies a greater likelihood of finding a suitable service provider (Horton 2019). Managing 

freelancers’ uncertainty through relevant information provision and the manner of 

communication in the calls for bids should influence freelancers’ decisions to apply. 

Relevant information. In calls for bids, buyers can vary the degree of task and personal 

information included in the description of the gig. If freelancers evaluate this information 

favorably, they develop more positive dispositions and are more likely to apply (Singh, 

Marinova, and Singh 2020). As prior research establishes, more information enhances 

communication outcomes in business settings, by reducing uncertainty. For example, studying 

web forums, Weiss, Lurie, and MacInnis (2008) indicate that the breadth of information provided 
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by a sender affects receivers’ objective judgments of the value of that information. Larrimore et 

al. (2011) find that greater degrees of monetary information increase peer-to-peer lending, and 

Joshi (2009) shows that more task information increases the time and commitment sellers 

allocate to a buyer. Greater degrees of personal information also reduce uncertainty, increase 

trust (Ma et al. 2017), and enhance performance on crowdsourcing platforms (Pollock, Luttgens, 

and Pillar 2019). Such self-disclosure can strengthen ongoing buyer–seller relations too (Crosby, 

Evans, and Cowles 1990). In contrast, a greater proportion of non-relevant information (i.e., 

lesser degree of relevant information) increases uncertainty (Brashers 2001). Because greater 

degrees of task and personal information in calls for bids help reduce freelancers’ uncertainty, 

freelancers who believe they qualify should be more willing to submit bids. 

Excessive relevant information may be ineffective however, even if it reduces 

freelancers’ uncertainty. That is, if buyers provide excessive details about the task, the gig may 

appear too restrictive or prescriptive (Eisenberg and Witten 1987), which might not appeal to 

freelancers. For example, leaving detailed information out of contracts (Ghosh and John 2005) or 

negotiations (Putman and Jones 1982) represents a tactic to improve exchange performance. In a 

downsizing context, a greater degree of information provision can increase uncertainty and 

negative reactions (Homburg, Klarmann, and Staritz 2012). For freelancers, excessive 

information can feel overwhelming and limit their motivation, opportunity, or ability to process 

the information and submit bids (Jones, Ravid, and Rafaeli 2004). A buyer that self-discloses a 

lot of personal information also might appear less attractive as a prospective business contact 

(Collins and Miller 1994). Because extensive self-disclosures are unusual in initial B2B online 

exchanges (Koponen and Rytsy 2020), they might be perceived as inappropriate (Moon 2000). 
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In summary, we argue that moderate degrees of task and personal information in calls for 

bids relate to more bids by freelancers. Buyers who provide greater degrees of task and personal 

information should attract more bids, but beyond a moderate degree (i.e., very dense provision of 

relevant information), providing still greater degrees of task and personal information may 

decrease the number of bids. We thus propose a curvilinear relationship.

P1: Extremely sparse and extremely dense degrees of (a) task and (b) personal 
information in calls for bids yield fewer freelance bids than do moderate degrees.

Communication manner. In calls for bids, buyers can vary the concreteness and affective 

intensity with which they describe the gig. Researchers disagree about whether more or less 

ambiguous communication leads to more efficacious speech (Bradac 2001; Eisenberg and Witten 

1987; Hosman 2002), but in an online freelance marketplace, we posit that buyers must reduce 

ambiguity to at least some extent, by being more concrete and intense. Greater concreteness and 

affective intensity can be more efficient, because recipients can process the information with less 

time and effort (Hosman 2002, Packard and Berger 2020). Their use also tend to be more 

persuasive, memorable, and accessible than communication that uses predominantly abstract or 

unemotional wording (Hosman 2002; Hamilton and Hunter 1998). In other settings, greater 

concreteness increases consumer satisfaction with employee interactions and purchase likelihood 

(Packard and Berger 2020). Greater degrees of intensity, achieved through proportionally more 

affective words, provide accessible, diagnostic signals to customers (Ludwig et al. 2013). As a 

form of inspirational appeals, they can sway business partners’ decisions too (Singh, Marinova, 

and Singh 2020). Finally, greater concreteness and affective intensity provide heuristic cues, so 

freelancers can take mental shortcuts, which makes them more likely to bid (Hosman 2002).

However, if the calls for bids appear too concrete or too intense, the task might appear 

narrow which reduces the appeal of performing the gig (Hosman 2002). Williams (1980) finds 

Page 12 of 97

Journal of Marketing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

13

that greater vagueness (cf. less concreteness) can enhance judgments of a speaker’s character, 

message acceptance, and recall. Moreover, some research asserts that reducing uncertainty with 

more concrete formulations is ineffective (Brashers 2001; Eisenberg and Witten 1987), so 

managers instead should embrace strategic ambiguity to allow for interpretative freedom 

(Keleman 2000). In contracts, unexpected specificity even increases ex ante costs (Mooi and 

Ghosh 2010). Greater task ambiguity instead can lower costs, as well as reduce the risk of 

litigation and enhance cooperation in B2B exchanges (Zheng et al. 2020). Greater degrees of 

concrete terms in communications with investors also can have adverse effects (Pan et al. 2018), 

and excessive degrees of positive affective words diminish the impact of customer reviews 

(Ludwig et al. 2013). Thus, we predict a stylistic trade-off: Overly ambiguous calls for bids, 

lacking any concreteness or affective intensity, may undercut buyers’ success in attracting 

freelancers, but some degree of ambiguity (i.e., avoiding overly concrete, affectively intense 

communication) can allow for divergent interpretations to coexist. Thus, moderate degrees of 

concreteness and affective intensity may be most effective in encouraging freelancers to bid.

P2: Extremely sparse and extremely dense degrees of (a) concreteness and (b) affective 
intensity in calls for bids yield fewer freelance bids than do moderate degrees.

Managing Buyers’ Uncertainty in Bids

Buyers also face uncertainty when deciding whom to hire and how much to pay (Ba and 

Pavlou 2002; Constantinides, Henfridsson, and Parker 2018). By managing these uncertainties 

through their bids, freelancers can affect their chances of winning bids and their price premiums. 

To establish relevant predictions, we integrate Grice’s (1975) communication principles with 

uncertainty research, such that we anticipate that a greater provision of relevant information, 

communicated with greater concreteness and affective intensity, allows buyers to draw 

inferences from freelancers’ bids with more certainty. Beyond these communication principles, 
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Berger and Calabrese (1975) suggest that perceived similarity to a message sender reduces 

receivers’ uncertainty. Thus, both purchase likelihood and buyers’ willingness to pay a price 

premium might be influenced by freelancers’ adherence to certain communication principles, as 

well as by their communicative similarity to the buyer.

Winning bids. In other exchange contexts, research has established that greater degrees of 

service or personal information (Liu et al. 2015, Packard, Moore, and McFarran 2018) that 

service employees relay, improve customers’ intentions to purchase. Willingness to purchase 

also increases if employees use greater concreteness in online service chats (Packard and Berger 

2020) or greater degrees of affective words in their emails (Singh, Marinova, and Singh 2020). 

However, the dense provision of relevant information in a bid risks information overload 

(Jones, Ravid, and Rafaeli 2004), and being overly concrete or intense might signal a restrictive, 

narrow approach to the gig (Hosman 2002). Our reasoning here parallels that for the buyers’ call 

for bids formulations. We thus similarly predict that moderate degrees of task and personal 

information, provided in a moderately unambiguous manner (i.e., moderate degrees of 

concreteness and affective intensity), enhance freelancers’ chances of winning the gig. 

Yet preferences for uncertainty also might be situational and dispositional (Brashers 2001), 

as reflected in buyers’ own communicative choices (Holtgraves 1997). Specifically, calls for bids 

can reveal buyers’ expectations and preferences for communication behaviors. For example, 

buyers might like to get to know freelancers or prefer to keep their business relationships 

impersonal. The extent to which they disclose their own personal information in calls for bids 

should signal these preferences. An ambiguous bid offered in response to an ambiguous call for 

bids might lead the buyer to conclude that the freelancer is tactful, sensitive, and non-coercive 

(Brown and Levinson 1987). Adaptive communications also raise perceptions of credibility, 
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common social identity, approval, and trust (Ludwig et al. 2013; Soliz and Giles 2014), as well 

as similarity perceptions, which in turn reduce uncertainty (Berger and Calabrese 1975). Crafting 

responses that mimic the buyer’s communication is a common personal selling recommendation 

(Verbeke, Dietz and Verwaal 2011). As Singh, Marinova, and Singh (2020) show, when sellers 

mimic buyers’ communicative manner, it increases buyers’ attention. Accordingly, freelancers 

who mimic a buyer’s communication content and manner might improve their exchange success. 

In some situations, though, deviating from buyers’ communication may be more beneficial 

(Afifi and Burgoon 2000). Even in studies that note the performance benefits of adaption, 

researchers highlight the importance of the degree of adaptivity (e.g., degree to which sales 

behaviors adjust for each customer during the interaction; Verbeke, Dietz, and Verwaal 2011). 

Similarly, studies of communication accommodation investigate the degree of accommodation 

used (Soliz and Giles 2014). Extending these insights, the outcomes of adaptation likely depend 

on communication levels (e.g., very informative vs. not informative); in keeping with uncertainty 

reduction theory, we expect that buyers are less likely to hire freelancers whose bids offer sparse 

information and are very ambiguous, even if the call for bids has these characteristics.

P3: When the degrees of (a) task and (b) personal information, (c) concreteness, and (d) 
affective intensity provided by the buyer are at least moderate (sparse), freelancers can 
increase (decrease) their chances of bid success by mimicking buyers’ communication.

Achieving price premiums. Buyers’ uncertainty about a freelancer should influence their 

willingness to pay a price premium (Ba and Pavlou 2002). Although there are many reasons for 

price variations (Grewal, Monroe, and Krishnan 1998), in online freelance marketplaces, buyers 

compensate (penalize) freelancers for reducing (increasing) their transaction uncertainty by 

deciding to accept a price above (below) their original payment offer (Ba and Pavlou 2002). In 

line with Rao and Monroe (1996), freelancers’ greater provision of relevant task and personal 
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information in a more concrete and intense manner in bids likely reduces buyers’ information 

asymmetry and exchange-specific risks. Therefore, buyers who want to transact with high 

certainty may render a price premium for such bids (Liu et al. 2015). 

The degree to which freelancers mimic buyers’ communication also may influence the 

price premium. For example, Mullins, Agnihotri, and Hall (2020) find that adaptive approaches 

for different customers help salespeople increase those customers’ willingness to pay a price 

premium. However, in line with our arguments regarding bid success, we expect that the positive 

influence of mimicry depends on the specific level of the communication element that the buyer 

uses. This reasoning aligns conceptually with the communication principles (Grice 1975), the 

recommendation that uncertainty should be carefully managed (Bradac 2001), and the benefits of 

mimicry identified in studies of communication accommodation (Soliz and Giles 2014) and 

adaptive selling (Verbeke, Dietz, and Verwaal 2011). However, we know of no studies that 

consider price premium implications of communicative trade-offs between reducing buyers’ 

uncertainty and adapting to buyers’ communication. In addition, we are not aware of any 

research that considers the possible negative effects when sellers mimic buyers who provide 

lesser task and personal information, are less concrete, or sparsely use affective intensity. 

Buyers who want to transact with high certainty might render a price premium to 

freelancers who reduce their uncertainty by providing greater degrees of relevant information, in 

a more concrete and intense manner. But if buyers perceive that these provisions of relevant 

information, degrees of concreteness, and intensity surpass their own reasonable level, they 

might feel overloaded or restricted and thus be unwilling to pay a premium. We thus predict that 

buyers offer a price premium to freelancers who provide degrees of relevant information, 
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concreteness, and affective intensity similar (but never too sparse) to their own communication 

manner, because only these bids help reduce buyers’ exchange risks.

P4: When the degrees of (a) task and (b) personal information, (c) concreteness, and (d) 
affective intensity provided by the buyer are at least moderate (sparse), freelancers can 
increase (decrease) their chances of earning a price premium by mimicking the 
communication of the buyer.

 
Figure 1 presents the propositions, including predictions about the success of buyers’ 

calls for bids (i.e., number of freelancers attracted, at Stage 2 of the biding process) and the 

success of freelancers’ bids (i.e., chances of winning and obtaining a price premium, Stage 3). 

[please insert Figure 1 here]

Field Study of an Online Freelance Marketplace

Setting and Sample

We conducted a large-scale field study with a proprietary data set of calls for bids and 

corresponding bids, posted on a leading, global online freelance marketplace. The hosts seven 

freelance service submarkets: (1) design, (2) writing & translation, (3) video, photo, & audio, (4) 

business support, (5) social media, sales, & marketing, (6) software & mobile development, and 

(7) web development. As Figure 1 illustrates, the bidding process follows a sequential, sealed-bid 

reverse auction format, and it concludes when the buyer chooses one winning bid (Hong, Wang, 

and Pavlou 2016; Jap 2007). We use text data from 343,796 calls for bids issued by 49,081 

buyers (restricted to those who posted at least two gigs) to predict buyers’ call for bids success, 

2,327,216 bids submitted by 34,851 freelancers (restricted to those who submitted at least two 

bids) to predict freelancers’ bid success, and 148,158 bids submitted by 30,851 freelancers 

(restricted to those who won and for which the payment was disclosed) to predict freelancers’ 

price premium. Our multilevel approach requires more than one observation (call for bid or bid) 

in each level 2 unit (buyer or freelancer); otherwise, level 2 and level 1 variance might be 

Page 17 of 97

Journal of Marketing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

18

confounded (Snijders and Bosker 2011). Web Appendix C summarizes the definitions and 

operationalizations and Web Appendix J the descriptive statistics and correlations.

Measurement of Constructs

The number of freelancers who submit bids to offer their services provides the measure of 

the success of buyers’ call for bids. More submitted bids increase the probability that buyers can 

find an appropriate freelancer, whereas failing to find a suitable match is time consuming and 

costly, because it requires further searches and delays the project (Horton 2017, 2019). We 

measure freelancers’ bid success as a binary indicator of whether (1) or not (0) the freelancer is 

chosen by the buyer and wins the bid (Hong and Pavlou 2017). For freelancers’ price premium, 

we gauge the percentage by which the accepted bid price for the project exceeds (or falls short 

of) the buyer’s original payment offered (i.e., benchmark price; Farris et al. 2010). This 

operationalization accounts for the difference between the final price a buyer pays and the 

original price she offered (i.e. what the buyer expected to pay) (Singh and Sirdeshmukh 2000). 

To capture the independent communication variables, we mined the text of each call for 

bid and each bid. For the preprocessing and extraction steps, we used the R package Quanteda 

(Benoit et al. 2018), as well as a combination of newly developed and prevalidated text mining 

dictionaries. For the degree of task information in each text, we inductively sourced a list of 

context-specific task descriptor words. To start, we acquired all 34,851 freelancers’ service skill 

tags (Berger et al. 2020; for an illustration, see Web Appendix D), which freelancers list in their 

profiles to describe the service tasks they offer (e.g., “developer,” “illustrator”). After removing 

stop words and duplicates, two coders reviewed the remaining word list, deleted any misspelled 

words, and removed terms that did not describe a service (e.g., “great,” “reliable”). Using 

Quanteda (Benoit et al. 2108), we stemmed the remaining words, leaving 1,912 unique word 
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stems that describe service tasks. We mined each call for bids and bid and summed word 

occurrences reflecting the new task dictionary. By dividing this sum by total words, we obtain a 

measure of the degree (ratio) of task information in each text. When people self-disclose 

personal information, they use singular, first-person pronouns. In line with previous research 

(e.g., Pennebaker and Stone 2003), we measure the degree of personal information as the ratio of 

first-person singular pronoun words (e.g., “I,” “me”) to the total words in each text. To determine 

the degree of communication concreteness, we mined each text for Brysbaert, Warriner, and 

Kuperman’s (2014) list of generally known English lemmas that indicate whether a concept 

denoted by a term refers to a perceptible entity. Following their operationalization, we include all 

terms that receive a rating of 3 or greater on their bipolar, 5-point abstract-to-concrete rating 

scale.2 That is, terms that score 3 or higher refer to relatively more specific objects, materials, 

people, processes, or relationships. We again divide the sum of the concrete terms by the total 

words in each text. Finally, the ratio of emotion-laden words (e.g., “problematic,” “easy”; 

Hamilton and Hunter 1998; Hosman 2002) determines affective intensity. From the LIWC affect 

dictionary, we obtain a list of affect words, which we sum for each text (Pennebaker et al. 2015), 

then divide by the total word count to obtain the degree of affective intensity. 

Pilot Studies

Validity of text-mined measures. To ensure the validity of our text-mined communication 

measures, we asked two coders to classify the texts of a random subsample of 100 calls for bids 

(Mlength = 129 words) and 100 bids (Mlength = 102 words). The coders indicated if considerable 

task information, personal information, concreteness, and affective intensity were present in each 

2 More stringent term lists, using cut-off levels at 3.5 or 4, strongly correlate (r > .60, p < .01) with the list that uses 
3 as a cut-off.
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text(1); or not (0). Comparing the coders’ classifications with our text-mined classification 

revealed substantial agreement, for both calls for bids (.73 to .94) and bids (.66 to .88) 

(Krippendorff 2013). The average F1 measure is sufficiently high for both bids (.79 to .95) and 

calls for bids (.80 to .95), as we detail in Web Appendix F.

Experimental evidence of uncertainty reduction. To establish the internal validity of the 

chosen communication aspects on receivers’ uncertainty perceptions, we conducted a series of 

experimental pilot studies. We use single-factor, within-subject designs for (1) task information, 

(2) personal information, (3) concreteness, and (4) affective intensity. For each pilot study, 

between 50 and 53 U.S. consumers, with a mean age of 37.6 years (50% women), were recruited 

from Amazon MTurk (for details, see Web Appendix G). In line with previous research (e.g., 

Hamilton and Hunter 1998; Larrimore et al. 2011; Ma et al. 2017; Packard and Berger 2020), we 

find that greater use of all four communication aspects in bids significantly reduces buyers’ 

uncertainty perceptions and affects their hiring intentions. 

Predicting the Success of Buyers’ Calls for Bids 

Model-free evidence. In Web Appendix H, we summarize the model-free findings. The 

mean-level comparison indicates that calls for bids with significantly greater degrees of task 

information and concreteness, as well as significantly lower degrees of personal information and 

affective intensity, receive more freelance bids than does an average call for bids (M = 5). 

Econometric model and identification. The success of calls for bids reflects a count 

variable. Noting the overdispersion in the data (p < .001), we use a negative binomial model 

instead of a Poisson model. Furthermore, calls for bids are nested within buyers, and thus the call 

for bids and number of freelancers who offer their service might be interdependent. The 

significant between-group variance (p < .001) and ICC(1) of .27 suggests a multilevel structure. 
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We thus specify a multilevel model with a random intercept to control for time-invariant 

unobserved differences between buyers (e.g., education, country, gender) that could relate to 

differences in their success, using the following base equation:

(1
)

𝐶𝐴𝐿𝑆𝑈𝐶𝑖𝑗
= 𝑦00 + 𝑦01𝐵𝑇𝐴𝑆𝐾𝑖𝑗 + 𝑦02𝐵𝑃𝐸𝑅𝑆𝑖𝑗 + 𝑦03𝐵𝐶𝑂𝑁𝐶𝑖𝑗 + 𝑦04𝐵𝐼𝑁𝑇𝐸𝑖𝑗 + 𝑦05𝐵𝑇𝐴𝑆𝐾_𝑆𝑄𝑖𝑗
+ 𝑦06𝐵𝑃𝐸𝑅𝑆_𝑆𝑄𝑖𝑗 + 𝑦07𝐵𝐶𝑂𝑁𝐶_𝑆𝑄𝑖𝑗 + 𝑦08𝐵𝐼𝑁𝑇𝐸_𝑆𝑄𝑖𝑗 + 𝜇0𝑗 + 𝜀𝑖𝑗,

where  is the success of a call for bids i (i = 1, …, 343,796) issued by buyer j (j = 1, …, 𝐶𝐴𝐿𝑆𝑈𝐶𝑖𝑗

49,081),  is buyer task information,  indicates buyer personal information, 𝐵𝑇𝐴𝑆𝐾𝑖𝑗 𝐵𝑃𝐸𝑅𝑆𝑖𝑗

 is buyer concreteness, and  refers to buyer affective intensity in the call for 𝐵𝐶𝑂𝑁𝐶𝑖𝑗 𝐵𝐼𝑁𝑇𝐸𝑖𝑗

bids. In turn,  is buyer task information squared,  is buyer personal  𝐵𝑇𝐴𝑆𝐾_𝑆𝑄𝑖𝑗 𝐵𝑃𝐸𝑅𝑆_𝑆𝑄𝑖𝑗

information squared,  is buyer concreteness squared, and  is buyer 𝐵𝐶𝑂𝑁𝐶_𝑆𝑄𝑖𝑗 𝐵𝐼𝑁𝑇𝐸_𝑆𝑄𝑖𝑗

affective intensity squared. Finally,  is the random intercept, and  is the error term. 𝜇0𝑗 𝜀𝑖𝑗

Some empirical challenges inhibit a robust model identification, which we address in 

several ways. To account for observed heterogeneity, we incorporate covariates that might 

influence how many freelancers respond to a particular call for bids. First, in line with extant text 

mining studies (Berger et al. 2020), we control for the word count in each call for bids. Second, 

as a reputation cue, we measure buyer experience as the number of projects a buyer has 

commissioned previously on the platform, prior to posting the focal call for bids (Hong and 

Pavlou 2017). Third, a higher payment offer may attract more freelancers (Horton 2019), so we 

determine the payment offered by the buyer in U.S. dollars, multiplied by an undisclosed index 

for anonymity. For non-disclosed payments, we use a dummy, but we replace missing values 

with a grand mean to retain the observations. Fourth, we measure project duration; longer 

projects attract more freelancers (Horton 2019). A dummy variable indicates if the project is 

slated to last more (1) or less than a month (0). Fifth, more buyers demanding freelance services 
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at the same time creates a relative shortage of freelancers (Horton 2019). To account for an 

excess supply of freelancers, we take the sum of all active freelancers in the specific submarket 

of the call for bids, divided by the sum of all calls for bids posted around the same time (±31 

days) in the same submarket. Sixth, the marketplace grew over time, so we included fixed effects 

for the year of the call for bids. Seventh, we include fixed effects for the seven submarkets, since 

submarkets that feature more complex projects have fewer qualified freelancers.

Beyond these observed covariates, buyers’ bid formulations might vary by project 

characteristics unobservable to us. To the extent that these unobserved project characteristics 

influence both the buyers’ communication strategies and buyer outcomes, the estimated 

parameters might be biased. Therefore, we concatenated all service skill tags from the service 

profile of each freelancer who submitted a bid in response to a specific call. Then, to uncover the 

latent mixture of project types, we applied a latent dirichlet allocation model to the project-

specific skill tags (e.g., Berger et al. 2020; see Web Appendix I). We include the resulting 12 

latent project characteristics as fixed effects to account for unobserved heterogeneity. 

Buyers also make their communication decisions strategically, in learned anticipation of a 

larger number of bids or other factors, potentially unobservable to us. This strategic behavior 

could make communication approaches endogenous (Kanuri, Chen, and Sridhar 2018). Because 

our data do not contain valid, strong instruments for buyers’ communication, we adopt Park and 

Gupta’s (2012) approach and use Gaussian copulas to model the correlation between each buyer 

communication and the error term. We add regressors to Equation 1, such that𝐵𝐶𝑂𝑀1 ― 4
𝑖𝑗

(2) ,𝐵𝐶𝑂𝑀1 ― 4
𝑖𝑗 = Φ ―1[𝐻(𝐵𝐶𝑂𝑀1 ― 4

𝑖𝑗 )]

where  is the inverse of the normal cumulative distribution function, and Φ ―1 [𝐻(𝐵𝐶𝑂𝑀1 ― 4
𝑖𝑗 )] 

represents the empirical distribution functions of the four buyer communication approaches. The 
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endogenous regressors must be non-normally distributed for identification (Park and Gupta 

2012), which Shapiro–Wilks tests confirm (all p < .001). The updated equation to predict buyers’ 

call for bids success, after correcting for endogeneity, thus is:

(3
)

𝐶𝐴𝐿𝑆𝑈𝐶𝑖𝑗
= 𝑦00 + 𝑦01𝐵𝑇𝐴𝑆𝐾𝑖𝑗 + 𝑦02𝐵𝑃𝐸𝑅𝑆𝑖𝑗 + 𝑦03𝐵𝐶𝑂𝑁𝐶𝑖𝑗 + 𝑦04𝐵𝐼𝑁𝑇𝐸𝑖𝑗 + 𝑦05𝐵𝑇𝐴𝑆𝐾_𝑆𝑄𝑖𝑗
+ 𝑦06𝐵𝑃𝐸𝑅𝑆_𝑆𝑄𝑖𝑗 + 𝑦07𝐵𝐶𝑂𝑁𝐶_𝑆𝑄𝑖𝑗 + 𝑦08𝐵𝐼𝑁𝑇𝐸_𝑆𝑄𝑖𝑗 + 𝑦09 ― 14𝐶𝑂𝑁1 ― 6

𝑖𝑗
+ 𝑦15 ― 20𝑌𝐸𝐴𝑅1 ― 6

𝑖𝑗 + 𝑦21 ― 26𝑆𝑈𝐵𝑀1 ― 6
𝑖𝑗 + 𝑦27 ― 37𝑃𝑅𝑂𝐽1 ― 11

𝑖𝑗 + 𝑦38 ― 41𝐵𝐶𝑂𝑀
1 ― 4
𝑖𝑗 + 𝜇0𝑗 + 𝜀𝑖𝑗,

where  is the vector of control variables,  are year effects,  are 𝐶𝑂𝑁1 ― 5
𝑖𝑗 𝑌𝐸𝐴𝑅1 ― 6

𝑖𝑗 𝑆𝑈𝐵𝑀1 ― 6
𝑖𝑗

submarket effects,  are latent project clusters, and  are Gaussian copulas. 𝑃𝑅𝑂𝐽1 ― 11
𝑖𝑗 𝐵𝐶𝑂𝑀1 ― 4

𝑖𝑗

We used a robust estimator to account for correlated and clustered standard errors. 

Results and discussion. The maximum variance inflation factor is 2.11, indicating no 

potential threat of multicollinearity. Table 2 contains the results of a main-effects model and the 

full model, and Figure 2 displays the curvilinear effects from the full model. We have proposed 

that extremely sparse and extremely dense degrees of relevant information, concreteness, and 

affective intensity in calls for bids yield fewer freelance bids than moderate degrees of these 

communication elements. In line with our expectations, we find a positive linear effect (.152, p < 

.01) and negative squared effect for task information (-.026, p < .01), as displayed in Figure 2, 

Panel A. Moderate levels of the use of task information (50%: .222, p < .01) yield better results 

than sparse (10%: -.426, p < .01) and dense (90%: -.495, p < .01) uses. Furthermore, we find a 

positive linear effect (.052, p < .01) and negative squared effect for concreteness (-.080, p < .01) 

(Figure 2, Panel C). Moderate use (50%: .078, p < .01) yields better results than sparse use (10%: 

-.092, p < .01) or dense use (90%: -.251, p < .01) of concreteness. Contrary to our expectation, 

we find a negative linear effect (-.190, p < .01) and a positive squared effect (.032, p < .01) of 

personal information (Figure 2, Panel B). We also find a negative linear effect (-.084, p < .01) 
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and a non-significant squared effect (.001, ns) of affective intensity (Figure 2, Panel D). Thus, it 

appears that any provision of personal information or greater use of affective intensity by the 

buyer is always ineffective. As a possible explanation, we note that in B2B online conversations, 

self-disclosure and emotions may be valued only after business relations have been established, 

not at the moment they form (Koponen and Rytsy 2020). Most of the exchanges in our data are 

between strangers, rather than repeat exchanges, so buyers may more appropriately avoid 

personal details and appear rational rather than emotive. 

To entice more freelancers to bid, buyers should keep their calls for bids brief (-.027, p < 

.01 for word count), which emphasizes the need for careful formulations. Higher payment offers 

(.168, p < .01), longer project durations (.117, p < .01), and an excess supply of freelancers (.606, 

p < .01) all increase the number of bids. Notably, the number of projects a buyer previously has 

commissioned relates negatively to the number of freelance who bid (-.033, p < .01). These 

experienced buyers might have established relations with specific freelancers, which reduces 

other freelancers’ chances, so they refrain from bidding (Lanzolla and Frankort 2016). 

[please insert Table 2 and Figure 2 here]

Predicting Freelancers’ Bid Success

Model-free evidence. Bids that offer greater task information, concreteness, and affective 

intensity and less personal information are more successful in winning projects. Among bids that 

won, the mean-level comparisons indicate nonlinear effects of mimicry. That is, successful 

freelancers mimic buyers’ use of task information, personal information, and concreteness 

closely. If a buyer uses very sparse or very dense degrees of these communication aspects, the 

winning freelancers deviate more, indicating a nonlinear impact of mimicry. We do not find 

evidence of this mimicry relationship for affective intensity (see Web Appendix H). 
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Measurement of similarity. Previous studies often operationalize communication similarity 

as the absolute difference between two measures (e.g., Ludwig et al. 2013; Soliz and Giles 

2014), but this approach suffers some implicit constraints (Edwards and Parry 1993). In 

particular, difference scores suggest that one party’s communication increases at the same 

magnitude as the other’s decreases; they also ignore the level of communication at which relative 

mimicry occurs. As a preferable alternative, we use polynomial regression, which allows for 

simultaneous testing of similarity and dissimilarity effects on bid success, at different levels of 

freelancers’ and buyers’ uses of the four communication aspects. In their study of positive and 

negative emotional tone convergence, Gooty et al. (2019) also use polynomial regression to 

explore the nuanced effects of convergence in leader–follower relationships on leader–member 

exchange quality. A simple regression model, capturing absolute deviation, cannot 

simultaneously assess the degree of task information by the buyer and the potential nonlinear 

effects of task information mimicry by the freelancer. So, we undertake polynomial regression 

with response surface analyses for each communication aspect to capture the extent to which 

freelancers mimic a prospective buyer’s provision of relevant information and communication 

manner. We detail this polynomial modeling approach that lead to Equation 4 and the calculation 

of all polynomial terms, using task information as an example, in Web Appendix E.

Econometric model and identification. We test freelancers’ trade-off between adding more 

uncertainty-reducing communication versus mimicking the buyer’s communication in a 

polynomial regression model that includes linear terms, quadratic terms, and interactions. In the 

multilevel base equation to predict freelancers’ bid success (ICC(1) = .09, p < .001),

(4
)

𝐵𝐼𝐷𝑆𝑈𝐶𝑘𝑙
= 𝑦00 + 𝑦01 ― 04𝐹𝐶𝑂𝑀1 ― 4

𝑘𝑙 + 𝑦05 ― 08𝐵𝐶𝑂𝑀1 ― 4
𝑘𝑙 + 𝑦09 ― 12𝐹𝐶𝑂𝑀_𝑆𝑄1 ― 4

𝑘𝑙 + 𝑦13 ― 16(
𝐹𝐶𝑂𝑀1 ― 4

𝑘𝑙  × 𝐵𝐶𝑂𝑀1 ― 4
𝑘𝑙 ) + 𝑦17 ― 20𝐵𝐶𝑂𝑀_𝑆𝑄1 ― 4

𝑘𝑙  + 𝜇0𝑙 + 𝜀𝑘𝑙,
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 is the success of bid k (k = 1, …, 2,327,216) by freelancer l (l = 1, …, 34,851), 𝐵𝐼𝐷𝑆𝑈𝐶𝑘𝑙

 are the four freelancer communication aspects,  indicate the four buyer 𝐹𝐶𝑂𝑀1 ― 4
𝑘𝑙 𝐵𝐶𝑂𝑀1 ― 4

𝑘𝑙

communication aspects,  are freelancer communication squared, 𝐹𝐶𝑂𝑀_𝑆𝑄1 ― 4
𝑘𝑙 (𝐹𝐶𝑂𝑀1 ― 4

𝑘𝑙  ×  

 are interactions of freelancer and buyer communication aspects,  are 𝐵𝐶𝑂𝑀1 ― 4
𝑘𝑙 ) 𝐵𝐶𝑂𝑀_𝑆𝑄1 ― 4

𝑘𝑙

buyer communication squared,  is the random intercept, and  is the error term. 𝜇0𝑙 𝜀𝑘𝑙

We incorporate several covariates that might influence freelancers’ bid success. As in the 

buyer model, we control for word count, project payment, project duration, and excess supply of 

active freelancers. We also include fixed effects for years, submarkets, and latent project 

characteristics. We account for the number of projects the freelancer completed prior to 

submitting the focal bid as a reputation cue that might determine bid success (Hong and Pavlou 

2017). Freelancer rating is an average five-point satisfaction rating that a freelancer has received 

for all completed projects. To retain observations of unrated freelancers, we include a dummy for 

observations without star ratings and replace the missing values with a grand mean rating. 

Several additional controls relate to whether a bid is successful. First, following prior 

research, we assess linguistic style matching (LSM), or the similarity between each bid and the 

respective call for bids, across nine function word categories (Ludwig et al. 2013). Second, we 

account for any previous relationship, such that the freelancer completed at least one project for 

the same buyer prior to the specific call for bids (Hong and Pavlou 2017). Third, freelancers 

submit a bid price that may differ from the payment offered by the buyer; a higher bid price may 

reduce the likelihood of bid success (Hong and Pavlou 2017). We measure each bid price as a 

ratio, between the asking price and the average indexed bid price requested by all competing 

freelancers for the same call for bids. Fourth, the longer it takes freelancers to submit a bid, the 

lower their chances of success (Hong, Wang, and Pavlou 2016). We measure time-to-bid as the 
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number of days between the posting of the call for bids and the bid submission. A dummy 

variable also indicates if the bid was submitted late (1) or on time (0); though some buyers might 

accept bids submitted after the auction expiration date, late bids are less likely to succeed 

(Horton 2019). Fifth, competition for a specific call for bid should impact each bid’s success 

chances, so we control for the number of bids for the same call (Hong, Wang, and Pavlou 2016). 

Similar to buyers, freelancers make communication decisions strategically in anticipation 

of higher bid success or other, unobservable factors. Thus, freelancer communication is 

potentially endogenous, and we again use Gaussian copulas (Shapiro–Wilks tests: all p < .001). 

The updated equation to predict freelancers’ bid success is as follows:

(5
)

𝐵𝐼𝐷𝑆𝑈𝐶𝑘𝑙
= 𝑦00 + 𝑦01 ― 04𝐹𝐶𝑂𝑀1 ― 4

𝑘𝑙 + 𝑦05 ― 08𝐵𝐶𝑂𝑀1 ― 4
𝑘𝑙 + 𝑦09 ― 12𝐹𝐶𝑂𝑀_𝑆𝑄1 ― 4

𝑘𝑙 + 𝑦13 ― 16
(𝐹𝐶𝑂𝑀1 ― 4

𝑘𝑙  ×  𝐵𝐶𝑂𝑀1 ― 4
𝑘𝑙 ) + 𝑦17 ― 20𝐵𝐶𝑂𝑀_𝑆𝑄1 ― 4

𝑘𝑙 + 𝑦21 ― 33𝐶𝑂𝑁1 ― 13
𝑘𝑙  +𝑦34 ― 39

𝑌𝐸𝐴𝑅1 ― 6
𝑘𝑙 + 𝑦40 ― 45𝑆𝑈𝐵𝑀1 ― 6

𝑘𝑙 + 𝑦46 ― 56𝑃𝑅𝑂𝐽1 ― 11
𝑘𝑙 + 𝑦57 ― 60𝐹𝐶𝑂𝑀1 ― 4

𝑘𝑙
+ 𝑦61 ― 64𝐵𝐶𝑂𝑀1 ― 4

𝑘𝑙 + 𝜇0𝑙 + 𝜀𝑘𝑙,

where  is the vector of control variables,  are year effects,  are 𝐶𝑂𝑁1 ― 14
𝑘𝑙 𝑌𝐸𝐴𝑅1 ― 6

𝑘𝑙 𝑆𝑈𝐵𝑀1 ― 6
𝑘𝑙

submarket effects,  are latent project clusters,  are Gaussian copulas for bid 𝑃𝑅𝑂𝐽1 ― 11
𝑘𝑙 𝐹𝐶𝑂𝑀1 ― 4

𝑘𝑙

text, and  are Gaussian copulas for calls for bids text. 𝐵𝐶𝑂𝑀1 ― 4
𝑘𝑙

Results and discussion. The maximum variance inflation factor is 3.86, indicating no threat 

of multicollinearity. Table 3 contains the results of the freelancer bid success models, Web 

Appendix K summarizes the response surface coefficients, and Figure 3 displays these 

coefficients on three-dimensional surfaces, reflecting relationships among freelancer 

communication, buyer communication, and bid success. We also highlight the misfit line used to 

explore the trade-off between exceeding and falling short of buyers’ communication levels. 

We have proposed that when the degree of relevant information, concreteness, and 

affective intensity provided by the buyer is at least moderately dense (sparse), freelancers can 
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increase (decrease) their chances of bid success by mimicking the buyer’s communication. The 

surface-level tests along the plotted misfit line (Web Appendix K) display negative curvatures 

for task information (-.020, p < .01), personal information (-.007, p < .01), concreteness (-.011, p 

< .01), and affective intensity (-.020, p < .01). These results indicate that mimicking the buyer’s 

communication increases bid success (see Web Appendix L for further clarification).

In line with our proposition, we qualify this effect for sparse degrees of task and personal 

information, concreteness, and affective intensity provided by the buyer in Web Appendix M. If 

we were to find positive slope coefficients at lower levels, it would suggest that freelancers can 

increase their chances of bid success by exceeding, rather than mimicking the buyer’s 

communication. This prediction holds for personal information (.020, p < .01) and concreteness 

(.024, p < .01), according to the slopes at low levels of buyer communication. But contrary to our 

expectations, we find negative effects for the slopes of task information (-.008, p < .01) and 

affective intensity (-.030, p < .01) at low levels of buyer communication. Therefore, freelancers 

should always mimic the degree of task information and affective intensity provided by the 

buyer. For these two communication aspects, the tenets of communication accommodation 

theory (Soliz and Giles 2014) and adaptive selling (Verbecke et al. 2011) hold: Mimicking the 

buyer is always better. To increase their chances of bid success further, freelancers also must 

keep their bids concise (-.021, p < .01 for word count). Reputation cues (experience: .002, p < 

.01; rating: .010, p < .01) increase freelancers’ chances of bid success, as do linguistic style 

matching (.051, p < .01), previous business relations with the buyer (.078, p < .01), lower bid 

prices (-.006, p < .01), timely (cf. late) bid submissions (-.004, p < .01), lack of competition (-

.251, p < .01), and reduced supply of freelancers (-.042, p < .01). 

[please insert Table 3 and Figure 3 here]
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Predicting Freelancers’ Price Premium

Model-free evidence. Bids with significantly more task information, personal information, 

and concreteness and significantly less affective intensity achieve greater price premiums than an 

average bid (M = 14% discount). Moreover, 96% of freelancers completed projects without any 

price premium, indicating the prevalence of value traps. The bids that achieved price premiums 

mimicked those buyers that made moderate use of task information, concreteness, and affective 

intensity closely, yet they deviated from buyers that made very sparse or very dense use of them. 

For personal information, we find a distinctive, positive, linear relationship for mimicry; 

successful freelancers mimicked buyers that supplied a lot of personal details but deviated if 

buyers supplied very little or moderate degrees of personal information (Web Appendix H). 

Econometric model and identification. The price premium analysis is restricted to bids that 

win and buyers that disclose their payment offer upfront. Thus, our estimates may be biased by 

self-selection by buyers, in terms of which bid they choose and whether they disclose payments. 

Therefore, we employ a two-stage selection model. In the first stage, we estimate a choice 

model, with the availability of the necessary data as a binary dependent variable (i.e., bid was 

won, and payment was disclosed). From this model, we compute the inverse Mills ratio to 

account for the potential selection bias (probit model in Web Appendix N) and include this 

correction term in the final model estimation. To identify second-stage parameters, there needs to 

be one term in first-stage equation that is unrelated to the error term in the freelance price 

premium equation. We thus included the dummy that indicates if the bid was submitted late only 

in the first-stage equation  because this term explains buyers’ choice of the bid but we do not 

expect it to be conceptually related with the eventual price premium. Thus, we believe that this 

term satisfies both relevance and exogeneity requirements. The updated equation of our 
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multilevel model (ICC(1) = .13, p < .001) is as follows:

(6
)

𝑃𝑅𝐸𝑀𝐼𝑈𝑀𝑘𝑙 = 𝑦00 + 𝑦01 ― 04𝐹𝐶𝑂𝑀1 ― 4
𝑘𝑙 + 𝑦05 ― 08𝐵𝐶𝑂𝑀1 ― 4

𝑘𝑙 + 𝑦09 ― 12𝐹𝐶𝑂𝑀_𝑆𝑄1 ― 4
𝑘𝑙

+ 𝑦13 ― 16(𝐹𝐶𝑂𝑀1 ― 4
𝑘𝑙  ×  𝐵𝐶𝑂𝑀1 ― 4

𝑘𝑙 ) + 𝑦17 ― 20𝐵𝐶𝑂𝑀_𝑆𝑄1 ― 4
𝑘𝑙 + 𝑦21 ― 31𝐶𝑂𝑁1 ― 11

𝑘𝑙
 +𝑦32 ― 37𝑌𝐸𝐴𝑅1 ― 6

𝑘𝑙 + 𝑦39 ― 43𝑆𝑈𝐵𝑀1 ― 6
𝑘𝑙 + 𝑦44 ― 54𝑃𝑅𝑂𝐽1 ― 11

𝑘𝑙 + 𝑦55 ― 58𝐹𝐶𝑂𝑀
1 ― 4
𝑘𝑙 + 𝑦59 ― 62𝐵𝐶𝑂𝑀1 ― 4

𝑘𝑙 + 𝑦63𝐼𝑀𝑅𝑘𝑙 + 𝜇0𝑙 + 𝜀𝑘𝑙,

where  is the price premium of bid k (k = 1, …, 148,158) offered by freelancer l (l = 𝑃𝑅𝐸𝑀𝐼𝑈𝑀𝑘𝑙

1, …, 30,851), and  is the correction term. 𝐼𝑀𝑅𝑘𝑙

Results and discussion. The maximum variance inflation factor is 2.74, indicating no threat 

of multicollinearity. Table 4 contains the results of the freelancer price premium models, Web 

Appendix K details the response surface coefficients, and Figure 3 displays the surfaces. 

We have proposed that when the degree of relevant information and communication 

manner provided by the buyer is at least moderately high (low), freelancers can increase 

(decrease) their chances of earning a price premium by mimicking this communication. Web 

Appendix O displays the misfit lines on two-dimensional planes. In line with our expectations, 

the surface-level tests along the plotted misfit line show a negative curvature for task information 

(-.023, p < .01), concreteness (-.007, p < .01), and affective intensity (-.008, p < .01), such that 

mimicking the buyer’s communication increases bid success. Yet for personal information, we 

find a positive curvature (.003, p < .05), which implies freelancers should always offer more 

personal information than the buyer. For these B2B services, the provider and the service are 

inseparable, which may lead buyers to place more value on personal information about 

freelancers, even if their own provision of personal details in the calls for bids is sparse.

At low levels of relevant information and communication manner established by the buyer 

(Web Appendix P), a positive slope would suggest that freelancers can increase their chances of 

earning a price premium by exceeding rather than mimicking the buyer. We find support for this 
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prediction in the slope of personal information (.027, p < .01) at low levels of buyer personal 

information. However, negative effects emerge from the slopes of task information (-.016, p < 

.01) and affective intensity (-.012, p < .01), and we find a non-significant effect for concreteness 

(.002, ns). Mimicking the buyer’s task information and affective intensity is always better, in line 

with accommodation theory and adaptive selling (Soliz and Giles 2014; Verbecke et al. 2011).

Freelancers also increase their price premiums by avoiding lengthy bids (-.014, p < .01). 

Although platform reputation cues (experience and rating) can boost freelancers’ chances of bid 

success, they do not determine the final price buyers pay. The skew in the ratings, toward very 

high scores, may limit their ability to help prospective buyers determine an appropriate price 

(Kokkodis and Iperirotis 2016). Linguistic style matching (.023, p < .01), a previous relationship 

with the prospective buyer (.056, p < .01), submitting early in the bid process (.009, p < .01), and 

reduced competition (-.015, p < .01) all increase buyers’ acceptance of a price premium. 

[please insert Table 4 here]

General Discussion

Across disciplines, substantial research has tried to identify success determinants in online 

freelance marketplaces (e.g., Horton 2019; Srivastava and Chandra 2018). For example, studies 

of B2B exchanges and two-sided marketplaces emphasize communication (see Web Appendix 

A). But at the specific word level, we lack insights into the optimal information or manner of 

communication (Berger et al. 2020). With this initial investigation of how buyers’ and 

freelancers’ success might be enhanced by appropriately managing the other party’s uncertainty, 

we postulate, in line with uncertainty reduction (Berger and Calabrese 1975) and uncertainty 

management (Brashers 2001) theories, that communication that is not completely informative 

and clear still may be effective. Accordingly, we investigate how buyers’ communication can 
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attract freelance bids and freelancers’ communication can determine their bid success and price 

most effectively, and the results offer both theoretical and practical implications. 

Theoretical Contributions 

First, we advance research on how buyers’ communication determines their ability to 

attract freelancers. Drawing on prior communication research, we identify communication 

principles that critically relate to receivers’ uncertainty, such as relevant task and personal 

information and the relative concreteness and affective intensity with which this information is 

communicated (Giles 1975; Bradac 2001). To entice more freelancers to bid, buyers should 

carefully formulate their calls for bids to keep them brief. Freelancers’ information processing 

motivation, time, skills, and proficiency likely are limited, so buyers must choose their wording 

carefully and select among different effective communicative aspects. They can attract a larger 

pool of bids if they provide moderate degrees of task information in a moderately concrete 

manner. Offering too little of these features leaves freelancers with too much uncertainty; dense 

information provision or being very concrete is too restrictive. If buyers provide greater degrees 

of personal information or express greater affective intensity in their calls for bids, it reduces the 

number of service offers they receive. This finding contrasts with uncertainty reduction theory 

(Berger and Calabrese 1975) and B2B research that suggests self-disclosure strengthens buyer–

seller cooperativeness (Joshi 2009). However, instead of ongoing B2B relationships, our study 

refers mostly to initial interactions between strangers (in 98% of cases, the freelancer had never 

worked for the prospective buyer). Evidence obtained from buyer–seller online chats similarly 

suggests that self-disclosure and emotive expressions are valued only in existing B2B 

relationships, not in new ones (Koponen and Rytsy 2020). Overall, we offer empirical support 

for communication theorists’ suggestions that common communication principles can be 
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purposefully flouted to achieve better conversation outcomes (Goffman 2008).

Second, freelancers must keep their bids concise. They too face a trade-off between 

reducing the buyer’s uncertainty and offering overly dense information. In line with research on 

communication accommodation (Soliz and Giles 2014) and adaptive selling (Verbeke, Dietz and 

Verwaal 2011), we show that freelancers can improve their bid success by mimicking the 

prospective buyer’s communication. Adding to these research streams, we introduce a 

contingency perspective that reveals that the efficacy of mimicry depends on the degree to which 

buyers use specific communication elements. In line with accommodation theory and adaptive 

selling, bid success always improves when freelancers mimic buyers’ provision of task 

information and use of affective intensity. But in line with uncertainty reduction theory (Berger 

and Calabrese 1975) and expectancy violations (Afifi and Burgoon 2000), when buyers supply 

little personal information and are less concrete, freelancers can increase their chances of bid 

success by diverging and providing more personal information and concreteness. 

Third, freelancers often struggle to avoid value traps, in which they sell more of their 

services for less (Sridhar and Mittal 2020). Rational buyer expectations should allow high-

quality freelancers to charge price premiums (Rao and Monroe 1996), but the quality of 

freelance services is unobservable prior to purchase, and rational buyers might refuse to pay any 

price premium if they are uncertain and suspect hidden information (Dimoka et al. 2012). 

Therefore, to achieve premiums, freelancers should offer short, appropriately formulated bids. 

Buyers are more willing to pay a premium to freelancers who mimic their provision of task 

information, concreteness, and affective intensity, in line with communication accommodation 

theory (Soliz and Giles 2014) and adaptive selling research (Verbeke, Dietz, and Verwaal 2011). 

However, similar to the findings for bid success, freelancers should offer more, rather than 
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mimic, buyers’ provision of personal information. In most service settings, a “bad” seller might 

provide a great product by chance; almost by definition though, a bad freelancer produces bad 

service (Horton 2019). This tight coupling between the freelancer and service quality represents 

a conceptual distinction of our study, which accordingly shows that buyers’ willingness to pay a 

premium increases with more personal information issued by the freelancer. 

Practical Implications 

The findings offer actionable insights for the millions of buyers and freelancers working in 

online freelance marketplaces, the value of which are predicted to reach $2.7 trillion by 2025 

(Manyika et al. 2015). In detail, being informative and unambiguous may be a common 

assumption, but it is not an imperative, nor does it always lead to success. 

Implications for buyers. Although 59% of U.S. companies use a flexible workforce to 

some degree, more than one-third of contracted projects are never completed (Hong and Shao 

2021). To attract freelancers, buyers should keep their calls for bids succinct. Beyond that 

recommendation, we offer several tips for formulating calls for bids in Table 5. In detail, a task 

description with a moderate amount of information helps freelancers anticipate the task, without 

overloading them with details. Due to the relative anonymity of online freelance marketplaces, 

buyers might assume that freelancers will need to know who they are, but instead, we find that 

the less buyers describe themselves (to focus on describing the task), the better the outcomes. 

Relatable and imaginable, rather than abstract, descriptions of the project help freelancers grasp 

the requirements. However, being excessively concrete becomes prescriptive, which deters 

freelancers. Using emotion words makes the content of a call for bids relatively more intense. 

Such intensity can remove ambiguity and make opinions quickly accessible, but we find that 

calls for bids are more effective if they are formulated relatively impassively; enthusiastic project 
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descriptions seemingly might raise freelancers’ suspicion that the project is too good to be true. 

Offering a higher payment might attract a larger pool of freelance bids, as do long- rather than 

short-term gigs. Finally, more freelancers bid when there are less calls for bids in the subsector. 

Implications for freelancers. Freelancers are not necessarily natural marketers, but their bid 

formulations determine their marketability. Existing online reputation systems provide some 

assistance, but they also create entry barriers to new freelancers who first must earn good overall 

ratings (Constantinides, Henfridsson, and Parker 2018). Fortunately, winning gigs and achieving 

price premiums also depends on freelancers’ communication. Table 5 includes advice to help 

freelancers formulate more successful bids and avoid the value trap. In line with the mantra of 

adaptive selling, the call for bids provides a starting point, such that mimicking the buyer’s task 

information and affective intensity increases freelancers’ success—even if they provide few task 

details or seem very impassive. But freelancers should always offer personal information and be 

concrete. Even if a buyer does not provide personal information or the call is relatively abstract, 

freelancers’ chances of success and price premiums increase if their bids contain more personal 

information and are at least somewhat concrete. The strongest predictor of bid success is a 

preexisting buyer relationship, so more broadly, freelancers should grow their buyer relations.

[please insert Table 5 here]

Limitations and Directions for Further Research

In examining theoretically grounded communicative aspects, we offer novel insights into 

how to manage uncertainty in buyer–freelancer exchanges. Intriguingly, we find that 

communication approaches that do not aim to minimize uncertainty can be effective. Continued 

research should investigate this notion further and develop additional insights into the exchange 

implications of linguistic choices in B2B but also business-to-consumer and consumer-to-
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consumer communication on multi-sided platforms (Luo et al. 2021). For example, affiliative 

(Pennebaker et al. 2015) or collaborative terms might affect uncertainty and influence exchanges 

too. Arguably, the personal characteristics of buyers and freelancers (e.g., gender, education, 

experience), channel choices (Lawrence et al. 2019), different sources of uncertainty (Heide and 

Weiss 1995), perceived risks (Grewal, Gotlieb, and Marmorstein 1994), and spatial distances 

between buyers and freelancers also might moderate the efficacy of communication aspects, so 

additional research should specify their influences. For example, if buyers lack the expertise to 

specify what they want, they might benefit from more ambiguous calls for bids (Humphreys et 

al. 2020). Perhaps buyers’ communication or alternative factors which we cannot account for 

(e.g. underestimation of the amount of work required to fulfil the task), influence the final price 

they pay too. Efforts to specify these additional effects also might address some of our more 

controversial findings, such as the evidence that the number of previously commissioned projects 

by a buyer relates negatively to the number of freelancers who bid. We posit that experienced 

buyers might prefer freelancers whom they have hired in the past (Lanzolla and Frankort 2016), 

but they also might have incurred switching costs or dependencies (Heide and Weiss 1995). 

Methodologically, we estimated all the models sequentially; buyers’ calls for bids and their 

success occur prior to freelancers’ bids and their success. But an equilibrium approach that 

estimates these models simultaneously at the bid level could reflect an alternative way to think 

about the data structure. The concreteness word list we use (Brysbaert et al. 2014) may require 

further refinement too, to differentiate specific concreteness levels among the set of concrete 

words. Finally, the anonymity and speed of exchanges in online freelance marketplaces may 

make communication particularly important; a comparative analysis of the influence of 

uncertainty management efforts across different B2B contexts, beyond these marketplaces, could 
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offer interesting insights, especially if uncertainty avoidance is a central goal.
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Table 1. Communication Elements, Links to Uncertainty, and Examples 

Communication 
Element

Definition Link to Uncertainty Example 

Task information A content element of communication; in 
service exchanges, it is conveyed through 
functional, duty terms (Ma and Dubé 
2011). The proportion of task terms to the 
total number of words in a message 
defines the degree of task information.

Greater (lesser) degrees of 
task information decrease 
(increase) uncertainty

Sparse degree of task information: “I saw your project 
description and I would like to work for you. I have plenty 
experience in different settings where I have written content 
which users find interesting.”
Dense degree of task information: “I saw your project 
description and would like to write the content for your 
website. I have experience in writing articles, blogs & E-
books which is user engaging and SEO friendly as well.”

Personal information A content element of communication that 
is conveyed through self-disclosing terms 
(Derlega, Harris, and Chaikin 1973). The 
proportion of self-disclosing terms to the 
total number of words in a message 
defines the degree of personal 
information.

Greater (lesser) degrees of 
personal information 
decrease (increase) 
uncertainty

Sparse degree of personal information: “Saw your project 
description and would like to write the content for your site. I 
have experience in writing articles, blogs & E-books which is 
user engaging and SEO friendly as well.”
Dense degree of personal information: “I saw your project 
description and I would like to write the content for your site. 
I have 12 years of work experience in copy writing for 
articles, blogs & E-books. I have a Master’s in Journalism and 
have worked fulltime for companies like Adobe.”

Concreteness A manner element of communication, 
conveyed by terms that are perceptible, 
precise, or specific (Packard and Berger 
2020; Brysbaert, Warriner, and Kuperman 
2014). The proportion of concrete terms 
to the total number of words in a message 
defines the degree of concreteness.

Greater (lesser) degrees of 
concreteness decrease 
(increase) uncertainty

Sparse degree of concreteness: “I noticed your project 
description and I would like to do work on it. I have plenty of 
experience in scripting text, which is engaging, compelling, 
and SEO friendly.”
Dense degree of concreteness: “I saw your posted project 
description on Upwork, and I would like to write the contents 
for your website. I have a lot of experience in article and 
weblog writing in an SEO friendly fashion.”

Affective intensity A manner element of communication that 
is conveyed through affective terms 
(Hamilton and Hunter 1998). The 
proportion of affective terms to the total 
number of words in a message defines the 
degree of affective intensity.

Greater (lesser) degrees of 
intensity decrease (increase) 
uncertainty

Sparse degree of affective intensity: “I saw your project 
description and I can write the required content for your site. I 
have plenty of experience in writing articles, blogs & E-books 
which is user engaging and SEO friendly as well.”
Dense degree of affective intensity: “I liked your project 
description and would be happy to write the content for your 
site. I have great experience in writing articles, blogs & E-
books which is user engaging and SEO friendly as well.”
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Table 2. Predicting the Success of Buyers’ Calls for Bids

Model 1: 
Main Effects

Model 2: 
Full Model

β SE 95% CI β SE 95% CI
Buyer Communication

Task information .123** .003 .117, .128 .152** .003 .146, .159
Personal information -.149** .004 -.157, -.141 -.190** .004 -.199, -.181
Concreteness .040** .003 .035, .045 .052** .003 .046, .057
Affective intensity -.098** .007 -.112, -.085 -.084** .008 -.100, -.068

Buyer Communication Squared
Task information squared -.026** .001 -.028, -.024
Personal information squared .032** .002 .029, .035
Concreteness squared -.008** .001 -.011, -.007
Affective intensity squared .001 .001 -.001, .004

Controls
Word count -.025** .003 -.031, -.019 -.027** .003 -.033, -.021
Buyer experience -.033** .007 -.046, -.020 -.033** .007 -.046, -.020
Project payment .170** .005 .159, .181 .168** .005 .158, .179
Payment not disclosed .073** .005 .063, .083 .071** .005 .061, .081
Project duration .116** .003 .110, .122 .117** .003 .111, .123
Excess supply of freelancers .614** .004 .606, .622 .606** .004 .598, .613

Fixed Effects
Years included included
Submarkets included included

Unobserved Heterogeneity
Project characteristics included included

Endogeneity Corrections
Gaussian copulas included included

Buyers 49,081
Call for bids 343,796

**p < .01, *p < .05. Standardized results. Significance is based on two-tailed tests.
Notes: The dependent variable is the count of all bids received. The sample includes all projects listed by buyers 
with at least two projects to which at least one freelancer submitted a bid. Effects for years, submarkets, project 
characteristics, and Gaussian copulas are detailed in Web Appendix Q.
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Table 3. Predicting Freelancers’ Bid Success

Model 3:
Freelancer Communication

Model 4: 
Full Model

β SE 95% CI β SE 95% CI
Freelancer Communication

y01: Task information .014** .001 .013, .015 .015** .001 .014, .016
y02: Personal information .018** .001 .016, .019 .017** .001 .016, .017
y03: Concreteness .030** .001 .029, .031 .031** .001 .030, .032
y04: Affective intensity .001 .001 -.001, .003 .000 .001 -.002, .001

Buyer Communication
y05: Task information -.009** .000 -.009, -.008
y06: Personal information -.017** .000 -.018, -.017
y07: Concreteness -.008** .000 -.009, -.008
y08: Affective intensity .001** .000 .001, .002

Freelancer Communication Squared
y09: Task information squared -.006** .000 -.006, -.005 -.006** .000 -.007, -.006
y10: Personal information squared -.005** .000 -.005, -.004 -.005** .000 -.005, -.004
y11: Concreteness squared -.006** .000 -.007, -.006 -.007** .000 -.007, -.007
y12: Affective intensity squared .000** .000 .000, .001 .000** .000 .000, .001

Freelancer-Buyer Interactions
y13: Task information interaction .015** .000 .015, .016
y14: Personal information interaction -.002** .000 -.002, -.001
y15: Concreteness interaction .005** .000 .004, .005
y16: Affective intensity interaction .020** .000 .020, .021

Buyer Communication Squared
y17: Task information squared .001** .000 .001, .002
y18: Personal information squared -.004** .000 -.005, -.004
y19: Concreteness squared .001** .000 .001, .001
y20: Affective intensity squared .000* .000 .000, .000

Controls
Word count -.022** .001 -.024, -.021 -.021** .001 -.022, -.020
Linguistic style matching .051** .001 .048, .053 .051** .001 .048, .053
Freelancer experience .002** .001 .001, .003 .002** .001 .001, .003
Freelancer rating .010** .001 .009, .010 .010** .001 .009, .010
Project payment -.001** .000 -.001, -.001 -.001** .000 -.001, -.001
Payment not disclosed -.028** .000 -.029, -.028 -.029** .000 -.030, -.028
Previous relationship .078** .001 .076, .081 .078** .001 .075, .080
Bid price -.006** .000 -.006, -.006 -.006** .000 -.007, -.006
Time-to-bid .001 .000 .000, .001 .001 .000 .000, .001
Late submission -.005** .000 -.005, -.004 -.004** .000 -.005, -.004
Competition -.251** .007 -.265, -.238 -.251** .007 -.264, -.238
Excess supply of freelancers -.044** .000 -.045, -.043 -.042** .000 -.043, -.042

Fixed Effects
Years included included
Submarkets included included

Unobserved Heterogeneity
Project characteristics included included

Endogeneity Corrections
Gaussian copulas included included

Freelancers 34,851
Bids 2,327,216

**p < .01, *p < .05. Standardized results. Significance is based on two-tailed tests.
Notes: The dependent variable is whether the freelancer is chosen and wins the bidding process. The sample 
includes all bids by freelancers with at least one winning and at least one losing bid. Effects for years, submarkets, 
project characteristics, and Gaussian copulas are detailed in Web Appendix Q.
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Table 4. Predicting Freelancers’ Price Premium

Model 5:
Freelancer Communication

Model 6: 
Full Model

β SE 95% CI β SE 95% CI
Freelancer Communication

y01: Task information .023** .002 .020, .026 .022** .002 .019, .025
y02: Personal information .021** .002 .017, .025 .021** .002 .017, .026
y03: Concreteness .006** .001 .004, .007 .005** .001 .003, .007
y04: Affective intensity .004 .003 -.002, .010 .003 .003 -.003, .009

Buyer Communication
y05: Task information .003* .001 .001, .005
y06: Personal information -.016** .002 -.019, -.012
y07: Concreteness -.004** .001 -.006, -.002
y08: Affective intensity -.001 .002 -.005, .003

Freelancer Communication Squared
y09: Task information squared -.001 .001 -.002, .000 -.001 .001 -.002, .001
y10: Personal information squared -.004** .001 -.006, -.002 -.004** .001 -.006, -.002
y11: Concreteness squared -.003** .001 -.004, -.002 -.003** .001 -.005, -.002
y12: Affective intensity squared .000 .000 -.001, .000 .000 .000 -.001, .000

Freelancer-Buyer Interactions
y13: Task information interaction .025** .003 .024, .027
y14: Personal information interaction -.004** .001 -.005, -.002
y15: Concreteness interaction .002** .000 .001, .002
y16: Affective intensity interaction .010** .003 .008, .012

Buyer Communication Squared , 
y17: Task information squared .003** .001 .001, .004
y18: Personal information squared .003** .001 .002, .005
y19: Concreteness squared -.002** .001 -.004, -.001
y20: Affective intensity squared .002** .001 .000, .003

Controls
Word count -.014** .002 -.018, -.011 -.014** .002 -.018, -.011
Linguistic style matching .022** .004 .013, .030 .023** .004 .015, .032
Freelancer experience -.001 .001 -.004, .001 -.001 .001 -.004, .001
Freelancer rating -.001 .001 -.003, .001 -.001 .001 -.003, .001
Project payment -.029** .010 -.049, -.009 -.029** .010 -.049, -.009
Previous relationship .057** .001 .054, .059 .056** .001 .054, .059
Time-to-bid .009** .001 .007, .012 .009** .001 .006, .011
Competition -.015** .002 -.019, -.011 -.015** .002 -.019, -.011
Excess supply of freelancers -.001 .001 -.002, .001 -.001 .001 -.002, .001

Fixed Effects
Years included included
Submarkets included included

Unobserved Heterogeneity
Project characteristics included included

Endogeneity Corrections
Gaussian copulas included included

Sample-Selection Correction
Inverse mills ratio -.016** .002 -.020, -.012 -.016** .002 -.020, -.012

Freelancers 30,851
Bids 148,158

**p < .01, *p < .05. Standardized results. Significance is based on two-tailed tests.
Notes: The dependent variable is price premium for the chosen bid. The sample includes all winning bids for which 
the payment was disclosed. . Effects for years, submarkets, project characteristics, and Gaussian copulas are detailed 
in Web Append
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Table 5. Buying and Selling Services in Online Freelance Marketplaces

How to formulate calls for bids to attract freelancers?
Bad practice excerpt Good practice excerpt Lift in bids

Specify tasks 
and skills

“I need a website to showcase the full range of my 
fitness workouts.” 

“I need a website designer who can design a 
WordPress website using a WordPress premium 
theme.”

From 18% to 29% task terms, 
resulting in 5% more bids

Avoid personal 
information

“I have been creating my own classes for almost 10 
years now ... clients tend to especially love my 
classes on strength and flexibility. Now I need help 
setting up my website.”

“I am a Fitness Trainer and need help with building 
my website to showcase my mixed services and 
home workouts.”

From 9% to 4% personal terms, 
resulting in 4% more bids

Be moderately 
concrete

“I require a professional who is savvy in configuring 
a stylish website employing a premium theme.”

“You should have got very good creative skills but 
know how to design for web and also know how to 
include calls to actions within a good design.”

From 21% to 26% concrete terms, 
resulting in 1% more bids

Avoid being 
affectively 
intense

“I have created a fantastic theme but you should be 
confident and eager about WordPress and help 
optimize.”

“The theme and examples will be provided, but you 
should also know about WordPress and optimize.”

From 11% to 4% affective terms, 
resulting in 4% more bids

How to formulate successful bids and achieve price premiums?
Bad practice excerpt Good practice excerpt Lift in bid success

Mimic task 
description

“Dear Sir, would love to work for you…” “Hi Gary, I am happy to help you with your fitness 
website development and design…”

From 16% to 25% task terms, 
resulting in 7% higher bid success 
and 8% higher price premium

Exceed buyers 
who supply 
little personal 
information

“I am an enthusiastic designer and expert in Web 
development…”

“I am a WordPress Freelancer with 15 years of work 
experience…”

From 6% to 8% personal terms, 
resulting in 3% higher bid success 
and 4% higher price premium

Exceed buyers 
who are not 
concrete

“I have great skills and plenty of fantastic experience 
in creating relevant websites...”

“I have worked on several similar projects, designing 
websites using a WordPress including premium 
themes and I can deliver to a tight schedule...”

From 24% to 30% concrete terms, 
resulting in 7% higher bid success 
(but no effect on price premium)

Mimic the 
buyer’s 
affective 
intensity

“The content will be creative and fun, attractive, and 
thoughtful…”

“Website content that I produce will be creative and 
include original designs...”

From 18% to 6% affective terms 
resulting in 11% higher bid success 
and 7% higher price premium

Notes: Web Appendix S provides the full call for bids and bids examples which we used for calculating the degrees of each communicative principle and the 
corresponding expected lift success. We used the “good practice” call for bids example to devise the bad and good examples for the corresponding freelance bid. 
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Figure 1. Bidding Process and Conceptual Framework

Page 49 of 97

Journal of Marketing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

50

Figure 2. Effect of Buyers’ Communication on Calls for Bids Success

Results are based on Table 2, Model 2: Predicting the Success of Buyers’ Calls for Bids

A. Effect of Task Information B. Effect of Personal Information

C. Effect of Concreteness D. Effect of Affective intensity

Note: The blue area includes all values within ± 1.5 SD from the mean.
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Figure 3. Response Surfaces for Bid Success and Price Premium

Results are based on Table 3, Model 4: Predicting Freelancers’ Bid Success

A. Task Information B. Personal Information C. Concreteness D. Affective Intensity

Results are based on Table 4, Model 6: Predicting Freelancers’ Price Premium

E. Task Information F. Personal Information G. Concreteness H. Affective Intensity

Notes: We detail the response surfaces in the Web Appendix. Web Appendix L displays similarity and dissimilarity effects for bid success, Web Appendix M 
displays simple slope analyses of low vs. high levels of buyers’ communication for bid success, Web Appendix O displays similarity and dissimilarity effects for 
price premium, Web Appendix P displays simple slope analyses of low vs. high levels of buyers’ communication for price premium.
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WA#A: Main Empirical Marketing Studies on B2B Communication Aspects 

Authors Context  Communication Dependent Variables Communication Aspects Data Source 

Agnihotri, Rapp, and Trainor 
(2009) 

Offline Seller → Buyer Buyers’ satisfaction (P) Timeliness and relevance of communication (P) Survey 

Ahearne, Jelinek, and Jones 
(2007) 

Offline Seller → Buyer Buyers’ satisfaction (P) Efficacy of communication (P) Survey 

Anderson and Narus (1990) Offline Buyer → Seller 
Seller → Buyer 

Sellers’ cooperation (P) 
Buyers’ cooperation and trust 
(P) 

Efficacy of communication (P) Survey 

Anderson, Lodish, and Weitz 
(1987) 

Offline Buyer → Seller Sellers’ time allocated to buyer 
(B) 

Frequency of positive feedback, formality and detail in 
communication (P) 

Survey 

Bialaszewski and Giallourakis 
(1985) 

Offline Buyer → Seller Sellers’ trust in buyer (P) Efficacy of communication (P) Survey 

Cannon and Homburg (2001) Offline Seller → Buyer Buyers’ transaction costs (P) Frequency and amount of communication (P) Survey 
Comstock and Higgins (1997) Offline Seller → Buyer Buyer’s satisfaction (P) Cooperativeness, apprehensiveness, socialness and 

competitiveness in communication (P) 
Survey 

Dion and Notarantonio (1992) Offline Seller → Buyer Sellers’ performance (B)  Contentious, open, dramatic, precise, relaxed, friendly, 
dominant, attentive, animated and impressionistic 
communication (P) 

Survey and 
experiment 

Guiltnan, Rejab, and Rodgers 
(1980) 

Offline Seller → Buyer Buyers’ coordination (P) Efficacy of communication (P) Survey 

Homburg et al. (2002) Offline Seller → Buyer Buyers’ satisfaction (P) Frequency of information sharing (P) Survey 
Homburg, Giering, and 
Menon (2003) 

Offline Seller → Buyer Buyers’ satisfaction (P) and 
loyalty (P)  

Frequency of communication (P) Survey 

Homburg, Muller, and 
Klarmann (2011) 

Offline Seller → Buyer Buyers’ loyalty (P) Task and interaction orientation in communication (P) Survey 

Hossain and Chonko (2018) Offline Seller → Buyer Buyers’ loyalty (P) and 
performance (P) 

Frequency and formality of communication (P) Survey 

Hung and Lin (2013) Offline Seller → Buyer Buyers’ satisfaction (P) Regularity, timeliness and quality of communication 
(P) 

Survey 

Jaramillo and Grisaffe (2009) Offline Seller → Buyer Sellers’ sales performance (B)  Seller’s customer orientation and adaptive selling (P) Survey and 
objective data  

Joshi (2009) Offline Buyer → Seller Sellers’ knowledge (P), 
commitment (P), and 
performance (P) 

Frequency, formality, reciprocity, rationality in 
communication (P) 

Survey 

Kozlenkova et al. (2017) Online Seller → Buyer Buyer’s relationship formation 
(B) 

Bilateral communication (B) 
Number of interactions (B) 

Objective data 
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Kumar and Venkatesan 
(2005) 

Online & 
Offline 

Buyer → Seller 
Seller → Buyer 

Revenue, Share of Wallet, Past 
Customer Value, Likelihood of 
Staying Active (B) 

Number of times the customer contacted the supplier 
via the internet vs. offline (B) 

Objective data 

Lawrence et al. (2019) Online & 
Offline 

Seller → Buyer Sales revenue (B) Number of interpersonal contact between customer and 
salesperson (B) 

Survey and 
objective data 

McFarland, Challagalla, and 
Shervani (2006) 

Offline Seller → Buyer Sellers’ performance (P) Task, self and interaction orientation in communication 
(P) 

Survey 

Mohr and Sohi 1995 Offline Seller → Buyer Buyers’ satisfaction (P)  Amount, frequency, adequate, timely, accurate, 
complete and credible communication (P) 

Survey 

Mohr, Fisher, and Nevin 1996 Offline Seller → Buyer Buyers’ satisfaction and 
commitment (P) 

Frequency, bidirectionality, formality and noncoercive 
of communication (P) 

Survey 

      

Authors Context  Communication Dependent Variables Communication Aspects Data Source 

Morgan and Hunt (1994) Offline Seller → Buyer Buyers’ trust, commitment, 
uncertainty, cooperation (P) 
 

Efficacy and timeliness of communication (P)  Survey 

Murphy and Sashi (2018) Offline Seller → Buyer Buyers’ satisfaction with seller 
(P) 

Frequency, rationality and reciprocity in 
communication (P) 

Survey 

Palmatier, Dant, and Grewal 
(2007) 

Offline Buyer → Seller 
Seller → Buyer 

Buyers’ commitment, trust, 
interdependence, opportunism, 
investments, norms (P) 

Timeliness, completeness and accuracy in 
communication (P) 

Survey 

Palmatier et al. (2006) Offline Seller → Buyer Buyers’ commitment, trust, 
satisfaction, relational quality 
(P) 

Amount, frequency and the quality of communication 
(P) 

Meta-analysis 

Román and Martín (2008) Offline Seller → Buyer Sales volume, perceived service 
quality and buyer satisfaction 
(P) 

Call frequency in the supplier-customer relationship (B) 
Call frequency (B) 

Survey and 
objective data  

Schmitz et al. (2020) Online & 
Offline 

Seller → Buyer Sales (B) Personal communication vs. phone communication (B) Objective data 

      
Singh, Marinova and Singh 
(2020) 

Online Seller → Buyer Buyer attention (P) and sales 
(B)  

Recommendations, promises, assertiveness, info 
sharing via emails (B) 

Objective data 

Zhang, Netzer, and Ansari 
(2014) 

Online & 
Offline 

Buyer→ Seller Bid probability (B) and Accept 
probability (B) 

Direct order vs. quote request (B) Objective data 

This study Online Buyer → Seller 
Seller → Buyer 

Call for bid success and bid 
success (B), uncertainty 
reduction (P) 

Degree of task information, personal information, 
concreteness, affective intensity, and mimicry in 
communication 

Objective data 
and experiment 

Note: Measures are classified into perceptions (P), intentions (I), and behaviors (B). Objective data comprises behavioral and communication data as naturally observed, surveys 
can be both cross-sectional and longitudinal. 
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WA#B: Main Studies Using Automated Text-Analysis to Investigate Communication 

Authors 
Context: 

Text Type 

Type of Flow DVs Independent and Moderating Variables 

C = Consumer 
B = Business 

Perception (P) 
Intentions (I) 
Behavior (B) 

Main  
Communication  

Aspects 

Uncertainty 
Reduction 

Aspects 
Barasch and 
Berger (2014) 

Informational: 
customer 
reviews, WOM 

C → C Self-presentation in 
language (B) 

Self- versus other- 
orientation in 
communication 

no 

Herhausen et 
al. (2019) 

Informational: 
WOM 

C → C Virality consumer 
posts (B) 

Emotions and emotional 
arousal in communication 

no 

Homburg, 
Ehm and Artz 
(2015) 

Informational: 
WOM and 
company 
reaction 
 
 

C → C  
B → C 

Consumer sentiment 
(P) 

Relative firm engagement in 
consumer communication 

no 

Kim and 
Kumar (2018) 

Transactional: 
direct marketing  

B → C Customer purchase 
behavior (B) 

Economic and relational 
content in communication 

no 

Kronrod and 
Danziger 
(2013) 

Informational: 
customer 
reviews, 
advertisements 

C → C  
B → C 

Consumer product, 
review-, 
advertisement attitude 
(P), and product 
choice (B) 

Figurative versus literal 
communication 

no 

Ludwig et al. 
(2013) 

Informational: 
customer 
reviews 

C → C Online retail site 
conversion rates (B) 

Affect in- and linguistic style 
of communication 

no 

Ma, Sun and 
Kekre (2015) 

Informational: 
WOM 

C → C  
B → C 

Relationship state (P), 
voice (B), friends’ 
influence on 
communication (B) 

Complaints versus 
compliments 

no 

Moon and 
Kamakura 
(2017) 

Informational: 
customer 
reviews 

C → C Product position (P) 
and features (P) on 
perceptual map 

Writing style of reviewer no 

Nguyen and 
Chaudhuri 
(2019) 

Transactional: 
product (pre-) 
announcements, 
WOM  

C → C 
B → C  

Consumer online 
engagement (B) and 
aggregated product 
sales (B) 

Positive sentiment, content 
richness,  

 

Pitt, Mulvey 
and Kietz-
mann (2018) 

Informational: 
customer 
reviews 

C → C Consumer sentiments 
(P) 

Emotions in communication no 

Rocklage and 
Fazio (2015) 

Informational: 
customer 
reviews 

C → C Consumer intention 
to share message (I) 

Emotions and emotional 
extremity in communication 

no 

Sonnier, 
McAlister and 
Rutz (2011) 

Transactional: 
WOM 

C → C Aggregated product 
sales (B) 

Sentiment in communication no 

Timoshenko 
and Hauser 
(2019) 

Informational: 
customer 
reviews 

C → C Customer needs (P) Informative versus non-
informative content in 
communication 

no 
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Van Laer et al. 
(2018) 

Informational: 
customer 
reviews 

C → C Consumer review 
helpfulness (B) 

Narrativity of 
communication 

no 

Villarroel 
Ordenes et al. 
(2018)  

Informational: 
WOM 

C → C Consumer sharing 
and liking of message 
(B) 

Intentions in communication 
(i.e., assertive, expressive, or 
directive) 

no 

Villarroel 
Ordenes et al. 
(2017) 

Informational: 
customer 
reviews 

C → C Consumer sentiment 
(P) 

Sentiment in communication no 

Yin, Bond and 
Zhang (2017) 

Informational: 
customer 
reviews 

C → C Consumer review 
helpfulness (P) 

Emotions and emotional 
arousal in communication 

no 

Zhang, Moe 
and Schweidel 
(2017) 

Informational: 
WOM 

C → C Consumer 
rebroadcasting  
of messages (B) 

Content of message no 

      

Authors 
Context: 

Text Type 

Type of Flow DVs Independent and Moderating Variables 

C = Consumer 
B = Business 

Perception (P) 
Intentions (I) 
Behavior (B) 

Main  
Communication  

Aspects 

Uncertainty 
Reduction 

Aspects 
      

      
      
Packard and 
Berger (2020) 

Informational: 
customer service 
phone calls and 
email 

B → C Satisfaction (P), 
Willing to purchase 
(I), and 
Purchase (B) 

Concreteness yes 

Packard, More 
and McFerran 
(2018) 

Informational: 
customer 
queries, 
company 
answers  

C → B 
B → C 

Consumer purchase 
(B) 

Customer orientation in 
communication 

no 

      

Singh, 
Marinova and 
Singh (2020) 

Transactional: 
Email 

B → B Buyer attention (P) 
and sales (B)  

Recommendations, 
promises, assertiveness, info 
sharing via emails 

no 

This study Transactional: 
Call for bids 
and Bids  

B ↔ B 
 

Number of bids (B), 
Winning bid (B), 
Price Premium (B) 

Communication strategies to 
manage uncertainty 

yes 
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WA#C: Definitions, Representative Articles, and Operationalizations of All Measures 

Construct Definition Representative 
Articles 

Operationalization 

Dependent Variables 
Call For Bid 
Success 

The number of 
freelancers who submit a 
bid application 

Horton (2019) The number of freelancers who submit a bid to the 
call for bids.  

Bid Success Whether or not the 
freelancer’s bid is 
successful 

Hong and 
Pavlou (2017) 

Whether (1) or not (0) a freelancer was chosen by 
the buyer and thus wins the bidding process. 

Price Premium The monetary amount in 
excess of the buyer’s 
original payment offer 
for a certain freelance 
service project 

Singh and 
Sirdeshmukh 
(2000) 

The percentage by which the final (accepted) bid 
price for the project exceeds (or falls short of) the 
buyer’s original payment offered (her benchmark 
price) 

Communication Content 
Task Information Task information is a 

content element of 
communication, that,  
in the service exchange 
context, is conveyed 
through lexical terms on 
functional service duties 
(Ma and Dubé 2011) 
 
The proportion of lexical 
task terms to the total 
number of words in a 
message, defines the 
degree of task 
information 
(Bradac, Hopper, and 
Weimann 1989; Berger et 
al. 2020). 

N.A. Proportion of context specific task descriptor 
words (using freelancers’ service skill tags which 
list key words freelancers use to describe the 
service tasks they offer (e.g., “Python Developer”, 
“Designer”, “Illustrator”)) to total words in the 
message. 

Personal 
Information 

Personal information is a 
content element of 
communication, that 
is conveyed through 
lexical self-disclosing 
terms about the self 
(Derlega, Harris, and 
Chaikin 1973) 
 
The proportion of lexical 
self-terms to the total 
number of words in a 
message, defines the 
degree of personal 
information 
(Bradac, Hopper, and 
Weimann, 1989; Berger 
et al. 2020). 

Pennebaker and 
Stone (2001)  

Proportion of first-person singular pronouns (e.g., 
“I”, “me”) to total words in the message (using the 
“I” LIWC dictionary; Tausczik and Pennebaker 
2010). 
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Construct Definition Representative 
Articles 

Operationalization 

Communication Style 
Concreteness  Concreteness is a manner 

element of 
communication, that 
is conveyed through 
lexical terms which are 
perceptible, precise, or 
specific (Packard and 
Berger 2020; Brysbaert, 
Warriner, and Kuperman 
2014) 
 
The proportion of lexical 
concrete terms to the 
total number of words in 
a message, defines the 
degree of concreteness 
(Bradac, Hopper, and 
Weimann, 1989; Berger 
et al. 2020). 

Brysbaert et al. 
(2014) 

Proportion of concrete words to total words in the 
message (using all the relatively concrete lemmas 
(=>3) in the dictionary by Brysbaert et al. 2014). 

Affective Intensity Affective intensity is a 
manner element of 
communication, that 
is conveyed through 
lexical terms which are 
affective (Hamilton and 
Hunter 1998) 
 
The proportion of lexical 
emotional terms to the 
total number of words in 
a message, defines the 
degree of intensity 
(Bradac, Hopper, and 
Weimann, 1989; Berger 
et al. 2020). 

Hamilton and 
Hunter (1998) 

Proportion of affect words (e.g. “problematic”, 
“great”, “easy”) to total words in the message 
(using the “affect” LIWC dictionary; Tausczik and 
Pennebaker 2010). 

    
Controls for buyers’ Call for bids Success 
Word Count The extent to which a 

text provides information 
Herhausen et al. 
(2019) 

Sum of words in a text. 

Buyer Experience The number of projects a 
buyer already had 
purchased on the 
platform prior to posting 
the focal project 
description 

Hong and 
Pavlou (2017) 

The number of projects a buyer had already 
purchased on the platform prior to posting the 
focal call for bids. 

Project Payment The buyer’s initial 
payment offered for the 
service. 

Ostrom and 
Iacobucci 
(1995) 

The actual dollar value offered by the buyer in her 
call for bids, multiplied by an undisclosed index 
for anonymity purposes. 
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Construct Definition Representative 
Articles 

Operationalization 

Payment not 
Disclosed 

The buyer did not 
disclose a payment offer 
upfront 

Horton and 
Johari (2018) 

Coded (1) if the buyer indicated a payment offer 
upfront along with the call for bids (1), or not (0). 

Project Duration The buyer’s expected 
project duration. 

Horton (2019) An indicator for a project’s duration that was 
specified by the buyer in her project description at 
t_1 to last either more (1) or less than a month (0). 

Excess Supply of 
Freelancers 

The relative amount of 
supply (in freelancers) to 
the amount of projects 
available in any given 
sub-market 

Horton (2019) Number of active freelancers (all freelancers in the 
specific submarket, who will submit at least one 
bid in the future), divided by the number of buyers 
who post call for bids around the same time (±31 
days) and in the same submarket 

Additional Controls for Freelancers’ Bid Success  
Linguistic style 
matching (LSM) 

The extent to which two 
texts match in function 
word use 

Ludwig et al. 
(2013) 
 

The degree of LSM across each function word 
category in a freelancer’s bid to a buyer’s call for 
bids. By aggregating all nine LSM scores with 
equal weights, we obtain an LSM score bound 
between 0 and 1, and scores closer to 1 reflect 
greater degree of communication style matching 
between the freelancer and buyer. 

Freelancer 
Experience 

The number of projects 
the freelancer already 
completed 

Hong and 
Pavlou (2017) 

The number of projects the freelancer already 
completed prior to submitting her bid to the focal 
call for bids. 

Freelancer Rating The average five-point 
quality rating the 
freelancer received from 
all previous projects 

Hong and 
Pavlou (2017) 

The average five-point quality rating the 
freelancer received from all previous projects 
(with 5 indicating highest quality). 

Previous 
relationship 

Whether the exchange 
relation was a repeat- or a 
first-time business 
interactions 

Hong and 
Pavlou (2017) 

Coded (1) if the freelancer had completed a 
project with the specific buyer before and (0) if 
not.   

Bid Price The relative asking price 
by the freelancer 

Hong and 
Pavlou (2017) 

The percentage by which the actual dollar value 
asked for by the freelancer in her bid (multiplied 
by an undisclosed index for anonymity purposes) 
exceeds (or falls short of) the average asking price 
of all competing bids for the same project. 

Time-to-bid Duration it took for the 
freelancer to submit her 
bid 

Dalya and Nath 
(2005) 

Time in days it took the freelancer to submit her 
bid (time-to-bid), following the call for bids 

Late submission Whether the bid was 
submitted late 

N.A. Whether the bid was submitted late (1) or on time 
(0). 

Competition How many freelancers 
were applying for the 
same call for bids 

Horton (2019) The number of freelancers who applied for the 
same call for bids.  
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WA#D: Illustrative Figure of Freelancer Profile 

Name: Jennifer S. 

Rating: 4.5 out of 5 stars 

Number of Projects completed: 17 

Skills: Keynote Microsoft PowerPoint Presentation Data Visualization 

        Infographics Copywriting 
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WA#E: Response Surface Methodology 

Our measures of communication mimicry are based on the constraints placed within the 

polynomial model using the freelancer’s and buyer’s communication aspects. Earlier studies 

have examined communication mimicry using a difference score approach (e.g., Ludwig et al. 

2013; Soliz and Giles 2014). However, given the conceptual and methodological problems it 

creates, Edwards and Parry (1993) recommend the polynomial technique as an effective 

alternative that can avoid the limitations of the difference score approach. An increasing number 

of studies have used the polynomial technique to explore such topics as perceptual differences 

and (mis)fit (e.g., Mullins et al. 2015; Menguc et al. 2016). For instance, by using polynomial 

regression with response surface analysis we are able to test predictions as to how bid success 

and service price premium may change when freelancers’ of mimic different levels of buyers’ 

task information. One of the benefits of polynomial regression is that the effect of mimicking on 

an outcome is treated as a three-dimensional surface, simultaneously relating the degree of 

mimicry as well as the freelancer’s and buyer’s communication levels to the respective outcomes 

(i.e., bid success and price premium). These graphs allow us to examine the precise nature of 

mimicry relationships (e.g., Harris, Anseel, and Lievens 2008) and study at which level of 

communication mimicry by the freelancer towards the buyer is beneficial or aversive.  

In polynomial modeling, the dependent variable is estimated by entering five polynomial 

terms into the equation. For example, we estimated bid success against a freelancer’s task 

information (FTASK), buyer’s task information (BTASK), and the three higher-order effects 

(i.e., FTASK 2, FTASK × BTASK, and BTASK2) that are created as product terms of FTASK 

and BTASK in Table 3, Model 4. We standardized all communication variables because means 

and standard deviations are comparable across freelances and buyers (Shanock et al. 2010). Yet 
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the estimated coefficients that relate to the effect of each polynomial term on bid success 

individually are not directly employed to test any proposition. Rather, the estimated coefficient 

for each polynomial term is used to compute the slope and curvature along the fit and misfit 

lines, which is also known as response surface analysis. Using Edwards and Parry’s (1993) 

formula, we computed the slopes and curvatures along the fit (FTASK = BTASK) and misfit 

(FTASK = - BTASK) lines as fit slope (FTASK + BTASK I) and fit curvature (FTASK 2 + 

FTASK × BTASK + BTASK2) and misfit slope (FTASK - BTASK) and misfit curvature 

(FTASK2 - FTASK × BTASK + BTASK 2). Because of the nested nature of our data (i.e., 

multiple bids from each freelancer), we took a multilevel, random coefficients approach to the 

polynomial modeling technique (e.g., Jansen and Kristof-Brown 2005). As a result, we employed 

multilevel path analysis to estimate the model’s proposed relationships simultaneously. Thus, the 

relationship between freelancer’s task information, buyer’s task information, and bid success in 

Table 3, Model 4 can be written as: 

(WA1) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘𝑘𝑘 = 𝑦𝑦00 + 𝑦𝑦01𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘 + 𝑦𝑦05𝐵𝐵𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘 + 𝑦𝑦09𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹_𝐵𝐵𝑆𝑆𝑘𝑘𝑘𝑘
+ 𝑦𝑦13(𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘  ×  𝐵𝐵𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘 ) + 𝑦𝑦17𝐵𝐵𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹_𝐵𝐵𝑆𝑆𝑘𝑘𝑘𝑘 +  𝜇𝜇0𝑘𝑘 + 𝜀𝜀𝑘𝑘𝑘𝑘 , 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘𝑘𝑘 is the success of bid k from freelancer l, 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘  is freelancer task 

information, 𝐵𝐵𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘  is buyer task information, 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹_𝐵𝐵𝑆𝑆𝑘𝑘𝑘𝑘 is freelancer task information 

squared, (𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘  ×  𝐵𝐵𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘 ) is the interaction term between freelancer and buyer task 

information, 𝐵𝐵𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹_𝐵𝐵𝑆𝑆𝑘𝑘𝑘𝑘 is buyer task information squared, 𝜇𝜇0𝑘𝑘 is the random intercept, and 𝜀𝜀𝑘𝑘𝑘𝑘 

is the error term. We stated that mimicking buyers’ task information should increase freelancers’ 

bid success. To test whether bid success varies for misfit in task information, we define the 

polynomial regression with FTASK = - BTASK. Substituting FTASK = - BTASK in equation 

WA1, the misfit line can be written as: 
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(WA2) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘𝑘𝑘 = 𝑦𝑦00 + (𝑦𝑦01 − 𝑦𝑦05)𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘 + (𝑦𝑦09 − 𝑦𝑦13
+ 𝑦𝑦17)𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹_𝐵𝐵𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘 + 𝜇𝜇0𝑘𝑘 + 𝜀𝜀𝑘𝑘𝑘𝑘 , 

where the misfit line slope (𝑦𝑦01 − 𝑦𝑦05) represents the linear effect of freelancer task 

information that are greater than buyer task information. When the effect is positive, bid success 

increases as freelancer task information grows greater than buyer task information, but decreases 

as freelancer task information decreases further below buyer task information. The misfit line 

curvature (𝑦𝑦09 − 𝑦𝑦13 + 𝑦𝑦17) represents the non-linear effect of misfit in task information on bid 

success. When this effect is positive (i.e., u-shaped), bid success will be at a minimum at perfect 

fit and increase with misfit when freelancer task information either under- or overestimates buyer 

task information. Conversely, when the effect is negative (i.e., inverted u-shaped), bid success 

will be maximized at perfect fit, and decrease as freelancer task information either under- or 

overestimates buyer task information.  

We further qualified this effect and proposed that when freelancers mimic buyers’ who 

provide little task information, their chance of bid success decrease. Thus, in this situation it 

would be beneficial for the freelancer to provide more task information regardless of the buyer. 

To test this, we inspect the slope of FTASK when BTASK is at -1.5 standard deviations below 

the mean: 

(WA3) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘𝑘𝑘 = 𝑦𝑦00 + 𝑦𝑦01𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘
− (1.5 𝐵𝐵𝐵𝐵 × 𝑦𝑦13(𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘  ×  𝐵𝐵𝐹𝐹𝐹𝐹𝐵𝐵𝐹𝐹𝑘𝑘𝑘𝑘 )) +  𝜇𝜇0𝑘𝑘 + 𝜀𝜀𝑘𝑘𝑘𝑘 , 

where a positive effect would indicate that providing more task information is better for the 

freelancer. Summarizing the explanations above, assessing the response surface allows a novel 

and quantitative description of the three-dimensional relationships between freelancer’s task 

information, buyer’s task information, and bid success (as well as price premium). 
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WA#F: Manual Validity Checks of Text Analysis Approach 

To ensure the validity of the text analysis, two expert coders were used to classify the texts 

of a random subsample of 100 call for bids (with a mean of 129 words) and 100 bids (with a sub-

sample mean of 125 words). For each text the coders indicated whether they agreed (coded 1) 

that “The buyer/freelancer presents a lot of information related to the service task” (adapted from 

Venkatesh, Kohli, and Zaltman 1995). “The buyer/freelancer writes about her/himself for fairly 

long period” (Wheeless 1976), “The buyer’s call for bids/ freelancer’s bid text is extremely 

concrete” (Krishnan, Biswas, and Netemeyer 2006), “The buyer’s call for bids/ freelancer’s bid 

text feels very emotional (Hamilton and Stewart 1993)  

After practicing on five example call-for bids and bids, the coders classified the sampled 

texts, and we compared their classification with the automated text analysis. Between the coders 

and the automated text analysis, generally substantial agreement levels were achieved (.71 < a < 

.87 for the call for bids and .82 < a < .92, for the bids; Krippendorff 2013). Following our 

automatic text mining approach, we classified those bids that contained above average degrees of 

(1) task information, (2) personal information, (3) concreteness and (4) affective intensity as (1) 

and below average degrees as (0). Averages for call for bids and bids are shown in Web 

Appendix J. In those cases where the coders agreed, on average, substantial agreement levels 

were achieved between the agreed coder classification and the classification using the automated 

text analysis (.73 < a < .94 for the call for bids and .66 < a < .88, for the bids; Krippendorff 

2013).  

Following Berger et al. (2020) we then calculated precision, recall, and the F1-Measure 

(see Table WA E1). Overall our results demonstrate the accuracy of our text mined measures. 
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Table WA F1. Krippendorff's Alpha, Precision, Recall, and F-Measure 

Text-Mined Measures Krippendorff’s α  
between coders 

(bids / calls for bids) 

Krippendorff’s α  
between coders and 

automated measurement 
(bids / calls for bids) 

Precision  
(bids / calls for bids) 

Recall 
(bids / calls for bids) 

F-Measure 
(bids / calls for bids) 

Communication Content 

 Task Information  .86 / .83 .86 / .85 .89 / .87 .93 / .93 .91 / .90 

 Personal Information  .92 / .87 .88 / .94 1.00 / .91 .89 / 1.00 .95 / .95 

 Communication Style 

 Concreteness  .82 / .87 .66 / .73 1.00 / .67 .66 / 1.00 .79 / .80 

 Affective Intensity .89 / .71 .88 / .88 .96 / 1.00 .89 / .80 .92 / .89 

       

Mean .88 / .82 .82 / .85 .96 / .86 .84 / .93 .89 / .89 

Note. Precision (true positives / (true positives + false positives)) is the count of correct class predictions by the text mining approach that actually belong to the positive class 
(correct was what the human coders agreed on), recall (true positives / (true positives + false negatives)) quantifies the number of positive class predictions made by the text 
mining approach out of all positive classifications made by the human coders, and the F1-Measure is the harmonic mean of the levels of recall and precision (2 * Precision * 
Recall) / (Precision + Recall).  
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Table W F2. Human Coder Correlations for Bids 
  

1 2 3 4 5 6 7 8 9 10 11 12 

1. Task information Coder 1 
            

2. Task information Coder 2 .82 
           

3. Task information PC .82 .73 
          

4. Personal information Coder 1 -.12 -.17 -.10 
         

5. Personal information Coder 2 -.13 -.13 -.11 .87     
    

6. Personal information PC -.05 -.10 -.03 .92 .84    
    

7. Concreteness Coder 1 .12 .03 .06 -.07 -.18 -.10    
   

8. Concreteness Coder 2 .14 .05 .13 -.12 -.19 -.16 .87    
  

9. Concreteness PC .15 .10 .12 -.08 -.15 -.07 .75 .66    
 

10. Affective intensity Coder 1 -.17 -.07 -.16 .19 .19 .20 -.07 -.15 -.02   
 

11. Affective intensity Coder 2 -.01 -.01 .00 .25 .24 .26 -.10 -.17 -.04 .72   

12. Affective intensity PC -.17 -.17 -.16 .30 .29 .31 -.07 -.15 -.02 .79 .72  

Note. N=100. Coder 1 and 2 refers to the two human coders for this validation study and “PC” is the classification by the text 
mining approach.  

 

 
Table F3. Human Coder Correlations for Calls for Bids 
  

1 2 3 4 5 6 7 8 9 10 11 12 

1. Task information Coder 1 
            

2. Task information Coder 2 .86 
           

3. Task information PC .86 .77 
          

4. Personal information Coder 1 -.18 -.13 -.14 
         

5. Personal information Coder 2 -.16 -.16 -.17 .92     
    

6. Personal information PC -.17 -.13 -.13 .89 .84    
    

7. Concreteness Coder 1 .10 .14 .08 -.42 -.45 -.45    
   

8. Concreteness Coder 2 .17 .22 .16 -.48 -.47 -.57 .82    
  

9. Concreteness PC .14 .18 .10 -.37 -.37 -.40 .64 .63    
 

10. Affective intensity Coder 1 -.22 -.18 -.20 .10 .12 .16 -.16 -.16 -.11   
 

11. Affective intensity Coder 2 -.20 -.20 -.18 .14 .16 .16 -.19 -.18 -.12 .90   

12. Affective intensity PC -.24 -.14 -.21 .08 .09 .13 -.13 -.13 -.13 .88 .82  

Note. N=100. Coder 1 and 2 refers to the two human coders for this validation study and “PC” is the classification by the text 
mining approach. 
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WA#G: Experimental Evidence of Uncertainty Reduction 

We use single-factor, within-subject designs for each of the four communication aspects. 

Across the studies, between 50 and 53 U.S. consumers, with a mean age of 37.6 years (50% 

women), were recruited from Amazon Mechanical Turk. Confidentiality was assured, and 

participants were told to imagine hiring someone to write content for their website on Upwork (a 

global freelancing website). To qualify to participate, respondents had to be native English 

speakers and sufficient online freelance marketplace experience (i.e., a minimum of 1,000 

submitted task on MTurk). Moreover, on a scale from 1 = “do not agree” to 7 = “fully agree”, 

they scored on average 5.89 regarding the statement “I have experience working as a freelancer 

on online platforms”. An instructional manipulation check excluded two to four participants 

from each study. Following the introduction, participants were randomly allocated to one of four 

communication aspects (i.e., task information, personal information, concreteness, and affective 

intensity), then exposed in random order to two different bids from two different freelancers, 

using strategies that reflected the greater or lesser degree version of the focal condition, such that 

it was at least one standard deviation different from the value obtained in the field study (e.g., for 

example the mean difference of personal information between our high- and low condition is 

4.32%, (2.50% vs. 6.82%) as determined using our text mining approach. We provide an 

example of the stimuli in Figure G1; the text for all stimuli is in Table G2. 

After reading the stimuli, participants indicated their hiring intentions for each bid and 

chose one of the two bids, using a seven-point semantic differential scale (1 = “definitely bid A” 

to 4 = “indifferent” to 7 = “definitely bid B”), where bid A and bid B feature the greater and 

lesser use of the respective communication aspect, assigned randomly. Next, we asked 

participants to rate each bid according to the level of uncertainty related to the freelancer who 
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submitted the bid with a measure from Grewal, Gotlieb, and Marmorstein 1994; “How confident 

are you that the freelancer will perform well?”, “How certain are you that the freelancer will 

work satisfactory?”, “Do you feel that the freelancer will perform as requested?”, α = .93). We 

used the questions from the manual validity check reported in Web Appendix F as manipulation 

checks. Table G3 provides all means and standard deviations. 

All the text manipulations were successful, and the simple contrasts and participants’ 

choices are in line with our expectations (see Table G4). They indicated greater hiring intentions 

for bids that contained more task information (Mhigh = 5.44, Mlow = 4.28 t(51) = 3.84, p < .01), 

more personal information (Mhigh = 5.28, Mlow = 4.00; t(49) = 6.96, p < .01), more concreteness 

(Mhigh = 5.23, Mlow = 4.06; t(52) = 4.11, p < .01), and more affective intensity (Mhigh = 5.55, Mlow 

= 4.49; t(50) = 3.58, p < .01). We then applied mediation procedures to the within-subjects 

designs (Montoya and Hayes 2017) and the MEMORE macro to test for the mediating role of 

uncertainty reduction between the communication strategies and hiring intentions. The greater 

versus lesser use of each communication aspect in each study predicts uncertainty reduction (βs 

between .76 and 1.35, all p < .01). In turn, uncertainty reduction significantly predicts hiring 

intention (βs between .84 and 1.21, all p < .01), and 5,000 bootstrap samples reveal indirect 

effects of greater versus lesser uses of each communication aspect on hiring intentions, through 

uncertainty reduction (βs between .82 and 1.32, all 95% confidence intervals range from .43 to 

1.83).  
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Figure WA G1. Sample Stimuli 

Study Context 

Imagine you want to hire someone to write content for your website. Thus, you visit Upwork — the largest global 
freelancing website to hire a freelancer. In the following, you will read two different bids from two different 
freelancers. We will ask you to rate each bid and to choose one of the two bids. 

 
Low Task Information Bid 

 
High Task Information Bid 

 

Note: We randomized the order of the bids in all experimental studies.
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Table WA G2. Text for All Stimuli 

 A: Task Information D: Personal Information C: Concreteness D: Affective Intensity 

Low Bid 
Condition 

I saw your project description and I 
would like to work for you. I have 
plenty experience in different settings 
where I have written content which 
users find interesting. I will do 
extensive background searches into 
content to provide you with the most 
original & fresh, attractive, including 
eye catching headlines. I would be 
glad to have a personal interview 
session with you to gather your 
detailed requirements for this project 
and answer questions. It is easy to 
reach me via skype and email 

Saw your project description and 
would like to write the content for 
your site. Have experience in 
writing articles, blogs & E-books 
which is user engaging and SEO 
friendly as well. Content provided 
by me will be original & fresh, 
attractive, including eye catching 
headlines, fully researched and 
relevant. Would be glad to have a 
personal interview session with 
you to gather your detailed 
requirements and answer any of 
your questions. It is easy to reach 
me via skype and email. 

I noticed your project description 
and I would like to do work on it. I 
have plenty of experience in 
scripting text, which is engaging, 
compelling, and SEO friendly. I can 
write ideal content and optimize your 
existing ones. Content provided by 
me will be spiriting, attractive, with 
striking headlines, researched and 
relevant. I would be glad to have a 
personal interview with you to gather 
requirements and answer queries. It 
is easy to get in touch with me via 
various communication channels. 

I saw your project description 
and I can write the required 
content for your site. I have 
plenty of experience in writing 
articles, blogs & E-books which 
is user engaging and SEO 
friendly as well. Content 
provided by me will be original, 
including eye catching headlines, 
fully researched and relevant. Let 
us have a personal interview 
session to gather your detailed 
requirements and answer any 
questions. Reach me via skype 
and email. 

High Bid 
Condition 

I saw your project description and 
would like to write the content for 
your website. I have experience in 
writing articles, blogs & E-books 
which is user engaging and SEO 
friendly as well. I will conduct desk 
research and edit the content to be 
original & fresh, attractive, including 
eye catching headlines. I would be 
glad to have a personal interview 
session with you to get more details 
on your website content and answer 
any of your questions. It is easy to 
reach me via skype and email. 

I saw your project description and 
would like to write the content for 
your site. I have 12 years of work 
experience in copy writing for 
articles, blogs & E-books. I focus 
on SEO friendly content as well. I 
have a Master’s in Journalism from 
the University of Melbourne and 
have worked fulltime for 
companies like Adobe. I would be 
glad to have a call with you to 
gather your detailed requirements 
and answer any of your questions. 
It is easy to reach me via skype and 
email. 

I saw your posted project description 
on Upwork, and I would like to write 
the contents for your website. I have 
a lot of experience in article and 
weblog writing in an SEO friendly 
fashion. I can provide a lot of new 
content and optimize the all the 
current content on your site. The 
content I add to your site will invite, 
be crisp and flash headlines. If you 
like we can have a kick off call to 
answer any question you have? It is 
easy to reach me via skype and 
email. 

I liked your project description 
and would be happy to write the 
content for your site. I have great 
experience in writing articles, 
blogs & E-books which is user 
engaging and SEO friendly as 
well. Content provided by me 
will be original & fresh, 
attractive, including eye catching 
headlines, fully researched and 
relevant. I would be delighted to 
have a kick off call and answer 
any questions. It is easy to reach 
me via skype and email. 

Text 
Mining 
Results  

Task information: Mlow= 19.28% vs. 
Mhigh=25.29% 

Personal information: Mlow=2.50% 
vs. Mhigh=6.82% 

Concreteness: Mlow= 22.10% vs. 
Mhigh=43.33% 

Affective intensity: Mlow= 6.94% 
vs. Mhigh=11.84% 
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Table WA G3. Means and Standard Deviations 

A: Task Information      
 Low Task Information High Task Information  
 Mean SD Mean SD Effect Size 
MC: Task Information 4.28 1.57 5.33 1.27 .52 
Mediator: Risk Reduction 4.59 1.47 5.43 1.28 .43 
DV: Hiring Intention 4.35 1.63 5.44 1.21 .54 
B: Personal Information      
 Low Personal Information High Personal Information  
 Mean SD Mean SD Effect Size 
MC: Personal Information 4.78 1.13 5.73 .95 .64 
Mediator: Risk Reduction 4.33 1.53 5.67 1.15 .70 
DV: Hiring Intention 4.00 1.46 5.82 1.26 .95 
C: Concreteness      
 Low Concreteness High Concreteness  
 Mean SD Mean SD Effect Size 
MC: Concreteness 4.50 1.30 5.50 1.28 .54 
Mediator: Risk Reduction 4.57 1.27 5.30 1.47 .38 
DV: Hiring Intention 4.06 1.51 5.23 1.58 .54 
D: Affective Intensity      
 Low Affective Intensity High Affective Intensity  
 Mean SD Mean SD Effect Size 
MC: Affective Intensity 5.08 1.14 5.96 .90 .61 
Mediator: Risk Reduction 4.74 1.26 5.50 1.17 .44 
DV: Hiring Intention 4.49 1.47 5.55 1.29 .54 

Note: MC = Manipulation Check, DV = Dependent Variable. 
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Table WA G4. Results in the Pilot Studies 

 A: Task Information B: Personal Information C: Concreteness D: Affective Intensity 

Participants 52 U.S. consumers, mean age 38.4 
years, 38% women (the 
instructional manipulation check 
excluded four participants) 

50 U.S. consumers, mean age 41.9 
years, 49% women (the 
instructional manipulation check 
excluded two participants) 

53 U.S. consumers, mean age 36.7 
years, 43% women (the 
instructional manipulation check 
excluded three participants) 

51 U.S. consumers, mean age 40.4 
years, 47% women (the 
instructional manipulation check 
excluded four participants) 

Manipulation 
measure  

Amount of task information 
(Sicilia and Ruiz 2010) 

Self-disclosure scale (Wheeless 
1976) 

Level of concreteness (Krishnan, 
Biswas, and Netemeyer 2006) 

Valence of information exchanged 
(Adjei, Noble, and Noble 2010) 

Manipulation 
check 

Manipulated successfully (Mhigh 
=5.33, Mlow = 4.28; t(51) = 3.84, p 
< .01). 

Manipulated successfully (Mhigh 
=5.73, Mlow = 4.78; t(49) = 5.24, p 
< .01). 

Manipulated successfully (Mhigh 
=5.50, Mlow = 4.50; t(52) = 4.71, p 
< .01). 

Manipulated successfully (Mhigh 
=5.96, Mlow = 5.08; t(50) = 4.54, p 
< .01). 

Paired sample 
results 

High vs. low task information 
significantly predicts hiring 
intention (Mhigh =5.44, Mlow = 
4.35; t(51) = 4.03, p < .01) 

High vs. low personal information 
significantly predicts hiring 
intention (Mhigh =5.28, Mlow = 
4.00; t(49) = 6.96, p < .01) 

High vs. low concreteness 
significantly predicts hiring 
intention (Mhigh =5.23, Mlow = 
4.06; t(52) = 4.11, p < .01) 

High vs. low affective intensity 
significantly predicts hiring 
intention (Mhigh =5.55, Mlow = 
4.49; t(50) = 3.58, p < .01) 

Open choice 
results 

81% choose the high task 
information amount bid 

90% choose the high personal 
information bid 

68% choose the high concreteness 
bid 

75% choose the high intensity bid 

Mediation 
results 

 High vs. low task information 
significantly predicts risk 
reduction (β = 1.09, p < .01) 
 Risk reduction significantly 

predicts hiring intention (β = .84, 
p < .01) 
 There is an indirect effect of high 

vs. low task information on 
hiring intention through risk 
reduction (β = .82, 95% CI .43 to 
1.25). 

 High vs. low personal 
information significantly predicts 
risk reduction (β = 1.35, p < .01) 
 Risk reduction significantly 

predicts hiring intention (β = .98, 
p < .01) 
 There is an indirect effect of high 

vs. low personal information on 
hiring intention through risk 
reduction (β = 1.32, 95% CI .89 
to 1.83). 

 High vs. low concreteness 
significantly predicts risk 
reduction (β = .93, p < .01) 
 Risk reduction significantly 

predicts hiring intention (β = .92, 
p < .01) 
 There is an indirect effect of high 

vs. low concreteness on hiring 
intention through risk reduction 
(β = .85, 95% CI .37 to 1.52). 

 High vs. low affective intensity 
significantly predicts risk 
reduction (β = .76, p < .01) 
 Risk reduction significantly 

predicts hiring intention (β = 
1.21, p < .01) 
 There is an indirect effect of high 

vs. low affective intensity on 
hiring intention through risk 
reduction (β = .91, 95% CI .42 to 
1.40). 

Note: CI = confidence interval.  
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WA#H: Model Free Evidence  

Table H1. Model Free Evidence for Call for Bids’ Success and Use of Communication Elements 
 Task Information Personal Information Concreteness Affective Intensity 
Number of Bids ≤ 5 > 5 ≤ 5 > 5 ≤ 5 > 5 ≤ 5 > 5 
Mean .256 .278 .033 .028 .197 .227 .046 .036 
SD .076 .083 .029 .033 .073 .062 .030 .027 
t-test -108.59 63.47 262.50 134.42 
P-value p<.001 p<.001 p<.001 p<.001 

Note: We chose a cut off of 5 bids submitted, which is the mean number of bids submitted to call-for-bids across all 644.397 call for bids (403,262 call for bids received 5 bids or 
less; 241,135 call for bids received more than 5 bids).  

Table H2. Model Free Evidence for Bids’ Success and Use of Communication Elements 

 Task Information Personal Information Concreteness Affective Intensity 
Bid Outcome Lost Won Lost Won Lost Won Lost Won 
Mean .281 .302 .050 .047 .170 .184 .045 .047 
SD .202 .204 .044 .056 .094 .097 .051 .075 
t-test -66.88 42.75 -95.61 -24.08 
P-value p<.001 p<.001 p<.001 p<.001 

Note: We split bids between those who won and those that lost across all 5,167,787 bids (4,712,990 bids were unsuccessful; 454,797 bids were successful).  

Table H3. Model Free Evidence for Bids’ Success and Mimicry of Communication Elements 
 Task Information Personal Information Concreteness Affective Intensity 
Buyer’s use of 
communication 
element 

Low 
degree 

Moderate 
degree 

High 
degree 

Low 
degree 

Moderate 
degree 

High 
degree 

Low 
degree 

Moderate 
degree 

High 
degree 

Low 
degree 

Moderate 
degree 

High 
degree 

Mean Mimicry 
by Freelancer 

.446 .759 .617 .349 .443 .423 .505 .798 .724 .443 .446 .438 

SD .335 .196 .247 .476 .290 .383 .361 .268 .227 .499 .381 .380 
Relation  ∩   ∩   ∩   no relation  

Note: Here, we only considered bids that won. We split the bids between those which replied to a buyer that used (1) a low degree (<10% of range of observed values), (2) 
moderate degree (45%-55% of range of observed values), and (3) high degree (>90% of range of observed values), of the respective communicative element (i.e., task information, 
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personal information, concreteness, or affective intensity) across all 5,167,787 bids (4,712,990 bids were unsuccessful; 454,797 bids were successful). We calculated the difference 
between each bid’s (b) use of each respective communication element (C) and the respective call for bids’ (cfb) use of the same communication element (C) using the same 
formula as Ludwig et al. (2013) when they calculated the linguistic style match. Specifically Mimicry of Cb = 1-[|(Cb -Ccfb)|/( Cb +Ccfb+0.0001]. The resulting similarity score is 
bounded by 0 and 1 for each bid, higher numbers represented greater similarity (or mimicry) by the freelancer towards the buyer’s use of the respective communication element. 
We split the reporting of the average differences for all bids which were submitted in response to (1) call for bids that used the communication element to a less degree, (2) 
moderate degree, and (3) great degree. 
 
Table WA H4. Model Free Evidence for Price Premium 

 Task Information Personal Information Concreteness Affective Intensity 

Price Premium No Yes No Yes No Yes No Yes 

Mean .224 .248 .064 .069 .183 .200 .048 .042 

SD .140 .193 .051 .064 .094 .077 .064 .075 
t-test -12.05 -7.015 -13.65 6.78 
P-value p < .001 p < .001 p < .001 p < .001 

Note: We split bids between those with a price below the asking price (“discount”) and those above the asking price (“premium”; 45,841 bids were below and 6,207 bids were 
above, the rest matched the asking price).  

Table WA H5. Model Free Evidence for Bids’ Price Premium and Mimicry of Communication Elements 
 Task Information Personal Information Concreteness Affective Intensity 
Buyer’s use of 
communication 
element 

Low 
degree 

Moderate 
degree 

High 
degree 

Low 
degree 

Moderate 
degree 

High 
degree 

Low 
degree 

Moderate 
degree 

High 
degree 

Low 
degree 

Moderate 
degree 

High 
degree 

Mean Mimicry 
by Freelancer 

.722 .812 .703 .261 .398 .508 .521 .745 .613 .267 .591 .505 

SD .344 .201 .212 .438 .299 .347 .329 .327 .283 .442 .351 .328 
Relation  ∩   /   ∩   ∩  

Note: Here, we only considered bids that received a price premium. We split the bids between those which replied to a buyer that used (1) a low degree (<10% of range of 
observed values), (2) moderate degree (45%-55% of range of observed values), and (3) high degree(>90% of range of observed values), of the respective communicative element 
(i.e. task information, personal information, concreteness, or affective intensity). 45,841 bids were below and 6,207 bids were above, the rest matched the asking price. We 
calculated the difference between each bid’s (b) use of each respective communication element (C) and the respective call for bids’ (cfb) use of the same communication element 
(C) using the same formula as Ludwig et al. (2013) when they calculated the linguistic style match. Specifically Mimicry of Cb = 1-[|(Cb -Ccfb)|/( Cb +Ccfb+0.0001]. The resulting 
similarity score is bounded by 0 and 1 for each bid, higher numbers represented greater similarity (or mimicry) by the freelancer towards the buyer’s use of the respective 
communication element. We split the reporting of the average differences for all bids which were submitted in response to (1) call for bids that used the communication element to 
a less degree, (2) moderate degree, and (3) great degree.   
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WA#I: Latent Dirichlet Allocation to Account for Project Characteristics 

To account for potential project specifics which may (partly) explain the call-for bids or 

bids formulations and success, we used latent Dirichlet allocation (LDA; Blei 2012). LDA 

measures word co-occurrence across texts (e.g., keywords in freelancers’ profile service 

descriptors), identifies latent topics, and the probability of each word appearing in a given topic.  

To approximate the kind of project, we therefore used the skill keywords in freelancers 

service profile descriptors instead (see illustrative figure in Web Appendix D, the skill keywords 

are listed in Point 4). Specifically, any number of freelancers can apply to the same project. 

Overall, our reduced data comprises 343,796 unique projects. For each project, we concatenated 

all service skill tags keywords in from each applying freelancers’ service profile who submitted a 

bid to the specific call for bids. These combined profile descriptor words were then processed 

using the R-package Quanteda (Benoit et al. 2018) to first remove punctuation, symbols, and 

English stopwords. Second, we stemmed the words. Third, we detected bigram collocations, 

such as “graphic design”, and treat these as single tokens. We then formed a document-feature 

matrix from the tokens, and trimmed this to remove any terms that occurred fewer than 10 times, 

or in less than .001 percent of all documents. Following best practice (Blei 2012), we ran the 

structural topic model for K = 1 to 20 topics. Fit measures (i.e., held-out likelihood, semantic 

coherence, residuals, and lower bound) revealed the best fit at K = 12, so we fitted the K = 12 

topic model. We then estimated topic proportions per project, resulting in a vector of 12 control 

variables capturing the proportion of the applying freelancers’ keyword service descriptors 

pertaining to each of the 12 latent topics extracted, see Table I1. We include a control for each of 

the 12 topic proportions to account for the project type.  
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Table WA I1. Latent Project Characteristics derived from the LDA 

Topic Top Word Stem Examples 

1 seo, sale, social media 

2 writer, editor, copywrit* 

3 consult*, manag*, analyst* 

4 translat*, proofread*, content writer 

5 artist, 3d, video editor  

6 web design, websit*, website design  

7 illustr*, programm*, architect* 

8 php, wordpress, html 

9 web develop*, communic*, ui  

10 account, support, project manag*  

11 photograph, video, audio 
12 data entr*, administr*, office 
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WA#J: Descriptive Statistics and Correlations 

Table WA J1. Descriptive Statistics and Correlations for Call for Bid Success 

  1 2 3 4 5 6 7 8 9 10 11 
1. Call for bids success            

2. Task information .11           

3. Personal information -.07 -.08          

4. Concreteness .14 -.07 -.04         

5. Affective intensity -.11 -.14 .02 -.13        

6. Word count -.09 -.23 -.20 -.02 .07       

7. Buyer experience -.08 .01 -.01 -.02 .01 .02      

8. Project payment .13 .02 -.07 .03 -.04 .06 -.02     

9. Payment not disclosed .22 .00 .02 .10 -.06 -.13 -.06 -.10    
10. Project duration .47 .12 -.06 .21 -.16 -.18 -.08 .14 .37   
10. Excess supply of freelancers .21 .09 .05 .08 -.13 -.18 -.07 .07 .12 .23  
 Mean 4.92 .26 .03 .20 .04 125.60 11.18 57.58 .15 .33 7.25 
 SD 8.37 .08 .03 .07 .03 93.57 20.00 230.32 .35 .47 2.27 

Note: Observations = 343,796. 

*Please note that there is a non-disclosure agreement is in place for the secondary data restricting the disclosure of confidential information. 
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Table WA J2. Descriptive Statistics and Correlations for Bid Success 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
1. Bid success                      
2. Freelancer task information .03                     
3. Freelancer personal information -.02 -.39                    
4. Freelancer concreteness .04 -.44 .18                   
5. Freelancer affective intensity .01 -.17 .10 .09                  
6. Buyer task information -.04 .05 .01 -.01 .01                 
7. Buyer personal information .03 -.01 .02 .00 .01 -.11                
8. Buyer concreteness -.06 -.06 .03 .10 .01 -.08 -.04               
9. Buyer affective intensity .02 .01 -.01 .00 .05 -.12 .04 -.10              
10. Word count -.11 -.22 -.03 .26 .01 .00 -.04 .05 .01             
11. Linguistic style matching .10 .46 -.25 -.49 -.10 .04 -.04 -.08 .00 -.41            
12. Freelancer experience .11 -.01 -.02 .03 .01 .03 .00 -.02 .01 .00 .01           
13. Freelancer rating .02 -.01 .01 .04 -.01 -.01 .00 .01 .00 .00 -.02 .11          
14. Project payment -.03 -.04 -.01 .03 .00 .00 -.05 .00 .00 .08 -.06 -.01 -.01         
15. Payment not disclosed -.06 -.04 .01 .03 -.01 .00 .04 .02 .00 .05 -.05 .05 .02 -.11        
16. Previous relationship .36 .00 .01 .02 .01 -.01 .01 -.03 .01 -.06 .06 .11 .02 -.01 -.02       
17. Bid price -.01 -.03 -.02 .03 .00 -.01 .00 .00 .00 .05 -.03 .06 .03 .01 -.03 .01      
18. Time-to-bid -.01 .01 .00 -.01 -.02 -.01 -.02 .00 .01 .00 .02 -.10 .00 .03 .00 .03 .00     
19. Late submission -.16 .02 -.05 -.01 .01 .01 .00 .01 .00 .04 -.03 -.03 -.01 .01 .00 -.26 -.01 -.01    
20. Competition -.21 .02 .01 -.01 .00 .06 -.03 .01 .00 .05 -.04 -.05 .01 .10 -.07 -.09 -.02 .03 .02   
21. Excess supply of freelancers -.06 .03 -.02 -.01 -.01 -.01 -.02 .05 -.04 .03 -.01 -.12 .00 .03 -.04 -.03 -.01 -.02 .01 .16  
 Mean .08 .28 .05 .17 .05 .28 .03 .23 .04 96.23 .48 6.02 4.53 233.58 .32 .02 -.07 1.57 1.00 22.96 8.28 
 SD .27 .20 .05 .09 .05 .08 .03 .06 .03 111.79 .22 8.28 .63 1402.62 .47 .13 .59 4.31 .06 20.58 2.17 

Note: Observations = 2,327,216.  

*Please note that there is a non-disclosure agreement is in place for the secondary data restricting the disclosure of confidential information. 
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Table WA J3. Descriptive Statistics and Correlations for Price Premium 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1. Price premium                    
2. Freelancer task information .25                   
3. Freelancer personal information -.20 -.48                  
4. Freelancer concreteness -.10 -.21 .03                 
5. Freelancer affective intensity .00 -.06 -.07 -.05                
6. Buyer task information .00 .09 .02 -.06 .01               
7. Buyer personal information .10 .08 -.04 -.01 -.02 -.09              
8. Buyer concreteness -.13 -.14 .09 .32 .00 -.10 -.06             
9. Buyer affective intensity .06 .06 -.06 -.04 .11 -.10 .03 -.12            
10. Word count -.27 -.27 .11 .18 -.01 -.02 -.09 .15 -.04           
11. Linguistic style matching .27 .42 -.25 -.28 -.01 -.06 .01 -.18 .09 -.49          
12. Freelancer experience .13 .09 -.11 -.03 .02 .00 .01 -.06 .05 -.11 .14         
13. Freelancer rating -.03 -.05 .05 .04 -.01 -.01 -.02 .04 -.03 .04 -.05 .10        
14. Project payment -.21 -.09 .05 .05 .00 .00 -.08 .05 -.03 .15 -.11 -.03 .02       
15. Previous relationship .05 -.01 .02 -.02 .02 .04 .00 -.04 .00 -.15 .09 .13 .06 -.01      
16. Time-to-bid -.08 -.11 .18 .02 -.04 .00 -.04 .03 -.01 .00 -.01 -.03 .02 .06 .13     
17. Late submission .00 .09 -.15 .01 .03 -.01 .02 .00 .01 .06 -.02 -.03 -.04 -.02 -.23 -.04    
18. Competition -.24 -.16 .20 .05 -.03 .04 -.12 .12 -.05 .22 -.18 -.09 .05 .13 -.05 .17 -.13   
19. Excess supply of freelancers -.19 -.06 .08 .05 .00 .02 -.02 .10 -.08 .13 -.14 -.16 .05 .07 -.03 .02 .01 .16  
 Mean -.13 .32 .04 .18 .05 .27 .03 .21 .04 51.20 .57 9.07 4.57 96.25 .18 1.14 .97 7.36 7.79 
 SD .26 .21 .05 .10 .08 .08 .03 .07 .03 86.14 .23 10.50 .57 328.12 .38 3.71 .18 10.72 2.23 

Note: Observations = 148,158. 

*Please note that there is a non-disclosure agreement is in place for the secondary data restricting the disclosure of confidential information. 
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WA#K: Response Surface Coefficients 

 Model 4: 
Bid Success 

Model 6:  
Price Premium 

 β SE 95% CI β SE 95% CI 
Task Information       

Fit line slope (y01 + y05) .006** .001 .005, .008 .025** .002 .021, .028 
Fit line curvature (y09 + y13 + y17) .010** .001 .009, .011 .027** .002 .025, .029 
Misfit line slope (y01 – y05) .023** .001 .022, .025 .019** .002 .015, .023 
Misfit line curvature (y09 - y13 + y17) -.020** .000 -.021, -.019 -.023** .001 -.025, -.021 
Slope at low level of buyer’s task information (y01 - 1.5 SDy13) -.008** .001 -.009, -.007 -.016** -.003 -.017, -.015 
Slope at high level of buyer’s task information (y01 + 1.5 SDy13) .038** .001 .037, .040 .060** .007 .055, .066 

Personal Information       
Fit line slope (y02 + y06) .000 .001 -.001, .001 .006* .003 .003, .009 
Fit line curvature (y10 + y14 + y17) -.011** .000 -.012, -.01 -.004* .002 -.007, -.001 
Misfit line slope (y02 – y06) -.035** .001 .033, .037 .037 .003 .032, .042 
Misfit line curvature (y10 – y14 + y17) -.007** .000 -.006, -.008 .003* .002 .008, .014 
Slope at low level of buyer’s personal information (y02 - 1.5 SDy14) .020** .001 .019, .020 .027** .001 .025, .029 
Slope at high level of buyer’s personal information (y02 + 1.5 SDy14) .014** .001 .013, .016 .015** .004 .009, .023 

Concreteness       
Fit line slope (y03 + y07) .023** .001 .022, .024 .001 .001 -.006, .008 
Fit line curvature (y11 + y15 + y19) -.001** .000 -.001, .000 -.002** .001 -.004, -.001 
Misfit line slope (y03 – y07) .040** .001 .038, .041 .009** .003 .007, .011 
Misfit line curvature (y11 – y15 + y19) -.011** .000 -.011, -.010 -.007** .003 -.009, -.005 
Slope at low level of buyer’s concreteness (y03 - 1.5 SDy15) .024** .001 .024, .025 .002 .002 -.002, .004 
Slope at high level of buyer’s concreteness (y03 + 1.5 SDy15) .039** .001 .036, .041 .008 .001 -.005, .019 

Affective Intensity       
Fit line slope (y04 + y08) .001 .001 -.001, .003 .002 .003 -.004, .009 
Fit line curvature (y12 + y16 + y20) .020** .000 .020, .021 .012** .001 .011, .013 
Misfit line slope (y04 – y08) -.002 .001 -.003, .000 .004 .004 -.003, .011 
Misfit line curvature (y12 – y16 + y20) -.020** .000 -.021, -.020 -.008** .001 -.01, -.006 
Slope at low level of buyer’s intensity (y04 - 1.5 SDy16) -.030** .001 -.031, -.030 -.012** .002 -.015, -.009 
Slope at high level of buyer’s intensity (y04 + 1.5 SDy16) .030** .001 .028, .032 .018** .005 .009, .027 

**p < .01, *p < .05. Significance is based on two-tailed tests. 
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WA#L: Effect of Matching the Buyers’ Communication on Bid Success 

A. Similarity and Dissimilarity of Task Information B. Similarity and Dissimilarity of Personal Information 

  
C. Similarity and Dissimilarity of Concreteness D. Similarity and Dissimilarity of Affective Intensity 
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WA#M: Low vs. High Levels of Buyers’ Communication and Bid Success 

A. Low and High Levels of Buyers’ Task Information B. Low and High Levels of Buyers’ Personal Information 

  
C. Low and High Levels of Buyers’ Concreteness D. Low and High Levels of Buyers’ Affective Intensity 
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WA#N: Results for the Selection Model 

 Selection Model 
 β SE 95% CI 
Freelancer Communication    

Task information .270** .006 .258, .282 
Personal information .228** .005 .219, .238 
Concreteness .425** .004 .417, .433 
Affective intensity -.018* .008 -.034, -.002 

Buyer Communication    
Task information .002 .004 -.006, .010 
Personal information -.377** .006 -.389, -.365 
Concreteness -.165** .004 -.173, -.158 
Affective intensity .027** .004 .019, .034 

Freelancer Communication Squared    
Task information squared -.092** .002 -.096, -.088 
Personal information squared -.045** .002 -.048, -.042 
Concreteness squared -.158** .004 -.166, -.150 
Affective intensity squared .005** .001 .004, .006 

Freelancer-Buyer Interactions    
Task information interaction .055** .003 -.033, -.026 
Personal information interaction -.042** .003 .100, .112 
Concreteness interaction .131** .004 -.011, -.003 
Affective intensity interaction .020** .002 -.007, -.002 

Buyer Communication Squared    
Task information squared -.029** .002 .049, .061 
Personal information squared .106** .003 -.049, -.036 
Concreteness squared -.007** .002 .122, .139 
Affective intensity squared -.004** .001 .016, .024 

Controls    
Word count -.381** .007 -.395, -.367 
Linguistic style matching .750** .014 .722, .777 
Freelancer experience .149** .003 .143, .154 
Freelancer rating .052** .003 .046, .058 
Project payment -.008* .003 -.014, -.001 
Previous relationship .308** .002 .304, .312 
Bid price -.120** .003 -.125, -.114 
Time-to-bid -.111** .004 -.119, -.103 
Late submission -.142** .007 -.157, -.128 
Competition -.321** .038 -.396, -.247 
Excess supply of freelancers .089** .005 .080, .099 

Fixed Effects    
Year included 
Submarkets included 

Unobserved Heterogeneity    
Project characteristics included 

Endogeneity Corrections  
Gaussian copulas included 

    
Freelancers 34,851 
Bids 2,327,216 

**p < .01, *p < .05. Significance is based on two-tailed tests. All variance inflation factors < 3.86. 
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WA#O: Effect of Matching the Buyers’ Communication on Price Premium 

A. Similarity and Dissimilarity of Task Information B. Similarity and Dissimilarity of Personal Information 

  
C. Similarity and Dissimilarity of Concreteness D. Similarity and Dissimilarity of Affective Intensity 
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WA#P: Low vs. High Levels of Buyers’ Communication and Price Premium 

A. Low and High Levels of Buyers’ Task Information B. Low and High Levels of Buyers’ Personal Information 

  
C. Low and High Levels of Buyers’ Concreteness D. Low and High Levels of Buyers’ Affective Intensity 
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WA#Q: Additional Effects for All Analyses 

Table WA Q1. Additional Effects for Buyers’ Call for bids Success 

 Model 1:  
Main Effects 

Model 2:  
Full Model 

 β SE 95% CI β SE 95% CI 
Years       

Year 2009 -.025 .262 -.538, .489 -.020 .264 -.537, .496 
Year 2010 .174** .038 .099, .248 .166** .038 .091, .240 
Year 2011 .121** .022 .077, .165 .116** .022 .072, .160 
Year 2012 .288** .014 .260, .316 .285** .014 .258, .313 
Year 2013 .078** .008 .062, .094 .079** .008 .063, .095 
Year 2014 .043** .006 .030, .055 .042** .006 .030, .055 

Submarkets       
Design .115** .011 .092, .137 .126** .011 .104, .148 
Writing & translation .206** .013 .181, .231 .211** .013 .185, .236 
Video, photo, & audio .088** .019 .050, .125 .107** .019 .069, .144 
Business support .154** .012 .129, .178 .162** .012 .137, .186 
Software & mobile development -.078** .016 -.109, -.047 -.072** .016 -.103, -.041 
Web development -.091** .018 -.126, -.056 -.083** .018 -.118, -.048 

Effects of Project Characteristics        
Skills “seo, sale, social media” -.358** .015 -.387, -.329 -.358** .015 -.387, -.329 
Skills “writer, editor, copywrit*” -.437** .015 -.467, -.407 -.439** .015 -.468, -.409 
Skills “consult*, manag*, analyst*” -.691** .021 -.732, -.651 -.694** .021 -.734, -.654 
Skills “artist, 3d, video editor” -.574** .017 -.607, -.541 -.567** .017 -.599, -.534 
Skills “web design, websit*, website design” -.558** .015 -.587, -.529 -.560** .015 -.589, -.531 
Skills “illustr*, programm*, architect*” -.543** .015 -.573, -.514 -.547** .015 -.576, -.517 
Skills “php, wordpress, html” -.221** .030 -.281, -.162 -.219** .030 -.279, -.160 
Skills “web develop*, communic*, ui” -.274** .014 -.302, -.246 -.282** .014 -.310, -.254 
Skills “account, support, project manag*” -.571** .035 -.640, -.502 -.570** .035 -.638, -.502 
Skills “photograph, video, audio” -.658** .016 -.689, -.627 -.659** .016 -.689, -.628 
Skills “data entr*, administr*, office” -.304** .031 -.366, -.243 -.299** .031 -.360, -.237 

Effects of Gaussian Copulas       
Buyer task information .126** .004 .119, .134 .123** .004 .115, .130 
Buyer personal information .117** .003 .111, .123 .115** .003 .109, .121 
Buyer concreteness -.021** .005 -.031, -.012 -.029** .005 -.038, -.019 
Buyer intensity .062** .008 .047, .077 .053** .008 .037, .069 

       
Buyers 49,081 
Call for bids 343,796 

**p < .01, *p < .05. Significance is based on two-tailed tests. All variance inflation factors < 2.11. 

Notes: We omitted year = 2008, submarket = “social media, sales, & marketing”, and project characteristics = 
“translat*, proofread*, content writer”. The dependent variable is the count of all bids received; the sample includes 
all projects listed by buyers with at least two projects to which at least one freelancer submitted a bid. 
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Table WA Q2. Additional Effects for Freelancers’ Bid Success 

 Model 3: 
Freelancer Communication 

Model 4:  
Full Model 

 β SE 95% CI β SE 95% CI 
Years       

Year 2009 .026** .000 .025, .026 .025** .000 .025, .026 
Year 2010 .002 .004 -.007, .010 -.001 .004 -.010, .007 
Year 2011 -.003 .002 -.007, .001 -.005* .002 -.008, -.001 
Year 2012 -.007** .002 -.010, -.003 -.008** .002 -.011, -.005 
Year 2013 -.015** .001 -.017, -.012 -.016** .001 -.019, -.014 
Year 2014 -.005** .001 -.007, -.003 -.007** .001 -.009, -.005 

Submarkets       
Design -.006** .001 -.007, -.004 -.006** .001 -.007, -.004 
Writing & translation -.050** .003 -.055, -.045 -.049** .003 -.054, -.044 
Video, photo, & audio -.042** .003 -.047, -.037 -.042** .003 -.047, -.037 
Business support -.040** .004 -.047, -.033 -.041** .003 -.047, -.034 
Software & mobile development -.031** .002 -.035, -.027 -.033** .002 -.037, -.028 
Web development -.024** .002 -.029, -.020 -.024** .002 -.029, -.020 

Effects of Project Characteristics        
Skills “seo, sale, social media” -.022** .002 -.027, -.017 -.023** .002 -.028, -.018 
Skills “writer, editor, copywrit*” -.016** .002 -.019, -.012 -.016** .002 -.019, -.012 
Skills “consult*, manag*, analyst*” -.003 .002 -.006, .001 -.002 .002 -.005, .002 
Skills “artist, 3d, video editor” .014** .003 .009, .020 .015** .003 .010, .020 
Skills “web design, websit*, website design” .027** .002 .023, .032 .026** .002 .022, .031 
Skills “illustr*, programm*, architect*” .007** .002 .003, .011 .008** .002 .004, .011 
Skills “php, wordpress, html” .011** .002 .007, .015 .013** .002 .009, .017 
Skills “web develop*, communic*, ui” -.007** .002 -.011, -.003 -.006 .002 -.011, -.002 
Skills “account, support, project manag*” -.021** .002 -.025, -.018 -.019** .002 -.022, -.016 
Skills “photograph, video, audio” .006 .003 -.001, .012 .006 .003 -.001, .012 
Skills “data entr*, administr*, office” .023** .002 .018, .027 .023** .002 .019, .028 

Effects of Gaussian Copulas       
Freelancer task information -.013** .003 -.019, -.008 -.013** .003 -.019, -.008 
Freelancer personal information -.031** .001 -.033, -.029 -.029** .001 -.031, -.027 
Freelancer concreteness .008** .001 .006, .009 .007** .001 .006, .009 
Freelancer intensity .010** .000 .009, .011 .010** .000 .009, .010 
Buyer task information    -.005** .001 -.007, -.003 
Buyer personal information    .005** .000 .004, .005 
Buyer concreteness    -.007** .000 -.008, -.007 
Buyer intensity    -.007** .000 -.008, -.007 

       
Freelancers 34,851 
Bids 2,327,216 

**p < .01, *p < .05. Significance is based on two-tailed tests. All variance inflation factors < 3.86. 

Notes: We omitted year = 2008, submarket = “social media, sales, & marketing”, and project characteristics = 
“translat*, proofread*, content writer”. The dependent variable is whether the freelancer is chosen and wins the 
bidding process; the sample includes all bids by freelancers with at least one winning and at least one losing bid. 
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Table WA Q3. Additional Effects for Freelancers’ Price Premium 

 Model 5: 
Freelancer Communication 

Model 6:  
Full Model 

 β SE 95% CI β SE 95% CI 
Years       

Year 2009 -.012** .002 -.016, -.009 -.012** .002 -.015, -.009 
Year 2010 -.027** .002 -.030, -.023 -.026** .002 -.029, -.022 
Year 2011 -.020** .002 -.023, -.017 -.020** .002 -.023, -.017 
Year 2012 -.021** .001 -.024, -.018 -.021** .001 -.023, -.018 
Year 2013 -.007** .001 -.009, -.004 -.007** .001 -.009, -.004 
Year 2014 .000 .002 -.005, .005 .000 .002 -.005, .004 

Submarkets       
Design .007** .002 .003, .011 .0073* .002 .004, .011 
Writing & translation -.002 .001 -.005, .000 -.002 .001 -.005, .000 
Video, photo, & audio .008** .002 .004, .012 .007** .002 .004, .011 
Business support -.004 .003 -.009, .001 -.004 .003 -.009, .001 
Software & mobile development -.002 .003 -.007, .003 -.002 .003 -.007, .003 
Web development -.003* .002 -.006, .000 -.003* .002 -.006, .000 

Effects of Project Characteristics        
Skills “seo, sale, social media” -.006** .002 -.009, -.002 -.006** .002 -.009, -.002 
Skills “writer, editor, copywrit*” -.003** .001 -.006, -.001 -.003** .001 -.006, -.001 
Skills “consult*, manag*, analyst*” -.003 .002 -.006, .001 -.003 .002 -.006, .000 
Skills “artist, 3d, video editor” -.011** .002 -.015, -.007 -.012** .002 -.016, -.008 
Skills “web design, websit*, website design” -.008** .002 -.012, -.004 -.008** .002 -.012, -.005 
Skills “illustr*, programm*, architect*” -.003* .001 -.005, .000 -.003* .001 -.005, .000 
Skills “php, wordpress, html” -.018** .002 -.022, -.013 -.018** .002 -.023, -.014 
Skills “web develop*, communic*, ui” .000 .001 -.003, .002 -.001 .001 -.003, .002 
Skills “account, support, project manag*” -.004** .001 -.007, -.001 -.004 .001 -.007, -.001 
Skills “photograph, video, audio” -.002 .001 -.004, .001 -.002 .001 -.004, .001 
Skills “data entr*, administr*, office” -.003 .004 -.011, .006 -.004 .004 -.013, .004 

Effects of Gaussian Copulas       
Freelancer task information .009** .002 .005, .012 .009** .002 .005, .012 
Freelancer personal information .003** .001 .001, .005 .003** .001 .001, .005 
Freelancer concreteness -.015** .003 -.020, -.010 -.014** .003 -.019, -.009 
Freelancer intensity -.014** .001 -.016, -.011 -.014** .001 -.017, -.011 
Buyer task information    -.001 .002 -.004, .003 
Buyer personal information    .002 .001 -.001, .004 
Buyer concreteness    .005** .002 .002, .008 
Buyer intensity    -.036** .003 -.042, -.030 

       
Freelancers 30,851 
Bids 148,158 

**p < .01, *p < .05. Significance is based on two-tailed tests. All variance inflation factors < 2.74. 

Notes: We omitted year = 2008, submarket = “social media, sales, & marketing”, and project characteristics = 
“translat*, proofread*, content writer”. The dependent variable is price premium for the chosen bid; the sample 
includes all winning bids where the payment was disclosed. 
 

  

Page 88 of 97

Journal of Marketing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

37 

WA#R: Robustness Test: Predicting Freelancers’ Bid Success 

 Model 7: 
Freelancer Communication 

Model 8:  
Full Model 

 β SE 95% CI β SE 95% CI 
Freelancer Communication       

y01: Task information .014** .001 .013, .015 .016** .001 .015, .017 
y02: Personal information .018** .001 .017, .019 .017** .001 .016, .018 
y03: Concreteness .028** .000 .028, .028 .029** .000 .029, .029 
y04: Affective intensity .003** .001 .002, .004 .001 .001 .000, .002 

Buyer Communication       
y05: Task information    -.009** .000 -.009, -.009 
y06: Personal information    -.016** .000 -.016, -.016 
y07: Concreteness    -.008** .000 -.008, -.008 
y08: Affective intensity    .001** .000 .001, .001 

Freelancer Communication Squared       
y09: Task information squared -.006** .000 -.006, -.006 -.006** .000 -.006, -.006 
y10: Personal information squared -.004** .000 -.004, -.004 -.004** .000 -.004, -.004 
y11: Concreteness squared -.006** .000 -.006, -.006 -.006** .000 -.006, -.006 
y12: Affective intensity squared .000** .000 .000, 0.00 .000** .000 .000, .000 

Freelancer-Buyer Interactions       
y13: Task information interaction    .002** .000 .002, .002 
y14: Personal information interaction    -.001** .000 -.001, -.001 
y15: Concreteness interaction    .005** .000 .005, .005 
y16: Intensity interaction    .002** .000 .002, .002 

Buyer Communication Squared       
y17: Task information squared    .000** .000 .000, .000 
y18: Personal information squared    -.004** .000 -.004, -.004 
y19: Concreteness squared    .001** .000 .001, .001 
y20: Affective intensity squared    .000** .000 .000, .000 

Controls       
Word count -.020** .001 -.021, -.019 -.020** .001 -.021, -.019 
Linguistic style matching .022** .001 .021, .023 .023** .001 .022, .024 
Freelancer experience .003** .001 .002, .004 .003** .001 .002, .004 
Freelancer rating .002** .000 .002, .002 .002** .000 .002, .002 
Project payment -.001** .000 -.001, -.001 -.063** .001 -.064, -.062 
Payment not disclosed -.027** .000 -.027, -.027 -.001** .000 -.001, -.001 
Previous relationship .077** .001 .076, .078 -.027** .000 -.027, -.027 
Bid price -.006** .000 -.006, -.006 .076** .001 .075, .077 
Time-to-bid .000 .000 .000, .000 -.006** .000 -.006, -.006 
Late submission -.005** .000 -.005, -.005 -.004** .000 -.004, -.004 
Competition -.252** .007 -.259, -.245 -.252** .007 -.259, -.245 
Excess supply of freelancers -.040** .000 -.04, -.04 -.039** .000 -.039, -.039 

Fixed Effects       
Years included included 
Submarkets included included 

Unobserved Heterogeneity       
Project characteristics included included 

Endogeneity Corrections       
Gaussian copulas included included 

       
Freelancers 114,455 
Bids 2,530,111 

**p < .01, *p < .05. Significance is based on two-tailed tests. Notes: The dependent variable is whether the 
freelancer is chosen and wins the bidding process. The sample includes all bids by freelancers with at least one bid.

Page 89 of 97

Journal of Marketing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

38 

WA#S: Illustrative Examples of Bad and Good Practice Calls for Bids and Bids 

Good practice call for bids  
(specific on tasks and skills, avoid personal information, moderately concrete, avoid being affectively intense) 
Hi, I am a Fitness Trainer and need help with building my website to showcase my mixed services and home workouts. I 
need a website designer who can design a WordPress website using a WordPress premium theme. The theme and 
examples will be provided, but you should also know about WordPress and optimize. You should have got very good 
creative skills but know how to design for web and also know how to include calls to actions within a good design. The 
website should be complete within 2 weeks. Please see the suggested payment and state your asking price for the entire 
project not per hour. Looking forward to hearing from you. Gary 
Bad practice call for bids  
(not specific on tasks and skills) 
Hi, need a website to showcase the full range of my fitness workouts. Job is 14 days, looking forward to your bid. 
Bad practice call for bids  
(too much personal information) 
Hi, I am a Fitness Trainer with a lot of experience running workouts. I have been creating my own classes for almost 10 
years now. Clients tend to especially love my classes on strength and flexibility. Now I need help setting up my website 
to showcase my services and home workouts. I need a website designer who can design a WordPress website using a 
WordPress premium theme. The theme and examples will be provided, but you should also know about WordPress and 
optimize. You should have got very good creative skills but know how to design for web and also know how to include 
calls to actions within a good design. The website should be complete within 2 weeks. Please see the suggested payment 
and state your asking price for the entire project not per hour. Looking forward to hearing from you. Gary 
Bad practice call for bids  
(not concrete enough) 
Hi, I provide certified, all-rounder fitness exercises and I seek help with establishing my interactive website. I require a 
professional who is savvy in configuring a stylish website employing a premium theme. I will impart the exposition but 
you should be cognizant about WordPress and reinvigorate. You should have got very good creative skills but know how 
to design for web and also know how to include calls to actions within a good design. The website should be complete 
within 2 weeks. Please see the suggested payment and state your asking price for the entire project not per hour. Looking 
forward to hearing from you. Gary 
Bad practice call for bids  
(too affectively intense) 
Hi, I am a super enthusiastic Fitness Trainer and need help with building an outstanding website to showcase my 
excellent services and home workouts. I need an open-minded website designer who is excited about designing a 
WordPress website using a WordPress premium theme. I have created a fantastic theme but you should be confident and 
eager about WordPress and help optimize. You should have got very good creative skills but know how to design for 
web and also know how to include calls to actions within a good design. The website should be complete within 2 
weeks. Please see the suggested payment and state your asking price for the entire project not per hour. Looking forward 
to hearing from you. Gary 
Good practice bid ( directed to the good practice call for bids) 
(mimic task description, exceed little provision of personal information, exceed concreteness, mimic affective intensity) 
Hi Gary, I am happy to help you with your fitness website development and design.  
I am a WordPress Freelancer with 15 years of work experience. I have worked on several similar projects, designing 
websites using a WordPress including premium themes and I can deliver to a tight schedule.  
Website content that I produce will be creative and include original designs. 
If you choose me for your website project, I would be very happy to discuss this further and get started for you as soon 
as possible. Thanks! Peter 
Bad practice bid ( directed to the good practice call for bids) 
(less specific on tasks and skills, less personal information, less concrete, exceeding affective intensity) 
Dear Sir, would love to work for you. I have great skills and plenty of fantastic experience in creating relevant websites. 
I am an enthusiastic designer and expert in Web development. The content will be creative and fun, attractive, and 
thoughtful. If you award me the project, I'd be very happy to discuss this further and get started for you as soon as 
possible. Thanks! Peter 
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