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Abstract. Image-derived phenotypes of abdominal organs from mag-
netic resonance imaging reveal variations in volume and shape and may
be used to model changes in a normal versus pathological organ and
improve diagnosis. Computational atlases of anatomical organs provide
many advantages in quantifying and modeling differences in shape and
size of organs for population imaging studies. Here we made use of liver
segmentations derived from Dixon MRI for 2,730 UK Biobank partic-
ipants to create 3D liver meshes. We computed the signed distances
between a reference and subject-specific meshes to define the surface-to-
surface (S2S) phenotype. We employed mass univariate regression analy-
sis to compare the S2S values from the liver meshes to image-derived phe-
notypes specific to the liver, such as proton density fat fraction and iron
concentration while adjusting for age, sex, ethnicity, body mass index
and waist-to-hip ratio. Vertex-based associations in the 3D liver mesh
were extracted and threshold-free cluster enhancement was applied to
improve the sensitivity and stability of the statistical parametric maps.
Our findings show that the 3D liver meshes are a robust method for
modeling the association between anatomical, anthropometric, and phe-
notypic variations across the liver. This approach may be readily applied
to different clinical conditions as well as extended to other abdominal
organs in a larger population.

Keywords: Registration · Surface-to-Surface · Morphology · Magnetic
Resonance Imaging.

1 Introduction

Magnetic resonance imaging (MRI) has become the benchmark for clinical re-
search in the study of body composition, particularly for measurements of vis-
ceral adipose tissue, liver and pancreatic fat content. The incidence of chronic
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conditions such as type-2 diabetes, cardiovascular disease and non-alcoholic fatty
liver disease are rising rapidly, which reflects the increasing prevalence of obesity
in society [27]. Organ and tissue MRI measurements, referred to as image-derived
phenotypes (IDPs) have the potential to enhance our understanding of the pre-
cise phenotypic changes underlying these conditions [25].

The UK Biobank is a population-based prospective study that has recruited
over 500,000 volunteers, aged 40–69 years old, with the goal of advancing our un-
derstanding of health and disease [10]. A subset of 100,000 participants has been
invited for a medical imaging assessment that includes a standardised abdominal
acquisition protocol. The UK Biobank abdominal imaging protocol produces sev-
eral MRI datasets that focus on basic structure and composition measurements
in the thorax, abdomen and pelvis [16]. Specifically, the abdominal protocol in-
cludes a two-point Dixon sequence [12] with neck-to-knee coverage, as well as
a multiecho single-slice acquisition of the liver. This latter acquisition enables
non-invasive estimation of tissue composition including proton density fat frac-
tion (PDFF) and iron concentration. Together these sequences enable accurate,
quantitative analysis of multiple liver IDPs.

Performing semantic segmentation on abdominal organs using deep learn-
ing methodology is now widely established. The basic IDP obtained from organ
segmentation is total volume, a single number that is informative but does not
capture the complex morphology of the underlying physical structure of an or-
gan. Computational image analysis, by which machine learning is used to an-
notate and segment the images, is gaining traction as a means of representing
detailed three-dimensional (3D) mesh-derived phenotypes related to shape vari-
ations at thousands of vertices in a standardised coordinate space. One approach
to inference is to transform the spatially correlated data into a smaller number
of uncorrelated principal components [4], while the modes from PCA are use-
ful in exploratory data analysis they do not provide an explicit model relating
3D shape to other phenotypic measures. A more powerful approach may be to
estimate parameters at each vertex of the 3D surface mesh, hence creating a
so-called statistical parametric map (SPM), a concept widely used in functional
neuroimaging [20] and cardiac imaging [9]. A recent study in the cardiovascular
imaging domain, implementing a mass univariate framework, showed the ability
of this technique in identifying interactions between genetic variation related to
hypertrophic cardiomyopathy and a 3D cardiac phenotype [18]. On that note,
scientific questions of interest, such as, how organ shape is associated with dis-
ease state (e.g., type-2 diabetes, cardiovascular disease, non-alcoholic fatty liver
disease) or gene expression (e.g., a single-nucleotide polymorphism or SNP),
may be quantified by selecting a cohort of cases and controls from an available
population and including common covariates in a linear regression framework.

In this paper we extend techniques developed in neuroimaging and car-
diovascular imaging fields to liver imaging by implementing a mass univariate
framework that maps associations within the phenotypic variation. Such an ap-
proach would provide overly conservative inferences without considering spa-
tial dependencies in the underlying data, so we evaluated threshold-free cluster-
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enhancement with respect to liver phenotypes for the sensitive detection of co-
herent signals in order to understand their efficacy in identifying phenotypic
interactions in liver shape and structure. A cohort of UK Biobank participants
are analyzed using our methodology, with the aim to investigate the associa-
tions between both image-derived and non-image-derived phenotypes and local
liver morphology and establish anatomical structures in the liver. We further ex-
plore the feasibility of SPMs in comparing groups of subjects using mesh-based
shape analysis. These 3D derived morphometric phenotypes will significantly
contribute to our understanding of the relationship between form and function
in health and disease.

2 Materials and Methods

2.1 Data

In this work, we used liver segmentations predicted from the Dixon MRI acqui-
sitions in the UK Biobank Imaging Study. The Dixon acquisition contains six
separate series for each subject. We performed basic pre-processing to assemble
the six series into a single volume [17]. Briefly, the six series were resampled
to the same resolution (2.23 × 2.23 × 3.0 mm3), bias-field correction was per-
formed and the six series were blended together resulting in a final volume of
size (224 × 174 × 370 voxels). Segmentations were performed using a convolu-
tional neural network based on the U-net architecture [22], trained using 120
manual annotations performed by a team of radiographers. The segmentation
model achieved a dice score coefficient of 0.932 in out-of-sample data [17].

For the mass univariate regression analysis, we randomly selected 2,730 par-
ticipants from the UK Biobank Imaging Study to cover a broad range of age,
gender and body compositions. Detailed descriptions of the full cohort can be
found in the section below. A randomly selected sub-cohort of 20 participants
(70% females; age range: 50-78 years; average age: 56.8 years) was used to con-
struct the template liver mesh.

2.2 Image Analysis and Mesh Construction

Image registration was performed in two stages to construct the liver template:
affine registration to account for translation, rotation, scaling and shearing, and
non-rigid registration to account for local deformation using the symmetric im-
age normalization (SyN) method with cross-correlation as the similarity met-
ric [1,3]. The algorithm maps a group of images to a common space by finding
the template and set of transformations with the lowest dataset parameteriza-
tion. The size of the parameterization, here, is given by the SyN implementation
which measures the image similarity metric and diffeomorphism maps [3]. Here,
we performed the image registration with no initial template as input instead,
the template is derived completely from twenty images. In particular, we trans-
formed the liver segmentations of twenty subject-specific volumes to the template
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space using the non-rigid transformation and computed a template in four it-
erations. This computes the Euclidean distance as a metric for average shape
which corresponds to the average liver across all subjects. A surface mesh was
then constructed from the average template using the marching cubes algorithm
and Laplacian smoothing in the VTK library (Kitware Inc.), and a template was
created in a coordinate space [5]. Fig. 1, illustrates a scheme summarising the
pipeline for the template mesh construction.

Once the template was available we performed a registration step where
all subject-specific segmentations were rigidly aligned to a template segmenta-
tion. The subject meshes were then constructed enabling the further compu-
tation of 3D mesh-derived phenotypes. The liver meshes encode the 3D mesh-
derived phenotype variation for the study cohort, in particular, for each subjects’
mesh, surface-to-surface (S2S) values were measured by computing the nearest-
neighbour signed distance between the template surface and a subjects’ surface
for each vertex. After a manual quality control process investigating for out-
liers on the surface-to-surface values, all values were no larger than the range
±65 mm.

The template construction was performed using Advanced Neuroimaging
Tools (ANTs) [1,2,3] using cross correlation (CC) as the similarity metric, the
B-spline non-rigid transformation model (BSplineSyN) and default parameters
otherwise. The subject’s registration was performed using the rigid and affine
transform type (a) and the rest of the default parameters from ANTs. The
3D mesh-derived phenotype was computed using the packages FNN [7] and
Rvcg [23] in R 3.6.1 [21].

Fig. 1. Average template mesh construction. Dixon MRI volumes from UK Biobank
abdominal protocol (left) are used to produce subject-specific 3D liver segmentations
(middle), then images are registered to a common space and combined to produce an
average template mesh.

2.3 Mass Univariate Regression Analysis

The association between the 3D mesh-derived phenotype and anthropometric
variables is modeled using a linear regression framework. Given ns subjects from

http://www.picsl.upenn.edu/ANTs
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a sample of the population under study, the linear regression model was expressed
as

Y = Xβ + ε, (1)

where Y is a ns×nv matrix containing (nv is the number of voxels in the mesh),
for example, the S2S values of all the ns subjects at each vertex of the 3D liver
mesh, X is the ns × p design matrix of p known covariates (including the inter-
cept) and the clinical variables for each subject, such as age and sex, used to
model the hypothesis under investigation. X is related with Y by the vector of
the regression coefficients β. In this way, Y may be associated with each of the
columns of X adjusted for the other covariates. Finally ε is a ns×nv matrix which
is independent and identical distributed across the subjects and is assumed to be
a zero-mean Gaussian process [14]. The estimated regression coefficients β̂ and
their related p-values at each vertex in the mesh may be displayed on the whole
3D liver anatomy, providing the spatially-distributed associations. We applied
threshold-free cluster-enhancement (TFCE) to enhance areas of the signal that
exhibit spatial contiguity and better discriminate the estimated parameters be-
tween noise and spatially-correlated signal [9,24]. The mass univariate regression
model for deriving associations between clinical parameters and a 3D phenotype
is outlined in Fig. 2.

The TFCE statistic at each vertex v of the 3D mesh under study is given by

TFCE(v) =

∫ hv

h=h0

e(h)EhHdh, (2)

where h is the value of the corresponding t-statistic and is raised from zero (h0)
up to the height of the vertex v (hv), e(h) is the extent of the cluster with
threshold h that contains v vertices, and E and H are two hyperparameters
empirically defined to be 0.5 and 2 [24].

The derived p-values were corrected to control the false discovery rate (FDR)
using the Benjamini-Hochberg procedure [6] as it has been shown to provide the
optimal p-values and areas of significance [9]. Together TFCE and permutation
testing were applied to compute a new set of p-values at each mesh vertex v, by
sampling the data and computing the TFCE N times over the obtained statis-
tical parametric maps. The permutation testing was performed to estimate the
null distribution for the univariate statistics. In particular, we permuted the data
N times obtaining TFCE scores where the test statistics are summed forming
a cluster mass statistic. The permutation testing identifies the largest cluster
among those permutations [9]. Here, we used the Freedman-Lane technique as a
permutation framework, as it provides powerful permutation and optimal control
of false positives [13,26]. The mass univariate regression analysis was performed
from a refined version of the package mutools3D [8] in R 3.6.1 [21].

3 Results

We analysed liver MRI data from 2,730 participants in UK Biobank from which
97.7% were Caucasian and aged between 46 to 80 years old. The main cohort
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Fig. 2. Flow diagram for the mass univariate regression analysis of three-dimensional
phenotypes. Phenotypes are used to construct the linear regression model, where mass
univariate regression analysis produces parameter estimates (β̂) and the null distribu-
tion via permutation. TFCE is applied to the t-statistics from the regression analysis to
produce the significance threshold. The associated p-values are corrected for multiple
comparisons and mapped on to the mesh for visualisation. This diagram was modified
from [9].

characteristics are shown in Table 1. To assess the associations between S2S and
anthropometric covariates as well as liver IDPs, we performed mass univariate
regression analysis adjusting for age, sex, ethnicity, body mass index (BMI) and
waist-to-hip ratio (WHR). The TFCE algorithm was applied to the t-statistics
and on the permuted t-statistics (N = 1, 000 times) for each analysis. Correction
for multiplicity via the FDR was applied for the number of vertices and the
number of anthropometric covariates/IDPs tested.

A summary of the regression models for the whole cohort, representing the
significance area on the liver is shown in Table 2. S2S values is shown to increase
with age with a positive association on 39 out of 57% of the significance area,
while WHR and BMI showed a decline with increased S2S values. To determine
the nature of the liver modeling we examined the effects of the liver IDPs such
as iron concentration and PDFF. Liver iron was positively associated with S2S
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Table 1. Baseline characteristics and liver IDPs. Values are presented as mean ± SD
for continuous variables and counts for discrete variables.

Full Cohort Men Women

N 2,730 1,368 1,362
N Caucasian 2,669 1,337 1,332

Age (years) 62.8 ± 7.2 63.4 ± 7.3 62.2 ± 7.1

BMI (kg/m2) 26.3 ± 4.1 26.7 ± 3.9 25.8 ± 4.3
WHR 0.88 ± 0.09 0.93 ± 0.06 0.82 ± 0.07
Liver Iron (mg/g) 1.21 ± 0.26 1.22 ± 0.27 1.20 ± 0.24
Liver PDFF (%) 4.8 ± 4.7 5.6 ± 5.1 4.0 ± 4.1

values on 36% of vertices, and negatively associated on 2% of the vertices whereas
liver PDFF showed a positive association on 48 out of 55% of the vertices.

Table 2. Significance areas for covariates in the mass univariate regression model. The
significance area is the percentage of vertices on the liver mesh where the regression
coefficients are statistically significant (p < 0.05) after adjustment for multiple com-
parisons. The total area has been split into areas of positive and negative associations.

Significance Area β̂ < 0 β̂ > 0

Age 57% 18% 39%
BMI 87% 54% 33%
WHR 55% 29% 26%
Liver Iron 38% 2% 36%
Liver PDFF 55% 7% 48%

Fig. 3. Segments of the liver as described in the Couinaud classification, overlaid on
the liver template. Projections are anterior (A) and posterior (B).
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The Couinaud classification [11] of liver segments has been applied to the
liver template for reference (Fig. 3). All the significant associations between S2S
values and the three anthropometric covariates are shown in Fig. 4 and the
association between S2S values and the liver IDPs are in Fig. 5. Interestingly,
the statistical parametric maps with associations between S2S values and liver
iron concentration and PDFF appear to show regional differences congruent
with different segments of the liver proposed by Couinaud. Changes in liver
morphology associated with liver PDFF appeared to be most pronounced in
segments II & III and VI & VII, while changes in liver morphology associated
with liver iron concentration were strongest in segments II & III. BMI and WHR
were associated with the most pronounced positive S2S values in segments III
& VI and part of IV & VII with negative S2S values in segments II & VIII.

4 Discussion and Conclusions

In this paper, we constructed surface meshes from liver segmentations of 2,730
subjects in the UK Biobank. Based on the vertices of the mesh, we were able
to compute a 3D phenotype related to local shape variations and perform mass
univariate regression analysis to model the associations with anthropometric and
phenotypic traits.

We performed image registration and estimated a liver template with average
shape using an optimal normalisation technique by computing the Euclidean
mean of the of the non-rigid transformations. This normalization technique has
been shown to provide the optimal mapping and template shape [3]. Also, the
computation of the Euclidean mean has been shown to provide a good estimation
of the template construction [5]. We used rigid registration to align the subject
segmentations to the template in order to account for orientation and position
differences obtaining a transformation in a standard space for each subject. There
are a few ways of fixing these difference of the subjects’ meshes. Previous studies
investigating the shape and motion of the left ventricle of the heart removed these
differences by retaining the shape and size for analysis [5,19].

Statistical parametric mapping has been a useful technique in neuroimag-
ing [20] and cardiac imaging [9], showing that such statistical methods may
be utilised in modelling the relationship between phenotypic and genetic vari-
ation [18]. Our findings demonstrate that the 3D mesh-derived phenotypes of
the liver in specific anatomical regions are associated with the anthropomet-
ric/phenotypic traits using the SPM framework. We also found that liver IDPs
were significantly associated with higher S2S values, suggesting that increased
liver fat and iron concentration may have an impact on the liver shape and struc-
ture. It is also notable that the liver S2S values increase with age and waist-to-hip
ratio. These findings agree with previous studies that report an increase in liver
fat and iron is associated with predictors of metabolic disease [15]. Interestingly,
the pattern of changes in S2S values across the liver reflect differences that
might be attributed to different lobes and segments of the liver described in the
Couinaud system of classification. Further work to explore this in more detail
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Fig. 4. Three-dimensional statistical parametric maps of liver morphology, projections
are anterior (A) and posterior (B). The SPMs show the local strength of association
between age, body mass index (BMI) and waist-to-hip ratio (WHR) with surface-
to-surface values. Yellow contour lines indicate significant regions (p < 0.05) after
correction for multiple testing, with positive associations in bright red and negative
associations in bright blue.
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Fig. 5. Three-dimensional statistical parametric maps of liver morphology, projections
are anterior (A) and posterior (B). The SPMs show the local strength of association
between liver iron concentration and proton density fat fraction (PDFF) with surface-
to-surface values. Yellow contour lines indicate significant regions (p < 0.05) after
correction for multiple testing, with positive associations in bright red and negative
associations in bright blue.

may allow further mapping the associations between genetic variations and 3D
phenotypes in specific anatomical regions.

Organ shape variations could become a powerful tool for assessing global
changes associated with organ damage (liver fibrosis and cirrhosis), disease pro-
gression and remission (fatty liver, haemochromatosis, nonalcoholic steatohepati-
tis) and eventually treatment outcome. Moreover, this technique has the poten-
tial to be simultaneously applied in multi-organ approaches (e.g., liver, pancreas,
kidneys, spleen) thus giving a more holistic overview of health and disease than
what is currently available from single-organ measurements. Future work will ap-
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ply this method on a larger cohort as well as on other organs in the abdominal
cavity, such as the pancreas, spleen and kidneys.

In conclusion, we have constructed a surface mesh of the liver anatomy in a
sample of subjects from the UK Biobank population. From the surface mesh, we
presented a 3D mesh-derived phenotype and were able to quantify the anatom-
ical relationships with the anthropometric/phenotypic traits in the liver using
the mass univariate regression analysis. We believe that the mesh construction
and statistical techniques will benefit future research in population-based cohort
studied, in identifying associations between physiological, genetic and anthro-
pometric effects on liver structure and function as well as in other abdominal
organs.
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