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Abstract—An efficiency-oriented solution is theoretically a
preferred choice to support the efficient operation of a system.
Although some studies on the multi-manipulator system share the
load of the control center by transforming the network topology,
the whole system often suffers an increased communication
burden. In this article, a multi-manipulator cooperative control
scheme with improved communication efficiency is proposed to
allocate limited communication resources reasonably. Theentire
control process is formulated from the perspective of game theory
and finally evolved into a problem of finding a Nash equilibrium
with time-varying parameters. Then, a neural network solver is
designed to update the strategies of manipulators. Theoretical
analysis supports the convergence and robustness of the solver.
In addition, Zeno behavior does not occur under the domination
of the control strategy. Finally, simulative results reveal that
the proposed control strategy has advantages over traditional
periodic control in communication.

Index Terms—Distributed control, neural networks, communi-
cation overhead, redundancy resolution, game theory.

I. I NTRODUCTION

W ITH the development of engineering fields and the
promotion of intelligent production, current technolo-

gies impose more demands in the improving of traditional
centralized control systems or frameworks. Constructing an
intelligent system that integrates computation, communication
and control technologies has become a rigid demand for
promoting industrial development. At present, more and more
agent systems are designed with cyber-physical systems as the
vane, which aims to coordinate computing, communication
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and other resources to provide high-quality control for the
system [1].

As a unique branch of the robot product family, manipula-
tors have attracted special attention in various fields due to its
strong practicality [2]. Over the past half century, various kinds
of manipulators have been developed for applications such
as minimally invasive surgery [3], space target capture [4],
precision assembly [5]. Although a single manipulator satisfies
the needs of some industries well in many respects, it lacks
certain economic efficiency in some complex or large-scale
operations. For this reason, a variety of multi-manipulator
systems have been emerging to cope with this deficiency, with
an obvious advantage that the tasks are completed efficiently
and flexibly through the cooperation of manipulators [6].
In recent developments, the research on multi-manipulator
systems mostly focuses on their control strategy formulations,
including centralized strategies [7] and distributed strategies
[8], [9], intelligent control strategies [10], [11], and graph-
based strategies [12], [13], etc. In [7], an execution instruction
is generated and sent to each manipulator uniformly by a
command center, but a potential defect is that the command
center may not be able to dispatch multiple manipulators
online in a timely manner, and the reliability of the system
is poor. The distributed control strategy is an improvement
made to alleviate the operating pressure of the command
center, e.g., the control strategy in [8], [9], which amortizes
the operating load of the command center by allowing each
manipulator to communicate locally. Besides, to handle some
uncertain factors that may appear in the control process, a
kind of intelligent algorithms such as adaptive control [10] and
fuzzy control [11] are presented, which are currently deemed
as important means to improve the dynamic performance of
manipulators. Apart from these, the topological connection
of manipulators determines the performance of the system to
perform tasks to a certain extent, so graph-based strategies
are also investigated. Typically, differences in performance
of various control architectures are revealed in [12] from the
perspective of graph theory.

While multi-manipulator systems maintain the advantages
of scalability, stability, and efficiency in performing complex
tasks, they also bring high control costs [14]. Calculation
and communication are two processes that occupy the most
resources in system operation [15], [16]. Notice that in tradi-
tional multi-manipulator systems, the system controller mostly
adopts a time-triggered update method. That is, each solver
obtains the required information at the predefined intervals
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through sensors, and then carries out computations and updates
[17]. However, a significant defect is that the controller isin
continuous operation regardless of whether the system needs to
update the strategy, thus ignoring the energy consumption [1],
[18], [19]. To this end, it is necessary to design a new system
controller, which requires calculation and communicationto
be started only when the manipulator needs to update the
strategy, not at a predetermined moment [20]. For example,
a dynamic event-triggered control strategy is designed in [21],
which can guide the single-link manipulator to obtain a com-
promise solution between control accuracy and communication
overhead. In [22], an event-triggered condition is set to decide
whether information exchange is executed among agents,
which significantly reduces the redundant transmission in the
wireless network. Moreover, the design concept of triggering
communication is applied to formation control of multiple
agents in [23], which effectively reduces the communication
between leaders as well as followers. Nevertheless, existing
strategies with the ability to improve communication efficiency
mostly focus on exploring systems that can treat agents as
particles, e.g., [24]–[26], and rarely study scenarios involving
the posture of manipulators. Therefore, constructing a multi-
manipulator control strategy with improved communication
efficiency and position consideration has potential application
value in industrial production.

Neural network solver is an efficient and practical tool
widely used in manipulator control at present, with powerful
real-time processing capabilities [27]–[30]. For example, a
neural network is applied to the real-time tracking of a wheeled
manipulator in [28] and achieves the expected control effect.
Beyond that, solvers designed based on neural networks have
attractive prospects in the development of multi-manipulator
systems. For instance, a problem with the goal of optimizing
the manipulability of the manipulator in the system is solved
online by a neural network solver in [31]. In [32], a neural
network solver is designed to plan the optimal kinematic
scheme that can make the manipulator operation stably. In
view of the unique performance advantages of neural network
in computing, it can be rationally applied to the control
scheme design of the manipulator system. In this article, a
multi-manipulator cooperative control scheme with improved
communication efficiency is constructed from a game per-
spective. The strategy of each manipulator is designed to be
updated with properly defined trigger conditions. To the best
of our knowledge, there is no systematic solution on recurrent
neural network design for multi-manipulator cooperation with
improved system communication efficiency.

The rest of this article is organized as follows. Section II
presents some preliminaries and uses the game theory frame to
formulate the cooperation problem of multiple manipulators.
Then, Section III introduces the event-triggered mechanism
into the multi-manipulator system, and proposes a neural
network solver for real-time updating of control strategies. In
Section IV, theoretical analysis is given to support the per-
formance of the proposed solver. Besides, simulation results
are illustrated in Section V. Finally, Section VI concludesthe
article.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, the kinematic equations of the manipulator
and some basic graph theories are given as preliminaries.
Moreover, a distributed cooperative control of multiple ma-
nipulators is formulated in the framework of game theory.

A. Robot Manipulator Kinematics

In the kinematic control of the manipulator, the spatial
position of the end-effector is uniquely determined by the
state of the joints. To describe this correspondence between
joint spaceϑ(t) ∈ R

m and Cartesian spacex(t) ∈ R
n, it is

conventionally defined as

x(t) = M
(

ϑ(t)
)

, (1)

where M(·) : R
m → R

n, x(t) = [x1(t); x2(t); . . . ; xn(t)],
and ϑ(t) = [θ1(t); θ2(t); . . . ; θm(t)]. Furthermore, for any
manipulator with known structural information, (1) can be
evolved into the following affine system:

ẋ(t) = J
(

ϑ(t)
)

ϑ̇(t), (2)

with ẋ(t) = ∂x(t)/∂t ∈ R
n, J

(

ϑ(t)
)

= ∂M
(

ϑ(t)
)

/∂ϑ ∈
R

n×m, and ϑ̇(t) = ∂ϑ(t)/∂t ∈ R
m, which emphasizes the

instantaneous kinematic behavior of the manipulator. In fact,
how to deduce the rotation status of each joint through the real-
time position of the end-effector has always been a concern
in manipulator control. In this article, the desired trajectory
of the end-effector is set toxd(t), which is emitted from the
command center.

B. Graph Theory

In a system withS manipulators, the communication links
among the manipulators can be stored in graphG , (V, E),
where V = {1, 2, . . . , S} refers to the vertex set withS
manipulators, andE ⊆ V×V refers to the edge set that records
the connected relation of the manipulators. For manipulator
i, the remaining manipulators covered in its communication
range constitute the setNi = {j ∈ V : (i, j) ∈ E}. To further
represent the connection relationship between any manipulator
i andj, its adjacency matrix is set as

A = [αij ] ∈ R
S×S : αii = 0, αij =

{

1, if (i, j) ∈ E

0. otherwise

Further, the Laplace matrix ofG can be defined as

L = diag(AeS) −A ∈ R
S×S ,

where eS = [1; 1; . . . ; 1] ∈ R
S . In addition, a state vector

φ = [φi] ∈ R
S is designed to record the connection between

the manipulator and the command center, in whichφi = 1 if
the communication is established, andφi = 0 otherwise.

Assumption 1: G is assumed to be strongly connected in
this article, and only a limited number of manipulators in
the system can directly receive commands from the command
center.
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C. Game-Theoretic Formulation of Problem

Consider a scenario in which a manipulator system with
limited communication resources is executing payload trans-
port task. At this point, the centralized communication mode
is no longer useful. An alternative solution is to give each
manipulator the power of small-scale communication, enabling
them to communicate and cooperate via a network to reduce
the overhead of the control center. However, note that the
instructions to drive the manipulators in this alternativeare no
longer pre-generated by the command center, so the general
optimization framework is not suitable for solving this prob-
lem. Given that each manipulator determines its own behavior
by accessing the information from nearby manipulators, its
utility function depends not only on its own decisions, but also
on those of other manipulators. With this in mind, a game the-
ory framework can be adopted to deal with the problem. Here,
the manipulators are regarded as game players. Stimulated by
rewards or punishments in the game, the manipulators will
instinctively make decisions that benefit themselves.

For those strategies that can guide the manipulator to com-
plete the assigned tasks, their performance on the manipulator
has significant disparities. To quantify the performance gain of
the action acting on the manipulator at each moment, a payoff
function in a quadratic form is defined as

P(t) = −
(

ϑ̇⊤(t)Rϑ̇(t)/2 + p⊤ϑ̇(t)
)

,

where (·)⊤ denotes the transpose of a matrix or a vector;
R ∈ R

m×m is a semi-positive definite matrix;p ∈ R
m is a

vector. Actually, the main problem of multi-manipulator game
is the disposal of the resource paradox and the allocation of
finite resources. It is conceivable that when each manipulator
tries to maximize its own benefits from finite resources, a
conflict between local interests and overall interests arises.
Therefore, it is necessary to formulate corresponding game
rules to control the behavior of each manipulator. For this,the
strategy of theith manipulator in the cooperative task can be
generated according to the following rules:

max Pi(t) = −
(

ϑ̇⊤
i (t)Rϑ̇i(t)/2 + p⊤ϑ̇i(t)

)

(3a)

s.t. ẋi(t) = Ji

(

ϑi(t)
)

ϑ̇i(t) (3b)

X
◦
i =

1
∑

j∈Ni
αij

∑

j∈Ni

αijX
◦
j (3c)

with X
◦
j =

{

ℵj(t), if φj = 0

xd(t), if φj = 1

of which ℵj(t) = xj(t) − ♭c
j with ♭c

j is a constant vector of
jth end-effector to a fixed point of the payload. Emphasize
that, the existence of (3a) is to maximize the expected payoff
of the manipulator, which is one of the key considerations
in this game; (3b) is the Jacobian equation constraint of the
manipulatori; furthermore, (3c) and (3d) are the information
acquisition constraints that every player is required to abide
by in the game. Particularly, constraints (3c) and (3d) stipulate
that the manipulator not connected to the control center
determines its motion behavior by using the weighted average
of surrounding manipulators’X◦, which are not allowed to be
broken without authorization.

Remark 1: To reasonably import the manipulator model into
the designed information acquisition constraints, we makea
preliminary integration of (3b), (3c) and (3d). First, combine
(3c) and (3d) to obtain

∑

j∈Ni

αij(X
◦
i − X

◦
j ) +

∑

j∈Ni

φi(X
◦
i − xd(t)) = 0. (4)

Subsequently, an error function of (4) is defined as

ℏi =
∑

j∈Ni

αij(X
◦
i − X

◦
j ) +

∑

j∈Ni

φi(X
◦
i − xd(t)) − 0. (5)

Further, by means ofγℏ̇i = −ℏi with γ > 0 and combining
(3b), (4) can be equivalently converted to

γ
∑

j∈Ni

(

αij(Jiϑ̇i(t) − Jj ϑ̇j(t)) + φi(Jiϑ̇i(t) − ẋd(t))
)

+
∑

j∈Ni

(

αij(X
◦
i − X

◦
j ) + φi(X

◦
i − xd(t))

)

= 0.
(6)

Remarkably, (6) can be reconstructed into the following com-
pact form under the guidance of graph theory:

γ(L + Φ) ⊗ InJ̃
˜̇
ϑ + (Φ ⊗ In)

(

eS ⊗ xd(t)
)

=γ(Φ ⊗ In)
(

eS ⊗ ẋd(t)
)

+ (L + Φ) ⊗ InX̃
◦,

(7)

of which Φ = diag(φ) ∈ R
S×S ; J̃ = diag(J1; . . . ;JS) ∈

R
nS×mS ; ˜̇

ϑ = [ϑ̇1; . . . ; ϑ̇S ] ∈ R
mS ; ẋd(t) = ∂xd(t)/∂t ∈

R
n; X̃

◦ = [X◦
1; . . . ; X

◦
S ] ∈ R

nS ; ⊗ signifies the Kronecker
product. Given the above, the subconstraints (3b), (3c), and
(3d) is able to be uniformly replaced by (7).

Hereto, the distributed cooperative task of manipulators with
limited communication resources is formally established as a
game forS players. Taking into account the mutual restriction
brought by manipulators when making decisions, the final
result of the game will develop towards equilibrium. In game
theory terminology, the combination of strategies that create
such an equilibrium is known as Nash equilibrium. Note that
once equilibrium is established, there will be no manipulator
willing to unilaterally change its strategy, since this is already
the best choice the player can make in the game.

III. A N EW MULTI -ROBOT COOPERATIONSCHEME

Although the system adopting distributed communication
greatly weakens the demand for the command center, there
are still some unnecessary communication overheads that will
be generated in the local information exchange. To this end,
this section introduces an event-triggered control mechanism,
and finds the Nash equilibrium in the game on this basis.

A. Event-Triggered Conditions

To reduce unnecessary communication consumption and
calculation overhead, an event-triggered control mechanism
can be adopted to determine whether the manipulator needs
to send or update data by observing the change trend of the
error. From the perspective of the game theory, if changing
the strategy will incur some cost, the above process can be
regarded as a trade-off between whether the player maintains
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the existing payoff or actively adjusts the strategy to reapa
more considerable payoff.

Notably, the position error of manipulatori with φi = 0
can be defined as an accumulation of drift errors generated by
its end-effector and surrounding end-effectors in a cooperative
motion. Specifically, the above-mentioned error is expressed
as

εi(t) =
∑

j∈Ni

αij

(

ℵi(t) − ℵj(t)
)

. (8)

Then, a Lyapunov function is constructed as

L(εi) = ε⊤i (t)εi(t)/2. (9)

Evidently,L(εi) is positive definite becauseL(εi) = 0 only if
εi = 0, and in other casesL(εi) > 0. Subsequently,̇L(εi) =
∂L(εi)/∂t = ε⊤i (t)ε̇i(t) can be obtained conveniently. Based
on the definitions ofL(εi) and L̇(εi), in order to formulate
an event-triggered function in a convenient manner, the inputs
between the successive calculation ofL̇(εi) are assumed to
be held constant, i.e., sample-and-hold [33]. Accordingly, the
specific equation is designed as

Di

(

L, L̇
)

=
(

Ltk+1
(εi) − Ltk

(εi)
)

/(tk+1 − tk) + λLtk
(εi),

where λ > 0 is a design parameter, and a greater value
of λ leads to a more sensitiveDi

(

L, L̇
)

; sequence{tk}k∈N

denotes the instants at whichDi

(

L, L̇
)

is recomputed and
the control strategy is updated. It is worth stressing that the
state ofDi

(

L, L̇
)

determines whether manipulatori needs to
update its own strategy and synchronize end-effector data to
the surrounding manipulators. In brief, whenDi

(

L, L̇
)

> 0,
the manipulator needs to adjust its own strategy and estab-
lish communication with the surrounding manipulators; When
Di

(

L, L̇
)

≤ 0, the manipulator only needs to stay in the
previous state without performing the above steps.

Remark 2: Di

(

L, L̇
)

≤ 0 is an important criterion for judg-
ing whether the manipulator is able to maintain the previous
strategy in task execution. Notice that sinceDi

(

L, L̇
)

≤ 0

and λL(εi) ≥ 0, L̇(εi) ≤ 0 can be readily obtained. At this
time, L̇(εi) is negative semi-definite. Moreover, we know that
L(εi) is positive definite and thatL(εi) → ∞ whenεi → ∞.
Therefore, (8) is asymptotically stable under the condition of
Di

(

L, L̇
)

≤ 0. It can be expected thatℵi(t) will eventually
converge toℵj(t) over time, which means that the end-effector
motion behavior of manipulatori and j will be gradually
consistent.

B. Reformulation of Manipulator Control Rules

In the current game, each manipulator updates its own
strategic behavior by exercising the right to maximizePi(t).
Subject to the designed constraints, the game problem is
further abstracted as (3), thus mathematically describingthe
conflict of interests among the manipulators.

To facilitate the solution of (3), we try to transform it intoa
quadratic programming problem. Furthermore, by adopting (7)
and combining with the designed event-triggered conditions,

the rules for strategy generation of the system are formulated
as below:

min ˜̇ϑ⊤(t)(IS ⊗R) ˜̇ϑ(t)/2 + (eS ⊗ p)⊤ ˜̇ϑ(t)

s.t. γ(L + Φ) ⊗ InJ̃
˜̇
ϑ + (Φ ⊗ In)

(

eS ⊗ xd(t)
)

= γ(Φ ⊗ In)
(

eS ⊗ ẋd(t)
)

+ (L + Φ) ⊗ InX̃
◦,

triggering condition:

{

previous strategy, if Di

(

L, L̇
)

≤ 0,

updated strategy, if Di

(

L, L̇
)

> 0.

It can be seen that the manipulators use a minimization index
and a constraint to develop their own strategies, and each
manipulator updates its own strategy only atDi

(

L, L̇
)

> 0,
while maintaining the previous strategy in other cases. In par-
ticular, whenDi

(

L, L̇
)

> 0, the above optimization problem
is equivalent to solving the following equations by means of
Lagrange-multiplier method [34]:
{

(IS ⊗R) ˜̇ϑ(t) + eS ⊗ p + γ
(

(L + Φ) ⊗ InJ̃
)⊤

κ(t) = 0,

γ(L + Φ) ⊗ InJ̃
˜̇ϑ + ω(t) = 0,

(10)
where κ(t) = [κ1(t); . . . ; κS(t)] ∈ R

nS is the Lagrange
multiplier vector withκi ∈ R

n, andω(t) = (Φ ⊗ In)
(

eS ⊗
xd(t) − γeS ⊗ ẋd(t)

)

− (L + Φ)⊗ InX̃
◦. Further, to facilitate

monitoring the status updates of the strategy˜̇ϑ(t) of the
manipulators, (10) is reconstructed as follows:

Π(t)

[

uϑ̇(t)
uκ(t)

]

− Ψ(t) = 0, (11)

where

Π(t) =

[

IS ⊗R γ
(

(L + Φ) ⊗ InJ̃
)⊤

γ
(

(L + Φ) ⊗ InJ̃
)

0nS×nS

]

,

Ψ(t) =

[

−eS ⊗ p

−ω(t)

]

,

[

uϑ̇(t)
uκ(t)

]

=

[

˜̇
ϑ(t)
κ(t)

]

.

Thus, the strategy update of theith manipulator depends on

Πi

ϑ̇
(t)ui

ϑ̇
(t) =

{

Ψi

ϑ̇
(t), if Di

(

L, L̇
)

> 0,

previous strategy, if Di

(

L, L̇
)

≤ 0,
(12)

whereui

ϑ̇
(t) = ϑ̇i(t) ∈ R

m; Πi

ϑ̇
(t) = {Π(t)}r×v with {·}r×v

representing extracting anr-by-v submatrix from{·}, andr =
v ∈ [m(i − 1) + 1, mi]; Ψi

ϑ̇
(t) = {Ψ(t)}r. The definition of

ui
κ(t) ∈ R

n is similar to that ofui

ϑ̇
(t).

Remark 3: Definetl andtl+1 as thelth andl + 1th trigger
instant of the manipulatori, respectively, and stipulate that be-
fore the new trigger instant (e.g.,tl+1) arrives, the strategy of
manipulator is determined by the update at the previous instant
(e.g., tl). Furthermore, suppose that the strategy followed by
theith manipulator att ∈ [tl, tl+1) is ui

ϑ̇
(tl) = ϑ̇♯

i , so the joint
velocity error accumulated by the manipulator in this time slice
is ςi(t) = ui

ϑ̇
(t) − ϑ̇♯

i . Sinceϑ̇♯
i is a time-independent vector,

|dςi/dt| = |u̇i

ϑ̇
(t)| can be obtained for∀t ∈ [tl, tl+1). Besides,

considering the realizability of the task, the acceleration ẍd(t)
of the end-effector is assumed to be bounded, so for theıth
joint of the manipulatori, its acceleration|u̇i

ϑ̇ı
(t)| = ϑ̈ı

i(t)

has a boundℓ, i.e., |u̇i
ϑ̇ı

(t)| < ℓ. Based on the above, the
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velocity error of theıth joint at t → tl+1 is defined as
limt→tl+1

|ςı
i (t)| = £ > 0, and thentl+1 − tl > ℓ/£ > 0

could be deduced according to the definition of|u̇i
ϑ̇ı

(t)|.
Remarkably, there is a certain time interval between thelth
andl+1th triggering of the manipulator, so the Zeno behavior
will not occur. In another respect, the existing data acquisition
modules generally take samples at a fixed sampling interval,
and the manipulator only needs to perform a trigger judgment
after a single data sampling. In this regard, there must be a
minimum time interval between the two event triggers, so the
Zeno behavior can also be excluded.

C. RNN for Real-Time Redundancy Resolution

In Section III-B, the strategy generation method for each
manipulator has been specified. Moreover, in game theory,
the combination of strategies that enables the manipulators to
complete the cooperative task is known as Nash equilibrium.

The Nash equilibrium is expected to be found in the game
of the manipulator. However, subject to many nonlinear factors
in the multi-manipulator system, the direct calculation of(12)
may be slow and belated (especially forDi

(

L, L̇
)

> 0), which
may impair the real-time performance of the manipulator
to perform the task. Fortunately, neural networks provide
an effective way to quickly solve complex problems. By
decoupling a complex nonlinear problem into a linear problem
from the error level, the calculation is simplified. Specifically,
the deviation of theith manipulator at the equilibrium point
can be defined as

κ
i
u(t) = Πi

u(t)u
i
u(t) − Ψi

u(t),

of which u ∈ {ϑ̇, κ}. Then, to update the strategy in time,
a recurrent neural network (RNN) solver based on deviation
κ

i
u
(t) is constructed as

κ̇
i
u(t) = −(η1 + η2)Γ

(

κ
i
u(t)

)

− η1η2

∫ t

0

Γ
(

κ
i
u(τ)

)

dτ , (13)

whereη1, η2 > 0 and Γ(·) is an activation function. Further,
by expanding (13), one has

Πi
u
(t)u̇i

u
(t) = −Π̇i

u
(t)ui

u
(t) − (η1 + η2)Γ

(

Πi
u
(t)ui

u
(t) − Ψi

u
(t)

)

− η1η2

∫ t

0

Γ
(

Πi
u
(τ)ui

u
(τ) − Ψi

u
(τ)

)

dτ + Ψ̇i
u
(t),

(14)

which is the constructed solver for assisting the real-timestrat-
egy formulation of the manipulator. It is worth stressing that
(14) starts a new round of calculations only ifDi

(

L, L̇
)

> 0,
and in other cases, it maintains the output of the previous round
without providing updates to surrounding manipulators. With
the aid of (14), the Nash equilibrium of the multi-manipulator
game can be found readily.

Remark 4: Each startup of the RNN solver (14) means
that the manipulator will abandon the previous strategy and
generate a new strategy, which is the most computationally
expensive part of the system. Besides, in order for each
manipulator to acquire the behavior information of other
manipulators in its communication area in real time, they need
to interact frequently with surrounding manipulators. However,

not every communication contains useful information, and not
every updated strategy is significantly different from the pre-
vious one. Actually, at some time nodes, the manipulator can
continue the previous strategy without having to send updates
to surrounding manipulators. Note that the introduction of
conditionDi

(

L, L̇
)

is like adding a switching mechanism to
the system. When the stability condition is satisfied (i.e.,Di ≤
0), the ith manipulator only needs to maintain the previous
strategy without starting the solver to perform computation and
establishing communication with surrounding manipulators.
This undoubtedly reduces the computing and communication
burden of the system. A schematic block diagram is shown
in Fig. 1 to illustrate the above process. It can be seen that
each manipulator first goes throughDi to determine whether
it is necessary to start the solver, and then performs the next
operation and transmits the updated control signal to the multi-
manipulator system. If the manipulator’s error accumulates to
the point where it could destabilize the system,Di is activated
to update the strategy.

Fig. 1. Control block diagram of multi-manipulator system based on control
strategy.

IV. T HEORETICAL ANALYSIS

In this section, the convergence of RNN solver (14) is ana-
lyzed. Besides, its performance under perturbation is studied.

Assumption 2: In the ensuing part,Γ(·) is set as a linear ac-
tivation function. Notice thatΓ(·) only affects the convergence
rate of the solver without affecting its convergence.

A. Convergence Analysis

For RNN solver (14), it can be regarded as an interconnected
system. Assuming that the strategy of the manipulator at the
Nash equilibrium isui>

ϑ̇
(t), the convergence of (14) can be

judged by observing the trend of the deviationκ
i
u
(t).

Theorem 1: The strategy of the manipulator found by
RNN solver (14) can converge globally to the equilibrium
point of the game, at which point the deviationκ

i
u(t) of the

manipulator converges globally to zero.
Proof: The essence of RNN solver (14) is actually the

expansion of design formula (13). LetΓ(x) = x, then (14) can
be abbreviated tȯκi

u
(t) = −(η1 +η2)κ

i
u
(t)−η1η2

∫ t

0
κ

i
u
(τ)dτ

with κ
i
u
(t) = Πi

u
(t)ui

u
(t) − Ψi

u
(t). Select a Lyapunov-

candidate-function as

L(t) = (κi
u(t))

2
+ η1η2

(

∫ t

0

κ
i
u(τ)dτ

)2
.
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Subsequently, finding the time derivative ofL(t) yields

L̇(t) = 2κ
i
u
(t)κ̇i

u
(t) + 2η1η2

(

∫ t

0

κ
i
u
(τ)dτ

)

κ
i
u
(t). (15)

By substituting (13) into (15), we can deduce thatL̇(t) =

−2(η1 + η2)(κ
i
u
(t))

2
. ConsideringL(t) > 0 and L̇(t) < 0, it

can be concluded that RNN solver (14) is stable according to
Lyapunov theory.

Let’s prove it in another way.̇κi
u
(t) = −(η1 + η2)κ

i
u
(t) −

η1η2

∫ t

0
κ

i
u
(τ)dτ can be treated as a dynamic system in the

form of an ordinary differential equation. By solving it directly,
it is easy to infer thatκi

u(t) converges exponentially to zero
no matter what initial stateκi

u
(0) it starts from. The above

two perspectives verify that the deviation of the manipulator
at the equilibrium point converges globally to zero. Given that
κ

i
u
(t) = Πi

u
(t)ui>

u
(t) − Ψi

u
(t) = 0 at the equilibrium point,

ui
u(t) eventually converges toui>

u (t). The proof is completed.
�

B. Robustness Analysis

Noise is a factor that cannot be ignored and affects the
stability of the solver. A brief and slight perturbation may
affect the calculation accuracy of the solver, resulting injitter
during the task execution. In reality, the errors in hardware
implementation or external disturbances from environmental
interference can be deemed as noise, where the truncation
error and rounding error of a digital equipment pertain to
the former, and the latter can be the electromagnetic noise,
harmonic noise, shaking or others. If the fluctuation caused
by noise cannot be eliminated in time, it will greatly reduce
the performance of the actuator. Therefore, the perturbation
inhibition ability is an objective requirement for the application
of realistic scenarios.

Theorem 2: The RNN solver (14) polluted by bounded noise
℘(t) stabilizes the driven system and further makes the steady-
state error of its output bounded.

Proof: The linearly activated RNN solver (14) running in
the bounded noise environment can be expressed asκ̇

i
u(t) =

−(η1 + η2)κ
i
u(t) − η1η2

∫ t

0
κ

i
u(τ)dτ + ℘(t). Further, theıth

subsystem of theith manipulator can be abbreviated as
Ṅı(t) = GNı(t)+w℘ı(t) with G = [−(η1 + η2),−η1η2; 1, 0],
Nı(t) = [κi

uı(t);
∫ t

0
κ

i
uı(τ)dτ ], and w = [1; 0], which is a

typical linear system. It is evident to show that the eigenvalues
of G are{−η1,−η2 < 0}, soG is Hurwitz matrix. It follows
that RNN solver (14) is stable. Then, according to the basic
result of BIBO stability, bounded input leads to bounded
output. Therefore, for bounded noise℘(t) attached to the RNN
solver (14), the fluctuation it brings is undoubtedly withina
bounded range. The proof is completed. �

Based on the conclusion of Theorem 2, the following
theorems analyze the robustness of RNN solver (14) under
unknown additive constant noiseß and unknown linear time-
varying noiseι(t), respectively.

Theorem 3: Under the perturbation of unknown additive
constant noiseß, the RNN solver (14) is able to find the strat-
egy of global convergence to Nash equilibrium, at which point

the deviationκ
i
u
(t) of the manipulator converges globally to

zero.
Proof: First, the linearly activated RNN solver (14) running

in the additive constant noise environment can be abbreviated
asκ̇

i
u
(t) = −(η1+η2)κ

i
u
(t)−η1η2

∫ t

0
κ

i
u
(τ)dτ+ß. Next, select

the ıth subsystem (ı ∈ {1, 2, . . . , m}) of the manipulatori to
perform Laplace transform, and one has

sκ
i
uı(s)−κ

i
uı(0) = −(η1+η2)κ

i
uı(s)−

η1η2

s
κ

i
uı(s)+ß. (16)

By calculation, the transfer function of (16) isG(s) = s/(s2+
η1s+ η2s+ η1η2). Evidently, the poles ofG(s) are all located
on the left half-plane of thes-plane, so the system is stable.
Further, utilizing the final value theorem leads to

lim
t→∞

κ
i
uı(t) = lim

s→0
sκ

i
uı(s)

= lim
s→0

s2
(

κ
i
uı(0) + ß

)

s2 + (η1 + η2)s + η1η2

= 0.

To sum up,κi
uı(t) will converge to zero with time, which

meansui
uı(t) will converge toui>

uı (t) in the end. Considering
that each subsystem can be proved by the above-mentioned
process, it can be concluded that the RNN solver (14) is able
to find the strategy to converge to Nash equilibrium even under
the perturbation of unknown additive constant noiseß. The
proof is completed. �

Theorem 4: Under the perturbation of unknown linear time-
varying noiseι(t) = ̺t, the deviationκi

u(t) of the manipulator
finally converges to‖̺‖2/(η1η2). Besides, the RNN solver
(14) can achieve arbitrary output accuracy by adjusting the
values ofη1 andη2.

Proof: First, the linearly activated RNN solver (14) running
in the unknown linear time-varying noise environment can be
abbreviated aṡκi

u(t) = −(η1 + η2)κ
i
u(t)− η1η2

∫ t

0
κ

i
u(τ)dτ +

ι(t) with ι(t) = ̺t. Next, select theıth subsystem (ı ∈
{1, 2, . . . , m}) of the manipulatori to perform Laplace trans-
form, and one has

sκ
i
uı(s) − κ

i
uı(0) = −(η1 + η2)κ

i
uı(s) −

η1η2

s
κ

i
uı(s) +

̺ı

s2
.

Further, utilizing the final value theorem leads to

lim
t→∞

κ
i
uı(t) = lim

s→0
sκ

i
uı(s)

= lim
s→0

s2
(

κ
i
uı(0) + ̺ı/s2

)

s2 + (η1 + η2)s + η1η2

=
̺ı

η1η2

.

Consequently, it can be easily obtained thatκ
i
u(t) eventually

converges to‖̺‖2/η1η2. Besides, notice that as long asη1η2

is large enough, one hasκi
u(t) → 0. Therefore, the output

accuracy of the RNN solver (14) can be changed by adjusting
the values ofη1 andη2. The proof is completed. �

The above theorems prove that even under noise interfer-
ence, the RNN solver (14) is still able to find the strategy
that converges to the Nash equilibrium with a steady-state
error of zero or arbitrarily small, which is beneficial to the
application in noisy scenes. To sum up, the proof on stability
and robustness of RNN solver (14) is completed.
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Fig. 2. Simulation results of a multi-manipulator system cooperatively tracking the circular trajectory using control strategy (12) under the perturbation of
constant noiseAmp(ß) = 10. (a) Behavioral trajectories of manipulators performing tasks cooperatively. (b) Profiles of joint-angle. (c) Profiles of joint-velocity.
(d) Profiles of end-effector speed. (e) Profiles of position tracking error inx-, y-, andz- directions. (f) Profiles of‖ei‖2.
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Fig. 3. Simulation results of controller update counts for the multi-manipulator system using control strategy (12) toexecute the circular trajectory tracking
task under the perturbation of constant noiseAmp(ß) = 10. (a) Control update counts. (b) Triggering time sequences (3 s to 3.5 s). (c) Total number of
updates.

V. SIMULATION RESULTS

In this section, a path-tracking task is assigned to manipu-
lators to test the effectiveness of the proposed control strategy
(12) and RNN solver (14). Furthermore, the control strategy
is validated on the CoppeliaSim platform.

A. Circular Trajectory Tracking Task

In this subsection, eight PUMA 560 manipulators are con-
figured to execute the circular trajectory tracking task, and
their Denavit-Hartenberg (D-H) parameters are listed in Table
I. The system uses a distributed network topology and full-
duplex communication among adjacent manipulators (i.e., for
|i − j| = 1, αij = 1). Then, assigning command center
sends instructions only to manipulators1 and 5, and the

remaining manipulators get information through neighboring
manipulators (i.e.,φ1 = φ5 = 1). Simulations are conducted
on the MindSpore framework, and the specific parameters are
set by considering the following requirements. Note thatη1

and η2 are the design parameters of the solver (14), which
can be used to adjust its convergence rate. Theoretically,
larger values ofη1 and η2 leads to a faster convergence rate
of (14), which is revealed in Theorem 1. Therefore, we set
γ = η1 = η2 = 2000 in the simulations. Additionally,λ is
the design parameter of the event-triggered function. A larger
value of λ leads to a more precise task execution, while the
solver correspondingly consumes more resources. Therefore,
after weighing the update cost and accuracy requirements,λ
is set to80 to complete the task with high accuracy while
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Fig. 4. Simulative experiment of the multi-manipulator system using control
strategy (12) to track the circular trajectory under the perturbation of random
noiseAmp(ß) ∈ [9.8, 10.2]. (a) Profiles of position tracking error inx-, y-,
andz- directions. (b) Control update counts.

ensuring the reduction of communication overhead. Besides,
R = Im and p = 0. In this setting, the payoff function is
concretized intoPi(t) = −ϑ̇⊤

i (t)ϑ̇i(t)/2, which can be used
to reduce the kinematic energy expenses for joint velocityϑ̇i.
The execution period of this task is set to7 s. Furthermore,
suppose that the RNN solver (14) unfortunately suffers from
the disturbance of constant noiseß whose amplitude is10
(abbreviated asAmp(ß) = 10) but the operation is not
suspended.

In this scenario, the detailed simulation results are shownin
Fig. 2. Concretely, Fig. 2(a) records the behavioral trajectory
of manipulators cooperating to perform the task. It can be
vividly seen that under the guidance of control strategy (12),
the circular trajectory task assigned to the eight manipulators
is smoothly completed. Next, Fig. 2(b) and Fig. 2(c) record the
changes in joint angle and velocity of the manipulators during
operation, separately, and Fig. 2(d) draws the end-effector
velocity components in thex-, y-, andz- directions. Evidently,
each end-effector achieves consensus in speed. To further
illustrate the effect of the end-effector on the circular trajectory
tracking task, the tracking errorei = xi − xd (components in
thex-, y-, andz- directions) and its Euclidean norm‖ei‖2 are
given in Fig. 2(e) and (f), respectively. Especially in Fig.2(f),
the error‖ei‖2 of each manipulator exhibits a fluctuating state.
The reason for this phenomenon is that the triggerDi will
activate the RNN solver (14) to update the strategy only when
it detects that the position error of the end-effector reaches a
state that may cause the system to diverge.

TABLE I
D-H PARAMETERS OFPUMA 560

Link ι αι−1 (rad) aι−1 (m) dι (m) Joint-angleϑι

1 0 0 0 ϑ1

2 -π/2 0 0.15005 ϑ2

3 0 0.43180 0 ϑ3

4 -π/2 0.02030 0.43180 ϑ4

5 π/2 0 0 ϑ5

6 -π/2 0 0 ϑ6

In this example, the sampling interval of the manipulator is
set to5 × 10−3 s. To test whether the manipulator with the
control strategy (12) has the ability to reduce communication
overhead, Fig. 3 statistics the update times of each manipulator
during the task duration. Specifically, Fig. 3(a) shows the
control update counts for each manipulator. Next, to display
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Fig. 5. Simulative experiment of UR5 robot system using control strategy
(12) to track the bee curve under the perturbation of constant noiseAmp(ß) =
10. (a) Snapshots in task execution. (b) Profiles of position tracking error in
x-, y-, andz- directions. (c) Control update counts.

the trigger status of manipulators intuitively, Fig. 3(b) shows
the triggering time sequences of each manipulator in the period
t ∈ [3, 3.5] s. As seen in the results, the manipulator does not
start the strategy update at every trigger instant, which un-
doubtedly reduces unnecessary communication and computing
overhead. Subsequently, the total number of updates required
for manipulators to complete the tracking task is counted in
Fig. 3(c), where M# represents the manipulator that adopts
the traditional periodic control techniques. By calculation, the
manipulator with control strategy (12) updated857 times on
average, which reduces the total system overhead by38.7%
compared with the traditional periodic sampling technique.
Additionally, in order to further verify the robustness of the
proposed control strategy (12), Fig. 4 shows the simulation
results in the presence of bounded random noiseAmp(ß) ∈
[9.8, 10.2]. The results show that the manipulator system can
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TABLE II
COMPARISONSAMONG DIFFERENTCONTROL STRATEGIES FORMANIPULATORS

Number of Network Limited Interference Communication Mathematical Optimality
manipulators topology communication rejection overhead formulation

This article Multiple Distributed Ya Yb Yc Game theory Yd

Paper [2] Single N/A N/A N N Optimization Yd

Paper [7] two Centralized N N N Optimization Yd

Paper [8] Multiple Distributed Ya N N Game theory Yd

Paper [9] Multiple Distributed Ya Yb N Game theory Yd

Paper [11] two Decentralized N Yb N Adaptive control Yd

Paper [15] single N/A N/A N Yc Optimization Yd

paper [31] Multiple Distributed Ya Yb N Optimization N
Paper [32] Multiple Decentralized N N N Optimization Yd

a The method stipulates that the manipulator can only establish communication connection with adjacent manipulators.
b The method has the capability of suppressing noise.
c The method takes into account the communication overhead ofthe system.
d The method is able to find the optimal solution of the system globally.

still work as expected.
Furthermore, some comparisons of the different control

methods of the manipulator are presented in Table II. It is
worth pointing out that the existing methods with commu-
nication overhead considered are generally developed based
on a single manipulator, e.g., [15], but are rarely promoted
to multi-manipulator system. Moreover, the manipulators in
[2], [7], [8], [32] are assumed to operate in a scene without
noise, but the actual working environment may not be ideal.
The method proposed in this article makes up for the above-
mentioned deficiencies, and can still ensure the completion
of tasks with lower communication overhead in a perturbed
environment.

B. Application to UR5 Robot Control

To visually demonstrate the control effect of the control
strategy (12) on the robot system, a group of UR5 robots are
provided with experiments to perform the bee curve tracking
task on CoppeliaSim. It is worth pointing out that CoppeliaSim
integrates the physical model of the real robot, which can assist
relevant practitioners to verify the designed control scheme.
The setting of relevant parameters in this experiment is the
same as that in Section V-A. Moreover, the task period of the
task is set to10 s. Snapshots of multiple UR5 robots tracking
the bee curve in cooperation are shown in Fig. 5(a), which
records the posture of several typical instants of the UR5 robot.
Visibly, the task is successfully completed. Then, Fig. 5(b)
records the position error components generated by each UR5
robot in thex-, y-, andz- directions during the task execution.
Figure 5(c) sums the triggering times of each manipulator.
Through calculation, the UR5 robot in the system under the
guidance of control strategy (12) updates the strategy1249
times on average, which is37.5% lower than that of traditional
time trigger. The above experiment shows that the proposed
strategy (12) can also be well applied to the UR5 robot system.
As a matter of fact, this study provides theoretical support
for controlling multi-robot systems, especially for multi-robot
systems with communication overhead considered.

VI. CONCLUSION

This article has studied a cooperative control scheme for
multi-manipulator system with improved communication ef-

ficiency. Compared with the traditional periodic control, the
proposed control strategy determines whether the controller
needs to trigger an update by monitoring the measurement
error of the manipulator. This measure has positive signifi-
cance for reducing the network congestion of the manipulator
system and improving communication efficiency. In addition,
the cooperation and restriction relationship of manipulators
in the system has been vividly reflected in the established
game, and each manipulator is looking for its own optimal
strategy that tends to the Nash equilibrium. Finally, examples
have revealed that the proposed control strategy can effec-
tively reduce the communication overhead while ensuring the
cooperative performance of the manipulator. A possible future
research direction is to develop a necessary system theory to
quantitatively evaluate the control cost of the control strategy
in calculation and communication, so as to further promote its
application in practical scenarios.

REFERENCES

[1] S. Kartakis, A. Fu, M. Mazo, and J. A. McCann, “Communication
schemes for centralized and decentralized event-triggered control sys-
tems,” IEEE Trans. Control Syst. Tech., vol. 26, no. 6, pp. 2035–2048,
Nov. 2018.

[2] L. Jin, Z. Xie, M. Liu, C. Ke, C. Li, and C. Yang, “Novel joint-drift-
free scheme at acceleration level for robotic redundancy resolution with
tracking error theoretically eliminated,”IEEE/ASME Trans. Mechatron.,
In Press with DOI 10.1109/TMECH.2020.3001624.

[3] M. Hwang and D. Kwon, “Strong continuum manipulator for flexible
endoscopic surgery,”IEEE/ASME Trans. Mechatron., vol. 24, no. 5, pp.
2193–2203, Oct. 2019.

[4] Y. Zhu, J. Qiao, and L. Guo, “Adaptive sliding mode disturbance
observer-based composite control with prescribed performance of space
manipulators for target capturing,”IEEE Trans. Ind. Electron., vol. 66,
no. 3, pp. 1973–1983, Mar. 2019.

[5] S. Liu, D. Xing, Y. Li, J. Zhang, and D. Xu, “Robust insertion control
for precision assembly with passive compliance combining vision and
force information,” IEEE/ASME Trans. Mechatron., vol. 24, no. 5, pp.
1974–1985, Oct. 2019.

[6] Y. Wang, L. Cheng, Z. Hou, J. Yu, and M. Tan, “Optimal formation of
multirobot systems based on a recurrent neural network,”IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 322–333, Feb. 2016.

[7] L. Jin and Y. Zhang, “G2-type SRMPC scheme for synchronous manip-
ulation of two redundant robot arms,”IEEE Trans. Cybern., vol. 45, no.
2, pp. 153–164, Feb. 2015.

[8] S. Li, J. He, Y. Li, and M. U. Rafique, “Distributed recurrent neural
networks for cooperative control of manipulators: A game-theoretic
perspective,”IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 2,
pp. 415–426, Feb. 2017.



IEEE/ASME TRANSACTIONS ON MECHATRONICS 10

[9] J. Zhang, L. Jin, and L. Cheng, “RNN for perturbed manipulability
optimization of manipulators based on a distributed scheme: A game-
theoretic perspective,”IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 12, pp. 5116–5126, Dec. 2020.

[10] Y. Zhang and S. Li, “Adaptive near-optimal consensus ofhigh-order
nonlinear multi-agent systems with heterogeneity,”Automatica, vol. 85,
pp. 426–432, Nov. 2017.

[11] W. Gueaieb, F. Karray, and S. Al-Sharhan, “A robust hybrid in-
telligent position/force control scheme for cooperative manipulators,”
IEEE/ASME Trans. Mechatron., vol. 12, no. 2, pp. 109–125, Apr. 2007.

[12] B. D. O. Anderson, C. Yu and J. M. Hendrickx, “Rigid graphcontrol
architectures for autonomous formations,”IEEE Control Syst. Mag., vol.
28, no. 6, pp. 48–63, Dec. 2008.

[13] Y. Zhang, S. Li, and L. Liao, “Consensus of high-order discrete-time
multiagent systems with switching topology,”IEEE Trans. Syst., Man,
Cybern., Syst., vol. 51, no. 2, pp. 721–730, Feb. 2021.

[14] D. Xie, S. Xu, Z. Li, and Y. Zou, “Event-triggered consensus control
for second-order multi-agent systems,”IET Control Theory Appl., vol.
9, no. 5, pp. 667–680, 2015.

[15] Y. Zhang, H. Huang, S. Li, J. Li, and L. He, “Event-triggered zeroing
dynamics for motion control of Stewart platform,”J. Frankl. Inst., vol.
357, no. 11, pp. 6453–6470, Jul. 2020.

[16] Z. Sun, Y. Xia, L. Dai, and P. Campoy, “Tracking of unicycle robots
using event-based MPC with adaptive prediction horizon,”IEEE/ASME
Trans. Mechatron., vol. 25, no. 2, pp. 739–749, Apr. 2020.

[17] M. Zhao, C. Peng, W. He, and Y. Song, “Event-triggered communication
for leader-following consensus of second-order multiagent systems,”
IEEE Trans. Cybern., vol. 48, no. 6, pp. 1888–1897, Jun. 2018.

[18] H. Meng, H. Zhang, Z. Wang, and G. Chen, “Event-triggered control for
semiglobal robust consensus of a class of nonlinear uncertain multiagent
systems,”IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1683–1690,
Apr. 2020.

[19] S. Yang, S. Jeon, and J. Choi, “Efficient sampling for rapid estimation
of 3-D stiffness distribution via active tactile exploration,” IEEE/ASME
Trans. Mechatron., vol. 25, no. 4, pp. 1729–1738, Aug. 2020.

[20] A. Selivanov and E. Fridman, “Event-triggeredH∞ control: A switching
approach,”IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 3221–3226,
Oct. 2016.

[21] J. Sun, J. Yang, and S. Li, “Reduced-order GPIO based dynamic event-
triggered tracking control of a networked one-DOF link manipulator
without velocity measurement,”IEEE/CAA J. Autom. Sinica, vol. 7, no.
3, pp. 725–734, May 2020.

[22] X. Mi and S. Li, “Event-triggered MPC design for distributed systems
with network communications,”IEEE/CAA J. Autom. Sinica, vol. 5, no.
1, pp. 240–250, Jan. 2018.

[23] A. Amini, A. Asif, and A. Mohammadi, “Formation-containment control
using dynamic event-triggering mechanism for multi-agentsystems,”
IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sep. 2020.

[24] C. Nowzari and J. Cortés, “Distributed event-triggered coordination for
average consensus on weight-balanced digraphs,”Automatica, vol. 68,
pp. 237–244, 2016.

[25] T. Liu, M. Cao, C. D. Persis, and J. M. Hendrickx, “Distributed
event-triggered control for asymptotic synchronization of dynamical
networks,”Automatica, vol. 86, pp. 199–204, 2017.

[26] T. Xu, Y. Hao, and Z. Duan, “Fully distributed containment control
for multiple Euler-Lagrange systems over directed graphs:An event-
triggered approach,”IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. 6, pp. 2078–2090, Jun. 2020.

[27] C. Yang, G. Peng, Y. Li, R. Cui, L. Cheng, and Z. Li, “Neural networks
enhanced adaptive admittance control of optimized robot-environment
interaction,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2568–2579, Jul.
2019.

[28] L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, and L. Jin, “Design and
analysis of FTZNN applied to the real-time solution of a nonstationary
Lyapunov equation and tracking control of a wheeled mobile manipu-
lator,” IEEE Trans. Ind. Inf., vol. 14, no. 1, pp. 98–105, Jan. 2018.

[29] C. Hu, T. Ou, H. Chang, Y. Zhu, and L. Zhu, “Deep GRU neuralnetwork
prediction and feedforward compensation for precision multiaxis motion
control systems,”IEEE/ASME Trans. Mechatron., vol. 25, no. 3, pp.
1377–1388, Jun. 2020.

[30] Z. Zhang, T. Fu, Z. Yan, L. Jin, L. Xiao, Y. Sun, Z. Yu, and Y.
Li, “A varying-parameter convergent-differential neuralnetwork for
solving joint-angular-drift problems of redundant robot manipulators,”
IEEE/ASME Trans. Mechatron., vol. 23, no. 2, pp. 679–689, Apr. 2018.

[31] L. Jin, J. Zhang, X. Luo, M. Liu, S. Li, L. Xiao, and Z. Yang,
“Perturbed manipulability optimization in a distributed network of

redundant robots,”IEEE Trans. Ind. Electron., In Press with DOI
10.1109/TIE.2020.3007099.

[32] S. Li, H. Cui, Y. Li, B. Liu, and Y. Lou, “Decentralized control of
collaborative redundant manipulators with partial command coverage
via locally connected recurrent neural networks,”Neural Comput. Appl.,
vol. 23, pp. 1051–1060, Sep. 2013.

[33] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” inProc. 51st IEEE Conf.
Decision and Control, 2012, pp. 3270–3285.

[34] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

Jiazheng Zhang received the B.E. degree in com-
munication engineering from Lanzhou University,
Lanzhou, China, in 2019, and he is currently pur-
suing the M.E. degree in information and commu-
nication engineering with the School of Information
Science and Engineering in Lanzhou University.

He currently conducts cooperative research with
the Academy of Pleteau Science and Sustainability,
Xining, China. His main research interests include
neural networks and multi-robot coordination.

Long Jin (Member, IEEE) received the B.E. degree
in automation and the Ph.D. degree in information
and communication engineering from Sun Yat-sen
University, Guangzhou, China, in 2011 and 2016,
respectively. He received postdoctoral training at the
Department of Computing, The Hong Kong Poly-
technic University, Hong Kong, from 2016 to 2017.
He received the excellent doctoral dissertation award
of Chinese Association for Artificial Intelligence
(CAAI).

His current research interests include neural net-
works, robotics, optimization, and intelligent computing.

Chenguang Yang(Senior Member, IEEE) received
the Ph.D. degree in control engineering from the
National University of Singapore, Singapore, in
2010and postdoctoral training in human robotics
from the Imperial College London, London, U.K.
He has been awarded EU Marie Curie International
Incoming Fellowship, UK EPSRC UKRI Innova-
tion Fellowship, and the Best Paper Award of the
IEEE Transactions on Robotics as well as over ten
international conference Best Paper Awards. He is
a Co-Chair of the Technical Committee on Bio-

mechatronics and Bio-robotics Systems (B2S), IEEE Systems, Man, and
Cybernetics Society, and a Co-Chair of the Technical Committee on Col-
laborative Automation for Flexible Manufacturing (CAFM),IEEE Robotics
and Automation Society. He serves as Associate Editor of a number of IEEE
Transactions and other international leading journals. His research interest lies
in human robot interaction and intelligent system design.


