
BIROn - Birkbeck Institutional Research Online

Gao, P. and Xie, H. and Sun, P. and Song, F. and Chen, Taolue (2010)
Formal Verification of Masking Countermeasures for Arithmetic Programs.
IEEE Transactions on Software Engineering , ISSN 0098-5589. (In Press)

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/44956/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/44956/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Formal Verification of Masking
Countermeasures for Arithmetic Programs

Pengfei Gao, Hongyi Xie, Pu Sun, Jun Zhang, Fu Song and Taolue Chen

Abstract—Cryptographic algorithms are widely used to protect data privacy in many aspects of daily lives from smart card to
cyber-physical systems. Unfortunately, programs implementing cryptographic algorithms may be vulnerable to practical power
side-channel attacks, which may infer private data via statistical analysis of the correlation between power consumptions of an
electronic device and private data. To thwart these attacks, several masking schemes have been proposed, giving rise to effective
countermeasures for reducing the statistical correlation between private data and power consumptions. However, programs that rely on
secure masking schemes are not secure a priori. Indeed, designing effective masking programs is a labor intensive and error-prone
task. Although some techniques have been proposed for formally verifying masking countermeasures and for quantifying masking
strength, they are currently limited to Boolean programs and suffer from low accuracy. In this work, we propose an approach for
formally verifying masking countermeasures of arithmetic programs. Our approach is more accurate for arithmetic programs and more
scalable for Boolean programs comparing to the existing approaches. It is essentially a synergistic integration of type inference and
model-counting based methods, armed with domain specific heuristics. The type inference system allows a fast deduction of
leakage-freeness of most intermediate computations, the model-counting based methods accounts for completeness, namely, to
eliminate spurious flaws, and the heuristics facilitate both type inference and model-counting based reasoning, which improve
scalability and efficiency in practice. In case that the program does contain leakage, we provide a method to quantify its masking
strength. A distuiguished feature of our type sytem lies in its support of compositonal reasoning when verifying programs with
procedure calls, so the need of inlining procedures can be significantly reduced. We have implemented our methods in a verification
tool QMVERIF which has been extensively evaluated on cryptographic benchmarks including full AES, DES and MAC-Keccak. The
experimental results demonstrate the effectiveness and efficiency of our approach, especially for compositional reasoning. In particular,
our tool is able to automatically prove leakage-freeness of arithmetic programs for which only manual proofs exist so far; it is also
significantly faster than the state-of-the-art tools: EasyCrypt on common arithmetic programs, QMSINFER, SC Sniffer and maskVerif on
Boolean programs.

F

1 INTRODUCTION

C RYPTOGRAPHY plays a crucial role in many aspects of
our daily lives from smart card to cyber-physical sys-

tems to Internet of things, forming the backbone of security
mechanisms. Modern cryptography is founded on complex-
ity theory; it is highly non-trivial to extract private data (e.g.,
cryptographic keys) by directly analyzing the input-output
relation of cryptographic programs. However, in practice,
side-channel attacks allow an attacker to efficiently extract
the private data by exploiting the statistical correlation
between the private data and non-functional measurements
of electronic devices, for instance, power consumption [2]

• P. Gao is with School of Information Science and Technology, Shang-
haiTech University, Pudong, Shanghai, China; Shanghai Institute of
Microsystem and Information Technology, Chinese Academy of Sciences,
Shanghai, China; University of Chinese Academy of Sciences, Beijing,
China.

• H. Xie, P. Sun, J. Zhang and F. Song are with School of Information
Science and Technology, ShanghaiTech University, Pudong, Shanghai,
China. Fu Song is also with Shanghai Engineering Research Center of
Intelligent Vision and Imaging, Shanghai, China.

• T. Chen is with Department of Computer Science, University of Surrey,
GU2 7XH, Guildford, UK. He is also with State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing, China.

• Corresponding author: Fu Song

A preliminary version of this paper [1] appeared in the Proceedings of the
25th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’19), held as part of the European Joint
Conferences on Theory and Practice of Software (ETAPS’19), Prague, Czech
Republic, April 6-11, 2019.
Manuscript received XXX XX, 20XX; revised XXX XX, 20XX.

and execution time [3]. Implementations of almost all major
cryptographic algorithms both in software and hardware,
such as DES, AES, RSA and Elliptic curves, have been
successfully broken [2], [4], [5], [6], [7], [8], [9], [10], [11], [12].
As an example, consider the instruction c = p ⊕ k where k
is a private variable and p is a non-random variable. The
power consumption of a device executing c = p⊕ k usually
depends on the value of k, which can be exploited via
power based side-channel attacks (e.g., differential power
analysis [13]) to deduce the value of k.

A common countermeasure to thwart power side-
channel attacks is masking, which has been widely used to
reduce the statistical correlation between private data and
power consumptions via randomization. Given a security
parameter d, an order-d secret-sharing masking scheme
typically splits the private data k into (d + 1) shares such
that any subset of at most d shares is statistically independent
of k. Computation on k is then reduced to the one based
on its (d + 1) shares. For instance, the private data k can
be masked by computing the exclusive-or operation (⊕)
with a uniform random variable r, so-called Boolean masking
scheme [14], leading to two shares k ⊕ r and r. One can
observe that the probability distributions of r and k ⊕ r
do not rely upon k. The value of k can be recovered by
computing (k ⊕ r) ⊕ r = k, which is usually referred to as
de-masking.

Apart from Boolean masking, arithmetic masking
schemes such as additive masking schemes (e.g., (k+r) mod

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

n) and multiplicative masking schemes (e.g., (k×r) mod n)
have also been proposed [15], [16], [17], [18], [19]. Boolean
masking is adopted for algorithms that have Boolean opera-
tions only. It can be advantageous to use arithmetic masking
to protect arithmetic operations. For masking cryptographic
algorithms that embrace both Boolean and arithmetic opera-
tions such as IDEA [20], RC6 [21], and SPECK [22], one may
need to switch between Boolean and arithmetic masking
whenever necessary.

Several secure conversion algorithms between Boolean
and arithmetic maskings (e.g., [16], [17], [18], [19], [23])
as well as masked programs of cryptographic algorithms
(e.g., [14], [24], [25], [26], [27], [28], [29], [30], [31]) have
been published over the past years. However, it is labor-
intensive and error-prone to develop effective and/or ef-
ficient masked implementations particularly for non-linear
functions which are widely used in cryptographic algo-
rithms. For instance, the masked AES programs proposed
by Schramm and Paar [27] is shown to be vulnerable [32],
[33]. One commonly accepted remedy is to formally and
automatically verify masking countermeasures of program
implementations of cryptographic algorithms, which is the
main topic of the current work.

Techniques for formally verifying masking countermea-
sures of cryptographic programs do exist. In general, these
techniques can be classified into two categories: rule based
approaches [34], [35], [36], [37], [38], [39], [40] and model-
counting based approaches [41], [42], [43], [44]. In a nutshell,
rule based approaches check the security of intermediate
computation results via their syntactic information, from
which one may prove leakage-freeness of the target pro-
gram, or identify potential flaws. These approaches are
usually sound and efficient for programs using Boolean
masking schemes when the computations are syntactically
independent of the private data or masked by a unique
random variable. However, they are not complete, namely,
leakage-free programs may fail to pass the verification (i.e.,
false positive), and spurious flaws are hard to be automat-
ically identified so tedious manual examination is usually
necessary. In contrast, model-counting based approaches re-
duce the verification problem to the satisfiability problem of
a series of constraints which encode model-counting and are
solved by leveraging SAT/SMT solvers. These approaches
enjoy both soundness and completeness. However, due to
the inherent complexity of the model-counting problem and
the exponential blow-up induced by the reduction, these
approaches pose great challenges to scalability and can be
very slow in practice. Currently they are limited to Boolean
programs only. In general, there is a shortage of verification
approaches and tools that can effectively and efficiently
verify masking countermeasures of arithmetic programs.

To tackle this problem, one naive solution is to trans-
form arithmetic programs into equivalent Boolean programs
through bit-blasting [45] and then apply existing verification
tools on the Boolean programs. It is possible in principle,
but practically unfavourable due to the following deficien-
cies: (1) arithmetic programs admit rich operations and one
has to encode them (e.g., finite-field multiplication) as bit-
wise operations; (2) verifying the order-d security of a 8-bit
program must be done by verifying the order-8d security of
its Boolean translation, where each 8d-tuple of internal vari-

ables in the Boolean translation corresponds to a d-tuple of
internal variables in the original 8-bit program. This means
that verifying a first-order 8-bit program with m internal
variables must be done by performing m verifications on
sets of 8 Boolean variables such that each set corresponds
to an internal variable in the 8-bit program. Note that the
state-of-the-art higher-order verification tool maskVerif [37]
already takes more than 18 minutes to verify just order-5
masked Boolean implementation of DOM Keccak Sbox [46]
which only contains 618 internal variables.

In this article, we propose an approach for formally ver-
ifying the security of first-order masking countermeasures
of arithmetic programs without bit-blasting. Essentially, our
approach is a synergistic integration of type systems and
model-counting based methods. We introduce a new type
system for inferring distribution types of internal variables
by designing inference rules for both Boolean and arithmetic
operations. It is often able to quickly obtain soundness
proofs when the program is leakage-free. A distinguished
feature of the type system lies in its support for compo-
sitional reasoning so inlining procedures in the program
can be largely avoided or be reduced at least. To resolve
problems that cannot be proved by the type system, we
propose two model-counting based methods: a brute-force
method and an SMT-based method. The brute-force method
computes the probability distribution of a potential flaw by
exhaustively enumerating all possible valuations of vari-
ables. The SMT-based method transforms the verification
problem of a potential flaw to the satisfiability problem of a
(quantified-free) first-order logic formula that can be solved
by SMT solvers (e.g. Z3 [47]). Although expensive, model-
counting based methods are powerful to completely deter-
mine if the potential flaw is spurious or not. Furthermore,
we propose three heuristics to simplify the intermediate
computations of internal variables. These heuristics allow
the type system to resolve more inclusive answers and
thus reduce the burden of model-counting, which could
significantly improve the scalability and efficiency of our
approach.

Perfect masking is ideal, but does not necessarily hold in
practice. In certain scenarios, there are intended flaws when
only a limited number of random variables are allowed for
efficiency consideration [48]. However, when this is the case,
it is important to measure the resource the attacker needs in
order to infer the private data via power side-channels. For
this purpose, we adapt the notion of Quantitative Masking
Strength (QMS), which was proposed by Eldib et al. [49],
[50]. It is empirically shown that there is a correlation
between the number of power traces to successfully infer
private data and QMS values [49], [50]. We propose a
binary search based algorithm to compute QMS values of
flaws in Boolean/arithmetic programs by leveraging model-
counting based methods. We remark that the approach of
Eldib et al. [49], [50] approximates QMS values on Boolean
programs only.

We have implemented our approach in a verification tool
QMVERIF (Quantitative Masking VERIFier) and conducted
extensive experiments on masked Boolean and arithmetic
programs including the full AES, DES and MAC-Keccak
implementations. QMVERIF could be used to verify high-
level arithmetic programs at design and implementation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

stages, when these programs are supposed be deployed
in security-critical software, especially when their power
consumptions of the execution may be probed by attackers.

Contributions. We summarize the main contributions as
follows.
• We propose a type system supporting compositional

reasoning, two model-counting based methods, and
their synergistic integration with domain specific
heuristics, which can efficiently and effectively prove
masking countermeasures for both Boolean and arith-
metic programs; the approach is not only sound but
also complete.

• We propose a binary search based algorithm for com-
puting exact quantitative masking strength of arith-
metic programs by leveraging our model-counting
based methods.

• We develop an open-source software tool that imple-
ments the above approaches and heuristics for a specif-
ically designed language. It supports both qualitative
and quantitative verification of masking countermea-
sures of Boolean and arithmetic programs.

• We conduct extensive experiments on both masked
Boolean and arithmetic programs including full AES,
DES and MAC-Keccak implementations. Experimental
results demonstrate the effectiveness of our approach,
and show orders of magnitude improvement with re-
spect to previous verification methods on common
benchmarks.

It is worth mentioning that our approach and tool can
automatically prove the security of several conversion algo-
rithms (e.g., implementations of Boolean to arithmetic mask-
ing [16], [17], [19] and arithmetic to Boolean masking [16],
[17]). To the best of our knowledge, it is the first time that
they are proved leakage-free by computer-aided tools rather
than manually.

One feature of our approach is that it could avoid
inlining procedure calls in the program via supporting
compositional reasoning in the assume-guarantee style. The
experiments show it is able to verify various implementa-
tions of Sbox and full AES in less than one second when
procedure assumptions are provided. Even when no pro-
cedure assumptions or only one procedure assumption is
provided, lots of procedure inlines can be avoided. Our
experiments also find, perhaps surprisingly, that for solving
model-counting constraints, the widely adopted methods
based on SMT solvers (e.g. [41], [42], [43], [44]) may not
be the best option, as the alternative brute-force method is
comparable for Boolean programs, and significantly faster
for arithmetic programs with (finite-field) multiplication,
hence calls for further effort towards the solving of domain-
specific model-counting constraints.

This paper is an extension of the conference paper [1],
and is related to our previous work [43], [44]. Detailed
comparison between them are given in Section 6.

Organization. The rest of the paper is organized as follows.
In Section 2, we introduce cryptographic programs consid-
ered in this work, leakage and threat models, and the no-
tions of perfect masking and quantitative masking strength.
Section 3 gives a running example used to illustrate our
techniques and an overview of our approach. Section 4

presents our methodology, including a type system sup-
porting compositional reasoning (Section 4.1), two model-
counting based methods (Section 4.2). three heuristics to
improve scalability and efficiency in practice (Section 4.3)
and the overall algorithms (Section 4.4). Section 5 reports
experimental results. We discuss related work in Section 6.
Finally, we conclude the work in Section 7.

The implementation of QMVERIF is open-sourced, avail-
able at http://s3l.shanghaitech.edu.cn/software/qmverif.

2 PRELIMINARIES

In this section, we introduce the cryptographic programs
which will be considered in this article, threat model and
leakage models, as well as the notions of perfect masking
and quantitative masking strength.

We fix a natural number n > 0 and an integer domain
D = {0, · · · , 2n − 1}. The domain D is isomorphic to the
Galois field GF(2)[x]/(p(x)) (or simply GF(2n)) for some
irreducible polynomial p, e.g.,GF(28) and p(x) = x8 +x4 +
x3 + x + 1, which is usually referred to as Rijndael’s (AES)
finite field. We will denote by ~1 the value 2n − 1 ∈ D.

2.1 Cryptographic Programs

In this article, we consider cryptographic programs rather
than arbitrary software programs. It is common to assume
that cryptographic programs are branching-free (i.e., in
straight-line forms) for formal verification [35], [42]. (Re-
mark that our tool supports programs with static loops by
loop unfolding. We do not consider cryptographic programs
that inherently contain branching in this work, but some
programs which can be transformed to the branching-free
form can be tackled.)

Syntax. The syntax of the program under verification is
given in Figure 1. A (cryptographic) program P consists of
a sequence of procedure definitions f(a1, · · · , am), where f
denotes the procedure name and a1, · · · , am are the formal
arguments of f . We assume that the procedure names of
P are distinct, there is a unique procedure named main
as the entry point of P , and all the procedures only use
local variables and formal arguments, but no global variable
unless the program contains only the main procedure. A pro-
cedure f(a1, · · · , am) consists of a sequence of assignments
followed by a return statement return x1, · · · , xk. Note that
a return statement could return more than one value in our
language for the sake of convenience.

An assignment of the form x = e, as usual, assigns
the value of the expression e to the variable x. An as-
signment of the form r = $ assigns a uniformly sampled
random value from the domain D to the variable r where
effectively r is a random variable. An assignment of the
form x1, · · · , xk = f(y1, · · · , ym) is a procedure call which
passes the actual arguments y1, · · · , ym to the formal ar-
guments a1, · · · , am of f , executes the function body of
f(a1, · · · , am) and finally assigns the return values to the
variables x1, · · · , xk, assuming that the number of return
values of f is k.

We assume that each procedure call x1, · · · , xk =
f(y1, · · · , ym) is associated with a unique call-site ` (e.g.,

http://s3l.shanghaitech.edu.cn/software/qmverif

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Constant: D 3 c ::= n-bit constant
Operation: O 3 ◦ ::= ∧ | ∨ | ⊕ | − | + | × | �
Expression: e ::= c | x | ¬e | e� c | e� c | e ◦ e
Statememt: stmt ::= x = e | r = $ | x1, · · · , xk = f(y1, · · · , ym) | stmt; stmt
Procedure: F 3 f(a1, · · · , am) ::= stmt; return x1, · · · , xk;
Program: P ::= F+

Fig. 1. Syntax of the programming language used by QMVerif

line number) and let f(y1, · · · , ym)[i]@` denote the i-th re-
turn value of the procedure call f(y1, · · · , ym) at the call-site
`. Therefore, the procedure call x1, · · · , xk = f(y1, · · · , ym)
can be treated as a sequence of assignments:

x1 = f(y1, · · · , ym)[1]@`;

· · · ;

xk = f(y1, · · · , ym)[k]@`; .

An expression e is built up from n-bit variables and con-
stants using the following operations:
• bit-wise operations: and (∧), or (∨), negation (¬),

exclusive-or (⊕), right shift� and left shift�;
• modulo 2n arithmetic operations: subtraction (−), addi-

tion (+), and multiplication (×), for which D is consid-
ered to be Z2n , i.e, the ring of integers modulo 2n;

• finite-field operation: multiplication (�), for which D
is considered to be a Galois field GF(2n). (Note that
addition and subtraction operations over Galois fields
are essentially bit-wise exclusive-or.)

In the rest of the paper, we denote by O∗ the set of
operations O ∪ {�,�}. For each procedure f(a1, · · · , am)
defined in the program P , let Xf denote the set of variables
defined in the procedure f(a1, · · · , am) (called internal vari-
ables), Xf

r ⊆ Xf denote the set of random variables defined
in the procedure f(a1, · · · , am), and Xf

a denote the set of
formal arguments {a1, · · · , am}. We assume, without loss of
generality, that each variable x ∈ Xf is defined at most once
in f(a1, · · · , am), namely, the procedure f(a1, · · · , am) is in
the single static assignment (SSA) form, and each expression
contains at most one operation. Indeed, any straight-line
procedure can be transformed into the one satisfying these
conditions. For the main procedure main(a1, · · · , am), the
set of formal arguments Xmain

a is partitioned into two
disjoint sets: public input variables (Xp) and private input
variables (Xk).

Computation. For each variable x used in the procedure
f(a1, · · · , am), the (intermediate) partial computation E(x) of
x is defined as follows:
• If x is a formal argument or random variable, i.e., x ∈
Xf
a ∪Xf

r , then E(x) = x;
• Otherwise, E(x) is obtained by

1) initially, E(x) = e if x is defined by the assignment
x = e, or E(x) = g(y1, · · · , ym)[i]@` if the procedure
call x1, · · · , xi−1, x, xi+1, · · · , xk = g(y1, · · · , ym) is
made at the call-site ` in f(a1, · · · , am);

2) then recursively replacing each variable y in E(x)
with its partial computation E(y) until the updating
is stabilized.

Intuitively, the partial computation E(x) of x is an ex-
pression in terms of random variables (Xf

r) and formal
arguments (Xf

a), without inlining procedure calls. Being in
the single static assignment form guarantees that E(x) is
well-defined.

A partial computation E(x) is a full computation if E(x)
does not contain any procedure calls and all the formal
arguments used in E(x) are from Xmain

a (i.e., the formal
arguments of the main procedure).

Procedure inlining. In this paper, we consider non-
recursive programs, for which we can inline all the proce-
dure calls so that the resulting program contains only the
main procedure. For the sake of presentation, we introduce
the procedure inlining as follows.

For each procedure call x1, · · · , xk = f(y1, · · · , ym) at
the call-site ` in the procedure g where the procedure body
of f is

f(a1, · · · , am) = s1; · · · st; return z1, · · · , zk; ,

we inline the procedure call x1, · · · , xk = f(y1, · · · , ym) by
replacing them with the following statements:

a1@` = y1; · · · ; am@` = ym;

s′1; · · · s′t;
x1 = z1@`; · · · xk = zk@`;

where for every 1 ≤ i ≤ t, the statement s′i denotes the
statement obtained from si by replacing every variable
z ∈ Xf ∪ Xf

a with z@`. Moreover, if si is a procedure call
with the call-site `′, then the call-site of s′i becomes `′@`
which tracks the call-site `. It follows that a call-site ` may
be a sequence of call-sites of the form `k@ · · ·@`1. The
resulting procedure of g is denoted by inline(g, `), namely,
the procedure call at the call-site ` in g is inlined. For
a sequence of procedure calls with call-sites `1, · · · , `k,
we denote by inline(g, `1, · · · , `k) the procedure
inline(...inline(inline(g, `1), `2@`1), ..., `k@ · · ·@`1),
with inline(g, `1, · · · , `k) = g if k = 0.

For any non-recursive program P , by iteratively inlin-
ing all the procedure calls, we can obtain an equivalent
program, denoted by Pinlined, which only has the main
procedure. Assuming that the variable names used in the
program P do not contain @, the program Pinlined is in the
SSA form. For a variable x ∈ Xf defined in a procedure
f(a1, · · · , am), x will become the variables x@`k · · ·@`1
in Pinlined, for sequences of call-sites `1 · · · `k from the
procedure main to the procedure f in the call graph of P . We
denote by inline(x) the set of such variables in Pinlined.
Obviously, each internal variable x defined in Pinlined

has a unique full computation E(x). Moreover, a partial

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

computation E(x) defined in the procedure f(a1, · · · , am)
corresponds to the full computations E(x′) for the variables
x′ ∈ inline(x) in Pinlined.

Similarly, for any partial computation E(x) of a vari-
able x defined in a procedure g, and a procedure call
f(e1, · · · , em) at the call-site ` in the procedure g, all the
terms of the form f(e1, · · · , em)[i]@` in E(x) can be inlined
by replacing it with the partial computation E ′(zi), where
E ′(zi) is obtained from E(zi) of the procedure body

f(a1, · · · , am) = s1; · · · st; return z1, · · · , zk;

by replacing the formal arguments a1, · · · , am in E(zi) with
the partial computations e1, · · · , em respectively, replacing
random variables r in E(zi) by r@`, and replacing the
symbol @`′ in E(zi) with @`′@`. Indeed, the resulting
partial computation, denoted by inline(E(x), `), is the
partial computation E(x) of the variable x in the procedure
inline(g, `). We denote by E(x)inlined the partial computa-
tion of the variable x obtained by iteratively inlining all the
terms of the form f(e1, · · · , em)[i]@`. When x is a variable
defined in the main procedure, i.e., x ∈ Xmain, E(x)inlined
is a full computation of x in the program Pinlined.

Semantics. A valuation for a set of variables Y is a function
assigning to each variable y ∈ Y a concrete value c ∈ D.
For a subset of variables Z ⊆ Y , two valuations (σ1, σ2)
are Z-equivalent, denoted by σ1 'Z σ2, if σ1(z) = σ2(z) for
all variables z ∈ Z . We denote by Θ the set of valuations
for the set of variables Xp ∪ Xk. Given an expression
(i.e., computation) e and a valuation σ ∈ Θ, let e(σ) be
the expression obtained from e in which all the variables
x ∈ Xp∪Xk are instantiated by the concrete values σ(x). By
abuse of notation, for an assignment σ of formal arguments
and variables in the partial computation e, we also denote
by e(σ) the expression obtained from e, where all the formal
arguments and variables x in e are instantiated by the
concrete values σ(x).

For a full computation e, the random variables in e(σ)
are uniformly distributed. We write JeKσ for the resulting
random variable which gives rise to a distribution as fol-
lows. Namely, for each concrete value c ∈ D,

JeKσ(c) =
|{µ : Xr → D | e(σ, µ) = c}|

|D||Xr|
.

where e(σ, µ) denotes the value of the full computation e(σ)
by instantiating random variables r ∈ Xr with concrete
values µ(r). As a result, JeKσ(c) is the probability that e(σ)
evaluates to c under the valuation σ.

Given a program P , for each variable x ∈ Xmain of
the program Pinlined and valuation σ ∈ Θ, we denote by
JxKσ the distribution JE(x)Kσ (note that E(x) must be a full
computation). The semantics of P is a (partial) function JP K
that gives the distribution JxKσ for each valuation σ ∈ Θ
and variable x ∈ Xmain of the program Pinlined.

2.2 Threat Model and Leakage Models
In this work, we adopt a commonly used threat model [41],
[42], [43], [44], [51], [52], which assumes that the adver-
sary has access to public input variables Xp, but not to
private input variables Xk, of the program P . Moreover,
the adversary may have access to results of intermediate

full computations (i.e., internal variable x in Pinlined) via
power side-channel information. Under these assumptions,
the goal of the adversary is to deduce the information of Xk.

For power side-channel attacks, it is the correlations
between power consumption values, rather than the ab-
solute power consumption, that matters. The correlation
between power consumption values usually comes from, for
instance, the leakage currents of CMOS transistors which
comprise static and dynamic leakage currents. The former
always exists, but its volume depends on whether the tran-
sistor is on or off which corresponds to the logical 1 and 0
of a bit. The latter occurs only when a transistor is switched
(bit flip) which corresponds to the switch between logical 1
and 0 of a bit. Both static and dynamic leakage currents can
be used by the adversary to infer the private data.

Towards formally verifying masking countermeasures,
we define a leakage model that precisely captures the
information that may be leaked to the adversary. In this
work, we consider two such models: the Hamming Weight
(HW) and Hamming Distance (HD) leakage models. Both
models have been used as leakage models for verifying
masking countermeasures [40], [41], [42], [43], [52], and been
validated on real devices [2], [6], [13], [53], [54], [55].

2.2.1 HW Leakage Model
The HW leakage model maps intermediate full computation
results (i.e., data values) of an executing program to power
consumptions that are induced by static leakage currents.
For a constant c ∈ D, the Hamming weight of c, denoted by
HW(c), is the number of logical 1 bits in c, namely,

HW(c) = Σn−1
i=0 ci,

where ci denotes the i-th greatest significant bit of c. Intu-
itively, HW(c) measures the power consumptions of CMOS
transistors (e.g., register) for storing the constant c. For
instance, consider the instruction a = 0xFF⊕ k where k is a
private input variable. If k = 0x00 (resp. k = 0xFF), then the
value of a is 0xFF (resp. 0x00). The power consumption of
executing this instruction is proportional to HW(0xFF) = 8
(resp. HW(0x00) = 0), hence depends on the value of k.
The adversary can infer the value of k via attacks that use
the HW leakage model such as the simple power analysis
in [56] or the differential power analysis in [2], [57].

2.2.2 HD Leakage Model
The HD leakage model maps intermediate full computation
results of an executing program to power consumptions
that are induced by dynamic leakage currents. For two
constants c, c′ ∈ D, the Hamming distance of c and c′ that are
consecutively assigned to a variable, denoted by HD(c, c′),
is the number of positions at which the logical values are
different at c and c′. Namely,

HD(c, c′) = Σn−1
i=0 (ci ⊕ c′i) = HW(c⊕ c′).

Intuitively, for two constants c, c′ ∈ D that are consecutively
assigned to the same variable, HD(c, c′) measures the power
consumptions of CMOS transistors (e.g., register) that up-
date from c to c′ via switching between logical 1 and 0. For
instance, consider two instructions

a = r1 ⊕ r2;
a = a⊕ k;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

where r1, r2 are two random variables, and k is a private
input variable. For any value of k, the Hamming weights of
the values of a are uniformly distributed, so the adversary
cannot infer the value of k via attacks using the HW leakage
model, e.g., the simple power analysis in [56] or the differ-
ential power analysis in [2], [57] that use the HW leakage
model. However, the Hamming distance HD(c, c′) of two
consecutive values c, c′ of a is the Hamming weight of the
value of k, i.e., HD(r1⊕r2, (r1⊕r2)⊕k) = HW(k). Therefore,
the adversary is able to infer the value of k via attacks
that use the HD leakage model, e.g., the correlation power
analysis in [54]. Note that the simple power analysis [56] or
the differential power analysis [2], [57] could be used to infer
the value of k, if the HD leakage model is used. Similarly, the
correlation power analysis [54] could be adapted for the HW
leakage model. The details of power consumption, HW/HD
leakage models and their relation are given in, e.g., [13].

We remark that the HW leakage model is equivalent
to the (value-based) first-order probing model proposed by
Ishai et al. [14], and the HD leakage model is equivalent to
the transition-based first-order probing model [58], but the
HD leakage model differs from the (value-based) second-
order probing model as shown by Wang et al. [40].

2.2.3 From HD Leakage Model to HW Leakage Model

Since we assume that each variable is defined at most
once, i.e., no variables will be assigned twice, hence in
theory no leakage occurs under the HD leakage model.
However, in practice, some values may be assigned to the
same variable in the original programs (i.e., programs before
being transformed to SSA forms) or in low-level programs
due to register allocation and assignment. To alleviate this
problem, we assume that, when the HD leakage model is
considered, a set of variable pairs is associated with each
procedure of the SSA program. Intuitively, the variables in
each pair (x1, x2) refer to the same variable x in the original
program or in the low-level program after register allocation
and assignment, and they are used to record, for instance,
two consecutive values of x before and after assignment
(as intermediate computation results of E(x1) and E(x2)).
If one wants to consider pairs of variables from different
procedures, the program P can be transformed into an
equivalent program Pinlined and verify Pinlined under the
HD leakage model.

The set of variable pairs could be obtained by inspecting
the transformation from the original program to the SSA
form or register allocation and assignment. To verify the
program under the HD leakage model, we reduce to veri-
fying a new program under the HW leakage model by (1)
adding a dummy variable x1,2 for each variable pair (x1, x2)
and (2) inserting a new instruction x1,2 = x1 ⊕ x2 after the
assignments of x1 and x2, as HD(x1, x2) = HW(x1 ⊕ x2) =
HW(x1,2). Therefore, for ease of presentation, we shall use
the HW leakage model during the illustration of our ap-
proach.

We remark that our formal verification approach is gen-
eral and could be integrated into compilation as done by
Wang et al. [40] so that the set of variable pairs could be
automatically inferred.

2.3 Perfect Masking

We fix a program P in this section. For each internal variable
x of the program Pinlined, we say x is uniform in Pinlined,
denoted by x-UF, if JxKσ is a uniform distribution for all
valuations σ ∈ Θ, and x is statistically independent in Pinlined,
denoted by x-SI, if JxKσ1

= JxKσ2
for all pairs of valuations

(σ1, σ2) ∈ Θ2
Xp

, where Θ2
Xp

denotes the set {(σ1, σ2) ∈ Θ×
Θ | σ1 'Xp σ2}. It is straightforward to see that if Pinlined is
x-UF, then Pinlined is x-SI. Note that the inverse does not
hold in general.

An internal variable x of Pinlined is called perfectly masked
in Pinlined if it is x-SI, otherwise x is called leaky. The
program Pinlined is perfectly masked if all internal vari-
ables in Pinlined are perfectly masked. Intuitively, if the
program Pinlined is x-UF, then the values of x for each
valuation σ ∈ Θ are uniformly distributed. This implies
that the Hamming weights of the values of x, hence the
power consumptions, are uniformly distributed. Therefore,
the adversary cannot deduce any information of private
data through the variable x. Note that a difference between
distributions which does not result in a difference under
the HW model can still be used for an attack, so we define
perfect masking in the above form. Similarly, if the program
Pinlined is x-SI, then the distributions of values of x for each
pair of valuations (σ1, σ2) ∈ Θ2

Xp
are the same. This implies

that the distributions of Hamming weights of the values
of x are the same. Therefore, the distributions of power
consumptions through the variable x do not rely on private
data and the adversary cannot deduce any information of
private data through the variable x. We say the program P is
perfectly masked if the program Pinlined is perfectly masked.

To verify whether the program P is leakage-free, we
focus on the leaks of individual internal variables of Pinlined

instead of the whole program Pinlined. If all the individual
internal variables of Pinlined are leakage-free, i.e., the pro-
gram Pinlined is x-SI for all internal variables x of Pinlined,
then the whole programs P and Pinlined are leakage-free,
i.e., private data in the program P is perfectly masked.

As an example, consider a program snippet P shown
below, where k0, k1 are private variables, and r0, r1 are
random variables. P is x0-UF and x1-UF, but x2 is leaky,
as the value of x2 statistically depends on k1.

Program P Modified Program P ′

x0 = r0 ⊕ k0; x0 = r0 ⊕ k0;
x1 = r0 ⊕ k1; x1 = r0 ⊕ k1;
x2 = r1 ∧ k1; x0,1 = x0 ⊕ x1;

x2 = r1 ∧ k1;

Suppose the same register is assigned to x0 and x1,
then the security of P under the HD leakage model can
be checked by verifying the modified program P ′ under
the HW leakage model. Since x0,1 is leaky in P ′ under
the HW leakage model and HW(x0,1) = HD(x0, x1) =
HW(r0 ⊕ k0 ⊕ r0 ⊕ k1) = HW(k0 ⊕ k1), we deduce that
P under the HD leakage model is not secure.

2.4 Quantitative Masking Strength

To quantify masking strength of Boolean programs, Eldib et
al. [49], [50] introduced a notion, called Quantitative Masking

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

1 SecMult(a0, a1, b0, b1){ / / a0 ⊕ a1 = a, b0 ⊕ b1 = b
2 r0 = $;
3 x0 = a1 � b0 ;
4 x1 = a0 � b1 ;
5 x2 = x1 ⊕ r0 ;
6 x3 = x2 ⊕ x0 ;
7 x4 = a0 � b0 ;
8 x5 = x4 ⊕ r0 ;
9 x6 = a1 � b1 ;

10 x7 = x6 ⊕ x3 ;
11 return x5, x7 ; / / x5 ⊕ x7 = a� b
12 }
13
14 RefreshMasks(a0, a1){ / / a0 ⊕ a1 = a
15 r1 = $;
16 y0 = a0 ⊕ r1 ;
17 y1 = a1 ⊕ r1 ;
18 return y0, y1 ; / / y0 ⊕ y1 = a
19 }
20
21 SecExp254(a0, a1){ / / a0 ⊕ a1 = a
22 z0 = a2

0 ;
23 z1 = a2

1 ; / / z0 ⊕ z1 = a2

24 z2, z3 =RefreshMasks(z0, z1) ; / / z2 ⊕ z3 = a2

25 z4, z5 =SecMult(z2, z3, a0, a1) ; / / z4 ⊕ z5 = a3

26 z6 = z4
4 ;

27 z7 = z4
5 ; / / z6 ⊕ z7 = a12

28 z8, z9 =RefreshMasks(z6, z7) ; / / z8 ⊕ z9 = a12

29 z10, z11 =SecMult(z4, z5, z8, z9) ; / / z10 ⊕ z11 = a15

30 z12 = z16
10 ;

31 z13 = z16
11 ; / / z12 ⊕ z13 = a240

32 z14, z15 =SecMult(z12, z13, z8, z9) ; / / z14 ⊕ z15 = a252

33 z16, z17 =SecMult(z14, z15, z2, z3) ; / / z16 ⊕ z17 = a254

34 return z16, z17 ;
35 }
36
37 main(k){
38 r = $;
39 k1 = r ⊕ k ;
40 k2, k3 =SecExp254(r, k1) ; / / k2 ⊕ k3 = k254

41 }

Fig. 2. The program P 254 that implements the first-order secure expo-
nentiation to the power 254 over GF(28) [28].

Strength (QMS), which is a generalization of perfect mask-
ing. It was empirically shown that, for Boolean programs
the number of power traces needed to successfully infer
the private data from the computation results of an internal
variable x is exponential in the QMS value of x.

In this work, we generalize the notion of QMS from
Boolean setting to the arithmetic one. The Quantitative Mask-
ing Strength (QMS) of an internal variable x of Pinlined is
defined as:

QMSx := 1− max
(σ1,σ2)∈Θ2

Xp

c∈D

(
JxKσ1

(c)− JxKσ2
(c)
)
.

It is easy to see that Pinlined is x-SI iff QMSx = 1. We remark
that the notion of QMS is same as the one in Eldib et al. [49],
[50] when n = 1, i.e., the domain D becomes the Boolean
domain {0, 1}.

Research objective. The main goal of this work is to verify
whether a cryptographic program P is perfectly masked,

and to assess how strong it is for each leaky variable in
terms of QMS in case that P is not perfectly masked.

3 RUNNING EXAMPLE AND OVERVIEW

In this section, we present a running example and an
overview of our approach.

3.1 A Running Example
We illustrate the notions and techniques by the program
P 254 shown in Figure 2, which implements the first-order
secure exponentiation to the power 254 over GF(28) [28],
i.e., computes k254 for a given input k. To thwart first-order
side-channel attacks, the private input variable k is masked
by a uniform random variable r in the main procedure,
yielding two shares, i.e., r and k1 = k ⊕ r. Remark that
this masking process should be performed outside of the
program and the input of the main procedure is indeed the
pair (r, k1). We added here for verification purpose only.
Then it invokes the procedure SecExp254 to compute k254

using the shares (r, k1).
The procedure SecMult is used to compute first-order se-

cure multiplication over GF(28). Namely, given two shares
(a0, a1) of a (i.e., a0 ⊕ a1 = a) and two shares (b0, b1) of b
(i.e., b0 ⊕ b1 = b), it outputs two shares (x5, x7) such that
x5 ⊕ x7 = a � b. The procedure RefreshMasks is used to re-
mask shares, which, given two shares (a0, a1) of a, outputs
two shares (y0, y1) such that y0⊕y1 = a0⊕a1 = a. However,
here y0 and y1 are masked by the new random variable r1.
The procedure SecExp254 is used to compute the (first-order
secure) exponentiation to the power 254 over GF(28). For
two shares (a0, a1) of a, it outputs two shares (z16, z17) such
that z16 ⊕ z17 = (a0 ⊕ a1)254 = a254.

For the procedure SecMult, we have:
• XSecMult = {r0, x0, · · · , x7},
• XSecMult

r = {r0},
• XSecMult

a = {a0, a1, b0, b1}.
The partial computations of internal variables in XSecMult

are listed below:
E(r0) = r0,
E(x0) = a1 � b0,
E(x1) = a0 � b1,
E(x2) = (a0 � b1)⊕ r0,
E(x3) = ((a0 � b1)⊕ r0)⊕ (a1 � b0),
E(x4) = a0 � b0,
E(x5) = (a0 � b0)⊕ r0,
E(x6) = a1 � b1,
E(x7) = (a1 � b1)⊕ (((a0 � b1)⊕ r0)⊕ (a1 � b0)).

For the procedure SecExp254, we have:
• XSecExp254 = {z0, · · · , z17},
• XSecExp254

r = ∅,
• XSecExp254

a = {a0, a1}.
By inlining the procedure call RefreshMasks(z0, z1)

at the call-site 24, we obtain the procedure
inline(SecExp254, 24), as shown in Figure 4.

For the procedure inline(SecExp254, 24), we have:
• Xinline(SecExp254,24) = {z0, · · · , z17, a0@24, a1@24,

r1@24, y0@24, y1@24},
• X

inline(SecExp254,24)
r = {r1@24},

• X
inline(SecExp254,24)
a = {a0, a1}.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Pre-processor

Program in

SSA form

Call graph
Type

system
Model-counting

method

QMVERIFNon-recursive
program Result

QMS
computing

Perfect masking verification

Fig. 3. Overview of our approach.

1 SecExp254(a0, a1){ / / a0 ⊕ a1 = a
2 z0 = a2

0 ;
3 z1 = a2

1 ; / / z0 ⊕ z1 = a2

4 a0@24 = z0 ;
5 a1@24 = z1 ;
6 r1@24 = $;
7 y0@24 = a0@24⊕ r1@24 ;
8 y1@24 = a1@24⊕ r1@24 ;
9 z2 = y0@24 ;

10 z3 = y1@24 ; / / z2 ⊕ z3 = a2

11 z4, z5 =SecMult(z2, z3, a0, a1) ; / / z4 ⊕ z5 = a3

12 z6 = z4
4 ;

13 z7 = z4
5 ; / / z6 ⊕ z7 = a12

14 z8, z9 =RefreshMasks(z6, z7) ; / / z8 ⊕ z9 = a12

15 z10, z11 =SecMult(z4, z5, z8, z9) ; / / z10 ⊕ z11 = a15

16 z12 = z16
10 ;

17 z13 = z16
11 ; / / z12 ⊕ z13 = a240

18 z14, z15 =SecMult(z12, z13, z8, z9) ; / / z14 ⊕ z15 = a252

19 z16, z17 =SecMult(z14, z15, z2, z3) ; / / z16 ⊕ z17 = a254

20 return z16, z17 ;
21 }

Fig. 4. The procedure inline(SecExp254, 24).

3.2 Approach Overview

An overview of our approach is given in Figure 3, which
consists of four components: pre-processor, type system,
model-counting method and QMS computing.

For a given non-recursive program P , the pre-processor
transforms P to an equivalent program P ′ in the SSA form
and constructs the call graph of P ′. At a high-level, the type
system is used to quickly obtain soundness proofs when an
internal variable is perfectly masked. To resolve instances
that cannot be inferred by the type system, the model-
counting method is applied which is, in theory, powerful
enough to completely determine if an internal variable
is perfectly masked or leaky. Regardless of whether it is
perfectly masked, the result is fed back to improve the
type inference. Finally, based on the refined type inference
result, we continue to analyze other internal variables. For
the leaky variables, the QMS computing component can be
applied to compute their QMS values by leveraging the
model-counting method.

To verify the program P ′ using the type system, one
possible way is to transform it into the equivalent program
P ′inlined by inlining all the procedures and then verify all
the full computations of P ′inlined. The shortcoming of this
approach is that some variables in P ′ may need to be
analyzed multiple times (e.g., variables in RefreshMasks and

main

SecExp254

RefreshMasks SecMult

@40

@24, @28 @25, @29,
@32, @33

Fig. 5. Call graph of the program P 254.

SecMult in Figure 2), which may disadvantage scalability.
We hence propose a compositional verification technique to
address this issue. We directly analyze the program P ′

instead of P ′inlined. The subprocedures within P ′ which are
invoked multiple times are to be analyzed in isolation in the
reverse topological order of its call graph (note that P ′ is
non-recursive, so the call graph is essentially a DAG), and
the results are composed to give the overall verification.

For instance, the call graph of the program P 254 is shown
in Figure 5, where the labels on edges denote call-sites. We
can verify the procedures in the order of (RefreshMasks, Sec-
Mult, SecExp254, main) or (SecMult, RefreshMasks, SecExp254,
main).

To verify each procedure in isolation, the main
challenge is to verify partial computations, that may
be dependent on external variables of the procedure.
For instance, consider an internal variable x0 that is
defined in SecMult, which corresponds to the vari-
ables {x0@25@40, x0@29@40, x0@32@40, x0@33@40}, i.e.,
inline(x) in P 254

inlined. It is impossible to obtain the full
computations E(x0@25@40), E(x0@29@40), E(x0@32@40)
and E(x0@33@40) in isolation, as they rely upon the formal
arguments a1 and b0. Likewise, the variable z2 in SecExp254
corresponds to the variable z2@40 in the program P 254

inlined,
which relies upon the first return value of the procedure
call RefreshMasks(z0, z1), i.e., RefreshMasks(z0, z1)[1]. To ad-
dress this challenge, we adopt the assume-guarantee reason-
ing [59], which is a modular technique that uses assump-
tions when checking procedures in isolation.

In our assume-guarantee framework, each procedure
f(a1, · · · , am) can be annotated with an assumption Φf
by the user which expresses the properties of the formal
arguments a1, · · · , am. For this purpose, we introduce a
simple logic. For each internal variable x ∈ Xf , we infer the
distribution type of the partial computation E(x) under the
annotated assumption Φf via our type system. If the partial
computation E(x) is statistically independent of the private
input variables under the annotated assumption Φf and
the actual arguments of the procedure call f(x1, · · · , xm)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

at the call-site ` do satisfy the assumption, we can deduce
that the partial computation E(x@`) is indeed statistically
independent of the private input variables after inlining
this procedure. Finally, if all the procedure calls from the
main procedure to the procedure f(x1, · · · , xm) with the
sequence of the call-sites `1, · · · , `k, ` satisfy the correspond-
ing assumptions, then we can deduce that the full compu-
tation E(x@`@`k · · ·@`1) in the program Pinlined is indeed
perfectly masked. By this way, the verification obligation is
to check whether each procedure in isolation is perfectly
masked under the annotated assumption, and that the as-
sumption of each procedure call holds. Note there is no
guarantee that this approach can always work successfully.
In case that the type inference fails on E(x) or the procedure
call does not satisfy the corresponding assumption, we will
inline the procedure call and apply the type system on
the partial computation E(x@`). This procedure is repeated
until it is proved or becomes the full computation. If the
type system still fails on the full computation, we resort to
(expensive) model-counting which is powerful enough to
completely decide if the full computation is leakage-free.

4 METHODOLOGY

In this section, we present our type system, model-counting
method, domain specific heuristics and overall algorithms.

4.1 Type System
We first introduce the distribution types, the notion of
dominant variables which will be used in the type inference
rules, and a simple logic for expressing the assumptions of
procedures. We then present the type inference rules and
explain how to deal with procedure calls.

4.1.1 Distribution Types
In our type system, there are four distribution types:
τuf , τsi, τlk and τuk. We denote by T the set {τuf , τsi, τlk, τuk}.
Intuitively, for each (partial or full) computation e,
• e : τuf meaning that the distribution of the values of e

is uniform;
• e : τsi meaning that the distribution of the values of e is

statistically independent on private inputs;
• e : τlk meaning that the distribution of the values of e is

statistically dependent on private inputs;
• e : τuk meaning that the distribution of the values of e

is unknown.
where τuf is a subtype of τsi.

Given a procedure f(a1, · · · , am), let Φf = {ψ1, · · · , ψk}
be the annotated assumption of f (the language for express-
ing formulas ψi will be defined in Section 4.1.3). To infer
the distribution type of a partial computation e, the type
judgement of e is defined in the form of

Φf ` e : τ ,

where τ ∈ T denotes the distribution type of the partial
computation e under the assumption Φf .

A type judgement Φf ` e : τ is valid if the type
judgement ψ ` e : τ is valid for every formula ψ ∈ Φf . We
will present type inference rules in Section 4.1.4 to derive
the valid type judgement ψ ` e : τ . We say the procedure

f(a1, · · · , am) is perfectly masked under the assumption Φf ,
if for every variable x ∈ Xf , either Φf ` E(x)inlined : τuf or
Φf ` E(x)inlined : τsi is valid.

4.1.2 Dominant Variables

Given a computation e, a random variable r is a dominant
variable of e if the following conditions hold:

1) r (syntactically) occurs in e exactly once,
2) and in the abstract syntax tree of e, for each operator ◦ ∈
O∗ on the path between the root and the leaf labeled by
r, one of the following cases holds:
• ◦ = � and one of its children is a non-zero constant;
• ◦ ∈ {⊕,¬,+,−};
• ◦ is a (univariate) bijective function, e.g., Sbox.

For efficiency consideration, to determine whether a random
variable is dominant or not, we take a purely syntactic
approach. For instance, r is not considered to be a dominant
variable in r⊕((r⊕y)⊕r), although r is a dominant variable
in the equivalent y ⊕ r. We will address this limitation in
Section 4.3.

Intuitively, for every variable x ∈ Xf , if r is a dominant
variable of the computation E(x)inlined, then the distribu-
tion of E(x)inlined is uniform, as the random variables in
E(x)inlined are uniformly distributed.

Let Var(e) denote the set of variables used in the compu-
tation e, and RVar(e) ⊆ Var(e) the set of random variables.
We denote by Dom(e) ⊆ RVar(e) the set of all dominant
random variables of e. All these sets can be computed in
linear time in the size of e. It is straightforward to have:

Proposition 1. If Dom(E(x)inlined) 6= ∅, then the distri-
bution of the values of E(x)inlined(σ) is uniform for
all possible assignments σ of formal arguments and
variables in E(x)inlined.

4.1.3 A Logic for Expressing Assumptions

To express assumptions of procedures, we introduce a sim-
ple logic to specify properties of formal arguments. For each
procedure f(a1, · · · , am), its assumption is given as a set of
formulas Φf = {ψ1, · · · , ψk}, such that every 1 ≤ i ≤ k, the
formula ψi is defined by the following logic:

φ ::= > | ai : τ | Dom(ai) \ RVar(aj) 6= ∅
| φ1 ∧ φ2 | RVar(ai) ∩ RVar(aj) = ∅

where τ ∈ T is a distribution type, ai and aj are formal
arguments of f(a1, · · · , am).

A procedure call f(x1, · · · , xm) made in the procedure g
satisfies the assumption Φf , denoted by f(x1, ..., xm) |= Φf ,
iff f(x1, · · · , xm) |= ψ for some ψ ∈ Φf , where the latter is
inductively defined as follows:
• f(x1, · · · , xm) |= > always holds;
• f(x1, · · · , xm) |= ai : τ iff Φg ` E(ai) : τ is valid,

where Φg denotes the assumption of the procedure g;
• f(x1, · · · , xm) |= Dom(ai) \ RVar(aj) 6= ∅ iff

Dom(E(xi)inlined) \ RVar(E(xj)inlined) 6= ∅;
• f(x1, · · · , xm) |= RVar(ai) ∩ RVar(aj) = ∅ iff

RVar(E(xi)inlined) ∩ RVar(E(xj)inlined) = ∅
• f(x1, · · · , xm) |= φ1 ∧ φ2 iff both f(x1, · · · , xm) |= φ1

and f(x1, · · · , xm) |= φ2.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Dom(e) 6= ∅
ψ ` e : τuf

(DOM)
ψ ` e1 ? e2 : τ

ψ ` e2 ? e1 : τ
(COM)

e is a full computation
Var(e) ∩Xk = ∅

ψ ` e : τsi
(NOKEY)

x ∈ Xk
ψ ` x : τlk

(KEY)
ψ ` e : τ

ψ ` ¬e : τ
(IDE1)

ψ ` e : τsi
ψ ` e • e : τsi

(IDE2)

ψ ` e � e : τsi
(IDE3)

ψ ` e : τlk
ψ ` e ./ e : τlk

(IDE4)

ψ ` e1 : τuf ψ ` e2 : τsi
ψ ` Dom(e1) \ RVar(e2) 6= ∅

ψ ` e1 ◦ e2 : τsi
(SID1)

ψ ` e1 : τsi ψ ` e2 : τsi
ψ ` RVar(e1) ∩ RVar(e2) = ∅

ψ ` e1 • e2 : τsi
(SID2)

ψ ` e1 : τlk ψ ` e2 : τuf
ψ ` Dom(e2) \ RVar(e1) 6= ∅

ψ ` e1 ◦ e2 : τlk
(LEAK)

ψ ` inline(e, `) : τ
` is a call-site
ψ ` e : τ

(INLINE)

No rule is appliable to e
ψ ` e : τuk

(UKD)
Dom(e1) \ RVar(e2) 6= ∅

ψ ` Dom(e1) \ RVar(e2) 6= ∅
RVar(e1inlined) ∩ RVar(e2inlined) = ∅

ψ ` RVar(e1) ∩ RVar(e2) = ∅

ai : τ is a conjunct of ψ
ψ ` ai : τ

(APT)

Dom(ai) \ RVar(aj) 6= ∅
is a conjunct of ψ

ψ ` Dom(ai) \ RVar(aj) 6= ∅

RVar(ai) ∩ RVar(aj) = ∅
is a conjunct of ψ

ψ ` RVar(ai) ∩ RVar(aj) = ∅

Fig. 6. Type inference rules, where ? ∈ O, ◦ ∈ {∧,∨,�,×}, • ∈ O∗, ./∈ {∧,∨} and � ∈ {⊕,−}, ai and aj denote formal arguments of the
procedure f(a1, · · · , am).

Given a sequence π of procedure calls f1(x1
1, · · · , x1

m1
),

· · · , fk(xk1 , · · · , xkmk), let π` = `1, · · · , `k denote the se-
quence of the corresponding call-sites, and Φπ denote the
sequence of assumptions Φf1 , · · · ,Φfk . We say π satisfies
Φπ , denoted by π |= Φπ , if fi(xi1, · · · , ximi) |= Φfi for every
1 ≤ i ≤ k.

We remark that the assumption of the main procedure
is not needed, as there is no procedure call to the main
procedure. (Alternatively one can assume it to be {>}.)

4.1.4 Type Inference Rules
Given a procedure f(a1, · · · , am), for every variable x ∈
Xf such that E(x) = e, to derive valid type judgements
ψ ` e : τ for all formulas ψ ∈ Φf , we design type inference
rules (shown in Figure 6). We will drop the context ψ from
ψ ` e : τ when ψ = >.

Rule (DOM) directly follows Proposition 1. Rule (COM)
follows the commutative law of operations ? ∈ O. Rule
(NOKEY) describes that full computations without using
any private input variables have type τsi. Note that we
cannot apply this rule to computations that contain some
formal arguments, but are neither public nor private. Rule
(KEY) enures that each private input has type τlk. Rules
(IDEi) for i = 1, 2, 3, 4 are straightforward. Rule (APT)
follows from the assumption ψ.

Rule (SID1) states that if e1 has type τuf , e2 has type τsi,
and e1 has a dominant variable r which is not used by e2

(implying that e2inlined does not use r), then e1 ◦ e2 for
◦ ∈ {∧,∨,�,×} has type τsi. This is because that e1 ◦ e2 can
be seen as r ◦ e2, and the distributions of the values of r and
e2 are independent. In this rule, when e1 and e2 are formal
arguments, we check the premise Dom(e1) \ RVar(e2) 6= ∅
using the type context ψ.

Likewise, if both e1 and e2 have type τsi (as well as its
subtype τuf), and e1 and e2 use disjoint random variables,
then e1 • e2 for • ∈ O∗ has type τsi, as the distributions of
values of e1 and e2 are independent. This is captured by rule

(SID2). Similar to rule (SID1), rule (LEAK) states that if e1 has
type τlk, e2 has type τuf , and e2 has a dominant variable r
which is not used by e1, we can deduce that e1 ◦ e2 for
◦ ∈ {∧,∨,�,×} has type τlk.

Our type system is designed to infer types of partial com-
putations for each procedure in isolation. Therefore, Dom(e)
and RVar(e) rather than Dom(einlined) and RVar(einlined)
are used in the type inference rules, according to Proposi-
tion 2. When it fails to derive a valid type judgement and e
contains a procedure call with the call-site `, rule (INLINE)
can be used to infer the type of e by inferring the type of
inline(e, `). These features allow to inline procedures as
less as possible.

The type judgements derived by the above rules are con-
clusive, therefore the type system is sound. We also demon-
strate in our experiments that for cryptographic programs,
these rules suffice to drive type judgements of most com-
putations. However, there may exist computations whose
types cannot be inferred by the above rules. Therefore, for
these computations, we design a specific rule (UKD) which
assigns unknown distribution type to these computations.
We will address this problem for the full computations in
Section 4.2 by leveraging model-counting methods. It is easy
to see that:

Theorem 1. Given a program P , for every variable x defined
in the program Pinlined,
• Pinlined is x-UF, if ` E(x) : τuf is valid;
• Pinlined is x-SI, if ` E(x) : τsi is valid;
• Pinlined is not x-SI, if ` E(x) : τlk is valid.

4.1.5 Compositional Property
To verify the program P but avoid a full construction of
the program Pinlined, we show the following compositional
property.
Theorem 2. Given a procedure f(a1, · · · , am) of P , for every

x ∈ Xf and sequence π of procedure calls starting from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

one in the main procedure to f with π` = `1 · · · `k, if
π |= Φπ and Φf ` E(x) : τ is valid for τ ∈ {τuf , τsi, τlk},
then ` E(x@`k · · ·@`1)inlined : τ is valid. (Note that
E(x@`k · · ·@`1)inlined is the full computation of the
variable x@`k · · ·@`1 in Pinlined.)

By Theorems 1 and 2, we can deduce that the program
Pinlined is x@`k · · ·@`1-UF (resp. x@`k · · ·@`1-SI or not
x@`k · · ·@`1-SI), if π |= Φπ and Φf ` E(x) : τuf (resp.
Φf ` E(x) : τsi or Φf ` E(x) : τlk) is valid. The correctness of
Theorem 2 directly follows from the following two lemmas.

The first lemma shows that it suffices to infer the dis-
tribution type of the observable variable x defined in a
procedure from its partial computation E(x) using our type
system.
Lemma 1. Given a procedure f(a1, · · · , am), for every vari-

able x ∈ Xf , formula ψ ∈ Φf and τ ∈ {τuf , τsi, τlk},
ψ ` E(x) : τ is valid iff ψ ` E(x)inlined : τ is valid.

The second lemma shows that the distribution type of
the partial computation E(x@`k · · ·@`1) can be deduced
from the distribution type of the partial computation E(x)
when the corresponding procedure assumptions are satis-
fied by their procedure calls.
Lemma 2. For every path π = f1(x1

1, · · · , x1
m1

), · · · , fk(xk1 ,
· · · , xkmk) in the call graph of the program P with
π` = `1, · · · , `k, suppose f1(x1

1, · · · , x1
m1

) is made in the
procedure g. For every x ∈ Xfk and τ ∈ {τuf , τsi, τlk},
if π |= Φπ and Φfk ` E(x) : τ is valid, then Φg `
E(x@`k · · ·@`1) : τ is valid, where x@`k · · ·@`1 is the
variable defined in the procedure inline(g, `1, · · · , `k).

Formal proofs of Lemma 1 and Lemma 2 are given in the
supplemental material.

Remarkably, if ` E(x) : τ is valid, we can still deduce
Φg ` E(x@`k · · ·@`1) : τ even if fk(xk1 , · · · , xkm1

) 6|= Φfk .

Example 1. Let us consider the program in Figure 2. Suppose
the procedure SecMult is annotated with the assumption
ΦSecMult = {ψ1, ψ2}, where
• ψ1 =

∧
0≤i,j≤1(Dom(ai) \ RVar(bj) 6= ∅ ∧ bj : τsi),

• ψ2 =
∧

0≤i,j≤1(Dom(bi) \ RVar(aj) 6= ∅ ∧ aj : τsi).

The partial computations of variables x ∈ XSecMult are
given in Section 3.1. For every i ∈ {1, 2}, by applying
rule (SID1), it is easy to derive:

ψi ` E(x0) : τsi, ψi ` E(x1) : τsi,
ψi ` E(x4) : τsi, ψi ` E(x6) : τsi.

We can also deduce that E(r0), E(x2), E(x3), E(x5) and
E(x7) have type τuf by applying rule (DOM) even if the
assumption ΦSecMult = {>}, as they are dominated by
a local random variable r0 which never occur in E(a0),
E(a1), E(b0) and E(b1).
Similarly, for the variables r1, y0 and y1 defined in
RefreshMasks, our type system can derive ` E(r1) : τuf ,
` E(y0) : τuf and ` E(y1) : τuf , as E(r1), E(y0) and E(y1)
are dominated by the random variable r1.

For the procedure SecExp254, let ΦSecExp254 = {a0 : τuf∧
a1 : τuf}, we can derive
• ΦSecExp254 ` E(z0) : τsi and ΦSecExp254 ` E(z1) : τsi by

applying rule (IDE2),

• ` E(z2) : τuf , ` E(z3) : τuf ` E(z4) : τuf and ` E(z5) : τuf
by applying rule (INLINE),

• ` E(z6) : τsi and ` E(z7) : τsi by applying rule (IDE2),
• ` E(z8) : τuf , ` E(z9) : τuf , ` E(z10) : τuf , ` E(z11) : τuf

by applying rule (INLINE),
• ` E(z12) : τsi and ` E(z13) : τsi by applying rule (IDE2),
• ` E(z14) : τuf , ` E(z15) : τuf , ` E(z16) : τuf , ` E(z17) :
τuf by applying rule (INLINE).

One can observe that the procedure call SecExp254(r, k1)
satisfies a0 : τuf ∧ a1 : τuf . Suppose ΦRefreshMasks =
{>}. It is easy to verify that all the procedure
calls SecMult(z2, z3, a0, a1), SecMult(z4, z5, z8, z9), Sec-
Mult(z12, z13, z8, z9) and SecMult(z14, z15, z2, z3) satisfy
either ψ1 or ψ2. Therefore, we can deduce that the
program P 254 is perfectly masked.

4.1.6 Reducing Procedure Inlines Further
One may observe that

1) to verify variables whose computations depend upon
the return values of some procedure calls, we may have
to apply the rule (INLINE) (e.g., z2 and z3 in Example 1);

2) to check whether a procedure call f(y1, · · · , ym) sat-
isfies the formula Dom(ai) \ RVar(aj) 6= ∅ (resp.
RVar(ai) ∩ RVar(aj) = ∅), we have to verify whether
Dom(E(yi)inlined) \ RVar(E(yj)inlined) 6= ∅ (resp.
RVar(E(yi)inlined) ∩ RVar(E(yj)inlined) = ∅);

3) RVar(e1inlined) ∩ RVar(e2inlined) = ∅ is a premise of a
type inference rule in our type system (cf. Table 6).

Verifying these conditions requires procedure inlines. In this
section, we present our solutions so that some procedure
inlines can be avoided.

To tackle the first issue, consider the following function

f(a1, · · · , am) = s1; · · · st; return z1, · · · , zk; .

For each variable xi which is defined by xi =
f(y1, · · · , ym)[i]@`; for some 1 ≤ i ≤ k after procedure
inlining, we regard the partial computation E(xi) (without
inlining) as a special computation such that
• Dom(E(xi)) = {r@` | r ∈ Dom(E(zi))};
• RVar(E(xi)) = {r@` | r ∈ RVar(E(zi))} ∪ RA, where
RA =

⋃
ai∈Var(E(zi))

RVar(E(yi)) is the set of random
variables used in the partial computations RVar(E(yi))
of the actual parameters on which E(zi) relies when the
procedure call is inlined.

For each computation e that relies upon some return
values xi of the procedure call f(y1, · · · , ym), RVar(e)
and Dom(e) can be extended accordingly by taking
RVar(E(xi)) and Dom(E(xi)) into account for all return
values xi of the procedure call simultaneously. This is
done only when the original sets RVar(e) and Dom(e)
are insufficient. For instance, for each variable z ∈
{z2, ..., z5, z8, ..., z11, z14, ..., z17} of the running example,
we can deduce ` E(z) : τuf without applying the rule
(INLINE), as Dom(E(z)) 6= ∅.

To tackle the second issue, we first consider the formula
Dom(ai)\RVar(aj) 6= ∅. For every variable x ∈ Xf and pro-
cedure call at the call-site ` in the procedure f(a1, · · · , am),
it is easy to see that Dom(E(x)) ⊆ Dom(inline(E(x), `)).
Indeed, if there exists some r ∈ Dom(E(x)), then r must be
a local variable of f , implying that r is used in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

• neither E(x1)inlined, · · · , E(xm)inlined for all procedure
calls f(x1, · · · , xm),

• nor the procedure call at the call-site `.
Therefore, r ∈ Dom(inline(E(x), `)). Similarly, for every
pair of variables x, x′ ∈ Xf , we have that

Dom(E(x′))\RVar(E(x)) = Dom(E(x′))\RVar(inline(E(x), `)).

By leveraging the solution to the first issue, we have that,
if Dom(E(yi)) \ RVar(E(yj)) 6= ∅, then Dom(E(yi)inlined) \
RVar(E(yj)inlined) 6= ∅. This often allows us to prove
that the procedure call f(y1, · · · , ym) satisfies the formula
Dom(ai) \ RVar(aj) 6= ∅ without fully inlining all the
procedure calls.
Example 2. Let us consider the procedure SecExp254

in the running example. Since Dom(E(y0)) = {r1},
Dom(E(z2)) = ∅ can be refined to the set Dom(E(z2)) =
{r1@24}. From RVar(E(a0)) = ∅, we can get that
Dom(E(z2)inlined) \ RVar(E(a0)inlined) 6= ∅, hence
SecMult(z2, z3, a0, a1) satisfies the formula Dom(a0) \
RVar(b0) 6= ∅, which is a conjunct of the annotation ψ1

of the procedure SecMult.
Note that currently we cannot prove that Sec-
Mult(z12, z13, z8, z9) satisfies Dom(b0) \ RVar(a0) 6= ∅,
as the random variable r1@28 ∈ Dom(E(z8)) occurs in
RVar(E(z10)), hence also occurring in RVar(E(z12)). We
will address this problem in Section 4.3.

We consider RVar(e1inlined) ∩ RVar(e2inlined) = ∅
which is involved in both the second and the third
issue. This is much more involved, as RVar(E(x)) ∩
RVar(E(x′)) = ∅ does not imply RVar(inlined(E(x), `)) ∩
RVar(inlined(E(x′), `)) = ∅ when the inlined procedure
at the call-site ` introduces random variables that oc-
cur in both inlined(E(x), `) and inlined(E(x′), `). This
means that even when RVar(E(ai)) ∩ RVar(E(aj)) = ∅,
RVar(E(ai)inlined) ∩ RVar(E(aj)inlined) = ∅ may not hold.

To address this problem, we write E(x)†E(x′) if E(x) and
E(x′) do not involve the same procedure call. If E(x) † E(x′)
and RVar(E(x)) ∩ RVar(E(x′)) = ∅ both hold, we have that
• RVar(inlined(E(x), `))∩RVar(inlined(E(x′), `)) = ∅
• and inlined(E(x), `) † inlined(E(x′), `).

This implies that, if inlined(E(ai), `) † inlined(E(aj), `)
and RVar(inlined(E(ai), `))∩RVar(inlined(E(aj), `)) = ∅
for some call-site `, then we have: RVar(E(ai)inlined) ∩
RVar(E(aj)inlined) = ∅. The third issue can be handled
similarly.

The above observations are summarized by the follow-
ing proposition.
Proposition 2. For two variables x, x′ ∈ Xf of the procedure

f(a1, · · · , am) and a procedure call g at ` in E(x),
1) Dom(E(x)) ⊆ Dom(inlined(E(x), `))
⊆ Dom(E(x)inlined);

2) Dom(E(x′)) \ RVar(E(x))
= Dom(E(x′)) \ RVar(inlined(E(x), `))
= Dom(E(x′)) \ RVar(E(x)inlined)
⊆ Dom(inlined(E(x′), `)) \ RVar(inlined(E(x), `));

3) if E(x) † E(x′) and RVar(E(x)) ∩ RVar(E(x′)) = ∅, then
RVar(inlined(E(x), `))∩RVar(inlined(E(x′), `)) = ∅;

4) if Dom(E(x)) 6= ∅, then the distribution of the computa-
tion E(x)inlined is uniform for all possible assignments
σ of formal arguments and variables in E(x)inlined.

Algorithm 1: A brute-force algorithm
1 Function BFENUM(P, x, q)
2 m = number of bits of random variables in E(x);
3 ∆q

x = (1− q)× 2m;
4 forall ηp : (Xp ∩ Var(E(x)))→ D do
5 D1 = a map with domain D such that for all

c ∈ D.D1(c) = 0;
6 b = false;
7 forall ηk : (Xk ∩ Var(E(x)))→ D do
8 D2 = a map with domain D such that for all

c ∈ D.D2(c) = 0;
9 if b == false then

10 D1 =COUNTING(P, x, ηp, ηk);
11 b = true;
12 else
13 D2 =COUNTING(P, x, ηp, ηk);
14 if maxc∈D |D1[c]−D2[c]| > ∆q

x then
15 return UNSAT

16 return SAT;

17 Function COUNTING(P, x, ηp, ηk)
18 forall ηr : RVar(E(x))→ D do
19 c = the value of E(x) under ηp, ηk and ηr ;
20 D[c]++;
21 return D;

4.2 Model-Counting based Methods
In this subsection, we propose two model-counting based
methods for checking whether QMSx ≥ q for a given rational
number q ∈ [0, 1]. Recalling that a program is x-SI iff
QMSx = 1, hence, we can verify whether a program is x-
SI by checking whether QMSx ≥ 1. Indeed, the program is
x-SI iff QMSx ≥ 1 holds. On the other hand, we will present
a binary search based algorithm for computing QMS values
by iteratively querying QMSx ≥ q (cf. Section 4.4.2). Note
that model-counting based methods are performed on full
computations instead of partial computations.

4.2.1 Brute-force Method
Recall that QMSx := 1 − max(σ1,σ2)∈Θ2

Xp
,c∈D(JxKσ1

(c) −
JxKσ2

(c)). To check whether QMSx ≥ q, the brute-force
method (cf. Algorithm 1): (1) enumerates all possible as-
signments ηp of public input variables (Line 4), (2) for each
ηp, enumerates all possible assignments ηk of private input
variables (Line 7), and (3) for each pair of ηk and η′k (function
COUNTING), computes corresponding distributions JxKηp,ηk
and JxKηp,η′k again by enumerating the assignments ηr of
random variables (Line 18). The distribution JxKηp,ηk (resp.
JxKηp,η′k) is stored as an array D1 (resp. D2) in which
each entity indexed by c is the number of assignments ηr
of random variables such that the full computation E(x)
evaluates to c under ηp, ηk and ηr (resp. ηp, η′k and ηr).
Once maxc∈D |D1[c] − D2[c]| > ∆q

x holds, we can deduce
that QMSx ≥ q does not hold.
Theorem 3. Given a program P , for every variable x of

Pinlined, QMSx ≥ q iff BFENUM(Pinlined, x, q) returns
SAT.

The complexity of Algorithm 1 is exponential in the
number of (bits of) variables in E(x), so it would experience
significant performance degradation when facing a large
number of variables.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

4.2.2 SMT-based Method
The SMT-based method is a generalization of the one pro-
posed by Eldib et al. [49], [50] from the Boolean setting to
the arithmetic one.

For a given variable x, a valuation σ ∈ Θ and a
constant c ∈ D, we denote by](c = JxKσ) the number
of assignments of random variables under which the full
computation E(x)(σ) evaluates to c. Then, checking whether
QMSx ≥ q can be reduced to checking the unsatisfiability of
the following model-counting constraint:

∃c ∈ D.∃σ1, σ2 ∈ Θ2
Xp .
(
](c = JxKσ1)−](c = JxKσ2)

)
> ∆q

x (1)

where ∆q
x = (1 − q) × 2m, and m is the number of bits of

random variables in E(x). Indeed,

QMSx ≥ q holds
iff

1− max
(σ1,σ2)∈Θ2

Xp
,c∈D

(JxKσ1(c)− JxKσ2(c)) ≥ q holds

iff
max

(σ1,σ2)∈Θ2
Xp

,c∈D
(JxKσ1(c)− JxKσ2(c)) ≤ 1− q holds

iff
max

(σ1,σ2)∈Θ2
Xp

,c∈D

(
](c = JxKσ1)−](c = JxKσ2)

)
≤ ∆q

x holds

iff
Eqn. (1) does not hold.

Furthermore, Eqn. (1) can be encoded as a (quantifier-
free) first-order formula Ψq

x to be solved by an off-the-shelf
SMT solver such as Z3 [47]:

Ψq
x :=

 ∧
f :RVar(E(x))→D

(Θf ∧Θ′f)

 ∧Θb2i ∧Θ′b2i ∧Θq
diff

where
• Program logic (Θf and Θ′f). For every assignment of

random variables f : RVar(E(x)) → D, the logical for-
mula Θf encodes the computation E(x) in the way that
each occurrence of a random variable r ∈ RVar(E(x)) is
instantiated by its concrete value f(r) and asserts that the
value of E(x) equals to a fresh variable cf .

Θ′f is similar to Θf with the exception that cf and vari-
ables k ∈ Xk are replaced by fresh variables c′f and k′

respectively.

Note that there are |D||RVar(E(x))| distinct copies of Θf

(resp. Θ′f) that share the same variables from Xp and Xk.

• Boolean to integer (Θb2i and Θ′b2i). The logical formula
Θb2i asserts that for each assignment of random variables
f : RVar(E(x)) → D, a fresh integer variable If is 1 if
c = cf , and 0 otherwise. In this way, we can count the
number of assignments of random variables under which
E(x) evaluates to c by accumulating If ’s. Formally,

Θb2i :=
∧

f :RVar(E(x))→D

If = (c = cf) ? 1 : 0.

Θ′b2i is similar to Θb2i except that If and cf are replaced
by I ′f and c′f respectively.

• Different sums (Θq
diff). Θq

diff asserts that the difference
between the number of assignments of random variables

under which the computations E(x) and E(x)′ evaluate to
c is greater than ∆q

x, where E(x)′ denotes the computation
E(x) in which the private variables k are replaced by k′.
Formally,

Θq
diff :=

∑
f :RVar(E(x))→D

If −
∑

f :RVar(E(x))→D

I ′f > ∆q
x.

Theorem 4. QMSx ≥ q iff Ψq
x is unsatisfiable, where Ψq

x is poly-
nomial in size of E(x) and exponential in |RVar(E(x))|
and |D|.

Example 3. To illustrate the SMT-encoding, consider the pro-
gram SecExp3 (shown in Figure 7), which is a fragment
of P 254

inlined. Given a private input k, it returns two shares
(x7, x9) such that x7 ⊕ x9 = k3. This program is made
buggy for the illustration purpose: the procedure call
RefreshMasks(z0, z1) at call-site 24 in P 254 is removed.
For each variable xi, by applying the type system, we
can deduce:

` E(x) : τuf ; ` E(x0) : τsi; ` E(x1) : τsi;
` E(x2) : τuk; ` E(x3) : τuk; ` E(x4) : τuf ;
` E(x5) : τuf ; ` E(x6) : τuk; ` E(x7) : τuf ;
` E(x8) : τsi; ` E(x9) : τuf .

There are only three full computations (of x2, x3 and x6)
whose distribution types are unknown. Suppose D =
{0, 1, 2, 3}, then Ψq

x2
is

c0 = ((k ⊕ 0)� (k ⊕ 0))� 0 ∧
c′0 = ((k′ ⊕ 0)� (k ⊕ 0))� 0 ∧
c1 = ((k ⊕ 1)� (k ⊕ 1))� 1 ∧
c′1 = ((k′ ⊕ 1)� (k ⊕ 1))� 1 ∧
c2 = ((k ⊕ 2)� (k ⊕ 2))� 2 ∧
c′2 = ((k′ ⊕ 2)� (k ⊕ 2))� 2 ∧
c3 = ((k ⊕ 3)� (k ⊕ 3))� 3 ∧
c′3 = ((k′ ⊕ 3)� (k ⊕ 3))� 3

∧

I0 = (c = c0) ? 1 : 0 ∧
I1 = (c = c1) ? 1 : 0 ∧
I2 = (c = c2) ? 1 : 0 ∧
I3 = (c = c3) ? 1 : 0

∧
I ′0 = (c = c′0) ? 1 : 0 ∧
I ′1 = (c = c′1) ? 1 : 0 ∧
I ′2 = (c = c′2) ? 1 : 0 ∧
I ′3 = (c = c′3) ? 1 : 0

∧(
(I0 + I1 + I2 + I3)− (I ′0 + I ′1 + I ′2 + I ′3) > (1− q)× 22

)
The formula Ψ1

x2
(i.e., q = 1) is satisfiable, so we con-

clude that x2 is leaky. We can also conclude that x6 is
perfectly masked, while x3 is leaky. This cannot be done
by type systems in literature.

4.3 Domain Specific Heuristics

We provide in this subsection three heuristics to facilitate
both type inference and model-counting based reasoning.

4.3.1 Ineffective Variable Elimination
In cryptographic programs, masking and de-masking are
mixed during computations. The values of some random
variables in a computation may become ineffective (see
below for formal definition) after de-masking, then these

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

1 SecExp3(k){
2 r0 = $;
3 r1 = $;
4 x = k ⊕ r0 ;
5 x0 = x� x ;
6 x1 = r0 � r0 ;
7 x2 = x0 � r0 ;
8 x3 = x1 � x ;
9 x4 = r1 ⊕ x2 ;

10 x5 = x4 ⊕ x3 ;
11 x6 = x0 � x ;
12 x7 = x6 ⊕ r1 ;
13 x8 = x1 � r0 ;
14 x9 = x8 ⊕ x5 ;
15 return (x7, x9) ;
16 }

Fig. 7. SecExp3: A fragment of SecExp254.

variables can be instantiated by any concrete values with-
out changing the distribution of the computation, but can
facilitate both type inference and model-counting based rea-
soning. Based on this observation, we present an algorithm
to identify and eliminate such kind of variables.

Given a partial computation e that does not contain any
procedure calls, a random variable r ∈ RVar(e) is ineffective
in e if e and e[c/r] are equivalent for any c ∈ D while e[c/r]
contains less variables, where e[c/r] is obtained from e by
instantiated r with c. Otherwise, we say r is effective in e. We
denote by InEffR(e) and EffR(e) the sets of ineffective and
effective random variables in e, respectively.

A naive approach for computing all the effective vari-
ables of e is iteratively invoking a SAT solver for checking
whether e 6= e[c/x] is satisfiable or not for some constant
c ∈ D, for each random variable x ∈ RVar(e), as e 6= e[c/x]
is satisfiable iff the variable x is effective in the computation
e. However, this approach needs to invoke SAT solvers at
least |RVar(e)| times. (Recall that the satisfiability problem
of propositional formulae is NP-complete.) In order to im-
prove the efficiency in practical applications, we use an al-
ternative, simple approach: once it is known that x is an inef-
fective variable (i.e., x ∈ InEffR(e)) in the computation e, we
immediately replace the variable x by some concrete value
c ∈ D and simplify the resulting computation e[c/x] by
algebraic laws. Here, rather than choosing a concrete value
c ∈ D for the variable x randomly, we choose a specific
value c based on the syntactic structure of the computation
e, so that the computation e can be simplified as much as
possible. The basic idea is that if a variable x is an ineffective
variable in a computation e and the computation x ◦ e′ is a
sub-expression therein for some ◦ ∈ {∧,�,×,�,�}, then
it gains to replace the variable x by the value 0, as 0 ◦ e′
resulting in the constant 0 which can be used to simplify
the computation e further. Similarly, replacing the variable
x by the value ~1 (note that ~1 := 1n) can simplify x ∨ e′
into the constant ~1, and replacing x by 0 simplifying x ◦ e′
for ◦ ∈ {⊕,+} into e′. In practice, several sub-expressions
may co-exist. Our strategy is then to instantiate the variable
x based on the number of such sub-expressions: If the
computation e contains more sub-expressions of the form
x ◦ e′ and e′ ◦ x (◦ ∈ {∧,�,×,�,�,⊕,+}) than those of

Algorithm 2: Simplifying expression
1 Function SIMPLIFY(e)
2 if e is ¬e′ then
3 return ¬SIMPLIFY(e′);
4 if e is e1 ◦ e2 then
5 e =SIMPLIFY(e1)◦SIMPLIFY(e2);
6 forall r ∈ RVar(e) do
7 if SAT(e 6= e[0/r])==No then
8 if

∑
◦∈{∧,�,×,�,�,⊕,+} |Sub

◦
r(e)| ≥ |Sub∨r (e)|

then
9 e =MUTATE(e, r, 0);

10 else
11 e =MUTATE(e, r,~1);
12 return e;

13 Function MUTATE(e, r, c)
14 forall e1 ∈

⋃
◦∈{⊕,+} Sub

◦
r(e) with e1 as r ◦ e2 or

e2 ◦ r do
15 e = (c = ~1) ? e[(~1 ◦ e2)/e1] : e[e2/e1] ;
16 forall e1 ∈

⋃
◦∈{∧,×,�,�,�} Sub

◦
r(e) with e1 as r ◦ e2

or e2 ◦ r do
17 if c == 0 then
18 e =MUTATE(e[r/e1], r, 0);
19 else
20 e = e[(~1 ◦ e2)/e1];
21 forall e1 ∈ Sub∨r (e) with e1 as r ∨ e2 or e2 ∨ r do
22 if c == ~1 then
23 e =MUTATE(e[r/e1], r,~1);
24 else
25 e = e[e2/e1];
26 if ¬x ∈ Sub(e) then
27 e =MUTATE(e[rnew/(¬r)], xnew,¬c);
28 e = e[c/r];
29 return e;

the form x ∨ e′ and e′ ∨ x, we instantiate the variable x by
the value 0, otherwise by the value ~1.

Algorithm 2 presents the pseudo-code, where Sub(e)
denotes the set of all the sub-expressions in e, and Sub◦x(e)
for every operator ◦ and variable x denotes the set of
sub-expressions {e′ ∈ Sub(e) | e′ is in the form of x ◦
e1 or x ◦ e1 for some expression e1}. Given a computation
e that does not contain any procedure calls, SIMPLIFY(e)
computes an equivalent but simpler computation e′ with
RVar(e′) = EffR(e). In detail, if e is in the form of ¬e′,
SIMPLIFY returns ¬SIMPLIFY(e′) (Line 3). Otherwise if e is in
the form of e1 ◦ e2, then we replace the sub-expression ei by
SIMPLIFY(ei) for i ∈ {1, 2} (Line 5). In our implementation,
in order to reduce the number of calls to SAT/SMT solvers,
we adopt a lazy strategy, i.e., we replace the computation
ei by SIMPLIFY(ei) only if it has been computed. As a
result, each random variable x ∈ RVar(e) is checked at most
once by verifying whether the logical formula (e 6= e[0/x])
is satisfiable or not (Line 7). If it is not satisfiable (i.e.,
SAT(e 6= e[0/x])=No in Algorithm 2), x ∈ InEffR(e) and
we then invoke the function MUTATE (Lines 9 and 11).

MUTATE(e, x, c) mutates e according to the concrete
value c of the variable x using algebraic laws, where e[e2/e1]
denotes the computation obtained from e by replacing all
the occurrences of e1 with e2. It is easy to verify that:

Theorem 5. For every computation e that does not contain
any procedure calls, SIMPLIFY(e) is equivalent to e and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

RVar(SIMPLIFY(e)) = EffR(e). Moreover, SIMPLIFY(e)
invokes SAT solvers at most RVar(e) times.

Example 4. For instance, r is not a dominant variable in
(r ⊕ y)⊕ r, but is ineffective. Therefore, (r ⊕ y)⊕ r can
be simplified into (0 ⊕ y) ⊕ 0 by instantiating r with 0.
(0⊕ y)⊕ 0 is further simplified into y by algebraic laws.

Remark that in Algorithm 2 we do not count the num-
ber of computations of the form ¬x ◦ e when choosing
concrete values, and we only check random variables. This
is because: (1) negation rarely occurs in masked programs
according to benchmarks we found; (2) some of the random
variables may become ineffective after de-masking while
this is rarely the case for other (non-random) variables. Re-
ducing the number of random variables gains most because
our SMT-based method constructs logic formulae whose
sizes are exponential in the number of bits of random
variables (cf. Section 4.2).

Besides computing EffR(e), the function SIMPLIFY(e) can
also simplify e. It is complementary to the two heuristic
rules: rule (Conv) of Barthe et al. [35] and elementary circuit
transformations of Coron [39].

4.3.2 Dominated Subexpression Elimination
Recall that if r is a dominant (random) variable of a compu-
tation e, then the distribution of the values of E(x)inlined(σ)
is uniform for all possible assignments σ of formal argu-
ments and variables in E(x)inlined (cf. Proposition 1 and
Proposition 2(1)). This means that e can be safely regarded
as a random variable r. Based on this observation, for any
partial computation e′ that contains e, we can regard e as a
random variable r when evaluating e′ if r does not appear
in e′[r/e]. In other words, if e is an r-dominated partial
computation in e′ and the variable r does not occur in
e′[r/e], we can safely reason on e′[r/e] instead of e′.

For a given partial computation e, we denote by ê the
computation obtained by iteratively applying ineffective
variable and dominated subexpression eliminations on the
computation e. Note that ineffective variable elimination can
be applied only if e does not contain any procedure calls.

Lemma 3. For any variable x in the program P ,
E(x)inlined(σ) and Ê(x)inlined(σ) have the same distri-
bution for any assignment σ of variables and formal
arguments in E(x)inlined.

Example 5. Let us consider the variable x6 in the program
shown in Figure 7, where ` E(x6) : τuk and E(x6) =
((k⊕r0)�(k⊕r0))�(k⊕r0). It is easy to see that (k⊕r0)
is r0-dominated computation of E(x6). Therefore, E(x6)

can be simplified into Ê(x6) = r0�r0�r0. Consequently,
we can deduce that ` E(x6) : τsi by applying rule
(NOKEY) on Ê(x6). This avoids to invoke the expensive
model-counting methods.

We also leverage dominated subexpression elimination
to handle variables that are return values of function
calls. Recall that for each variable xi which is defined
by xi = f(y1, · · · , ym)[i]@`; for some 1 ≤ i ≤ k af-
ter procedure inlining, we regard the partial computation
E(xi) (without inlining) as a special computation such that
RVar(E(xi)) = {r@` | r ∈ RVar(E(zi))} ∪ RA. For each

computation e that uses xi, when reasoning on the compu-
tation e, RVar(E(xi)) will be refined to the set Dom(E(xi)) if
Dom(E(xi)) ∩ RVar(e[x′i/xi]) = ∅, where x′i denotes a fresh
variable. Similarly, to check whether Dom(e) \ RVar(e′) 6= ∅
and/or RVar(e) ∩ RVar(e′) = ∅, RVar(E(xi)) will be refined
to the set Dom(E(xi)) if Dom(E(xi)) ∩ RVar(e[x′i/xi]) = ∅
and Dom(E(xi)) ∩ RVar(e′[x′i/xi]) = ∅.
Example 6. Let us consider the procedure SecExp254 in

our running example. Since z10 in the partial compu-
tation E(z12) = z16

10 is a return value of the procedure
call at the call-site 29 and Dom(E(z10)) = {r0@29},
RVar(E(z10)) = {r0@29, r0@25, r1@24, r1@28} can be
refined to the set RVar(E(z10)) = {r0@29}. Since
r1@28 ∈ Dom(E(z8)), we have that Dom(E(z8)) \
RVar(E(z12)) 6= ∅, hence SecMult(z12, z13, z8, z9) satis-
fies the formula Dom(b0) \ RVar(a0) 6= ∅, which is a
conjunct of the annotation ψ1 of the procedure SecMult.

4.3.3 Transformation Oracle
In order to utilize human knowledge of cryptographic pro-
grams which can facilitate both type inference and model-
counting based reasoning, we provide a mechanism called
transformation oracle. The transformation oracle Ω is a set
of 3-tuples of the form (e, r, 1) and (e1, e2, 0) such that
• if (e, r, 1) ∈ Ω, then for every partial computation e′

containing e and random variable r does not occur in
e′[r/e], e in e′ can be replaced by r;

• if (e1, e2, 0) ∈ Ω, then for every partial computation
e′ containing e1, all the occurrences of e1 in e′ can be
safely replaced by the partial computation e2.

For instance, the tuple (r⊕ ((2× r)∧ e), r, 1) is used in our
experiments.

For a given transformation oracle Ω and a partial com-
putation e′, we denote by Ω(e′) the resulting computation
after applying the transformation oracle Ω on e′ when it is
applicable.

4.4 Overall Algorithms

In this subsection, we present the overall algorithm for
verifying perfect masking and computing QMS values, by
leveraging the three key techniques presented in the preced-
ing three subsections.

We denote by JeKΦ a pair (τ, cxt) consisting of the distri-
bution type τ of the computation e obtained by type infer-
ence without using rule (INLINE) and cxt is a flag indicating
whether the assumption Φ is used during type inference
(cxt being set True means Φ is used). Rule (INLINE) is used
in an on-demand fashion. We also denote by MCSolver(e, q)
the procedure of model-counting (cf. Section 4.2) which
returns SAT if QMSx ≥ q for e = E(x).

4.4.1 Algorithm for Perfect Masking Verification
Fix a non-recursive program P which uses the sets of public
(Xp) and private (Xk) input variables. The overall procedure
for perfect masking verification is shown in Algorithm 3.

We use the following data structures: Ylk is a set storing
all the internal variables of Pinlined that are leaky, λt is
a map that labels each variable with its distribution type,
λexp is a map that records the computation of each internal

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

Algorithm 3: Perfect masking verification
1 Function PMCHECKING(P,Xp, Xk,Ω)
2 Ylk = ∅; λt = λexp =emptymap;
3 Y fcxt = Y fukd = ∅ for each procedure f of P ;
4 foreach procedure f of P in a reverse topological order

of the call graph P do
5 CHECKPROC(f);
6 return Ylk;
7 Function CHECKPROC(f)
8 Todo = Xf \Xf

r ;
9 foreach statement s of f from the first to the last do

10 if s is x = e and x ∈ Todo then
11 λexp(x) = E(x);
12 (τ, cxt) =CHECKEXPR(λexp, x,Φf);
13 if τ 6= τuk then
14 if cxt == True then
15 Y fcxt = Y fcxt ∪ {x};
16 λt(x) = τ ;
17 else if λexp(x) contains a procedure call at the

call-site ` then
18 while λexp(x) contains a procedure call at

the call-site ` do
19 λexp(x) = inline(λexp(x), `);
20 (τ, cxt) =CHECKEXPR(λexp, x,Φf);
21 if τ 6= τuk then
22 if cxt == True then
23 Y fcxt = Y fcxt ∪ {x};
24 λt(x) = τ ;
25 break;
26 if τ == τuk then
27 if f 6= main then
28 Y fukd = Y fukd ∪ {x};
29 else
30 if MCSolver(λexp(x), 1) 6=SAT

then
31 Ylk = Ylk ∪ {x};
32 λt(x) = τlk;
33 else λt(x) = τsi;

34 else if s is x1, · · · , xk = g(y1, · · · , ym) at ` then
35 if g(y1, · · · , ym) |= Φg then
36 if Y gukd 6= ∅ then
37 Todo = Todo ∪ {y@` | y ∈ Y gukd};
38 f = inline(f, `);
39 else
40 Todo = Todo ∪ {y@` | y ∈ Y gcxt ∪ Y

g
ukd};

41 f = inline(f, `);
42 return;
43 Function CHECKEXPR(λ, x,Φ)
44 if Jλ(x)KΦ[0] ∈ {τsi, τuf , τlk} then
45 return Jλ(x)KΦ;
46 λ(x) = λ̂(x);
47 if Jλ(x)KΦ[0] ∈ {τsi, τuf , τlk} then
48 return Jλ(x)KΦ;
49 if ∃Ω(λ(x)) : JΩ(λ(x))KΦ[0] ∈ {τsi, τuf , τlk} then
50 return JΩ(λ(x))KΦ;
51 return (τuk, True);

variable, Y fcxt ⊆ Xf stores the variables whose distribution
types are τsi or τuf under the assumption Φf , and Y fukd ⊆ Xf

stores the variables whose distribution types are τuk.
The function PMCHECKING (in Algorithm 3) checks

whether P is perfectly masked. After initialization (Lines
2 and 3), it checks each procedure in a reverse topological
order of the call graph of P by invoking the function
CHECKPROC (Line 5). Recalling that P is non-recursive, re-

verse topological order ensures that all the called procedures
in f have been verified when checking the procedure f .

The function CHECKPROC infers the distribution types
of internal variables of the given procedure f . It first ini-
tializes the set Todo storing the internal variables whose
computations should be verified (Line 8). Then, it iteratively
traverses statements in the procedure f (Line 9). For each
statement s, it works as follows. (Note that if s is in the
form of r = $, then r is a random variable and must have
type τuf , hence such statements are skipped.)

1) If s is in the form of x = e and x ∈ Todo (Line 10),
then the partial computation E(x) is constructed and
stored in λexp (Line 11). It first applies the type system
to infer its distribution type by invoking the function
CHECKEXPR (Line 12), which returns a pair (τ, cxt),
where τ denotes the distribution type of λexp(x) and
cxt is a flag indicating whether the assumption Φf is
used or not during type inference.

a) If the type of λexp(x) is not τuk (Line 13), then the
type of x is recorded in λt (Line 16). Moreover, if the
assumption Φf is used during type inference, then
x is added into the set Y fcxt (Line 15) which will be
verified again when a procedure call to f does not
satisfy the assumption Φf . In other words, variables
that can be proved having type τsi or τuf or τlk without
using the assumption Φf will not be verified again
even if Φf is not satisfied by procedure calls to f .

b) If λexp(x) has type τuk and contains a procedure call
at the call-site ` (Line 17), then λexp(x) is updated by
inlining the procedure call at ` (Line 19) and contin-
ues inferring distribution type λexp(x), i.e., step 1).

c) If λexp(x) has type τuk and does not contain any
procedure call and f is not the main procedure (Lines
26–27), x is added into the set Y fukd (Line 28) which
will be verified again when the procedure f is inlined
no matter the assumption Φf is satisfied or not.

d) If λexp(x) has type τuk and does not contain any
procedure call and f is the main procedure (Line 29),
then we apply the model-counting based methods by
invoking MCSolver(λexp(x), 1) (Line 30). There are
two possible outcomes: λexp(x) is τsi or τlk. The type
is also stored in λt (Lines 32 and 33). Moreover, if the
type is τlk, then x is added into Ylk, i.e., x is leaky.
The update of the type of λexp(x) might facilitate the
type inference for fan-out computations of x.

2) If s is a procedure call x1, · · · , xk = g(y1, · · · , ym) at
call-site ` (Line 34), then it checks whether the proce-
dure call g(y1, · · · , ym) satisfies the assumption Φg .

a) If g(y1, · · · , ym) satisfies Φg and Y gukd is nonempty
(Lines 35–36), then the procedure call at ` is inlined
and the variables y@` for y ∈ Y gukd are added into
Todo for rechecking (Line 37). We emphasize that
when g(y1, · · · , ym) satisfies Φg and Y gukd is empty,
the whole procedure call x1, · · · , xk = g(y1, · · · , ym)
can be skipped without inlining, as the distribution
types of variables y@` and y are the same for each
y ∈ Xg .

b) If g(y1, · · · , ym) does not satisfy Φg (Line 39), the
procedure call x1, · · · , xk = g(y1, · · · , ym) at ` is
inlined and the variables y@` for y ∈ Y gukd ∪ Y

g
cxt are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

added into Todo for rechecking (Line 40). Note that
variables y ∈ Xg \ (Y gukd ∪ Y

g
cxt) are not added into

Todo, as the distribution types of their computations
can be inferred without using the assumption Φg .

To check whether a procedure call g(y1, · · · , ym) sat-
isfies the assumption Φg in Algorithm 3, we iteratively
check whether the procedure call g(y1, · · · , ym) satisfies
some formula ψ ∈ Φg , which is done by iteratively check-
ing each conjunct of ψ according to the satisfaction rela-
tion defined in Section 4.1.3. To check g(y1, · · · , ym) |=
Dom(ai)\RVar(aj) 6= ∅ and/or g(y1, · · · , ym) |= RVar(ai)∩
RVar(aj) = ∅. we leverage Proposition 2 which may allow
to get the conclusive result without constructing (cf. Sec-
tion 4.1.6).

Theorem 6. Given a non-recursive program P , by Algo-
rithm 3, Ylk = ∅ iff P is perfectly masked. More-
over, if x@`k · · ·@`1 ∈ Ylk, then the internal variable
x@`k · · ·@`1 is leaky, where `1, · · · , `k is the sequence of
call-sites to reach the procedure that contains x.

By disabling model-counting in Algorithm 3 and inter-
preting all τuk-typed variables as potentially flaws, Algo-
rithm 3 degenerates to a sound type inference procedure,
which is fast and potentially more accurate than those
in [35], [43], [60], [61], owing to the heuristics introduced in
Section 4.3 and the type system supporting compositional
reasoning.

4.4.2 Algorithm for QMS Computing

To quantify resistance of a program, we present a binary
search based function QMSCOMPUTING (in Algorithm 4) to
compute QMS values. QMSCOMPUTING first invokes the
function PMCHECKING (in Algorithm 3) to perform perfect
masking verification (Line 2). Then, it checks for each vari-
able x ∈ Leakpoints. For each variable x ∈ Leakpoints
whose computation λexp(x) does not contain any random
variable, we directly deduce that QMSx = 0 (Line 5).
Otherwise if λexp(x) contains some random variables, we
use either the brute-force method or an SMT-based binary
search to compute QMSx based on the following observation:

QMSx = i
2n×|RVar(λexp(x))|

, for some 0 ≤ i ≤ 2n×|RVar(λexp(x))|.

The while-loop in Algorithm 4 (Lines 9–15) executes
at most O(n × |RVar(λexp(x))|) times for each x, hence
Algorithm 4 always terminates.

5 IMPLEMENTATION AND EVALUATION

We have implemented our approach in a verification tool
QMVERIF, which uses Z3 [47] as the underlying SMT solver
with fixed size bit-vector theory. We conduct experiments
on both Boolean and arithmetic programs including various
implementations of full AES, DES and MAC-Keccak.

The experiments are designed to answer the following
research questions (RQs):
RQ1. How effective and efficient is the type inference algo-

rithm on arithmetic programs with procedure calls?
RQ2. How is the overall approach performed on arithmetic

programs (without procedure calls), compared with
EasyCrypt [35]?

Algorithm 4: Computing QMS
1 Function QMSCOMPUTING(P,Xp, Xk,Ω)
2 Leakpoints =PMCHECKING(P,Xp, Xk,Ω);
3 foreach x ∈ Leakpoints do
4 if RVar(λexp(x)) == ∅ then
5 QMSx = 0;
6 else
7 low = 0;
8 high = max = 2n×|RVar(λexp(x))|;
9 while low < high do

10 mid = d low+high

2
e;

11 q = mid
max

;
12 if MCSolver(λexp(x), q) 6=SAT then
13 high := mid− 1
14 else
15 low = mid;
16 QMSx = low

max
;

17 return;

TABLE 1
Variant versions of Sbox implementations, where column Order

denotes the masking order, column Refresh denotes the procedure
Refresh, column SecMult denotes the procedure SecMult, column

Power254 denotes the procedure Power254.

Order Refresh SecMult Power254

1st 2nd [28] [14] [28] [62] [28] [33]

Sbox1 X X X X
Sbox2 X X X X
Sbox3 X X X
Sbox4 X X X
Sbox5 X X X X
Sbox6 X X X X
Sbox7 X X X X
Sbox8 X X X X
Sbox9 X X X
Sbox10 X X X

RQ3. How is the overall approach performed on Boolean
programs (without procedure calls), compared with
state-of-the-art tools QMSINFER [44], SC Sniffer [42],
[50] and maskVerif [37]?

In all experiments, we used a machine with Intel Xeon
E5-2690v4 2.6GHz CPU, 64-bit Ubuntu 16.04.4 LTS operat-
ing system, and 256 GB RAM (only one core is used in our
computation).

5.1 RQ1: Experiments on Arithmetic Programs with
Procedure Calls

To address RQ1, we implemented 10 versions of Sbox
based on the algorithm in [33] by varying the underlying
sub-procedures as shown in Table 1. Column 1 gives the
benchmark name. Columns 2-3 show the masking order
(note that we only verify first-order even for second-order
benchmarks). Columns 4-5 show the two variants of Re-
fresh functions: where the first one is addition-based mask
refreshing algorithm from [28], and the second one is a
multiplication-based mask refreshing algorithm from [14].
Columns 6-7 show the two variants of SecMult functions,
where the first one is a SecMult algorithm with O(n2) mem-
ory from [28] and the second one is the improvement of the
first which is a linear memory algorithm proposed in [62].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

TABLE 2
Results of perfect masking verification under the HW leakage model, where Pre-inlined means that all the procedure calls are inlined before

verification, No-assumption means that all the procedures are only annotated by >, One-assumption means that all the procedures of AES except
for SecMult and all the procedures of DES except for Sbox are annotated by >, All-assumptions means that all the procedures are annotated by
well-designed assumptions, column Name gives the benchmark name, columns labeled by]Checked give the number of internal variables that
are checked, columns labeled by Time(s) show the running time of verification in second, columns]Inlining show the number of times procedure

inlining was performed.

Name Pre-inlined No-assumption One-assumption All-assumptions

]Checked Time(s)]Inlining]Checked Time(s)]Inlining]Checked Time(s)]Inlining]Checked Time(s)]Inlining

Sbox1 46 ≈0 8 47 ≈0 8 35 ≈0 4 19 ≈0 0
Sbox2 50 ≈0 8 47 ≈0 8 35 ≈0 4 19 ≈0 0
Sbox3 70 ≈0 6 141 ≈0 6 141 ≈0 6 60 ≈0 4
Sbox4 68 ≈0 6 141 ≈0 6 141 ≈0 6 60 ≈0 4
Sbox5 110 ≈0 8 104 ≈0 8 77 ≈0 5 42 ≈0 2
Sbox6 122 ≈0 8 104 ≈0 8 77 ≈0 5 42 ≈0 2
Sbox7 118 ≈0 8 116 ≈0 8 89 ≈0 5 50 ≈0 2
Sbox8 130 ≈0 8 116 ≈0 8 89 ≈0 5 50 ≈0 2
Sbox9 178 ≈0 6 317 ≈0 6 317 ≈0 6 150 ≈0 3
Sbox10 172 ≈0 6 317 ≈0 6 317 ≈0 6 150 ≈0 3

AES1 11,142 314.5 2,632 3,678 1.4 362 3,666 0.2 358 2,182 0.1 320
AES2 11,942 196.9 2,632 3,678 1.4 362 3,666 0.3 358 2,183 0.1 320
AES3 15,942 558.6 2,232 6,570 274.1 387 6,570 274.8 387 2,393 0.1 338
AES4 15,542 559.6 2,232 6,570 292.5 387 6,570 293.6 387 2,392 0.1 338
AES5 24,724 2,669.8 2,632 6,501 7.7 362 6,474 0.5 359 4,214 0.4 345
AES6 27,124 3,504.7 2,632 6,501 7.7 362 6,474 0.6 359 4,214 0.4 345
AES7 26,324 2,932.8 2,632 6,991 8.7 362 6,964 0.6 359 4,430 0.5 345
AES8 28,724 3,129.8 2,632 6,991 9.3 362 6,964 0.6 359 4,430 0.5 345
AES9 38,324 2,928.6 2,232 12,823 1,268.1 387 12,823 1,286.3 387 3,786 0.2 338
AES10 37,124 3,064.1 2,232 12,823 1,252.7 387 12,823 1,266.6 387 3,786 0.2 338

DES1 82,304 327.3 6,450 74,507 289.8 458 50,571 257.0 458 38,288 222.4 516
DES2 39,552 81.4 4,914 23,237 26.3 446 16,165 16.6 446 7,748 14.1 549
DES3 248,448 53.6 3,122 157,618 287.3 432 22,450 20.0 432 6,602 7.4 491
DES4 215,680 86.7 3,122 85,681 153.0 432 20,145 18.2 432 6,345 13.4 491

Columns 8-9 show the two Power254 functions, where the
first one is from [28] which needs mask refreshing and the
second is from [33] which does not need mask refreshing.

We also implemented 10 versions of AES based on the
algorithm in [28] by varying the underlying Sbox implemen-
tations and 4 versions of DES based on the existing imple-
mentations1, where AESi uses the Sboxi from Table 1, DES1
is a countermeasure with the Parity-Split method of Sbox
computation which requires 10 non-linear multiplications
from [63], DES2 is an improved method from [64] which
requires only 4 non-linear multiplications, DES3 is based on
the table recomputation [62], and DES4 [65] is a variant of,
but twice as efficient as, DES3.

We verify these benchmarks using Algorithm 3 (i.e., per-
fect masking verification under the HW model), but exclud-
ing the model-counting methods. In order to gain insights
on the assume-guarantee based compositional reasoning,
we conduct experiments under four different settings:

1) Pre-inlined: all the procedure calls are inlined in ad-
vance;

2) No-assumption: all the procedures are only annotated
by >, but are inlined on-demand;

3) One-assumption: all the procedures of AES except for
SecMult and all the procedures of DES except for Sbox
are annotated by >, but are inlined on-demand;

4) All-assumptions: all the procedures are annotated by
well-designed assumptions.

1. https://github.com/coron/htable.

Results. The experimental results are reported in Table 2,
where Columns 2-4 (resp. Columns 5-7, Columns 8-10 and
Columns 11-13) show the number of internal variables
that have been checked (note that variables of the form
x@`k · · ·@`1 that appear after procedure inlining are re-
garded as new internal variables instead of the variable x),
the running time of verification (in second), and the number
of times procedure inlining was performed. Note that the
“No-assumption” setting corresponds to the type system
proposed in the preliminary version of this paper [1].

Overall, our type inference algorithm is highly effective
and efficient on programs with annotated assumptions. All
the programs of AES can be proved secure in less than 1 sec-
ond and all the programs of DES can be proved secure in less
than 4 minutes (3 out of 4 were done in less than 15 seconds).
By comparing Columns 2-4 with Columns 11-13, we observe
that the compositional reasoning significantly reduces the
number of times procedure inlining was performed, hence
reducing the number of internal variables that have to be
checked, and verification time (on AES family of programs,
there are 3-4 orders of magnitude reductions).

We can also observe from Columns 5-10 that at large
our type inference algorithm is also effective on large pro-
grams (AES1–AES10 and DES1–DES4) that do not have
any assumptions or have only one procedure annotated
with assumption. (Some exceptions include DES3 and DES4
under the “No-assumption” setting, the reason of which will
be explained below.) This demonstrates the significance of
on-demand procedure inlining.

https://github.com/coron/htable

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

TABLE 3
Results of perfect masking verification and computing QMS values on masked arithmetic programs under the HW leakage model, where column

Description gives the name and reference of the program, column Result gives the ground truth (3 for leakage-free and 7 for the opposite),
column |Xi| denotes the number of internal variables, column]τlk denotes the number of leaky internal variables, column]ModelCounting

denotes the number of internal variables which need model-counting methods, column SMT denotes the verification time using the SMT-based
method as the model-counting method, column B.F. denotes the verification time using the brute-force method as the model-counting method,

column value shows the QMS values of all leaky variables (note that duplicated values are omitted), column EasyCrypt replicates the total running
time reported by Barthe et al. [35], and (12) in column SMT means that Z3 emits segmentation fault after verifying 12 internal variables.

Description Result |Xi|]τlk
Perfect Masking Verification QMS EasyCrypt [35]

]ModelCounting SMT B.F. SMT B.F. Value Time
SecMult [28] 3 11 0 0 ≈0s ≈0s - - 1 ≈0s
Sbox (4) [33] 3 66 0 0 ≈0s ≈0s - - 1 ≈0s
AES (4) [33] 3 20,060 0 0 ≈2s ≈2s - - 1 128s
MAC-Keccak 3 18,218 0 0 ≈83s ≈83s - - 1 405s

B2A [16] 3 8 0 1 17s 2s - - 1
A2B [16] 3 46 0 0 ≈0s ≈0s - - 1
B2A [17] 3 82 0 0 ≈0s ≈0s - - 1
A2B [17] 3 41 0 0 ≈0s ≈0s - - 1
B2A [18] 3 11 0 1 1m 35s 10m 59s - - 1
B2A [19] 3 16 0 0 ≈0s ≈0s - - 1
Sbox [28] 3 45 0 0 ≈0s ≈0s - - 1

Sbox [27] 7 772 2 1 ≈0s ≈0s 0.9s ≈0s 0
k3 7 11 2 2 96m 59s 0.2s >4d 32s 0.988
k12 7 15 2 2 101m 34s 0.3s >4d 27s 0.988
k15 7 21 4 4 93m 27s (12) 28m 17s >4d ≈64h 0.988, 0.98
k240 7 23 4 4 93m 27s (12) 30m 9s >4d ≈64h 0.988, 0.98
k252 7 31 4 4 93m 27s (12) 32m 58s >4d ≈64h 0.988, 0.98
k254 7 39 4 4 93m 27s (12) 30m 9s >4d ≈64h 0.988, 0.98

One may notice that the effectiveness and efficiency
vary in benchmarks under different settings, namely, (1) the
assumption of SecMult does not reduce the number of pro-
cedure inlines on Sbox3, Sbox4, Sbox9, Sbox10, AES3, AES4,
AES9 and AES10, compared with the “No-assumption”
setting, but it does reduce the number of procedure inlines
on the other Sbox and AES benchmarks; (2) the verification
time on DES3 and DES4 under “No-assumption” setting
is greater than the one under “Pre-lined” setting although
the number of procedure inlines is reduced; and (3) the
number of procedure inlines on DES1–DES4 under the “All-
assumptions” setting is greater than the one under the
“No-assumption” and “One-assumption” settings, but the
verification time is reduced.

To explain this observation, an in-depth analysis re-
veals that: For observation (1), all the benchmarks Sbox3,
Sbox4, Sbox9, Sbox10, AES3, AES4, AES9 and AES10 use
the Power254 procedure in Sbox (cf. Table 1), while there
are some τuk-typed variables in Power254, which are not
resolved after inlining the procedure calls to Power254 in
Sbox. These τuk-typed variables are proved secure eventu-
ally in the main procedure. Consequently, these τuk-typed
variables have to be checked multiple times. This problem
is avoided when more procedure assumptions are provided,
as shown under the “All-assumptions” setting. Observation
(2) follows similar explanation as in observation (1). For
observation (3), each procedure call is inlined only once
under the “Pre-inlined” setting, while some procedure calls
may be inlined multiple times under the other settings.
For instance, consider an internal variable x whose partial
computation E(x) relies upon some return values of sev-
eral procedure calls to f , while the partial computation of
these return values also relies upon the return values of
another procedure call g. In this case, the same procedure

call to g will be inlined once for each procedure call to f ,
resulting in multiple times of procedure inlines in partial
computations. This limitation could be avoided by directly
inlining the procedure calls in procedures instead of partial
computations. We do not use this strategy, as we found
that the verification time mainly depends on the number of
internal variables to be checked rather than the number of
procedure inlines. Moreover, inlining some procedure calls
may be unnecessary and could increase the size of partial
computations.

5.2 RQ2: Experiments on Arithmetic Programs without
Procedure Calls

To address RQ2, we use the first-order masked arithmetic
programs provided by the authors of [35], which are secure
multiplication (SecMult) [28], Sbox [28], [33], full AES [33],
full MAC-Keccak. In addition, we implemented the con-
version algorithms from Boolean to arithmetic maskings
(B2A) [16], [17], [18], [19], conversion algorithms from arith-
metic to Boolean maskings (A2B) [16], [17], and buggy frag-
ments k3, . . . , k254 of first-order secure exponentiation [28]
without the first RefreshMask function. For all the pro-
grams, we set D = {0, · · · , 28 − 1}.

We conduct experiments of perfect masking verification
and of computing QMS values, under both the HW and HD
leakage models.

5.2.1 Perfect Masking Verification under HW model
The experimental results of perfect masking verification
under the HW leakage model are reported in Table 3.
Column 1 gives the name and reference of the program.
Column 2 shows the ground truth. Column 3 shows the
number of internal variables. Column 4 shows the number

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

TABLE 4
Results of perfect masking verification and computing QMS values on masked arithmetic programs under the HD leakage model, where column
Description gives the name and reference of the original program, column Result gives the ground truth (3 for leakage-free and 7 for opposite),

column |Xi| denotes the number of internal variables in the original program, column]D denotes the number of introduced dummy variables in the
modified program, column |Xi|+]D denotes the total number of internal variables in the modified program, column]τlk denotes the number of

leaky internal variables of the modified program, column]ModelCounting denotes the number of internal variables which need model-counting,
column]Running Out-of-time denotes the number of internal variables on which QMVERIF runs out of time (threshold=15 minutes per variable),

column Time denotes the total running time for each modified program, and column min(Value) gives the minimum one of QMS values.

Description Result |Xi|]D |Xi|+]D]τlk
Perfect Masking Verification QMS

]ModelCounting]Out-of-time Time]Out-of-time Time min(Value)
SecMult [28] 3 11 3 14 0 0 0 0.1s - - 1
Sbox (4) [33] 7 66 43 109 2 4 2 30m 25s 1 15m 23s 0.99
B2A [16] 3 8 4 12 0 1 0 2s - - 1
A2B [16] 3 46 41 87 0 25 19 327m 44s - - 1
B2A [17] 3 82 46 128 0 0 0 0.1s - - 1
A2B [17] 3 41 14 55 0 0 0 0.1s - - 1
B2A [18] 3 11 1 12 0 1 0 11m - - 1
B2A [19] 3 16 3 19 0 1 1 15m 1s - - 1
Sbox [28] 3 45 31 76 0 0 0 0.1s - - 1
Sbox [27] 7 772 511 1283 2 1 0 0.1s 0 0.1s 0
k12 7 15 4 19 2 2 0 0.3s 0 22.1s 0.988
k15 7 21 9 30 4 6 2 47m 21s 2 30m 25s 0.988
k240 7 23 11 34 4 6 2 47m 22s 2 30m 25s 0.988
k252 7 31 18 49 4 8 4 75m 40s 2 30m 26s 0.988
k254 7 39 25 64 4 8 4 77m 41s 2 30m 25s 0.988

of leaky variables. Column 5 shows the number of variables
for which the model-counting based methods are needed.
Columns 6-7 respectively show the total running time of our
tool QMVERIF using SMT-based and brute-force methods.
For comparison purpose, in Column 11, we replicate the
total running time reported by Barthe et al. [35] on the
common benchmarks, i.e., the first four programs in Table 3.
The machine used there was a headless VM with a dual
core 64-bit processor clocked at 2GHz (only one core is
used in the computation). Their tool is a type based proof
system which is sound but incomplete. (Remark that, to our
knowledge, there is no open-source tool for automatically
verifying masking countermeasure of arithmetic programs
under the HW/HD leakage model.)

The experimental results show that: (1) almost all the
internal variables can be proved leakage-free using our
type system; (2) some internal variables cannot be proved
leakage-free by our type system (e.g., in B2A [16], B2A [18]
and Sbox [27], meaning that the type inference is in-
conclusive in these cases), but can be resolved by our
model-counting based methods; (3) on the programs (ex-
cept B2A [18]) where the model-counting based methods is
needed (i.e.,]Count is non-zero), the brute-force method is
significantly faster than the SMT-based one. In particular, on
programs k15, . . . , k254, Z3 crashed with segmentation fault
after verifying 12 internal variables in 93 minutes, while the
brute-force method comfortably returns the results. After a
manual examination of these programs, we found that the
computations of τuk-typed variables (where the brute-force
method is more efficient) involve finite-field multiplication
(�), while the computation of the τuk-typed variable in
B2A [28] (where the SMT-based method is more efficient)
only use the exclusive-or (⊕) operations and one subtraction
(−) operation. This gives an empirical suggestion on which
model-counting method should be selected.

One may notice that the verification time (0.2s) of AES
(4) [33] is significantly shorter than the results in Table 2

under the “Pre-inlined” setting. After an in-depth analysis
of the source code provided by the authors of [35], we found
errors in the implementation of the AddRoundKey procedure
so that many of internal variables can be quickly proved.
We have informed authors of [35].

Compared with the tool of Barthe et al. [35] which also
verified the first four programs, the performance of small
programs SecMult [28] and Sbox (4) [33] is comparable, but
on larger programs AES [33] and MAC-Keccak, our tool is
significantly (4.8 and 64 times) faster than their tool.

It is important to mention that the transformation oracle
is only used for verifying the program A2B [16]. In theory,
model-counting based methods could be able to verify
the program A2B [16], unfortunately, both the SMT-based
and brute-force methods failed to terminate in 3 days. We
also notice that the brute-force method had verified more
internal variables than the SMT-based one. For instance, on
the computation ((2 × r1) ⊕ (x − r) ⊕ r1) ∧ r where x is a
private input and r, r1 are random variables, the brute-force
method successfully verified in a few minutes, but the state-
of-the-art SMT solver Z3 could not terminate in 2 days. We
also tried another SMT solver Boolector [66] which is the
winner of SMT-COMP 2018 on QF-BV, Main Track. It also
failed to terminate in 3 days. Undoubtedly more systematic
experiments are required in the future, but our results
suggest that, contrary to the common belief, currently SMT-
based approaches are not promising, which calls for more
scalable techniques for domain-specific constraints.

5.2.2 Computing QMS Values under HW model
The experimental results of computing QMS values are
reported in Table 3. Column 8 shows the time of the SMT-
based method. Column 9 shows the time of the brute-force
method. Column 10 shows the QMS values of all leaky
variables (note that duplicated values are omitted). We only
reported the time for computing QMS values here, while the
time for perfect masking verification is excluded. We remark

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

TABLE 5
Results of perfect masking verification on Boolean programs, where column Name gives the name of the program, column Result gives the

ground truth (3 for leakage-free and 7 for opposite), column |Xi| denotes the number of internal variables, column]τlk denotes the number of
leaky internal variables, column]ModelCounting denotes the number of internal variables which need model-counting, column SMT denotes the
results of applying the SMT-based method, column B.F. denotes the results of applying the brute-force method, the last four columns respectively

show the total verification time of the tools QMSINFER [44], SC Sniffer [42] and maskVerif [37].

Name Result |Xi|]τlk
QMVERIF QMSINFER [44] SC Sniffer [42] maskVerif [37]

]ModelCounting SMT B.F. Time Time]ModelCounting Time

P12 3 197k 0 0 2.9s 2.7s 3.8s 68m 3s 0 99m 4s
P13 7 197k 4.8k 4.8k 2m 8s 2m 6s 38m 53s 70m 13s 1 2m 15s
P14 7 197k 3.2k 3.2k 1m 58s 1m 45s 42m 44s 86m 58s 1 19m 52s
P15 7 198k 1.6k 3.2k 2m 25s 2m 43s 44m 12s 93m 38s N/A N/A
P16 7 197k 4.8k 4.8k 1m 50s 1m 38s 48m 20s 91m 02s 1 2m 18s
P17 7 205k 17.6k 12.8k 1m 24s 1m 10s 81m 1s 248m 34s 1 2m 37s

there is no tool for computing QMS values of arithmetic
programs, so no baseline is given there.

The experimental results show that: (1) the brute-force
method is effective in computing QMS values, but it is less
efficient comparing to perfect masking verification: it takes
roughly 64 hours on the programs k15, k240, k252 and k254;
(2) the brute-force method is also more efficient than the
SMT-based method for computing QMS values; (3) the SMT-
based method is only able to compute the QMS value of
the leaky variable in Sbox [28], but fails for the others after
4 days. Indeed, Z3 cannot even finish the first iteration of
the binary search on the smallest formula in 4 days. This,
again, indicates the ineffectiveness of current SMT-based
approaches. We manually examine k3, ..., k254 programs
and find out that (1) variables used in the computations E(x)
of leaky variables x are the same, and (2) the computations
that can be quickly verified contain at most 4 operations,
while the others contain at least 19 operations.

5.2.3 Perfect Masking Verification under HD model

In order to conduct experiments under the HD leakage
model, we collect a set of variable pairs for each program.
For each variable pair, we add a dummy variable as dis-
cussed in Section 2.2. The experimental results of QMVERIF
with the brute-force method enabled are reported in Table 4.
Column 1 shows the program under consideration in which
dummy variables are added. Column 2 gives the ground
truth. Columns 3–5 show the numbers of original internal
variables, dummy variables, and the total number of inter-
nal variables. Column 6 is the number of τlk variables. Col-
umn 7 is the number of variables for which the brute-force
method is invoked. Column 8 is the number of variables
on which the verification runs out of time (15 minutes per
variable). Column 9 is the total running time of verification.

We can observe that: (1) many programs that are secure
under the HW leakage model are still secure under the
HD leakage model; and (2) almost all the dummy variables
can be solved using type inference, while some dummy
variables do need to invoke the brute-force model-counting
method; (3) some variables cannot be verified in 15 minutes.
We remark that no transformation oracle can be applied on
many dummy variables in A2B [16], which may explain that
the verification of these variables runs out of time.

5.2.4 Computing QMS Values under HD model
We conduct experiments of computing QMS values under
the HD model on the modified arithmetic programs from
Section 5.2.3. The experimental results of QMVERIF with
the brute-force method enabled are shown in the last three
columns of Table 4, where Column 10 shows the number of
internal variables on which QMVERIF runs out of time for
computing QMS values (15 minutes per variable); Column
11 shows the running time for computing QMS values
excluding the time of perfect masking verification; and
Column 12 shows the minimum one of QMS values.

The experimental results show that (1) QMVERIF is able
to compute the QMS values of most leaky variables under
the HD leakage model; and (2) QMVERIF fails to compute
QMS values in 15 minutes for some leaky variables, due to
the large size of computations (more than 20 operations per
computation).

5.3 RQ3: Experiments on Boolean Programs without
Procedure Calls
To address RQ3, we collect Boolean programs from the pub-
licly available cryptographic software implementations [41].
There are 17 Boolean programs (P1–P17). We choose the
programs P12–P17, which are the regenerations of MAC-
Keccak reference code submitted to the SHA-3 competition
held by the US National Institute of Standards and Technol-
ogy. (The other programs P1–P11 are relatively small and
can be verified in less than 1 second.)

All the experiments on Boolean Programs are conducted
under the HW leakage model. We compare the perfor-
mance of our tool QMVERIF with three state-of-the-art tools
QMSINFER [44], SC Sniffer [42], [50] and maskVerif [37],
which are designed for verifying masking countermeasure
of Boolean programs only. In particular, SC Sniffer is an SMT-
based tool with an incremental heuristic which is similar to
our dominated subexpression elimination. Since SC Sniffer
is not publicly available, we implemented the algorithms
according to the papers [42], [50] for perfect masking verifi-
cation and computing QMS values. We remark that instead
of computing exact QMS values, SC Sniffer approximates
QMS values by directly binary searching the QMS value q
between 0 to 1 with a pre-defined step size ε = 0.01 [50].
Similar to our tool QMVERIF, QMSINFER is a tool that
integrates a type system and SMT-based model-counting
method, and maskVerif is a tool that integrates a proof

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

system and a brute-force enumeration. Note that we do not
compare our tool QMVERIF with the Fourier analysis based
tool rebecca developed by Bloem et al. [67], as rebecca is
designed for masked hardware Boolean programs and more
importantly, maskVerif [37] has turned to be significantly
better than rebecca. Since the input format of maskVerif [37]
differs from the syntax of P12–P17, we transform P12–P17
into the forms that can be accepted by maskVerif.

5.3.1 Perfect Masking Verification
The experimental results of perfect masking verification on
the programs P12–P17 are reported in Table 5. Column
1 shows the name of the program. Column 2 gives the
ground truth. Column 3 shows the number of internal
variables. Column 4 shows the number of leaky internal
variables. Column 5 shows the number of internal vari-
ables which needs the model-counting methods. Column
6–7 respectively show the total time of our tool QMVERIF
using SMT-based and brute-force methods. Columns 8–10
respectively show the total time of the tool QMSINFER [44],
the incremental verification method of SC Sniffer [50] and
the tool maskVerif [37].

Recall that the syntax of input programs for maskVerif
is different from ours, we equivalently transformed the
programs P12–P17 into the input syntax of maskVerif.
maskVerif arose “Fatal error: exception Stack overflow” on
all the Boolean programs during parsing. Therefore, the
results of maskVerif in Column 10 are conducted on the re-
duced programs, where the last 50,000 lines of assignments
(out of nearly 210,000 lines of assignments) are removed.
Furthermore, on leakage programs P13–P17, maskVerif ter-
minates once a flaw is identified without checking the rest.

The experimental results show that: (1) our tool
QMVERIF is effective in verifying Boolean programs; and
(2) contrary to the results on arithmetic programs, the
performance of the SMT-based and brute-force methods
in our QMVERIF for verifying perfect masking of Boolean
programs is largely leveled.

Compared with QMSINFER [44] and SC Sniffer [50]
(1) our tool QMVERIF is significantly faster (18–213 times)
on the leakage programs (i.e., P13–P17); and (2) on the
leakage-free program P12, QMVERIF is comparable with
QMSINFER, but is at least 1,500 times faster than SC Sniffer.

Compared with maskVerif [37], (1) our tool QMVERIF is
at least 2,000 times faster on the leakage-free program P12;
(2) QMVERIF also outperforms on the leakage program P13,
P14, P16 and P17, although maskVerif terminates immedi-
ately once a flaw is identified, while QMVERIF identified
all flaws; and (3) maskVerif failed to verify the leakage
program P15 as it contains the bit-wise or operation (∨)
which maskVerif does not support. We did not replace the
bit-wise or operation (∨) by other bit-wise operations (e.g.,
and operation (∧) and negation (¬) operation) supported by
maskVerif, as we believe that the experimental results on the
Boolean programs considered here suffice to demonstrate
the superiority of our tool.

5.3.2 Computing QMS Values
The experimental results of computing QMS values on P13–
P17 (P12 is excluded because it does not contain any leaky
internal variable) are reported in Table 6. Column 2 shows

the number of leaky internal variables. Columns 3–8 show
statistics of our tool QMVERIF including the number of
iterations in binary search (cf. Section 4.4.2), the time of
using SMT-based (resp. brute-force) method, the minimal,
maximal and average of QMS values. Column 9 shows
the time of QMSINFER. Note that QMSINFER gives the
same statistics as QMVERIF except for time. Columns 10–14
shows the total number of iterations in the binary search,
time, the minimal, maximal and average of QMS values
using the algorithm from [42]. Note that all the times re-
ported in Table 6 exclude the times used for perfect masking
verification, and maskVerif [37] does not support computing
QMS values.

Compared with the two state-of-the-art tools QMSIN-
FER [44] and SC Sniffer [42], our tool QMVERIF is sig-
nificantly faster than them. We mention that the number
of iterations in binary search of the tools QMVERIF and
QMSINFER [44] depends on the number of bits of random
variables, while it is fixed in SC Sniffer for each computa-
tion. This results in different time performance. In particular,
the QMS values of leaky variables whose computations do
not contain random variables (e.g., P13 and P17), do not
need the binary search. The improvement of QMVERIF com-
pared with QMSINFER owns to our heuristics. In terms of
accuracy, QMVERIF and QMSINFER have the same results,
while SC Sniffer sometimes computes approximate QMS
values, e.g., P14, P15 and P17. On the other hand, the brute-
force method also outperforms the SMT-based method in
our tool.

To conclude, our basic findings can be summarized as
follows:
• QMVERIF is effective to prove security of leakage-free

programs and identify flaws of leakage programs, and
shows orders of magnitude improvements over the
state-of-the-art tools QMSINFER [44], SC Sniffer [42]
and maskVerif [37];

• Arithmetic programs (B2A [16], A2B [16], B2A [17],
A2B [17] and B2A [19]) can be proved secure automati-
cally computer-aided tools rather than manually;

• The brute-force model-counting method significantly
outperforms the SMT-based one on arithmetic pro-
grams, and they are roughly comparable on Boolean
programs.

6 RELATED WORK

In this section, we discuss masking schemes, verification ap-
proaches, mitigation techniques and measurement of infor-
mation leakage related to power side-channel attacks. Work
on other side-channel attacks that rely on execution-time [3],
[68], [69], [70], [71], [72], [73], [74], [75], [76], faults [52], [77],
[78], [79], and cache [80], [81], [82], [83], [84], [85], [86], [87],
[88], [89] do exist, but is orthogonal to ours, hence will not
be discussed in this section.

6.1 Masking Schemes

To thwart power side-channel attacks, various masking
schemes as countermeasures have been proposed, such as
Boolean masking scheme, arithmetic masking scheme and
their combination [14], [15], [16], [25], [26], [27], [28], [29],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

TABLE 6
Results of computing QMS values on Boolean programs, where column Name gives the name of the program, column]Iter denotes the number of
iterations of binary search, column]τlk denotes the number of leaky internal variables, column SMT denotes the results of applying the SMT-based

method, column B.F. denotes the results of applying the brute-force method, columns Min, Max and Arg. respectively give the minimal, maximal
and average QMS values, the last six columns respectively show the total verification time of the tools QMSINFER [44] and SC Sniffer [50].

Name]τlk
QMVERIF QMSINFER [44] SC Sniffer [50]

]Iter SMT B.F. Min Max Arg. Time]Iter Time Min Max Avg.

P13 4.8k 0 0 0 0.00 1.00 0.98 0 480k 97m 23s 0.00 1.00 0.98
P14 3.2k 9.6k 2m 56s 39s 0.50 1.00 0.99 33m 3s 160k 40m 13s 0.51 1.00 0.99
P15 1.6k 4.8k 1m 36s 1m 32s 0.50 1.00 1.00 28m 7s 80k 23m 26s 0.51 1.00 1.00
P16 4.8k 6.4k 1m 40s 8s 0.00 1.00 0.98 45m 14s 320k 66m 27s 0.00 1.00 0.98
P17 17.6k 4.8k 51s 1s 0.00 1.00 0.94 72m 14s 1440k 337m 46s 0.00 1.00 0.93

[30], [31], [51], [90], [91]. These schemes differ in adver-
sary models, efficiency, cryptographic algorithms and com-
pactness. Countermeasures are often manually designed
for specific cryptographic algorithms and implementations
of cryptographic algorithms that rely on secure masking
schemes are not secure automatically. In this context, there
is a shortage of effective and automated tools for proving
their security and accurately identifying flaws [32], [33].

6.2 Verification Approaches

We discuss related work on masking countermeasure verifi-
cation along two categorizations: symbolic approaches and
model-counting based approaches.

6.2.1 Symbolic Approaches
Symbolic approaches have been widely used in the veri-
fication of side-channel attacks with early work [34], [92],
where masking compilers are provided which can transform
an input program into a functionally equivalent program
that is resistant to first-order DPA. However, these systems
either are limited to certain operations (i.e., ⊕ and table
look-up), or suffer from unsoundness and incompleteness
under the threshold probing model [14] or the HW/WD
leakage model.

One of the most groundbreaking works in this direction
are the works of Barthe et al. [35], [36], [37]. In [35], Barthe
et al. introduced the notion of noninterference (NI) and
inference system for proving masked arithmetic programs.
In [36], Barthe et al. introduced the notion of strong non-
interference (SNI) which is an extension of the NI notion.
The SNI notion allows to prove the security of masked
arithmetic programs compositionally, instead of proving the
security of a whole implementation at once. However, their
compositional verification requires that the programs are
either free of procedure calls, or consist of sequences of
procedure calls that satisfy NI/SNI condition and each share
is used at most once except for a SNI refresh function. For
instance, the procedure SecExp254 in our running example
does not satisfy these conditions. The restriction of NI/SNI
procedure calls is addressed in [93], but it is still limited
to some specific procedures and Boolean programs only.
Recently, Barthe et al. implemented a unified framework
for both Boolean software and hardware implementations in
the tool maskVerif [37], featuring the NI and SNI notions
extended of glitches and transitions. Further work along
this line includes improvements for efficiency [38], [39]

but limited to few certain operations, generalization for
assembly-level code [60], [61] and LLVM IR [40], extensions
with glitches for hardware programs [94] and extensions
with transitions [58], [95].

The HW leakage model considered in this work is equiv-
alent to the first-order threshold probing model [14] and cor-
responds to the NI notion introduced in [35]. The HD leak-
age model is equivalent to the first-order threshold probing
model [14] and corresponds to the NI notion proposed
in [35] with transitions. While the NI/SNI notions [35], [36],
[37] are stronger than the HW leakage model, leakage-free
programs under the HW leakage model may leak under
the NI/SNI notions. It was shown by Wang et al. [40]
that the HD leakage model differs from the second-order
probing model, hence, also differs from the NI/SNI notions
even with glitches. It is unclear whether our approach
could be extended to verify programs under the NI/SNI
leakage models. Moreover, all the approaches (except [37])
discussed above are not complete, i.e., secure programs may
fail to pass their verification and spurious flaws cannot be
automatically identified, while [37] is limited to Boolean
programs only. Experimental results on Boolean programs
also demonstrate that our tool QMVERIF significantly out-
performs maskVerif [37].

6.2.2 Model-counting based Approaches
Model-counting based approaches also have been proposed
for formally verifying masking countermeasures of cryp-
tographic programs [41], [42], [49], [50], [67], [96], [97]. In
[41], Eldib et al. firstly proposed a model-counting based
approach by leveraging SMT solvers under the HW leakage
model, which is later extended to taking the HD leak-
age model into account [42] and to quantifying masking
strength of resistance using the QMS notion [49], [50] un-
der the HW leakage model. The main advantage of their
verification approaches is completeness [41], [42]. However,
all the works [41], [42], [49], [50] are limited in scalability
and Boolean programs only. Blot et al. generalized the
SMT-based approach to higher-order Boolean programs and
presented compositional rules for fragments of code [97].
However, it requires that all the compositional fragments
have disjointed random variables and each sequential com-
position of two fragments should be connected by a refresh
of shares. Another model-counting based approaches solve
the verification problem via Fourier analysis [67], [96]. In
the nutshell, by using the Fourier expansion of the Boolean
functions, they reduce the verification problem under the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

(higher-order) HW leakage model (or equivalently thresh-
old probing model [14]) with/without glitches to checking
whether certain coefficients of the Fourier expansion are
zero or not. The latter is solved by leveraging SAT solvers
in [67] which is sound but not complete. Moreover, [67], [96]
are limited to Boolean programs and qualitative analysis
under the HW leakage model only.

To improve efficiency, a hybrid approach integrating
type inference and SMT-based model-counting based ap-
proaches was proposed by Zhang et al. [43]. The type system
of [43] is inspired by, but goes beyond, the one in [60],
[61]. Indeed, the type system from [60], [61] uses syntactic
information of the computations, whereas the type system
from [43] uses both syntactic and semantic information
where the type inference is an iterative process, making use
of SMT-based model-counting approach to refine the type
dynamically. The hybrid approach is extended to computing
exact QMS later [44], but is still limited to Boolean programs
and the HW leakage model.

In the preliminary version of this paper [1], we general-
ize the approach of [43], [44] from the Boolean setting to the
arithmetic setting by extending the notation of dominant
variables and type inference rules. It not only extends the
applicability but also achieves significant improvement in
efficiency even for Boolean programs (cf. Table 5). The type
system subsumes that of [43], [44], [60], [61] and provides
additional inference rules for arithmetic operations; our
SMT-based method extends that in [41], [42], [43], [44],
[49], [50]; our tool QMVERIF supports both quantitative
and qualitative verification of Boolean and arithmetic pro-
grams. Moreover, we propose a brute-force method for solv-
ing model-counting constraints and additional heuristics,
which make our tool more scalable and efficient in practice.
Although [60], [61] have already mentioned that solving
model-counting via SMT solvers [42], [43] may not be the
best approach, we went further by demonstrating that solv-
ing model-counting via SMT solvers [42], [43] is doable on
Boolean programs and on arithmetic programs without in-
volving (finite-field) multiplication, but may be inferior for
arithmetic programs with (finite-field) multiplication. This
provides empirical suggestions on which model-counting
method should be selected, and suggests potential future re-
search directions of domain specific model-counting meth-
ods.

Last but not least, the current work extends the prelimi-
nary version [1] on several aspects: (1) it provides a refined
narrative of the motivation, a complex running example to
better illustrate our techniques, and an extensive literature
review together with thorough comparison of the related
work; (2) it formulates Algorithm 1 and Algorithm 2 which
are only informally described in [1]; (3) it considers the HD
leakage model and demonstrates the performance of our
approach under the HD leakage model so our approach has
broader applicability; (4) it introduces a novel type system
supporting for compositional reasoning which significantly
improves efficiency; and (5) it conducts considerably more
experiments and gives an in-depth analysis of the results.

6.3 Mitigation
Mitigation techniques have been proposed to generate side-
channel leakage-free programs. [98] proposed a dual-spacer

dual-rail delay-insensitive logic circuit design methodology
to mitigate power side-channel attack. It guarantees bal-
anced switching activities between the two rails of each
signal, hence makes attackers difficult to compute the cor-
relation of power consumption data. [34], [36], [99], [100]
rely on compiler-like pattern matching, the ones proposed
in [97], [101], [102] use inductive program synthesis and [40]
leverages register allocation and assignment. Some of the
work can provide security guarantee which mainly relies on
(qualitative) countermeasure verification techniques to find
(potential) flaws. In particular, [101] relies upon SMT-based
approaches [41], [42], while [36], [40] rely upon sound but
incomplete verification approaches. These incomplete ap-
proaches may report spurious flaws which could be fixed by
post mitigation techniques [36], [40] producing leakage-free
programs, but which may incur overhead of the resulting
programs. Nevertheless, it would be interesting to investi-
gate whether our new approach can aid in the synthesis of
better masking countermeasures, as done in [36], [40], [101].

6.4 Measurement

Quantitative verification of side-channel resistance is related
to quantitative information flow (QIF) analysis [103], [104],
[105], [106], [107]. QIF measures the flow of information
in programs by leveraging notions from information the-
ory, e.g., Shannon entropy and mutual information. The
QIF analysis has been investigated for side-channel anal-
ysis [108], [109], [110]. There are several key differences
between our work and QIF. Firstly, the programs under
verification are different. We consider masked programs in
straight-line forms, while QIF targets at fully-fledged pro-
grams (including branching and loops) so program analysis
techniques (e.g., symbolic execution) are needed. Secondly,
the metric is different. We use the notion of QMS that
is correlated with the number of power traces needed to
successfully infer private data, while QIF leverages no-
tions from information theory which is used to quantify
the volume of leakages. Finally, although both work rely
on model-counting, the constraints in QIF over the input
are usually linear, while the ones in our setting involve
arithmetic operations in rings and fields. Approximation
techniques can be leveraged in QIF [107], [110], but are
not suitable for ours. Furthermore, it is worth mentioning
that in general input variables in QIF should be partitioned
into two disjoint sets (public and private variables), and the
former needs to be existentially quantified. This was also
observed by, e.g., [110], but without any implementation.

7 CONCLUSION

In this work, we have proposed an integration of type sys-
tem and model-counting based methods, aided by heuris-
tics for verifying masking countermeasures of arithmetic
programs under both the HW and HD leakage models.
The type inference allows an efficient, lightweight proce-
dure to determine most internal variables whereas model-
counting accounts for completeness, bringing the best of
two worlds. In particular, our type system can support
compositional reasoning for programs with procedure calls,
which can reduce the need of procedure inlining, and thus

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

substantially improve the efficiency of type inference. We
also provided a binary search based algorithm to quan-
tify resistance of masking countermeasures by leveraging
model-counting based methods. We have implemented our
approach in a verification tool QMVERIF and evaluated it
on standard cryptographic benchmarks. The experimental
results demonstrate that QMVERIF is effective to prove
security of leakage-free programs and identify flaws of
leakage programs in a compositional manner. Furthermore,
QMVERIF is substantially (order of magnitude in some
cases) faster than QMSINFER, SC Sniffer and maskVerif.
Several conversion algorithms between Boolean and arith-
metic maskings (e.g., B2A [16], A2B [16], B2A [17], A2B [17]
and B2A [19]) have been formally proved leakage-free by
QMVERIF, which were only possible manually in previous
work.

Future work includes further investigation of efficient
model-counting techniques for domain-specific problems
and generalization of the work in the current paper to
verification of higher-order masking schemes which re-
mains to be a very challenging task. Under the higher-
order setting where the attacker is able to probe multiple
variables simultaneously, we have to verify that the joint
distribution of each set of the probed variables is statistically
independent of the private input variables. There are two
technical challenges. First, probed variables may occur in
different procedures. In this case, our type system cannot
verify each procedure in isolation, calling for a new type
system strengthening the compositional reasoning. Second,
the number of variables involved in the computation of mul-
tiple probed variables may be large, while the complexity
of the model-counting based method is exponential in the
number of variables. Thus, more efficient model-counting
techniques are needed to tackle the scalability.

Another research direction is how to verify programs
with inherent branching and loops that cannot be trans-
formed into the straight-line form. Currently, all of the exist-
ing security notions (i.e., perfect masking, NI and SNI) are
defined over straight-line programs. Whether these notions
can be easily adapted to more general programs and how
to verify them remain to be an important and challenging
problem.

ACKNOWLEDGEMENT

The authors would like to thank Professor Gilles Barthe,
Professor Benjamin Grégoire and Professor Chao Wang
for providing benchmarks, and the anonymous reviewers
for their valuable comments and suggestions. P. Gao, H.
Xie, P. Sun, J. Zhang and F. Song were partially sup-
ported by the National Natural Science Foundation of
China (NSFC) grants (No. 61532019 and No. 61761136011);
T. Chen was partially supported by UK EPSRC grant
(No. EP/P00430X/1), NSFC grant (No. 61872340), Guang-
dong Science and Technology Department grant (No.
2018B010107004), Natural Science Foundation of Guang-
dong Province, China (No. 2019A1515011689), and Overseas
Grant (KFKT2018A16) from the State Key Laboratory of
Novel Software Technology, Nanjing University, China.

REFERENCES

[1] P. Gao, H. Xie, J. Zhang, F. Song, and T. Chen, “Quantitative
verification of masked arithmetic programs against side-channel
attacks,” in Proceedings of the 25th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Held as Part of the European Joint Conferences on Theory
and Practice of Software (ETAPS), 2019, pp. 155–173.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proceedings of the International Cryptology Conference on Advances
in Cryptology (CRYPTO), 1999, pp. 388–397.

[3] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Proceedings of the Interna-
tional Cryptology Conference on Advances in Cryptology (CRYPTO),
1996, pp. 104–113.

[4] L. Goubin and J. Patarin, “DES and differential power analysis
(the ”duplication” method),” in Proceedings of the First Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems
(CHES), 1999, pp. 158–172.

[5] J. Coron, “Resistance against differential power analysis for el-
liptic curve cryptosystems,” in Proceedings of the First Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems
(CHES), 1999, pp. 292–302.

[6] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power
analysis in the presence of hardware countermeasures,” in Pro-
ceedings of the International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2000, pp. 252–263.

[7] K. Itoh, T. Izu, and M. Takenaka, “Address-bit differential power
analysis of cryptographic schemes OK-ECDH and OK-ECDSA,”
in Proceedings of the4th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Revised Papers, 2002, pp.
129–143.

[8] H. B. Choi, H. J. Lee, C. S. Kim, B. H. Chang, and D. Won,
“On differential power analysis attack on the addition modular
2n operation of smart cards,” in Proceedings of the International
Conference on Security and Management (SAM), 2003, pp. 260–266.

[9] W. Wang, Y. Yu, F. Standaert, J. Liu, Z. Guo, and D. Gu, “Ridge-
based DPA: improvement of differential power analysis for
nanoscale chips,” IEEE Trans. Information Forensics and Security,
vol. 13, no. 5, pp. 1301–1316, 2018.

[10] M. J. Kannwischer, A. Genêt, D. Butin, J. Krämer, and J. Buch-
mann, “Differential power analysis of XMSS and SPHINCS,” in
Proceedings of the 9th International Workshop on Constructive Side-
Channel Analysis and Secure Design (COSADE), 2018, pp. 168–188.

[11] J. Xu, A. Fan, M. Lu, and W. Shan, “Differential power analysis of
8-bit datapath AES for IoT applications,” in Proceedings of the17th
IEEE International Conference On Trust, Security And Privacy In
Computing And Communications / 12th IEEE International Confer-
ence On Big Data Science And Engineering, 2018, pp. 1470–1473.

[12] C. Luo, Y. Fei, and D. R. Kaeli, “Effective simple-power analysis
attacks of elliptic curve cryptography on embedded systems,” in
Proceedings of the International Conference on Computer-Aided Design
(ICCAD), 2018, p. 115.

[13] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

[14] Y. Ishai, A. Sahai, and D. A. Wagner, “Private circuits: Securing
hardware against probing attacks,” in Proceedings of the Interna-
tional Cryptology Conference on Advances in Cryptology (CRYPTO),
2003, pp. 463–481.

[15] J. Coron and L. Goubin, “On boolean and arithmetic masking
against differential power analysis,” in Proceedings of the Second
International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2000, pp. 231–237.

[16] L. Goubin, “A sound method for switching between boolean
and arithmetic masking,” in Proceedings of the Third International
Workshop on Cryptographic Hardware and Embedded Systems, 2001,
pp. 3–15.

[17] J. Coron, J. Großschädl, and P. K. Vadnala, “Secure conver-
sion between boolean and arithmetic masking of any order,”
in Proceedings of the 16th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2014, pp. 188–205.

[18] J. Coron, “High-order conversion from boolean to arithmetic
masking,” in Proceedings of the 19th International Conference on
Cryptographic Hardware and Embedded Systems (CHES), 2017, pp.
93–114.

[19] L. Bettale, J. Coron, and R. Zeitoun, “Improved high-order
conversion from boolean to arithmetic masking,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 2, pp. 22–45, 2018.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

[20] X. Lai and J. L. Massey, “A proposal for a new block encryption
standard,” in Proceedings of tge Workshop on the Theory and Ap-
plication of of Cryptographic Techniques (EUROCRYPT), 1990, pp.
389–404.

[21] S. Contini, R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin, “Im-
proved analysis of some simplified variants of RC6,” in Proceed-
ings of the 6th International Workshop on Fast Software Encryption
(FSE), 1999, pp. 1–15.

[22] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The SIMON and SPECK families of lightweight
block ciphers,” IACR Cryptology ePrint Archive, vol. 2013, p. 404,
2013.

[23] M. Hutter and M. Tunstall, “Constant-time higher-order boolean-
to-arithmetic masking,” J. Cryptographic Engineering, vol. 9, no. 2,
pp. 173–184, 2019.

[24] W. Wang, Y. Yu, and F. Standaert, “Provable order amplification
for code-based masking: How to avoid non-linear leakages due
to masked operations,” IEEE Trans. Information Forensics and
Security, vol. 14, no. 11, pp. 3069–3082, 2019.

[25] W. Wang, F. Standaert, Y. Yu, S. Pu, J. Liu, Z. Guo, and D. Gu,
“Inner product masking for bitslice ciphers and security order
amplification for linear leakages,” in Proceedings of the 15th Inter-
national Conference on Smart Card Research and Advanced Applica-
tions (CARDIS), Revised Selected Papers, 2016, pp. 174–191.

[26] T. S. Messerges, “Securing the AES finalists against power anal-
ysis attacks,” in Proceedings of the International Workshop on Fast
Software Encryption, 2000, pp. 150–164.

[27] K. Schramm and C. Paar, “Higher order masking of the AES,” in
Proceedings of the RSA Conference on Topics in Cryptology (CT-RSA),
2006, pp. 208–225.

[28] M. Rivain and E. Prouff, “Provably secure higher-order masking
of AES,” in Proceedings of Workshop on Cryptographic Hardware and
Embedded Systems, 2010, pp. 413–427.

[29] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Push-
ing the limits: A very compact and a threshold implementation
of AES,” in Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), 2011,
pp. 69–88.

[30] E. Prouff and M. Rivain, “Masking against side-channel attacks:
A formal security proof,” in Proceedings of the 32nd Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Advances in Cryptology, 2013, pp. 142–159.

[31] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Ver-
bauwhede, “Consolidating masking schemes,” in Annual Cryp-
tology Conference on Advances in Cryptology (CRYPTO), 2015, pp.
764–783.

[32] J. Coron, E. Prouff, and M. Rivain, “Side channel cryptanalysis
of a higher order masking scheme,” in Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems, 2007, pp. 28–44.

[33] J. Coron, E. Prouff, M. Rivain, and T. Roche, “Higher-order
side channel security and mask refreshing,” in Proceedings of the
International Workshop on Fast Software Encryption, 2013, pp. 410–
424.

[34] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted
masking,” in Proceedings of the 14th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), 2012, pp.
58–75.

[35] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, and
P. Strub, “Verified proofs of higher-order masking,” in Proceed-
ings of the 34th Annual International Conference on the Theory and
Applications of Cryptographic (EUROCRYPT), 2015, pp. 457–485.

[36] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire,
P. Strub, and R. Zucchini, “Strong non-interference and type-
directed higher-order masking,” in Proceedings of the ACM Confer-
ence on Computer and Communications Security, 2016, pp. 116–129.

[37] G. Barthe, S. Belaı̈d, P. Fouque, and B. Grégoire, “maskverif:
Automated verification of higher-order masking in presence of
physical defaults,” in Proceedings of the 24th European Symposium
on Research in Computer Security (ESORICS), 2019.

[38] E. Bisi, F. Melzani, and V. Zaccaria, “Symbolic analysis of higher-
order side channel countermeasures,” IEEE Trans. Computers,
vol. 66, no. 6, pp. 1099–1105, 2017.

[39] J. Coron, “Formal verification of side-channel countermeasures
via elementary circuit transformations,” in Proceedings of the
16th International Conference on Applied Cryptography and Network
Security, 2018, pp. 65–82.

[40] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels
during compilation,” in Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2019.

[41] H. Eldib, C. Wang, and P. Schaumont, “SMT-based verification
of software countermeasures against side-channel attacks,” in
Proceedings of the International Conference on Tools and Algorithms
for Construction and Analysis of Systems, 2014, pp. 62–77.

[42] ——, “Formal verification of software countermeasures against
side-channel attacks,” ACM Transactions on Software Engineering
and Methodology, vol. 24, no. 2, p. 11, 2014.

[43] J. Zhang, P. Gao, F. Song, and C. Wang, “SCInfer: Refinement-
based verification of software countermeasures against side-
channel attacks,” in Proceedings of the 30th International Conference
on Computer Aided Verification, Held as Part of the Federated Logic
Conference, 2018, pp. 157–177.

[44] P. Gao, J. Zhang, F. Song, and C. Wang, “Verifying and quan-
tifying side-channel resistance of masked software implementa-
tions,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 3, pp. 16:1–
16:32, Jul. 2019.

[45] D. Kroening and O. Strichman, Decision Procedures - An
Algorithmic Point of View, Second Edition, ser. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2016. [Online].
Available: https://doi.org/10.1007/978-3-662-50497-0

[46] H. Groß, D. Schaffenrath, and S. Mangard, “Higher-order side-
channel protected implementations of KECCAK,” in Euromicro
Conference on Digital System Design (DSD), 2017, pp. 205–212.

[47] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Proceedings of the International Conference on Tools and Algorithms
for Construction and Analysis of Systems, 2008, pp. 337–340.

[48] M. Nassar, Y. Souissi, S. Guilley, and J. Danger, “RSM: A small
and fast countermeasure for aes, secure against 1st and 2nd-order
zero-offset scas,” in Proceedings of the 2012 Design, Automation &
Test in Europe Conference & Exhibition, 2012, pp. 1173–1178.

[49] H. Eldib, C. Wang, M. Taha, and P. Schaumont, “QMS: Evaluat-
ing the side-channel resistance of masked software from source
code,” in Proceedings of the ACM/IEEE Design Automation Confer-
ence, 2014, pp. 209:1–6.

[50] H. Eldib, C. Wang, M. M. I. Taha, and P. Schaumont, “Quan-
titative masking strength: Quantifying the power side-channel
resistance of software code,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 34, no. 10, pp. 1558–1568, 2015.

[51] J. Blömer, J. Guajardo, and V. Krummel, “Provably secure mask-
ing of aes,” in Proceedings of the International Workshop on Selected
Areas in Cryptography. Springer, 2004, pp. 69–83.

[52] H. Eldib, M. Wu, and C. Wang, “Synthesis of fault-attack counter-
measures for cryptographic circuits,” in Proceedings of the Interna-
tional Conference on Computer Aided Verification, 2016, pp. 343–363.

[53] T. S. Messerges, “Using second-order power analysis to attack
dpa resistant software,” in Proceedings of the International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2000,
pp. 238–251.

[54] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” in Proceedings of the International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2004,
pp. 16–29.

[55] A. Moradi, “Side-channel leakage through static power,” in Pro-
ceedings of International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2014, pp. 562–579.

[56] S. Mangard, “A simple power-analysis (SPA) attack on imple-
mentations of the AES key expansion,” in Proceedings of the
5th International Conference on Information Security and Cryptology,
2002, pp. 343–358.

[57] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to
differential power analysis,” Journal of Cryptographic Engineering,
vol. 1, no. 1, pp. 5–27, 2011.

[58] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert,
“On the cost of lazy engineering for masked software implemen-
tations,” in Proceedings of the International Conference on Smart Card
Research and Advanced Applications (CARDIS), 2014, pp. 64–81.

[59] C. B. Jones, “Specification and design of (parallel) programs,”
in Proceedings of the IFIP 9th World Computer Congress, 1983, pp.
321–332.

[60] I. B. E. Ouahma, Q. Meunier, K. Heydemann, and E. Encre-
naz, “Symbolic approach for side-channel resistance analysis of
masked assembly codes,” in Security Proofs for Embedded Systems,
2017.

https://doi.org/10.1007/978-3-662-50497-0

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

[61] I. B. E. Ouahma, Q. L. Meunier, K. Heydemann, and E. Encrenaz,
“Side-channel robustness analysis of masked assembly codes
using a symbolic approach,” Journal of Cryptographic Engineering,
vol. 9, no. 3, pp. 231–242, 2019.

[62] J. Coron, “Higher order masking of look-up tables,” in Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings. Springer,
2014, pp. 441–458.

[63] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain,
“Higher-order masking schemes for s-boxes,” in Proceedings of
the 19th International Workshop on Fast Software Encryption. Revised
Selected Papers, 2012, pp. 366–384.

[64] J. Coron, A. Roy, and S. Vivek, “Fast evaluation of polynomials
over binary finite fields and application to side-channel coun-
termeasures,” in Cryptographic Hardware and Embedded Systems
- CHES 2014 - 16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings. Springer, 2014, pp. 170–187.

[65] J. Coron, F. Rondepierre, and R. Zeitoun, “High order masking
of look-up tables with common shares,” IACR Cryptology ePrint
Archive, p. 271, 2017.

[66] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0 system
description,” Journal on Satisfiability, Boolean Modeling and Com-
putation, vol. 9, pp. 53–58, 2014.

[67] R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and
J. Winter, “Formal verification of masked hardware implemen-
tations in the presence of glitches,” in Proceedings of the 37th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Advances in Cryptology, 2018, pp. 321–
353.

[68] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in USENIX Security
Symposium, 2016, pp. 53–70.

[69] C. S. Pasareanu, Q. Phan, and P. Malacaria, “Multi-run side-
channel analysis using symbolic execution and max-smt,” in
IEEE Computer Security Foundations Symposium, 2016, pp. 387–400.

[70] L. Bang, A. Aydin, Q. Phan, C. S. Pasareanu, and T. Bultan,
“String analysis for side channels with segmented oracles,” in
Proceedings of the ACM SIGSOFT Symposium on Foundations of
Software Engineering, 2016, pp. 193–204.

[71] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in Proceedings of
IEEE Computer Security Foundations Symposium, 2017, pp. 328–342.

[72] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Ter-
auchi, and S. Wei, “Decomposition instead of self-composition
for proving the absence of timing channels,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2017, pp. 362–375.

[73] J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel
vulnerabilities using quantitative cartesian hoare logic,” in Pro-
ceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security, 2017, pp. 875–890.

[74] T. Brennan, S. Saha, and T. Bultan, “Symbolic path cost analysis
for side-channel detection,” in Proceedings of the International
Conference on Software Engineering, 2018, pp. 424–425.

[75] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing
side-channel leaks using program repair,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2018, pp. 15–26.

[76] M. Wu and C. Wang, “Abstract interpretation under speculative
execution,” in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2019,
pp. 802–815.

[77] E. Biham and A. Shamir, “Differential fault analysis of secret
key cryptosystems,” in Proceedings of the International Cryptology
Conference on Advances in Cryptology (CRYPTO), 1997, pp. 513–525.

[78] G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, and J. Zapalow-
icz, “Synthesis of fault attacks on cryptographic implementa-
tions,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2014, pp. 1016–1027.

[79] J. Breier, X. Hou, and Y. Liu, “Fault attacks made easy: Differ-
ential fault analysis automation on assembly code,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 2, pp. 96–122, 2018.

[80] P. Grabher, J. Großschädl, and D. Page, “Cryptographic side-
channels from low-power cache memory,” in Proceedings of the
IMA International Conference, Cirencester on Cryptography and Cod-
ing, 2007, pp. 170–184.

[81] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic quantification
of cache side-channels,” in Proceedings of the International Confer-
ence on Computer Aided Verification, 2012, pp. 564–580.

[82] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke,
“Cacheaudit: A tool for the static analysis of cache side channels,”
in USENIX Security Symposium, 2013, pp. 431–446.

[83] G. Barthe, B. Köpf, L. Mauborgne, and M. Ochoa, “Leakage
resilience against concurrent cache attacks,” in Proceedings of the
3rd International Conference on Principles of Security and Trust, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, 2014, pp. 140–158.

[84] D. Chu, J. Jaffar, and R. Maghareh, “Precise cache timing analysis
via symbolic execution,” in Proceedings of the IEEE Symposium on
Real-Time and Embedded Technology and Applications, 2016, pp. 293–
304.

[85] S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller, “Quan-
tifying the information leakage in cache attacks via symbolic
execution,” ACM Trans. Embedded Comput. Syst., vol. 18, no. 1,
pp. 7:1–7:27, 2019.

[86] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD:
Identifying cache-based timing channels in production software,”
in Proceedings of the USENIX Security Symposium, 2017, pp. 235–
252.

[87] C. Sung, B. Paulsen, and C. Wang, “CANAL: A cache timing
analysis framework via llvm transformation,” in Proceedings of
the IEEE/ACM International Conference On Automated Software
Engineering, 2018.

[88] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing
side-channel leaks using program repair,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2018.

[89] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execution
for detecting concurrency-related cache timing leaks,” in Proceed-
ings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2018.

[90] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-
channel analysis resistant description of the AES s-box,” in Pro-
ceedings of the International Workshop on Fast Software Encryption,
2005, pp. 413–423.

[91] D. Canright and L. Batina, “A very compact ”perfectly masked”
s-box for AES,” in Proceedings of the International Conference on
Applied Cryptography and Network Security, 2008, pp. 446–459.

[92] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Auto-
mated verification of software power analysis countermeasures,”
in Proceedings of Workshop on Cryptographic Hardware and Embedded
Systems, 2013, pp. 293–310.

[93] S. Belaı̈d, D. Goudarzi, and M. Rivain, “Tight private circuits:
Achieving probing security with the least refreshing,” in Proceed-
ings of the 24th International Conferenceon the Theory and Application
of Cryptology and Information Security, 2018, pp. 343–372.

[94] S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Stan-
daert, “Composable masking schemes in the presence of physical
defaults and the robust probing model,” IACR Cryptology ePrint
Archive, vol. 2017, p. 711, 2017.

[95] J. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K.
Vadnala, “Conversion of security proofs from one leakage model
to another: A new issue,” in Proceedings of the Third International
Workshop on Constructive Side-Channel Analysis and Secure Design,
2012, pp. 69–81.

[96] S. Bhasin, C. Carlet, and S. Guilley, “Theory of masking
with codewords in hardware: low-weight dth-order correlation-
immune boolean functions,” IACR Cryptology ePrint Archive, vol.
2013, p. 303, 2013.

[97] A. Blot, M. Yamamoto, and T. Terauchi, “Compositional synthesis
of leakage resilient programs,” in Proceedings of the International
Conference on Principles of Security and Trust, 2017, pp. 277–297.

[98] W. Cilio, M. Linder, C. Porter, J. Di, D. R. Thompson, and
S. C. Smith, “Mitigating power-and timing-based side-channel at-
tacks using dual-spacer dual-rail delay-insensitive asynchronous
logic,” Microelectronics Journal, vol. 44, no. 3, pp. 258–269, 2013.

[99] A. G. Bayrak, F. Regazzoni, P. Brisk, F. Standaert, and P. Ienne, “A
first step towards automatic application of power analysis coun-
termeasures,” in Proceedings of the ACM/IEEE Design Automation
Conference, 2011, pp. 230–235.

[100] G. Agosta, A. Barenghi, and G. Pelosi, “A code morphing
methodology to automate power analysis countermeasures,” in
Proceedings of the ACM/IEEE Design Automation Conference, 2012,
pp. 77–82.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

[101] H. Eldib and C. Wang, “Synthesis of masking countermeasures
against side channel attacks,” in Proceedings of the International
Conference on Computer Aided Verification, 2014, pp. 114–130.

[102] C. Wang and P. Schaumont, “Security by compilation: an au-
tomated approach to comprehensive side-channel resistance,”
SIGLOG News, vol. 4, no. 2, pp. 76–89, 2017.

[103] P. Malacaria and J. Heusser, “Information theory and security:
Quantitative information flow,” in Proceedings of the 10th In-
ternational School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM), 2010, pp. 87–134.

[104] Q. Phan, P. Malacaria, C. S. Pasareanu, and M. d’Amorim, “Quan-
tifying information leaks using reliability analysis,” in Proceedings
of 2014 International Symposium on Model Checking of Software
(SPIN), 2014, pp. 105–108.

[105] C. G. Val, M. A. Enescu, S. Bayless, W. Aiello, and A. J. Hu,
“Precisely measuring quantitative information flow: 10k lines of
code and beyond,” in Proceedings of IEEE European Symposium on
Security and Privacy (EuroS&P), 2016, pp. 31–46.

[106] Q. Phan and P. Malacaria, “Abstract model counting: a novel
approach for quantification of information leaks,” in Proceedings
of the 9th ACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS), 2014, pp. 283–292.

[107] F. Biondi, M. A. Enescu, A. Heuser, A. Legay, K. S. Meel, and
J. Quilbeuf, “Scalable approximation of quantitative information
flow in programs,” in Proceedings of the 19th International Con-
ference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), 2018, pp. 71–93.

[108] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in Proceedings of the
30th IEEE Computer Security Foundations Symposium (CSF), 2017,
pp. 328–342.

[109] C. S. Pasareanu, Q. Phan, and P. Malacaria, “Multi-run side-
channel analysis using symbolic execution and Max-SMT,” in
Proceedings of the IEEE 29th Computer Security Foundations Sym-
posium (CSF), 2016, pp. 387–400.

[110] P. Malacaria, M. H. R. Khouzani, C. S. Pasareanu, Q. Phan, and
K. S. Luckow, “Symbolic side-channel analysis for probabilistic
programs,” in Proceedings of the 31st IEEE Computer Security
Foundations Symposium (CSF), 2018, pp. 313–327.

Pengfei Gao received the B.S. degree in Com-
puter Science from China University of Mining
and Technology, Jiangsu, China, in 2017.

He is currently a Ph.D. student in Shang-
haiTech University, Shanghai, China, supervised
by Prof. Fu Song. His research interests include
program analysis and software security.

Hongyi Xie is currently a forth-year undergradu-
ate student in ShanghaiTech University, Shang-
hai, China, supervised by Prof. Fu Song. His re-
search interests include satisfiability modulo the-
ories and solving of model-counting constraints.

Pu Sun received the B.S. degree in Computer
Science from Northeastern University at Qin-
huangdao, Hebei, China, in 2018.

He is currently a M.S. student in Shang-
haiTech University, Shanghai, China, supervised
by Prof. Fu Song. His research interests include
software testing and software security.

Jun Zhang received the B.S. degree in Commu-
nication Engineering from Shandong University,
Shandong, China, in 2016.

He is currently a M.S. student in Shang-
haiTech University, Shanghai, China, supervised
by Prof. Fu Song. His research interests include
program analysis and software security.

Fu Song received the B.S. degree from Ningbo
University, Ningbo, China, in 2006, the M.S. de-
gree in Software Engineering from East China
Normal University, Shanghai, China, in 2009,
and the Ph.D. degree in Computer Science from
University Paris-Diderot, Paris, France, in 2013.

From 2013 to 2016, he was a Lecturer and As-
sociate Research Professor at East China Nor-
mal University. Since August 2016, he is an As-
sistant Professor with ShanghaiTech University,
Shanghai, China. His research interests include

software engineering, formal methods and computer security, especially
about automata, logic, model checking, and program analysis.

Dr. Song was a recipient of EASST best paper award at ETAPS 2012.

Taolue Chen received the Bachelor and Mas-
ter degrees from the Nanjing University, China,
both in Computer Science. He was a junior re-
searcher at the Centrum Wiskunde & Informatica
(CWI) and acquired the Ph.D. degree from the
Vrije Universiteit Amsterdam, The Netherlands.
He is currently a senior lecturer at the Depart-
ment of Computer Science, University of Surrey.
His research interests include formal verification
and synthesis, program analysis, software secu-
rity, software engineering and machine learning.

	Introduction
	Preliminaries
	Cryptographic Programs
	Threat Model and Leakage Models
	Perfect Masking
	Quantitative Masking Strength

	Running Example and Overview
	A Running Example
	Approach Overview

	Methodology
	Type System
	Model-Counting based Methods
	Domain Specific Heuristics
	Overall Algorithms

	Implementation and Evaluation
	RQ1: Experiments on Arithmetic Programs with Procedure Calls
	RQ2: Experiments on Arithmetic Programs without Procedure Calls
	RQ3: Experiments on Boolean Programs without Procedure Calls

	Related work
	Masking Schemes
	Verification Approaches
	Mitigation
	Measurement

	Conclusion
	References
	Biographies
	Pengfei Gao
	Hongyi Xie
	Pu Sun
	Jun Zhang
	Fu Song
	Taolue Chen

