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Abstract: Have we entered a “post-truth” era? The present paper attempts to answer this question by (a) offering 

an explication of the notion of “post-truth” from recent discussions; (b) deriving a testable implication from that 

explication, to the effect that we should expect to see decreasing information effects—i.e., differences between 

actual preferences and estimated, fully informed preferences—on central political issues over time; and then (c) 

putting the relevant narrative to the test by way of counterfactual modelling, using election year data for the period 

of 2004-2016 from the American National Election Studies’ (ANES) Times Series Study. The implication in 

question turns out to be consistent with the data: at least in a US context, we do see evidence of a decrease in 

information effects on key, political issues—immigration, same-sex adoption, and gun laws, in particular—in the 

period 2004 to 2016. This offers some novel, empirical evidence for the “post-truth” narrative. 

 

 

1. What is “Post-Truth”? 

It has been suggested that we have entered a “post-truth” era. But what exactly does this mean? The 

Oxford Dictionaries famously declared “post-truth” the word of the year in 2016, defining it as ‘relating 

to or denoting circumstances in which objective facts are less influential in shaping public opinion than 

appeals to emotion and personal belief’. Several subsequent commentators have taken this definition as 

their starting point. For example, Lee McIntyre (2018) comments on it by suggesting that ‘the prefix 

“post” is meant to indicate not so much the idea that we are “past” truth […] but in the sense that truth 

has been eclipsed—that it is irrelevant’ (5). Eclipsed by what? According to Oxford Dictionaries, ‘emo-

tion and personal belief’. As Matthew D’Ancona (2017) puts it, the ‘essence of Post-Truth culture […] 

depends not upon evidence, but on feeling’ (68).1 

The most promising gloss on these claims interprets them in the context of an influential account 

of political preference and behaviour, on which we tend not to concern ourselves with policy details, 

                                                      
1 There are other writers, besides McIntyre and D’Ancona, who pursue a “post-truth” narrative, including Davis 

(2017) and Ball (2017). However, Davis (2017) makes clear that he is really concerned with a long history of lies 

and deceit, or with bullshit in the broadest sense (far broader than in Frankfurt 2005); and Ball (2017) is not 

conceptually focused enough to warrant any attention beyond what will be given to McIntyre and D’Ancona. 
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and instead form political preferences and make political decisions primarily by latching on to commit-

ments that jibe with our partisan identities. Consider, for example, Christopher Achen and Larry Bartels’ 

recent and highly influential book, Democracy for Realists (2016). On their picture, ‘political prefer-

ences and judgments that look and feel like the bases of partisanship and voting behaviour are, in reality, 

often consequences of party and group loyalties’ (268). This is in keeping with a long tradition in the 

study of political behaviour. Already in the classic Columbia Studies, we find the suggestion that ‘po-

litical preferences may be […] considered analogous to cultural tastes […] [having] their origin in ethnic, 

sectional, class, and family traditions’ (Berelson et al. 1954: 310-311). Similarly, the subsequent and 

highly influential Michigan Model famously maintains that political preferences are greatly influenced 

by partisan loyalties formed early in life (Campbell et al. 1960).2 

So, perhaps McIntyre, D’Ancona, and others discussing “post-truth” in similar terms have in mind 

the idea that, when it comes to politics, it is not that we sit down and make a calculation of the cost and 

benefits of the relevant policies—‘the facts’—and then form our preferences. Instead, we start from the 

emotional attachments that flow from our group-identities—the ‘emotions’ in the Oxford definition or 

‘feelings’ in D’Ancona’s gloss—and then opt for the policies that come with being the type of person 

we are. But note two things. First, the claim would have to be that the type of tendencies identified by 

political scientists in the Michigan Model tradition have become significantly more pronounced in re-

cent years, potentially swamping any consideration for ‘the facts’ in political preference formation. 

Second, the claim cannot be that what is true is irrelevant to our political attitudes, as McIntyre seems 

to suggest. On the contrary, what is true about what commitments happen to jibe with what partisan 

identities is highly relevant. A distinction is in order: for any candidate political option, there are identity 

cues, relating to whether people of certain identity groups go for that option; and then there is everything 

else that is true about that option, and specifically its empirical nature (e.g., what does the option involve, 

in terms of political policies and strategies?) and implications (e.g., what are the likely consequences of 

implementing that option?). Call the latter the empirical substance of politics.  

This distinction is in line with the idea, put forward recently by Ian MacMullen (2020), that pol-

itics is factual, as opposed to post-factual, ‘to the extent that political decisions are informed by and 

responsive to relevant empirical conditions’ (98), if those conditions are spelled out in terms of what is 

referred to as the empirical substance of politics above. Moreover, note that statements about “post-

truth” are often accompanied by a claim about timing. For example, McIntyre suggests that, ‘[a]lthough 

the Brexit vote and the US presidential election may seem inextricably tied up with post-truth, neither 

was the cause of it—they were the result’ (2018: 15). For his part, D’Ancona claims that ‘2016 was the 

                                                      
2 Similar suggestions can be found in recent work in cognitive science (e.g., Sloman and Fernbach 2017). Critics 

of the Michigan Model have tended to suggest that the public is able to rely on ‘cues and shortcuts’ and, as such, 

act as if informed (e.g., Popkin 1991), or that voters are able to vote retrospectively on minimal amounts of infor-

mation (e.g., Key 1966; Fiorina 1981). See Bartels (1996) and Achen and Bartels (2016) for critical discussions. 
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year that definitely launched the era of “Post-Truth”’ (2017: 7), and A. C. Grayling (in Coughlan 2017) 

that the relevant shift happened sometime after the financial crash in 2008. So, if these commentators 

are right, we entered the “post-truth” era sometime in the period between 2008 and 2016. This opens 

up for the following rendering of the “post-truth” claim: 

 

(PT)  Sometime in the period of 2008 to 2016, the empirical substance of politics became sig-

nificantly less relevant to what political preferences we form.  

 

This claim has two virtues. First, it is agnostic on the underlying mechanism. Consider, in particular, 

MacMullen’s (2020) identification of four different types of ‘post-factual’ politics: on unconscious 

post-factualism, people systematically (but unwittingly) opt for unreliable belief-forming methods in 

politics3; on metaphysical post-factualism, people deny that there are any truths of the matter in politics4; 

on motivational post-factualism, people don’t care enough about what is true to be guided by it in po-

litical contexts5; and on epistemic post-factualism, people are sceptical about there being any unbiased 

or otherwise reliable means to ever find out what is true on politically relevant matter.6 Note that, on 

each form of post-factualism, the upshot is the same: when people form their political preferences, 

partisan considerations—or identity cues, as I called them earlier—weigh far more heavily than the 

empirical substance of politics. So, if we have entered a ‘post-factual’ era in any of MacMullen’s senses, 

we should expect (PT) to be true.  

As for its second virtue, (PT) is empirically testable. Specifically, if (PT) is true, we should expect 

the following to be the case: 

 

(TI)  Information effects—i.e., differences between actual preferences and (estimated) fully in-

formed ones—have diminished over time.  

 

The notion of an information effect comes out of political scientists’ desire to understand the role of 

political knowledge in political attitude and preference formation (see, e.g., Althaus 2003; see also Ahl-

strom-Vij forthcoming, Caplan 2007, and Delli Carpini and Keeter 1996). By using large-scale survey 

data, containing both established measures of people’s degrees of political knowledge and their de-

mographics and socioeconomic features, we can employ statistical models to estimate how they likely 

would have responded, had they been fully informed (more on this in Section 2). Information effects, in 

                                                      
3 According to MacMullen, such post-factualism might arise for any number of reasons, ranging from a variety of 

well-known cognitive biases to more specific forms of motivated reasoning (e.g., Kahan 2016). 

4 See, e.g., Calcutt (2016) for a diagnosis along these lines, as well as chapter 6 of McIntyre (2018). 

5 See, e.g., Goodin and Spiekermann (2018: 365-67) on ‘epistemic agnosticism.’ 

6 As noted by MacMullen, this type of ‘post-factualism’ has not received a lot of attention in the literature. 
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turn, measure the distance between people’s actual (reported) preferences or attitudes, and the (esti-

mated) preferences or attitudes they likely would have had, under full information.  

Relating this back to (TI), the idea is that, since (PT) holds that the empirical substance of poli-

tics—and thereby also what we know about the relevant substantive issues in politics, as operationalised 

by way of aforementioned measures of political knowledge—is decreasingly a factor in political pref-

erence formation, we should expect information effects to have diminished over time. That is, we should 

expect to see that, as we move from 2008 to 2016 in particular, it is decreasingly the case that, had 

people known more about the empirical substance of politics, they would have had different political 

preferences.  

To sum up, (PT) is a reasonable explication of the “post-truth” narrative, as it figures in recent 

discussions, and (T1) a testable implication of that narrative, so explicated. Of course, some might be 

sceptical that there is in fact a well-defined and coherent conception of “post-truth” underlying the 

relevant discussions. Perhaps those discussions are simply partisan attacks on political opponents, mas-

querading as a good-faith analysis of genuine social phenomena.7 That might be so—I find it difficult 

to evaluate. All the more reason, then, to understand what I am offering as an explication. It certainly 

captures a lot of what these discussants at least say that they are concerned with, and is as such if nothing 

else a notion that is available to them. It also has the dialectical advantage that it ascribes to the relevant 

discussants a coherent and empirically testable view held in good faith. 

With that being said, the next section turns to the data and methodology used for testing if (TI) is 

consistent with relevant political attitudes data. 

 

2. Survey Data and Methodology 

A lot of discourse surrounding “post-truth” focuses on the US, and on the lead-up to Donald Trump’s 

election victory in the 2016 Presidential election in particular. For that reason, the following relies on 

cross-sectional data collected in the election years of 2004, 2008, 2012, and 2016, as part of the Amer-

ican National Election Studies’ (ANES) Times Series Study, surveying U.S. eligible voters on a range 

of matters, including electoral participation, voting behaviour, and public opinion.8 ANES is the gold 

standard for political attitudes and electoral data in the US. In addition, it is a particularly suitable data 

set for our purposes, since it has historically formed the basis for exactly the type of knowledge scales 

and counterfactual modelling that we will be engaged in below. 

For purposes of testing (TI), available survey items were therefore reviewed in order to identity 

a set that (a) was featured in all of the four election years; (b) covered a wide enough range of key 

political issues or preferences for any subsequent analysis to support a general enough conclusion about 

the “post-truth” narrative; and yet (c) was small enough for the number of subsequent models not to be 

                                                      
7 I am grateful to an anonymous reviewer for this journal for raising this point. 

8 See Appendix for further details. 
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too large, given that each item would require four models (one for each election year). In the end, six 

(binary) dependent variables were constructed. The first variable concerned whether the respondent 

supports a Republican as opposed to a Democrat for president, and as such spoke directly to matter of 

political preference, and by extension also to political choice.9 The second and third variable concerned 

whether same-sex couples should be able to adopt, and whether less government is better than more 

government, which in turn can be expected  to speak to the respondent’s social and economic ideology 

(Feldman and Johnston 2014), respectively. The fourth variable concerned whether the respondent 

wants to see immigration levels increased, thereby tapping into matters of race and diversity (Hainmul-

ler and Hiscox 2017). Finally, the fifth and sixth variables concerned whether the government should 

make it more difficult to buy a gun, and whether the respondent favours the death penalty for murderers, 

which in turn is likely associated with respondent’s level of authoritarianism (Altemeyer 1981; Farnen 

and Meloen 2000). 

The surveys also include a number of items tapping into political knowledge, building on work 

by Michael Delli Carpini and Scott Keeter. The two main upshots of their work are as follows: First, so 

long as scales are made up of items within the broad categories of what government is and does, and of 

political leaders and parties, they do not need to be long to be diagnostic, and as such correlate not only 

with (independent) interviewer ratings of people’s degree of informedness, but also with a variety of 

political behaviours that we have independent reasons to believe to be related to a person’s degree of 

political knowledge (e.g., Delli Carpini and Keeter 1993: 1198-99; see also Althaus 2003). Second, 

since people tend to be generalists—if someone knows (or does not know) a lot about one area of 

politics, they will tend (not) to know a lot about other areas—‘researchers developing national or gen-

eral political knowledge scales need not be overly concerned with the mix of specific topics covered by 

individual items’ (Delli Carpini and Keeter 1996: 174).10 

For our purposes, there were four, relevant knowledge items asked in each of the four years in 

question: What party held the majority in the House of Representatives before the election? Who is the 

House Speaker? Who is the Vice President? and Who is the Chief Justice of the Supreme Court? These 

items were used to fit an Item Response Theory (IRT) model, an established way to measure underlying 

                                                      
9 This variable was constructed by combining two items: whether the respondent voted for a Republican as op-

posed to a Democrat in the last election or, if the respondent did not vote, whether they preferred a Republican to 

a Democrat president. 

10 Following Lupia (2006) it might be objected that informed political choice does not require knowing the answer 

to the specific type of items typically used in these scales. However, as discussed, the point is that knowing the 

answer to small sets of such specific questions is diagnostic of (and as such good evidence for) having (or lacking) 

a large stock of knowledge about things that are necessary for informed political choice. For more in defence of 

knowledge scales, see Ahlstrom-Vij (manuscript). 
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(continuous) traits, on the basis of a set of response patterns.11 Using that model, each respondent in the 

data set was then assigned a numerical value, representing their degree of political informedness. This 

formed the basis for the knowledge variable used below. 

Additionally, a number of demographic and socioeconomic variables were included in the models 

as control variables. A word is in order on the choices made here, since the models constructed were 

counterfactual models—estimating what responses participants would have made, had the knowledge 

variable taken on a particular value (more on this in Section 3)—and it is well-known that care needs 

to be taken when controlling for variables in such models.12 We need to control for any confounders 

that can be expected to have an effect on both someone’s degree of political knowledge and their polit-

ical attitudes or preferences. Existing evidence suggests gender falls in this category, as women tend to 

score lower on political knowledge tests (e.g., vanHeerde-Hudson 2020), and gender has a modest effect 

on politically relevant behaviours (Plutzer 2020). Level of education, too, likely affects both your level 

of knowledge (e.g., Hebbelstrup and Rasmussen 2016), and relevant political behaviours (e.g., Plutzer 

2020), and the same likely goes for income (more so in the US than in Europe; see, e.g., Vowles 2020) 

and union membership (Macdonald 2019). Moreover, to reduce the overall noise in the models, we also 

do well to control for any variables that can be expected to have an effect on someone’s political pref-

erences, but not necessarily on their degree of knowledge, such as race and ethnicity (e.g., through a 

‘shared faith’; see Dawson 1994), religion and social class (e.g., Evans and Northmore-Ball 2020), 

marital status (e.g., Denver 2008), and age (e.g., Plutzer 2020). All of these variables were therefore 

controlled for in the models. 

What about partisanship, as measured by party identification? This is arguably the most promi-

nent variable in political-scientific modelling, but there are two reasons for excluding it here. First, 

partisanship is likely affected by political knowledge, and specifically by knowledge of party and can-

didate positioning (Brader and Tucker 2018). This would make it a mediator in the language of coun-

terfactual modelling.13 Controlling for a mediator—here: a node located on a direct or indirect pathway 

between political knowledge and political preference—will mean either blocking or (otherwise) mises-

timating the relevant effect. Second, even if partisanship is not a mediator, controlling for it in this 

context is likely unnecessary. After all, socialisation is centred around group-identity considerations 

relating to religion, ethnicity, class, gender, and the like—all helping shape our conceptions of who we 

are, and consequently also what positions ‘people like us’ take in politics (again, see Campbell et al. 

1960; see also Green et al. 2002). Consequently, in so far as we control for such group variables—in 

                                                      
11 See DeMars (2010) for an accessible introduction to IRT modelling, de Ayala (2009) for a comprehensive 

treatment, and the Appendix for more details on the particular model used here. 

12 Pearl (2000) is the central text here. See also Morgan and Winship (2015) on counterfactual modelling in the 

social sciences, and Keele (2015) for an overview of such modelling in political science in particular. 

13 Rohrer (2018) provides a highly accessible discussion of mediators and related causal concepts. 
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the manner done here for gender, race and ethnicity, religion, and class—the determinants of partisan-

ship would already be controlled for in virtue of aforementioned group-identity variables. Still, by way 

of robustness check, all models were also fitted with the partisanship variable included, so that the 

reader is able to evaluate the impact of this particular model choice on the results.14 

By way of summing up the causal assumptions made for purposes of modelling, consider the 

graph offered in Figure 1. Note, in particular, the status of partisanship (‘Party’ in the graph) as a me-

diator for knowledge (‘Know.). In the event that partisanship is an unnecessary control, the edge be-

tween knowledge and partisanship should be removed.15 As always with causal graphs of this kind, they 

are not presented because they necessarily offer a complete account of the mechanisms involved.16 

Their primary purpose is to make explicit to the reader what assumptions are being made for purposes 

of modelling. If the reader disagrees, they will have the benefit of knowing exactly where the relevant 

disagreements lie, and what in their view needs to be done in order to improve on the relevant models. 

 

FIGURE 1. CAUSAL GRAPH 

 

                                                      
14 As can be seen in Section 3 below, the models also controlling for partisanship yield virtually identical results 

to those that do not, suggesting perhaps that partisanship is an unnecessary as opposed to harmful control variable. 

15 Note that, even if partisanship is not a mediator, it remains a ‘collider,’ a causal node with more than one 

incoming edge. Controlling for a collider can introduce spurious, non-causal relationships by opening up a non-

causal ‘back-door path,’ in this case from knowledge to Y through gender and partisanship. That path can in turn 

be blocked by also controlling for gender. See Rohrer (2018) for a helpful discussion of colliders. 

16 Indeed, once we control for certain variables, some simplifications become irrelevant. For example, income is 

likely causally affected by education (the more educated you are, the more you tend to earn), but there is no edge 

between them in Figure 1. However, since we are already controlling for both education and income, any such 

further relationship between the two are irrelevant for modelling purposes. Similar points apply for other simpli-

fications in the graph, e.g., in relation to any casual connection between age and marriage; gender and income; 

and class and race, to name but three. 
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Note: A directed acyclical graph (DAG) encoding the assumed relationship between knowledge 

and political attitudes/preferences (‘Y’ in the graph), as well as the other causal determinants 

discussed in the text. 

 

Using these model specifications, a logistic model was then fitted for each of the six dependent variables, 

and for each of the four election years in the period of 2004 to 2016, using the knowledge variable 

together with the aforementioned demographic and socioeconomic variables as independent variables, 

for a total of twenty-four models.17 As noted by Althaus (2003: 323), using logistic models has the 

benefit that we avoid the implausible assumption that the relationship between knowledge and political 

preferences is linear. By also binarizing our knowledge variable, we both avoid the further assumption 

that knowledge stands in a linear relationship with the logit of the (binary) dependent variables, and 

proceed in line with standard practice of ‘doubly robust’ estimation for counterfactual inference, which 

typically looks to approximate the situation we would have found ourselves in, had our data been the 

result of a randomized experimental design with a single treatment (e.g., Morgan and Winship 2015). 

To that end, the knowledge variable was recoded as a binary variable, with all observations rep-

resenting someone in the 75th percentile on the knowledge variable coded as 1, and everyone else as 0, 

thereby separating those who are for our purposes considered ‘fully informed’ (i.e., ‘treated,’ if we think 

on the model of an experimental design) from those who are not. (Why not operationalize ‘fully in-

formed’ as achieving the maximum score on the scale? Primarily to avoid the charge that the bar for full 

information is set at an unreasonably high level, since a fairly small proportion, 12%, of respondents in 

the data set achieved the highest knowledge score.) The ‘double robustness’ of the resulting estimation 

owes to how effects are estimated in a context where we have both controlled for (assumed) confounds 

(as discussed above), and also taken steps to make up for the fact that the data have not come about as 

a result of randomized assignment. In the present case, this second layer of ‘robustness’ was achieved 

by using so-called ‘propensity scores’ as weights in the models.  

In our case, propensity scores measure the probability (i.e., propensity) that an observation will 

be found in the ‘fully informed’ category, as a function of someone’s demographic features, and the 

demographic features discussed above in particular. The idea is to then use these scores to remove any 

correlation between these features and the ‘informed’ category, to justify a counterfactual inference. To 

see why, return to the paradigm of a randomized experimental design, where the random allocation of 

participants to a treatment and a control group means that no feature of the participant is predictive of 

being found in the treatment as opposed to in the control. Whether female or male, rich or poor (etc.), 

you are equally likely to end up in one group as opposed to in the other, provided assignment is truly 

random. In the case of observational data, by contrast, this might not be the case. In the case at hand, it 

                                                      
17 As already noted, a separate set of twenty-four models also controlling for partisanship were fitted as well, for 

a total of forty-eight. See Appendix for further details on all models, including diagnostics. 
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might (for example) be that some features of the observations—e.g., their level of education, their in-

come, or what have you—are predictive of ending up in the ‘informed’ category.  

By weighting our regression models with propensity score, we counteract correlations like 

these.18 Specifically, since propensity scores measure the probability of ending up in the ‘treatment’ 

category, given a set of covariates—in our case, the probability that you would be ‘informed,’ given 

your age, level of income, level of education, and so forth for all measured covariates—we can use the 

inverse of those scores as weights (such that an observation with a low propensity is weighted heavily) 

in fitting the model. Given an appropriately chosen set of covariates when calculating the scores, this 

recreates a situation that would have been expected in a randomized experiment, thereby allowing 

greater confidence in any counterfactual inference.19 

Against this background, a set of propensity scores were therefore calculated for each of the four 

election years, measuring the probability that an observation would be found in the ‘informed’ category 

on the basis of its demographic features. These scores were then used as weights in fitting the corre-

sponding models (6 models x 4 election years).20 These are the models used in evaluating (TI) in the 

next section. 

 

3. Putting the “Post-Truth” Claim to the Test 

On the testable implication introduced above, i.e., (TI), we should expect to see information effects—

i.e., differences between actual (reported) preferences and estimated fully informed ones—having di-

minished over time, if (PT) is true. Using the counterfactual models introduced in the previous section, 

we can see if that implication is consistent with the data by measuring the difference between (a) the 

aggregate proportion of affirmative answers in relation to each of the six preference variables, and (b) 

the models’ estimates of what that proportion would have been, had each person been fully informed.  

The (actual) aggregate proportion was estimated by determining the proportion of support in the 

ANES data set for each topic and year, after having weighted each observation using the survey weights 

included in the data set, to approximate representativeness. The aggregate proportion of informed sup-

port was calculated by setting the (binary) knowledge variable for each respondent to 1, representing 

                                                      
18 Propensity score weighting, as used here, should not be confused with propensity score matching. The latter is 

a preprocessing technique which involves matching each ‘treated’ observation with a ‘control’ observation with 

the same propensity score, and then discarding all unmatched observations. Propensity score matching has been 

shown to actually worsen balance under some circumstances (King and Nielsen 2019), and is on that account not 

a recommended method for preprocessing data in the context of counterfactual inference. 

19 See Morgan and Winship (2015) for a more comprehensive discussion of counterfactual inference on the basis 

of observational data, including through propensity score weighting.  

20 See the Appendix for more details on the propensity scores and weights. 
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their becoming informed, while otherwise remaining just the way they are, across the variables con-

trolled for. We can think of this on the model of an imaginary ‘knowledge pill,’ that renders each re-

spondent informed, but otherwise leaves them exactly the way they are (across measured covariates). 

To illustrate, imagine that—prior to the ‘knowledge pill’—a respondent reports support for the death 

penalty. Then, we ‘administer the pill’ (i.e., set the value of their knowledge variable to 1), and subse-

quently ask the models to estimate how likely the respondent now would be to report supporting the 

death penalty. By doing this for each respondent (for each topic and election year), aggregating all 

probabilities, and finally using the same survey weights as above, we can calculate the ‘informed’ pro-

portion of support on each topic for each year. 

Figure 2 shows us the difference we see on each of the six topics between the actual proportion 

of support and the estimated ‘informed’ proportion of support. The solid lines give the estimates on the 

models that do not control for partisanship, while the dashed lines in the corresponding colours give the 

estimates for the models that do control for partisanship, by way of robustness check.  

 

FIGURE 2. INFORMATION EFFECTS OVER TIME 

 

Note: Solid lines give the difference between actual and informed proportion of affirmative 

answer on six preference variables, with survey weights applied to approximate representative-

ness. Dashed lines in the corresponding colour give the estimates resulting from also controlling 

for partisanship. Solid points designate significant estimates for the knowledge coefficient. (See 

Appendix for further model details.) 

 

Consider the top left panel of Figure 2, by way of illustration. In 2004, a Republican president would 

have seen about one fifth of a percentage point more public support, given a fully informed electorate; 

in 2008, about 2.5 percentage points more support; in 2012, about half a percentage point more support; 
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and in 2016, about a tenth of a percentage point less. Looking at Figure 2 in the context of (TI), what 

we should expect to see is these graphs converging towards 0—the dashed, horizontal line, representing 

the absence of any information effect—as we move from 2004 to 2016. The top left panel could be read 

in that way, given the substantial drop from 2008 to 2012, both years for which the knowledge coeffi-

cient estimate in the corresponding models is significant. That said, the p-value for 2008 is only mar-

ginally below 0.05, so that estimate should be interpreted with some caution. Moreover, the robustness 

check offered by the models also controlling for partisanship (dashed red line) provides further reason 

not to draw any substantial conclusions about this particular variable. 

By contrast, we see a fairly clear trend towards no information effect over time when turning to 

the graphs regarding wanting more immigrants, wanting stricter gun laws, and wanting same-sex cou-

ples to be able to adopt. On wanting more immigrants, the knowledge coefficient estimate is significant 

for each of the four years. In the case of gun laws, it is significant for 2004 and 2016, between which 

we see a substantial drop, and the same goes for 2004 and 2012 on wanting same-sex couples to be able 

to adopt. As for support for the death penalty and less government, we see a trend towards a smaller 

information effect over the three years for which the coefficient estimate is significant (i.e., 2008-2016) 

but in a less clear-cut fashion than in the other cases. Moreover, in all of these cases the relevant esti-

mates seem robust in the face of module choice, with the estimates coming out more or less identical 

whether we control for partisanship or not.  

 

4. An Alternative Explanation? 

If we have entered a “post-truth” era, then we should expect decreasing levels of information effects 

over recent years. The previous section found evidence of such a decrease on some key political pref-

erences. However, this only offers good evidence of the “post-truth” narrative in the absence of any 

competing explanation of why we should see such a decrease. It might be objected that one such expla-

nation is that people have actually come to make use of facts to an increasing extent over the relevant 

period.21 The idea would be that, as people make greater use of facts, presumably on account of having 

become more informed over time, it also becomes the case that, had they known more, they would have 

held roughly the same beliefs, as per (TI), simply because they already know a fair amount. This is an 

intriguing alternative reading of the results from the previous section, and it has the following going for 

it: at least in the sample used here, the proportion of ‘fully informed’ respondents— again, defined as 

being in the 75th percentile on the knowledge variable, calculated across the four election years—in-

creases from 11% in 2004, to 13% in 2008, to 35% in 2012, and to 47% in 2016.  

However, it is one thing to know (more) things, and another to make use of the facts known in 

preference formation. Once we keep this distinction in mind, we will see on closer inspection that this 

                                                      
21 I am grateful to an anonymous reviewer for this journal for raising this objection. 
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alternative explanation is not compatible with—and as such, does not explain—the results in the previ-

ous section, nor thereby with (TI), i.e., the claim that information effects have diminished over time. To 

see why, we do well to consider this alternative explanation alongside (PT), i.e., the idea that the em-

pirical substance of politics in recent years became significantly less relevant to what political prefer-

ences we form. In particular, imagine a simplified version of the results from the previous section, in 

terms of two points in time, t1 and t2. At t1 we have some non-trivial information effect, while at t2 we 

have no such effect. That means that, at t1, it is generally the case that people would have held different 

preferences from the ones they actually hold, had they been informed. By contrast, this is not generally 

the case in t2—hence, the absence of any information effect. Why this difference between the two points 

in time? On (PT), it is explained with reference to how people take into account the empirical substance 

of politics in forming their beliefs at t1 but not at t2. At t1 that substance is a factor in people’s preference 

formation, which is why they would in many cases have held different preferences, had they know more 

about that substance; at t2 they do not factor in that substance, which is why they would not have held 

different preferences, had they known more. 

Let us now try to explain the same pattern in information effects with reference to the alternative 

reading. We are to imagine that, at t1, people do not make use of facts, which includes facts about the 

empirical substance of politics. Should we expect to see any information effect under these circum-

stances? No. Keep in mind the distinction between knowing facts and making use of them, in the sense 

of their playing a role in preference formation. This distinction is important when we consider the coun-

terfactual that we are investigating by way of information effects: had people known more about the 

substance of politics, would they have held different preferences? If people do not make use of facts at 

t1, the answer is ‘no’: as people do not make use of the relevant facts, knowing more of them would not 

have made a difference. This, of course, is contrary to the pattern of information effects we are looking 

to explain, whereby we have a non-trivial information effect at t1. 

Turning to t2, we are now to imagine people having started to use facts. Should we expect any 

information effect at this point? There are two possibilities. Either people have become so informed in 

the period between t1 and t2 that there is not much more to learn, which would mean that the (marginal) 

information effect on preferences of whatever further knowledge they might have attained is small. 

Or—more plausibly, perhaps—people at t2 are still far from politically omniscient, in which case we 

should see a non-trivial information effect at that point, owing to how people who are now assumed to 

be making use of facts in preference formation would have held different preferences, had they known 

(even) more—again, contrary to the pattern of information effects to be explained, whereby we see an 

absence of any information effect at t2. 

To sum up, the alternative reading in terms of how people go from not using facts to using facts 

does not seem well-placed to explain the relevant pattern of information effects. Bringing matters back 

from our simplified example to the results in the previous section, if people have gone from not using 

facts to any significant extent in 2004 to using them to a great(er) extent in 2016, then we should expect 
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to see either of two things. Either (a) we should see no real difference in information effects over this 

time-period, as people go from not using facts (meaning that knowing more would not have made a 

difference) to starting to use such facts, and in the process coming to learn so much about the empirical 

substance of politics that the marginal effect on preferences of knowing more is vanishingly small 

(meaning—again—that knowing more would not have a made a difference); or (b) we should see an 

increase in information effects over time, as people go from not using facts to starting to use facts, but 

not to the point of approximating political omniscience, and it thereby becoming the case that, had they 

known more, they would likely have held different preferences. 

Thinking back to how we defined ‘fully informed’ earlier, and in particular to the healthy pro-

portion of respondents in the data set that came out ‘fully informed’ on that definition, we can safely 

assume that the range of political knowledge measured by our scale does not encompass political om-

niscience. That means that (b) is the more likely possibility of the two, and that the alternative reading 

thereby predicts the opposite pattern of information effects from the one we saw in the previous section: 

that is, rather than predicting that we should see a decrease in information effects over time, it predicts 

that we should see an increase in those effects. In light of that, we reject this alternative reading. Con-

sequently, the claim that (TI) offers evidence for (PT) still stands. 

 

5. Conclusion, Limitations, and Avenues for Future Work 

The analysis provided in Section 3 suggests that (TI) is consistent with the data, at least on some key 

political issues in a US context. Looking at the period of 2004 to 2016 in particular, we see evidence of 

a decrease in information effects on party preferences, particularly on three political topics that typically 

garner a lot of attention in political discourse, and likely tap into matters of race and diversity, social 

ideology, and authoritarianism, namely: immigration, same-sex adoption and gun laws. This is in line 

with what it was suggested we should see, if the specific “post-truth” claim identified in Section 1 is 

correct: at least on these issues, and over the period of time covered by these models, what you know 

about the substance of politics does seem to be decreasingly relevant to what preferences you form. 

This offers some novel, empirical evidence for the “post-truth” narrative. 

One limitation of the present investigation is, however, the relatively short time-frame of twelve 

years (2004 to 2016). In the present case, that limitation is an artefact of needing a set of knowledge 

items and dependent variables with sufficient data available for each of the years, to minimise the need 

for imputation.22 Future work would benefit from looking at recent discussions about a “post truth” 

within a historical context. Needless to say, there is no reason to make romantic assumptions about a 

political golden age, when truth and truthfulness reigned supreme. As Hannah Arendt noted decades 

                                                      
22 For example, for the present ANES data set, 57% of responses are missing for the knowledge items for the year 

2000; for 1996, 100% of responses are missing for the dependent variables concerning gun laws, same-sex adop-

tion, and less government; for 1992, 100% of responses are missing for the variable concerning gun laws. 
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back, ‘[n]o one has ever doubted that truth and politics are on rather bad terms with each other, and no 

one, as far as I know, has ever counted truthfulness among the political virtues’ (1967: 49). But equally, 

we cannot rule out that the relationship between politics and knowledge might vary over time, whether 

along a clear trend-line, or through the influence of truth waxing or waning from one period to the next.  

Applying such a wider historical lens would also help us understand whether our current situation 

is in any way unique. While authors pushing a “post-truth” narrative typically suggest that it is, I take 

no view on the matter. If the analysis presented in this paper is correct, something seems to have hap-

pened over the relevant 12-year period that fits the “post-truth” narrative. But is this the first time we 

have seen such a reduction in the influence of the empirical substance of politics? If it is, then there 

seems to be something unique about it. If not, is it part of some longer-term trend, where the period we 

have looked at in this paper simply forms the tail end of it? And if so, when did the relevant decline in 

the influence of the substance of politics begin? And from what point did the decline start? Did the 

substance of politics use to be highly influential, or has is never been particularly influential, and simply 

become even less so? 

 Needless to say, these questions go beyond the scope of the present paper. Still, the results we 

have arrived at thereby serve up several potentially fruitful avenues for further investigation. In light of 

the above, such investigations would likely benefit from engaging with different data sets, and also from 

engaging with a wider set of methodologies, including (but not restricted to) historical ones.23 
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Appendix 

The data set used in the paper was drawn from the ANES Time Series Cumulative Data File. Questions that have 

been asked in three or more Time Series studies since 1948 are eligible for inclusion in the data file, with variables 

recoded for comparability across years. Sample sizes for the years relevant to this study were 1,212 for 2004, 

2,322 for 2008, 5,914 for 2012, and 4,270 for 2016. 4.9% of values were missing across the variables used (see 

Section 2 in the main body of the text). These were imputed with multiple imputation, using aregImpute in R’s (R 

Core Team 2017) Hmisc package (Harrell et. al 2019).  

The knowledge items given in Section 2 were used to fit a two-parameter item response theory (IRT) model 

in R, using ltm (Rizopoulos 2006), to estimate the latent ability of respondents. The discrimination values for each 

of the four items were good (i.e., > 1), with the difficulty values spread out nicely across the range. The guessing 

parameters of a corresponding three-parameter model came out very low, so the simpler, two-parameter model 

was used to calculate an ability score for each respondent. The resulting model had reasonable properties: tests 

suggested unidimensionality, local independence (by Yen’s Q3; Yen 1993), and good model fit (evaluated through 

a plot of observed versus expected values). 

As noted in the body of the text, the counterfactual models were constructed using ‘doubly robust’ estima-

tion for counterfactual inference. Propensity scores were estimated using boosted logistic regression, as imple-

mented in R’s twang package (Ridgeway et al. 2020), and evaluated by way of the diagnostic features in that 

package as well as visually using cobalt (Greifer 2020) to confirm improved balance between the two groups. By 

way of illustration, consider Figure 3. The left-hand panel shows the balance (or rather: lack thereof) for the 

income variable in the 2016 dataset, prior to applying the propensity weights. Note that informed participants (teal 

bars, designated here as 1 or ‘treated’) are overrepresented among the wealthy, and underrepresented among the 

less wealthy. The right-hand panel shows the improved balance achieved once the weights have been applied. 

 

FIGURE 3. BALANCE PLOTS FOR INCOME (2016) 

 

Note: Balance plots for income in the 2016 data set, before and after applying propensity 

weights. The five groupings in each correspond to people whose income is in the 0-16th percen-

tile (1), 17-33rd percentile (2), 34-67th percentile (3), 68-95th percentile (4), and 96-100th percen-

tile (5). 

 

https://electionstudies.org/data-center/anes-time-series-cumulative-data-file/
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Using these propensity scores as weights, a logistic regression model was then fitted (using glm in R’s stats pack-

age) for each of the six attitudinal variables and four years. Diagnostics for each model are provided in Table 1 

(partisanship not controlled for) and Table 2 (partisanship controlled for). 
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TABLE 1. MODEL DETAILS AND DIAGNOSTICS 

Model 
Knowledge 

coefficient 
p-value 

Box-Tidwell test 

on age variable 

t-test: 

splines vs. 

no splines 

McFadden 
Highest 

VIF 

Cook’s 

> 1 

Std. res. 

> 3 

Coef. diff. w/o 

infl. obs. 

President (2004) -0.0120 0.9138 0.0096 0.9216 0.1566 1.2744 0 30 0.0301† 

President (2008) 0.1595 0.0430* 0.0075 0.9805 0.2431 1.1137 1 54 -0.0035 

President (2012) 0.1126 0.0101* 0.4746 - 0.2026 1.2026 0 95 -0.0027 

President (2016) -0.0507 0.3019 0.1872 - 0.1522 1.2155 0 65 0.0032 

Immigration (2004) 0.5570 0.0003* 0.0223 0.9894 0.1399 1.2811 1 20 -0.0140 

Immigration (2008) 0.3722 0.0001* 0.0780 - 0.0826 1.1247 0 37 -0.0173 

Immigration (2012) 0.3503 0.0000* 0.0000 0.9759 0.0531 1.2015 0 162 0.0228 

Immigration (2016) 0.2349 0.0002* 0.0000 0.8728 0.0754 1.2070 0 133 0.0423 

Guns (2004) 0.4702 0.0000* 0.0813 - 0.1381 1.2930 1 24 -0.0533 

Guns (2008) 0.0326 0.6390 0.1841 - 0.1154 1.1169 0 69 0.0164† 

Guns (2012) 0.0252 0.5227 0.0002 0.9688 0.0676 1.2207 0 113 0.0111 

Guns (2016) 0.1281 0.0061* 0.1410 - 0.0739 1.2268 0 45 -0.0084 

Adoption (2004) 0.9578 0.0000* 0.1089 - 0.1640 1.2948 0 23 -0.0473 

Adoption (2008) -0.0135 0.8472 0.9178 - 0.1235 1.1080 0 71 0.0259† 

Adoption (2012) 0.0850 0.0372* 0.1994 - 0.0799 1.1977 0 105 0.0026 

Adoption (2016) 0.0841 0.1087 0.3904 - 0.0930 1.2047 0 93 0.0045 

Death penalty (2004) -0.2036 0.0849 0.9243 - 0.1441 1.3181 0 31 0.0167 

Death penalty (2008) -0.2002 0.0049* 0.1895 - 0.0948 1.1282 0 74 -0.0125 

Death penalty (2012) -0.1907 0.0000* 0.0000 0.9600 0.0541 1.2190 0 135 -0.0057 

Death penalty (2016) -0.2548 0.0000* 0.0001 0.8629 0.0761 1.2219 0 76 0.0061 

Less govt. (2004) 0.1092 0.3258 0.6722 - 0.1580 1.2769 0 28 0.0181 

Less govt. (2008) 0.4298 0.0000* 0.0002 0.9352 0.1474 1.1147 0 67 -0.0096 

Less govt. (2012) 0.2948 0.0000* 0.0004 0.9858 0.1262 1.2082 0 112 -0.0044 

Less govt. (2016) 0.3054 0.0000* 0.3742 - 0.0790 1.2133 0 41 0.0021 

Note: The 2nd column gives the coefficient for the knowledge variable, and the 3rd column its p-value, marked with an asterisk when below 0.05. The 4th column gives the p-value 

of a Box-Tidwell test on the age variable (the only continuous variable used), performed by including the product of the variable and its natural logarithm as an additional predictor, and 

seeing if it comes out significant, suggesting a non-linear relationship between the predictor and the logit of the outcome. In cases where that was the case (i) a spline version of the 

model was fitted (using R’s splines package); (ii) using that model, a prediction was made on each observation in the data set; and (iii) the predicted (fitted) values were then compared 

to the predicted values on the original model using a t-test, the p-value of which is reported in the 5th column. The 6th column gives the McFadden value for the model. The 7th, 8th, 

and 9th columns give the highest value across all variables of a VIF (variance inflation factor) test for multicollinearity (values substantially higher than 1 suggest potential multicol-

linearity); the number of instances where the Cook’s distance value of any observation exceeded 1 (signifying potential outliers); and the number of instances where the standardized 

residual of any observation exceeded 3 (signifying potentially influential observations). In cases where there was more than one instance with a standardized residual greater than 3, the 

model was re-fitted without those observations to measure the difference in the estimated value for the knowledge coefficient, compared to the original model. That difference is reported 

in the 10th column. Instances where the absolute size of the difference is equal to or greater than half of the original coefficient estimate are marked with a dagger symbol. These 

differences do not alter the analysis offered in Section 3. 
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TABLE 2. MODEL DETAILS AND DIAGNOSTICS (PARTISANSHIP INCLUDED) 

 

Model 
Knowledge 

coefficient 
p-value 

Box-Tidwell test 

on age variable 

t-test: 

splines vs. 

no splines 

McFadden 
Highest 

VIF 

Cook’s 

> 1 

Std. res. 

> 3 

Coef. diff. w/o 

infl. obs. 

President (2004) 0.1173 0.4852 0.0082 0.9850 0.5396 1.3177 1 19 0.0076 

President (2008) 0.0215 0.8439 0.5142 - 0.5426 1.1565 0 40 -0.0075 

President (2012) 0.134 0.0406 0.7607 - 0.5782 1.2116 0 136 -0.0027 

President (2016) 0.0195 0.7884 0.4687 - 0.5411 1.2345 0 105 0.0083 

Immigration (2004) 0.4718 0.0027* 0.0172 0.9729 0.1355 1.2706 0 18 -0.0084 

Immigration (2008) 0.3323 0.0003* 0.1000 - 0.0822 1.1211 0 41 -0.0176 

Immigration (2012) 0.3708 0.0000* 0.0000 0.9973 0.0704 1.2062 0 163 0.0246 

Immigration (2016) 0.2182 0.0006* 0.0000 0.8739 0.1175 1.2058 0 112 0.0308 

Guns (2004) 0.4773 0.0001* 0.0902 - 0.1733 1.2910 0 21 -0.0411 

Guns (2008) 0.0678 0.3367 0.2075 - 0.1298 1.1150 0 67 0.0152 

Guns (2012) 0.0482 0.2442 0.0000 0.9664 0.1320 1.2185 0 134 0.0070 

Guns (2016) 0.1166 0.0219* 0.0288 0.9424 0.1852 1.2325 0 82 -0.0129 

Adoption (2004) 0.93 0.0000* 0.0482 0.9830 0.1882 1.2961 0 19 -0.0495 

Adoption (2008) 0.0327 0.6532 0.1231 - 0.1674 1.1161 0 62 0.0168† 

Adoption (2012) 0.1161 0.0063* 0.2251 - 0.1363 1.1988 0 113 -0.0013 

Adoption (2016) 0.0757 0.1625 0.7782 - 0.1440 1.2023 0 81 0.0019 

Death penalty (2004) -0.1388 0.2661 0.6352 - 0.1972 1.3159 0 27 0.0074 

Death penalty (2008) -0.2523 0.0004* 0.0524 - 0.1068 1.1267 0 69 -0.0199 

Death penalty (2012) -0.1931 0.0000* 0.0000 0.9602 0.0842 1.2209 0 147 -0.0071 

Death penalty (2016) -0.268 0.0000* 0.0000 0.8621 0.1243 1.2219 0 88 0.0113 

Less govt. (2004) 0.1601 0.1788 0.5356 - 0.2091 1.2806 0 20 0.0035 

Less govt. (2008) 0.4326 0.0000* 0.0009 0.9504 0.2421 1.1187 0 53 -0.0181 

Less govt. (2012) 0.3466 0.0000* 0.0001 0.9946 0.2517 1.2121 0 124 -0.0044 

Less govt. (2016) 0.3837 0.0000* 0.5844 - 0.1785 1.2126 0 78 0.0026 

Note: The 2nd column gives the coefficient for the knowledge variable, and the 3rd column its p-value, marked with an asterisk when below 0.05. The 4th column gives the p-value 

of a Box-Tidwell test on the age variable (the only continuous variable used), performed by including the product of the variable and its natural logarithm as an additional predictor, 

and seeing if it comes out significant, suggesting a non-linear relationship between the predictor and the logit of the outcome. In cases where that was the case (i) a spline version of 

the model was fitted (using R’s splines package); (ii) using that model, a prediction was made on each observation in the data set; and (iii) the predicted (fitted) values were then 

compared to the predicted values on the original model using a t-test, the p-value of which is reported in the 5th column. The 6th column gives the McFadden value for the model. 

The 7th, 8th, and 9th columns give the highest value across all variables of a VIF (variance inflation factor) test for multicollinearity (values substantially higher than 1 suggest 

potential multicollinearity); the number of instances where the Cook’s distance value of any observation exceeded 1 (signifying potential outliers); and the number of instances where 

the standardized residual of any observation exceeded 3 (signifying potentially influential observations). In cases where there was more than one instance with a standardized residual 

greater than 3, the model was re-fitted without those observations to measure the difference in the estimated value for the knowledge coefficient, compared to the original model. That 

difference is reported in the 10th column. Instances where the absolute size of the difference is equal to or greater than half of the original coefficient estimate are marked with a 

dagger symbol. These differences do not alter the analysis offered in Section 3. 

 

 


