
Bare Bones Particle Swarms with Jumps

Mohammad Majid al-Rifaie1 and Tim Blackwell2

1 Goldsmiths, University of London, New Cross, London SE14 6NW,
m.majid@gold.ac.uk

2 Goldsmiths, University of London, New Cross, London SE14 6NW,
tim.blackwell@gold.ac.uk

Abstract. Bare Bones PSO was proposed by Kennedy as a model of
PSO dynamics. Dependence on velocity is replaced by sampling from
a Gaussian distribution. Although Kennedy’s original formulation is not
competitive to standard PSO, the addition of a component-wise jumping
mechanism, and a tuning of the standard deviation, can produce a com-
parable optimisation algorithm. This algorithm, Bare Bones with Jumps,
exists in a variety of formulations. Two particular models are empirically
examined in this paper and comparisons are made to canonical PSO and
standard Bare Bones.

Keywords: Particle swarm optimisation, Bare Bones swarms, random
restart, global optimisation

1 Introduction

There has been many attempts to understand the behaviour of the swarms in
Particle Swarm Optimisation algorithm (PSO). This proved to be difficult due
the presence of many moving parts (e.g. the effects of various parameters on
the trajectory of the particle, particles’ oscillation around constantly changing
centres, the effects of swarm topology on its performance, etc.). A number of
theoretical studies have tried to understand the dynamics of PSO, mainly con-
centrating on particle trajectories, swarm equilibria and formal convergence to
local optima proofs [1–3]. In 2003, in one such attempt, Kennedy [4] proposed
a minimised version of PSO – Bare Bones (BB) swarm optimisation – where
the velocity update is eliminated. In this paper, after briefly describing BB, the
Bare Bones with Jumps (BBJ1) algorithm [5] is presented alongside a second
model, BBJ2. The performance of the newly introduced algorithms are com-
pared against a standard PSO (which is taken here to be the Clerc and Kennedy
(CK) [1] formulation), as well as Bare Bones (BB) swarm optimisation.

2 Bare Bones Swarm

It is known that particles converge to a weighted average between their per-
sonal best and neighbourhood best positions [6], but in order to understand
the behaviour of particles and identify the similarity it has with other stochastic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/459154547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

population-based optimiser, Kennedy [4] proposed a modified algorithm without
the velocity formula in the update equation. The standard Bare Bones swarm
(BB) has the following update formula:

xid = g + σidN (0, 1) (1)

g =
1

2
(gid + pid) (2)

σid = |gid − pid| (3)

where N (0, 1) is the Gaussian distribution between 0 and 1; gi is the best in-
former in the neighbourhood of particle i and pid is the personal best position
of particle i in dimension d.

In the next section, two new variants of this minimised algorithm are pre-
sented. The main differences are: a component-wise jumping method, and the
presence of an implicit scale parameter that multiplies the standard deviation of
the sampling distribution.

3 Bare Bones with Jumps

Bare Bones swarm can be generalised [5] so that the search focus g (centre of the
search volume at stagnation) and the search spread σ can each be chosen from
local or global neighbourhoods. This idea is embodied in the following rules:

gi = BEST (pi ∈ Ni) (4)

δid = |pi−1 d − pi+1 d| –local neighbouthood (5)

δid = |gid − pid| –global neighbourhood (6)

xid = gid + αδidN (0, 1) (7)

where α is an arbitrary number and Ni denotes the search neighbourhood of
particle i. Ni, the µ-neighbourhood can be global, or any local structure. The
separation factor δi which controls search concentration, can be taken from a
local or a global informer neighbourhood (the σ-neighbourhood). Theoretically,
it is shown that for the sphere function, there is a critical value, αc = 0.65, such
that, for α > αc the swarm resists collapse. Fastest convergence occurs at the
critical value, but larger values promote exploration [5]. The Bare Bones with
Jumps algorithm, Algorithm 1, includes a probabilistic jumping mechanism: a
particle may jump uniformly in any dimension with probability pJ . This can
be viewed as a partial re-initialisation (since in general not every component
undergoes a jump) or, alternatively, as a tail broadening mechanism, allowing
further search in areas where the Gaussian distribution tails are thin.

The investigations reported in [5] propose that a small jump probability pJ =
0.01 enhances performance over standard test set of 30D problems. This paper
proposes a second Bare Bones with Jumps algorithm, model 2 (BBJ2), with an
altered search spread component, and a smaller jump probability (pJ = 0.001):

xid = gi + αδidN (0, 1) (8)

δid = |gi − xid| (9)

3

Algorithm 1 Bare Bones with Jumps Models 1 and 2

r ∼ U(0, 1)
if (r < pJ)

xid = U (−Xd, Xd)
else

xid = gi + αδidN (0, 1)

This algorithm utilises the difference between the neighbourhood best with
the current position (in |gi − xid|, Equation 9) rather than the difference between
either the left and right neighbours’ bests (in local neighbourhood; see Equa-
tion 5) or the particle’s personal best and the neighbourhood best (in global
neighbourhood; see Equation 7). The reason behind proposing this alternation
is to increase the influence of the current positions of the particles in the update
equation on the assumption that this might offer a wider search capability.

In the next section, a set of experiments is designed to compare the perfor-
mance of the algorithms referred to in this paper followed by some statistical
analysis.

4 Experiments

The aim of this set of experiments is to compare the performance of the new BBJ
variant, BBJ2, to BBJ1 and Bare Bones swarm (BB) and standard PSO (CK)
[1]. The effect of the jumping mechanism is isolated by running experiments on
BBJ2 without jumps (BBNJ), which is simply accomplished by setting pJ to
zero. In order to determine the quality of each algorithm, three performance
measures are used (accuracy, efficiency and reliability which are presented next,
in section 4.1).

4.1 Performance Measures

Three different performance measures [7] are used in the experiments conducted
in this paper. These performance measures are accuracy, reliability and efficiency.

Accuracy of the swarms is defined by the quality of the best position in
terms of its closeness to the optimum position. If knowledge about the optimum
position is known a priori (which is the case here), the following would define
the accuracy:

Accuracy =
∣∣f (ptg)− f (xopt)

∣∣ (10)

where ptg is the best position at time t and xopt is the position of the known
optimum solution.

If no information exists about the optimum solution, the fitness of the best
position will be the accuracy of the swarm.

Another measure used is reliability which is the percentage of trials where
swarms converge with a specified accuracy; this is defined by:

Reliability =
n
′

n
× 100 (11)

4

where n is the total number of trials in the experiment and n
′

is the number
of successful trials.

Finally, efficiency is the number of iterations or objective function evaluations
needed to converge with a specified accuracy (i.e. 10−8):

Efficiency =
1

n

n∑
i=0

FEs (12)

where n is the total number of trials and FEs is the number of function
evaluations before convergence.

4.2 Experiment Setup

The algorithms used are tested over a number of benchmarking functions from
Jones et al. [8] and De Jong [9] test suite, preserving different dimensionality and
modality (see Tables I and II in [10]). The first two functions (Sphere/Parabola
and Schwefel 1.2) have a single minimum and are unimodal functions; Gener-
alised Rosenbrock for dimension D, where D > 3, is multimodal; Generalised
Schwefel 2.6, Generalized Rastrigin, Ackley, Generalized Griewank, Penalised
Function P8 and Penalised Function P16 are complex high-dimensional multi-
modal problems with many local minima and a single global optimum; Six-hump
Camel-back, Goldstein-Price, Shekel 5, 7 and 10 are lower-dimensional multi-
modal problems with fewer local minima. Goldstein-Price, Shekel 5, 7 and 10
have one global optimum and Six-hump Camel-back has two global optima sym-
metric about the origin. In order not to initialise the particles on or near a region
in the search space known to have the global optimum, region scaling technique
is used [11], which makes sure particles are initialised at a corner of the search
space where there are no optimal solutions. The experiments are conducted with
a population of 50 particles in global and local neighbourhoods independently.
However, the halting criterion for this experiment is either to reach the optima
(with function errors less than 10−8) or to exceed the 300, 000 function evalua-
tions (FEs). There are 30 independent runs for each benchmarking function and
results are averaged over these independent trials.

4.3 BB, PSO and BBJ Parameter values

Bare Bones enjoys the luxury of having no adjustable parameters. The param-
eters defined by Bratton [12] were used for the CK trials. α was set to 0.75 for
both BBJ models, and, following the recommendations in [5] pJ was fixed at
0.01 for BBJ1. Preliminary experiments suggested that BBJ2 performs better
with a smaller pJ and a value of 0.001 was used in the following. A global µ
neighbourhood is used for BBJ in every experiment.

4.4 Results

In this experiment two types of σ-neighbourhoods (global and local) are tested.
The results are shown in the following tables and figures:

5

– Global neighbourhood:

• Table 1a reflects the accuracy of each algorithm over each function and
the reliability of each algorithm averaged over all benchmarks in global
neighbourhood. Table 1b highlights any significant difference in the ac-
curacy of the algorithms over each function.

• Table 2a shows the efficiency of each algorithm over each benchmark.
Table 2b underlines any existing significant difference between any two
algorithms over the benchmarks in the global neighbourhood.

• Figure 1 shows the plots for the accuracy and efficiency measures.

– Local neighbourhood:

• Table 3 displays the results using the same measures (accuracy and re-
liability) as Tables 1 but in the local neighbourhood topology.

• Table 4 displays the results using the same measure (efficiency) as Table
2 but in a local neighbourhood topology.

• Figure 2 shows the plots for the accuracy and efficiency measures.

Observing the reliability of the algorithms both in global and local neigh-
bourhoods (see the last rows of Tables 1a and 3a), shows that on average BB is
the least reliable algorithm. This finding does not come as a surprise as BB was
proposed for understanding PSO rather than being deployed for optimisation
purposes; the result of this experiment confirms this view empirically. Among
other algorithms, BBJ2 shows the most reliable performance in both local and
global neighbourhood. Additionally, BBJ2 shows better reliability in global vs.
local neighbourhood, which is not always the expectation (as global neighbour-
hood is usually criticised for its premature convergence [13]. CK and BBJ1 show
contradicting results in different neighbourhoods: BBJ1 is more reliable than
CK in the global neighbourhood, but less reliable in the local neighbourhood.

In terms of the accuracy of the algorithms in the global neighbourhood (see
Table 1b), BB shows significantly worse accuracy. When there exists conver-
gence, in most cases, BBJ1 and BBJ2 outperform CK significantly. Over all
benchmarks, BBJ1 and BBJ2 do not outperform each other significantly (ex-
cept in f11). As for the efficiency of the algorithms in the global neighbourhood
(see Table 2), when there exists a significant difference BBJ2 outperform all al-
gorithms over all benchmarks significantly. The second best algorithm is BBJ1.

In the local neighbourhood (see Table 3), compared to other algorithms,
BB and BBJ1, are significantly worse in terms of accuracy. When functions
with convergence are considered, BBJ2 outperform other algorithms. In terms
of efficiency in the local neighbourhood (see Table 4b), CK is outperformed by
BB in most significant cases. Observing functions with successful convergence,
BBJ1 and BBJ2 are the least and the most efficient algorithms respectively.

In order to investigate the role of jumping in BBJ2, this mechanism is re-
moved in a control algorithm – BBJ2 with No Jumps (BBNJ) – which uses the
same parameters and update equations as BBJ2 but with pJ = 0. This algo-
rithm, in terms of efficiency, outperforms BBJ2 in local neighbourhood in all 3
significant cases; however in global neighbourhood, BBNJ is outperformed by
BBJ2 in all 4 significant cases. In terms of accuracy, both in global and local

6

● ●

●

●

●

●

●

●

●

● ●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

1e
+

04

(a) Accuracy − Global Neighbourhood

Benchmark

A
cc

ur
ac

y
● CK

BB
BBJ1
BBJ2

● ●

●
●

●
●

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10
00

00
20

00
00

30
00

00

(b) Efficiency − Global Neighbourhood

Benchmark

F
un

ct
io

n
E

va
ul

at
io

n

● CK
BB
BBJ1
BBJ2

Fig. 1. Accuracy and efficiency in global neighbourhood

neighbourhood, whenever there is a difference, BBJ2 outperforms BBNJ in the
entire cases, 12 of which are significantly better. Also in terms of reliability,
BBNJ is the least reliable algorithm.

4.5 Discussion

More experiments are needed in order to form a concrete theoretical idea as to
why BBJ2 outperforms the other algorithms. The initial thought behind this
outperformance is the reliance on the difference between the particles’ current
positions and their neighbourhood best position. This effectively eliminates the
direct influence of the particles’ personal bests from the update equations. On
the other hand, in the rest of the algorithms (used in this paper), each particle’s
personal best leaves a direct impact on the update equations. This presence of
many influencing factors – which is one of the reasons why understanding PSO
is complicated – in the update process might be counter-productive.

BB and BBJ, in contrast to CK, are distinguished by the absence of particle
position information in the update rule. Search always begins at a point deter-
mined by particle informers g or gi and the extent of the search is determined by
informer separation, |pi−gi| or |pi−1−pi−1|. A trial position xi ∼ gi +σiN(0, 1)
is ignored if an informer pi is not bettered. The particle, figuratively speaking,
returns to pi after a single trial at search centre gi. On the other hand, BBJ2
retains information of an unsuccessful attempt since search spread is determined

7

●

●

●

●

●

●

●

● ● ● ●

●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−

08
1e

−
05

1e
−

02
1e

+
01

1e
+

04

(a) Accuracy − Local Neighbourhood

Benchmark

A
cc

ur
ac

y
● CK

BB
BBJ1
BBJ2

●

●
●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10
00

00
20

00
00

30
00

00

(b) Efficiency − Local Neighbourhood

Benchmark

F
un

ct
io

n
E

va
ul

at
io

n

● CK
BB
BBJ1
BBJ2

Fig. 2. Accuracy and efficiency in local neighbourhood

by the difference between xi and gi. This provides a convergence inhibition mech-
anism: informers will crowd together as the swarm converges, with a consequent
decrease, for BBJ1, in diversity. However in BBJ2, a trial position xi may lie be-
yond the informer group. This will lead to a broader search at the next iteration
since δBBJ2 = |gi − xi|.

Finally, we note the significance of jumping: the probability of jumping in
one or more dimensions is 1 − (1 − pJ)D = 0.03 (30 dimensions, pJ = 0.001).
Even this small figure appears to be enough for enhanced performance. A law
of diminishing returns applies since excessive jumping slows convergence. The
fact that jumping appears to be less necessary in BBJ2 than in BBJ1 is perhaps
attributable to the greater search diversity inherent in the formation of δ. The
efficacy of tail broadening for distribution based swarm optimisers has already
been observed in a study of Lèvy bare bones [14]. We remark that tail broadening
is a more subtle effect than re-initialisation. The latter is equivalent to jumping
in each of the D dimensions, occurring with only a very small probability (prob =
pDJ) in the BBJ models.

5 Conclusion

This paper briefly describes Bare Bones swarm optimisation which was proposed
to provide better understanding of the behaviour of particle swarm algorithms.
Although this algorithm does not intend to enhance the optimisation capability

8

of standard PSO of Clerc-Kennedy (CK), the other variations (Bare Bones with
Jumps Model 1 & 2) explained and introduced respectively in this paper offer
promising results. The algorithms used in this paper are compared against each
other using three performance measures (i.e. accuracy, efficiency and reliability).
Using these measures, it is shown that in terms of accuracy, when benchmarks
with successful convergence are considered, the accuracy of BBJ2 compared to
all other algorithms is significantly better. Additionally, BBJ2 is empirically
shown to be both the most efficient and the most reliable algorithm in both
local and global σ neighbourhoods. A brief discussion is also presented with the
possible reasons which might boost the outperformance of BBJ2 compared to
other algorithms, and an experiment is conducted to demonstrate that despite
the very small jump probability of BBJ2, this mechanism plays a crucial role.

References

1. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in
amultidimensional complex space. Evolutionary Computation, IEEE Transactions
on 6(1) (2002) 58–73

2. Yang, Y., Kamel, M.: Clustering ensemble using swarm intelligence. In: Swarm
Intelligence Symposium, 2003. SIS’03. Proceedings of the 2003 IEEE, IEEE (2003)
65–71

3. van den Bergh, F., P., E.A.: A study of particle swarm optimization particle
trajectories. Information Sciences 176(8) (2006) 937–971

4. Kennedy, J.: Bare bones particle swarms. In: Proceedings of Swarm Intelligence
Symposium, 2003 (SIS’03), IEEE (2003) 80–87

5. Blackwell, T.: A study of collapse in bare bones particle swarm optimisation. IEEE
Transactions on Evolutionary Computing (99) (2012)

6. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters 85(6) (2003) 317–325

7. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley
(2006)

8. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the lipschitz constant. J. Optim. Theory Appl. 79(1) (1993) 157–181

9. Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, Ann Arbor, MI, USA (1975)

10. al-Rifaie, M.M., Bishop, M., Blackwell, T.: Resource allocation and dispensation
impact of stochastic diffusion search on differential evolution algorithm; in. In:
Nature Inspired Cooperative Strategies for Optimisation (NICSO 2011), Springer.
(2011)

11. Gehlhaar, D., Fogel, D.: Tuning evolutionary programming for conformationally
flexible molecular docking. In: Evolutionary Programming V: Proc. of the Fifth
Annual Conference on Evolutionary Programming. (1996) 419–429

12. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
Proc of the Swarm Intelligence Symposium, Honolulu, Hawaii, USA, IEEE (2007)
120–127

13. Clerc, M.: From theory to practice in particle swarm optimization. Handbook of
Swarm Intelligence (2010) 3–36

14. Richer, T., Blackwell, T.: The lévy particle swarm. In: IEEE congress on evolu-
tionary computation. (2006) 3150–3157

9

Table 1. Accuracy Details; Global Neighbourhood

(a) Accuracy± Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations. Total number of convergence of each algorithm over the

benchmarks can be found in the last row.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 4.14E-05±4.13E-05

f2 0.0 ±0.0 6.34E+03±4.69E+02 8.51E-04±7.86E-04 0.0 ±0.0 2.72E+03±5.03E+02

f3 9.14E+00±3.18E+00 5.86E+01±1.80E+01 1.08E+01±4.47E+00 1.28E-06±6.09E-07 6.18E+00±2.80E+00

f4 3.60E+03±8.50E+01 3.46E+03±2.29E+01 8.32E-02±1.43E-02 0.0 ±0.0 4.61E+03±9.40E+01

f5 6.33E+01±2.57E+00 1.59E+02±4.93E+00 9.93E-03±3.37E-03 0.0 ±0.0 3.47E+02±9.56E+00

f6 1.17E+00±1.95E-01 1.92E+01±8.43E-02 2.07E-05±1.69E-05 0.0 ±0.0 1.98E+01±1.39E-02

f7 2.88E-02±6.13E-03 9.40E-02±3.39E-02 4.42E-02±7.18E-03 3.37E-02±6.43E-03 4.64E+00±2.18E+00

f8 6.22E-02±2.03E-02 4.16E+00±1.36E+00 0.0 ±0.0 0.0 ±0.0 6.44E+00±2.40E+00

f9 3.00E-02±1.44E-02 4.13E+00±3.23E+00 0.0 ±0.0 0.0 ±0.0 3.66E+01±1.92E+01

f10 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 2.72E-02±2.72E-02

f11 0.0 ±0.0 4.86E+01±7.37E+00 1.89E+01±6.36E+00 4.32E+01±7.50 5.67E+01±6.52E+00

f12 1.85E+00±4.97E-01 5.05E+00±0.00E+00 5.05E+00±7.38E-17 5.05E+00±1.13E-16 5.05E+00±9.99E-17

f13 2.39E+00±5.95E-01 5.27E+00±3.01E-17 5.35E+00±7.92E-02 5.27E+00±8.52E-17 5.27E+00±1.35E-16

f14 1.11E+00±4.68E-01 5.36E+00±6.02E-17 5.36E+00±9.03E-17 5.36E+00±9.52E-17 5.47E+00±1.11E-01∑
(180) (99) (198) (268) (93)

42.68% 23.57% 47.14% 63.81% 22.14%

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 – – – – – – –

f2 X – o X – o X – o – – – o – X

f3 X – o X – o X – o – – – o – X

f4 X – o X – o – – o – X o – X o – X

f5 X – o X – o X – o – o – X o – X o – X

f6 X – o X – o X – o – o – X o – X o – X

f7 – – – – – – o – X

f8 X – o X – o X – o – – – o – X

f9 – – – – – – –

f10 – – – – – – –

f11 X – o – X – o o – X – X – o –

f12 – – X – o – X – o X – o –

f13 – – X – o – X – o X – o –

f14 – – X – o – X – o X – o –

10

Table 2. Efficiency Details; Global Neighbourhood

(a) Mean FEs (±standard error) is shown with two decimal places after 30 trials of
300,000 function evaluations.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 23224±194 12262±164 13270±148 22685±119 14454±244

f2 – 160358±2920 89637±575 191064±1290 –

f3 – – – 276020±7039 213310±7324

f4 – – – 63399±3805 –

f5 – 124701±12900 124701±12900 54825±3182 –

f6 – 41811±870 37004±318 47486±2226 –

f7 22786±259 11518±136 13807±335 24006±259 14036±833

f8 44735±567 20194±1701 15013±285 33627±744 21554±383

f9 49228±1309 39656±3719 18855±981 31147±720 26835±563

f10 1458±17 516±4 551±5 3515±37 534±8

f11 5876±397 61199±11951 663±10 3929±39 649±10

f12 – – – – –

f13 – – – – –

f14 – – – – –

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 X – o X – o – – o – X o – X o – X

f2 NP NP NP X – o o – X o – X NP

f3 NP NP NP NP NP NP o – X

f4 NP NP NP NP NP NP NP

f5 NP NP NP X – o NP NP NP

f6 NP NP NP X – o o – X o – X NP

f7 X – o X – o – – o – X o – X –

f8 X – o X – o – – o – X o – X o – X

f9 – X – o – X – o – – o – X

f10 X – o X – o o – X – o – X o – X –

f11 o – X – – X – o X – o – –

f12 NP NP NP NP NP NP NP

f13 NP NP NP NP NP NP NP

f14 NP NP NP NP NP NP NP

11

Table 3. Accuracy Details; Local Neighbourhood

(a) Accuracy ± Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations. Total number of convergence of each algorithm over each
benchmark is shown in brackets after the accuracy and standard error. Total number
of convergence of each algorithm over the benchmarks can be found in the last row.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 9.57E-09±1.14E-10

f2 7.84E-02±1.09E-02 9.66E+01±8.68E+00 3.93E+02±4.38E+01 1.87E-01±3.02E-02 2.55E-01±2.02E-01

f3 1.33E+01±3.73E+00 1.27E+01±5.50E-01 2.88E+01±3.20E+00 2.59E+01±5.73E+00 2.99E+01±6.02E+00

f4 4.14E+03±7.11E+01 3.26E+03±3.10E+01 1.92E+03±6.89E+01 0.0 ±0.0 4.03E+03±4.77E+01

f5 5.87E+01±1.88E+00 2.46E+01±3.04E+00 9.22E+01±4.47E+00 0.0 ±0.0 2.85E+02±6.11E+00

f6 0.0 ±0.0 1.96E+01±2.24E-02 1.89E-06±1.55E-06 0.0 ±0.0 1.98E+01±1.27E-02

f7 1.07E-03±6.10E-04 1.41E-05±1.04E-05 2.48E-04±2.46E-04 1.19E-02±2.96E-03 1.95E-02±4.65E-03

f8 0.0 ±0.0 2.76E-02±1.92E-02 0.0 ±0.0 0.0 ±0.0 7.01E-01±2.69E-01

f9 0.0 ±0.0 5.27E-02±5.27E-02 3.62E-07±2.84E-07 0.0 ±0.0 2.05E-01±6.39E-02

f10 0.0 ±0.0 8.16E-02±4.55E-02 0.0 ±0.0 0.0 ±0.0 5.84E-09±5.17E-10

f11 0.0 ±0.0 7.92E+01±2.71E+01 1.27E-05±1.27E-05 2.79E+01±7.03E+00 4.86E+01±7.37E+00

f12 3.70E-06±1.27E-07 5.05E+00±0.00E+00 5.05E+00±0.00E+00 5.05E+00±4.26E-17 5.05E+00±1.13E-16

f13 1.22E-04±0.00E+00 5.27E+00±0.00E+00 5.10E+00±1.76E-01 5.27E+00±0.00E+00 5.27E+00±4.26E-17

f14 1.26E-04±1.12E-16 5.36E+00±5.22E-17 5.18E+00±1.79E-01 5.36E+00±1.09E-16 5.36E+00±6.02E-17∑
(208) (145) (199) (241) (108)

49.52% 34.52% 47.38% 57.38% 25.71%

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 – – – – – – –

f2 o – X X – o X – o X – o X – o – –

f3 o – X – – – X – o – –

f4 X – o X – o o – X X – o o – X o – X o – X

f5 o – X X – o o – X X – o X – o o – X o – X

f6 X – o X – o X – o – – – o – X

f7 – o – X – o – X – X – o –

f8 – – – – – – o – X

f9 – – – – – – o – X

f10 – – – – – – –

f11 X – o – X – o – – – o – X

f12 – – X – o – X – o X – o –

f13 – – X – o – X – o X – o –

f14 – – X – o – X – o X – o –

12

Table 4. Efficiency Details; Local Neighbourhood

(a) Mean FEs ±Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 47589±97 98383±327 67968±213 73090±196 49574±260

f2 – – – – –

f3 – – – – –

f4 – – – 139118±3975 –

f5 – – – 134816±2801 –

f6 – 189139±4687 175902±944 118098±389 –

f7 84612±4962 146979±4494 72048±332 95680±4051 49970±396

f8 79067±765 121186±1035 69658±489 103658±1287 68597±1434

f9 61328±374 122631±853 75080±392 86281±480 71144±1217

f10 5389±100 1891±31 2161±161 4935±53 1716±31

f11 46300±2012 9030±2367 2536±75 5063±51 2891±184

f12 – – – 8895±0 –

f13 – – – – –

f14 – – – – –

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 o – X o – X o – X X – o X – o o – X X – o

f2 NP NP NP NP NP NP NP

f3 NP NP NP NP NP NP NP

f4 NP NP NP NP NP NP NP

f5 NP NP NP NP NP NP NP

f6 NP NP NP X – o X – o X – o NP

f7 o – X – – X – o X – o – X – o

f8 o – X X – o o – X X – o X – o o – X –

f9 o – X o – X o – X X – o X – o o – X X – o

f10 X – o X – o – – o – X o – X –

f11 X – o X – o X – o – – – –

f12 NP NP NP NP NP NP NP

f13 NP NP NP NP NP NP NP

f14 NP NP NP NP NP NP NP

