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Abstract

Motivation: Increasing evidence suggests that post-transcriptional RNA modifications regulate essential
biomolecular functions and are related to the pathogenesis of various diseases. Precise identification of
RNA modification sites is essential for understanding the regulatory mechanisms of RNAs. To date, many
computational approaches for predicting RNA modifications have been developed, most of which were
based on strong supervision enabled by base-resolution epitranscriptome data. However, high-resolution
data may not be available.
Results: We propose WeakRM, the first weakly supervised learning framework for predicting RNA
modifications from low-resolution epitranscriptome datasets, such as those generated from acRIP-seq
and hMeRIP-seq. Evaluations on three independent datasets (corresponding to three different RNA
modification types and their respective sequencing technologies) demonstrated the effectiveness of our
approach in predicting RNA modifications from low-resolution data. WeakRM outperformed state-of-the-art
multi-instance learning methods for genomic sequences, such as WSCNN, which was originally designed
for transcription factor binding site prediction. Additionally, our approach captured motifs that are consistent
with existing knowledge, and visualization of the predicted modification-containing regions unveiled the
potentials of detecting RNA modifications with improved resolution.
Availability: The source code for the WeakRM algorithm, along with the datasets used, are freely
accessible at: https://github.com/daiyun02211/WeakRM
Contact: jia.meng@xjtlu.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Increasing evidence suggests that post-transcriptional RNA (ribonucleic
acid) modifications regulate essential biological processes and are related
to the pathogenesis of various diseases including multiple cancers (Zaccara
et al., 2019; Esteve-Puig et al., 2020; Shulman and Stern-Ginossar, 2020).
Precise identification of RNA modification sites is essential for an in-
depth understanding of the regulatory circuitry of RNA life. Over 170
distinct RNA modifications have been identified in living organisms to date
(Boccaletto et al., 2018), among which, more than 10 modifications have

been shown to widely occur in the human transcriptome and can be profiled
with high-throughput sequencing approaches (McCown et al., 2020; Li
et al., 2016). Since wet experiments for studying the epitranscriptomes
are usually laborious and expensive (Jones et al., 2020), computational
approaches have become increasingly popular as a useful alternative,
especially for preliminary studies.

To date, many in silico methods have been developed for the
computational prediction of RNA modification sites from RNA (or DNA)
sequences as well as other predictive genomic features. Among them,
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SRAMP is one of the earliest and widely applied predictive approaches
for m6A RNA methylation based on the Random Forests method from
RNA sequences (Zhou et al., 2016). Recently, by taking advantage of both
sequence and 35 additional genomic features, the WHISTLE method has
achieved the best performance in m6A site prediction to date (Chen et al.,
2019). Gene2Vec is a very powerful deep learning framework that supports
m6A predictions, which are enhanced by employing word embeddings to
represent RNA sequences (Zou et al., 2019). Some recent works further
developed computational algorithms to predict modifications from direct
RNA sequencing data like Oxford Nanopore Technologies (ONT) (Liu
et al., 2019; Jenjaroenpun et al., 2020). Together, these effects have greatly
improved our understanding of the localization and working mechanisms
of various RNA modifications under different biological contexts; see for
example the comprehensive recent reviews (Chen et al., 2020; Liu et al.,
2020; Anreiter et al., 2020).

A major limitation of epitranscriptome prediction approaches is
that, to the best knowledge of the authors, all of them are based on
strong supervision. Strong supervision-based approaches perform well on
modifications with base (or high)-resolution data, but usually overlook
the weakly supervised information of RNA sequences when applied
to low-resolution datasets, such as 5-hydroxymethylcytidine (hm5C)
and N4-acetylcytidine (ac4C). These two modifications can be detected
by enrichment-based sequencing approaches, such as hMeRIP-seq and
acRIP-seq respectively (Arango et al., 2018; Delatte et al., 2016), from
which we can identify the RNA modification-containing regions (or peaks
enriched with signals of RNA modification) of around 100nt resolution. As
there usually exist multiple Cs within such regions, it is not exactly clear
which one is the true modifiable nucleotide and which are non-modifiable
ones. Although it is possible to further enhance the resolution by searching
for the motif of a specific modification, our previous study showed that
this remedy will generate a large number of false-positive sites due to
random occurring sequence motifs located close to real modification sites
(Chen et al., 2019). Meanwhile, it is clear that predictive methods based
on this remedy have very limited performance (Liu et al., 2020) or very
narrow applicable scope (Zhao et al., 2019). To address the challenges of
learning from low-resolution epitranscriptome data, we consider here a
weakly supervised learning framework.

Weakly supervised learning is aimed at constructing predictive models
by learning from weakly labeled data (Zhou, 2018). An important scenario
is when there are only coarse-grained labels provided (or with only
labels for bags but not for instances), for example, in the case of image
analysis, when the labels are only available at image-level but not at object-
level. In genomics, weakly supervised learning, especially multi-instance
learning (MIL), has been intensively applied for studying protein-DNA
interaction (Gao and Ruan, 2015, 2017; Zhang et al., 2019, 2020), with
the basic assumption that the sequences captured by CLIP (or ChIP-seq)
technologies contain both the interacting and non-interacting elements
with the proteins. We know only the label of the entire sequence, but it is not
exactly clear which part of the sequence plays the key role, and a significant
proportion of it may not contribute to the binding between DNA and protein
at all. MIL3D (Gao and Ruan, 2015) first treated each probe sequence as
a labeled bag, utilized decision trees and probabilities averaging methods
to predict bag-level classes. MIL-TeamD (Gao and Ruan, 2017) extended
MIL3D by using TeamD (Annala et al., 2011) as the instance classifier.
WSCNN and its updated version WSCNNLSTM (Zhang et al., 2019,
2020) further applied convolution neural network (CNN) and long short-
term memory (LSTM) to capture sequence features through learning.
Additionally, weakly supervised learning (multi-instance learning) has
also been used for the functional prediction of proteins (Wu et al., 2014),
protein splicing variants (Panwar et al., 2016), microRNA target prediction
(Bandyopadhyay et al., 2015) and protein-protein interaction (Mei et al.,
2014). Conceivably, as low-resolution epitranscriptome data provided

labels only at region-level but not at single-nucleotide-level, the problem
of learning from it can be suitably formulated with the weakly supervised
learning framework.

We propose WeakRM, a general weakly supervised learning
framework for predicting RNA modifications from low-resolution
epitranscriptome datasets, such as those generated from acRIP-seq or
hMeRIP-seq. Our model takes labels at the sequence level (rather
than a nucleotide level) as input and predicts the sub-regions that are
most likely to contain the modification of interest. To the best of
our knowledge, this is the first time that RNA modification prediction
was formulated under the framework of weakly supervised learning.
Additionally, compared to existing MIL algorithms, which were originally
developed for transcription factor binding site (TFBS) prediction, our
model achieved better performance in RNA modification site prediction
with major improvements, i.e., using the gated attention (Ilse et al.,
2018) for result merging and using random cropping data augmentation.
Attention-based MIL was first proposed for image analysis, allowing the
model to assign learnable weights to each instance. This method can
aggregate information from all instances while adapting to sparse site
distribution and high correlation between instances. In addition, such
weights also indicate the region of interest by selecting high-weight
instances. Random cropping, from another perspective, takes advantage
of the key feature of the related biotechnology and uses the natural
divisibility of RNA modification peaks to improve the model performance.
By randomly cutting the ‘bag’ to generate new inputs, our network model
can see more cases and learn the patterns more effectively and robustly.

Evaluations on three independent datasets (corresponding to three
different RNA modification types and their respective sequencing
technologies) demonstrated the general effectiveness of our approach in
predicting RNA modifications from low-resolution data. Our approach
outperformed state-of-the-art multi-instance learning algorithms for
genomic sequences, such as WSCNN, which was originally designed for
transcription factor binding site prediction. Our approach captured motifs
that are consistent with existing knowledge. Visualization of the predicted
modification-containing regions unveiled the potentials of detecting RNA
modifications with improved resolution. WeakRM should make a powerful
and useful tool for learning RNA modifications with only low-resolution
epitranscriptome data.

2 MATERIALS AND METHODS

2.1 Epitranscriptome Data

The proposed WeakRM framework described below was tested on three
independent epitranscriptome datasets of low-resolution (around 100nt),
which corresponded to 3 distinct RNA modifications (ac4C, hm5C and
m7G) and their respective sequencing technologies (acRIP-seq, hMeRIP-
seq and m7G-MeRIP-seq) (see Table 1). All three technologies are based
on the FRIP-seq protocol described previously (Meng et al., 2013), in
which, the fragmented RNAs are immunoprecipitated by the antibody
targeting the modifications of interests, and then the RNAs were purified
for next generation sequencing. The reads were aligned to the reference
genome, and peak calling was conducted to capture the regions enriched
with signals of RNA modification (or the ‘peak’s) with around 100nt
resolution (Meng et al., 2013; Dominissini et al., 2013). The peak
regions should contain the RNA modification signal, and are considered
as “positive". Meanwhile, only the non-peak regions of peak-carrying
genes were used as the “negative" regions to exclude false negatives due to
condition-specific gene expression. The obtained “negative” regions were
randomly cropped to balance the length and number between regions. Due
to limited sensitivity, the RNA modification sites located on very lowly
expressed genes will be missing from epitranscriptome data. The genomic
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Table 1. Epitranscriptome Data

Modification Technology Resolution Sample Size Cell Line Species GEO Source
(nt) (Positive vs. Negative)

ac4C acRIP-seq ∼ 100 8630 vs. 11912 HeLa Homo sapians GSE102113 (Arango et al., 2018)
ac4C acRIP-seq ∼ 100 21542 vs. 27590 HeLa Homo sapians GSE102113 (Arango et al., 2018)
hm5C hMeRIP-seq ∼ 100 2347 vs. 3557 S2 Drosophila - (Delatte et al., 2016)
m7G m7G-MeRIP-seq ∼ 100 6022 vs 9096 HeLa Homo sapians GSE112276 (Zhang et al., 2019)
m7G m7G-MeRIP-seq ∼ 100 6873 vs 10230 HepG2 Homo sapians GSE112276 (Zhang et al., 2019)
m7G m7G-seq 1 6032 HeLa Homo sapians GSE112276 (Zhang et al., 2019)
m7G m7G-seq 1 3333 HepG2 Homo sapians GSE112276 (Zhang et al., 2019)

? Base-resolution m7G-seq sites were used to verify the locating ability of WeakRM. The sample size does not include data augmentation.

sequences within the positive and negative regions were then extracted
from the whole genome assembly and then used in this study.

Additionally, to further validate the trained WeakRM model, we also
extracted the precise locations of m7G sites from m7GHub (Song et al.,
2020), which contains the human m7G sites determined by base-resolution
technology (see Table 1), and examined whether WeakRM reported a
higher weight near known m7G sites.

2.2 Weakly Supervised Learning of RNA Modifications

We provided in this sub-section more details of the proposed WeakRM
framework, including data preparation, network architecture, and post-
analysis. A simplified illustration of our model is given in Figure 1.

2.2.1 Data Preparation
Multi-instance learning framework treats each RNA sequence as a ‘bag’
with more than one ‘instance’. The target label (with or without RNA
modification) is associated with the bag rather than with each instance,
indicating whether the RNA modification of interest has occurred within
a piece of sequence. In practice, the algorithm divides the entire sequence
into multiple overlapping sub-sequences as the ‘instances’ contained
within the bag (Zhang et al., 2019, 2020). Specifically, a fixed-length
sliding window (length c) runs over each bag (length l) to capture different
portions of it with stride s, resulting in total d(l − c)/se + 1 instances.
Here, the window length c and the step-wise shift s are two tunable
hyperparameters. Reducing c and s may allow us to locate modifications
at a higher resolution but can increase computational load or decrease the
prediction accuracy. The difference between those two parameters (c− s)
reflects the number of nucleotides shared by two adjacent instances.

2.2.2 Data Augmentation
A salient feature of the FRIP-seq protocol, including acRIP-seq, hMeRIP-
seq, and m7G-MeRIP-seq, is that a single modifiable nucleotide, in
theory, can only generate a narrow peak (regions enriched with RNA
modification signal) of around 100nt-300nt long, depending on the peak
calling algorithm and the fragment length in the protocol. Very wide peaks,
in theory, reflect multiple modifiable nucleotides located in proximity.
This property allows us to break up the labeled long sequence into
shorter pieces and still ensure a reliable label (see Figure 2). We used
this property for random cropping data augmentation. In each epoch of
training, each sequence will be input to the model once. To ensure that the
trimmed positive sequences contain at least one RNA modification site,
for those peaks with a width greater than 400nt, different fragments of
3/4 length were randomly selected each time and trained with the same
label. Although the actual amount of data has not increased, such random
cropping ensures that the same target will not always appear in the same
position of the corresponding sequence, which helps our model generalize
better.

A sliding window
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Instance 1 features Instance N features
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Instance attention: [Weight 1, · · ·, Weight N]

Bag level features
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⊗

Dense + Sigmoid

Fig. 1. A simplified graphic illustration of the proposed WeakRM framework.

2.2.3 Model Architecture
Starting from the input layer, this sub-section presents a detailed
description of the proposed weakly supervised learning framework. The
first step in feeding RNA sequences into the WeakRM model is to
numerically represent the nucleotides. One-hot encoding is a common
way in deep learning-based models which maps each nucleotide into a
vector of size 4 (A→ [1, 0, 0, 0]T , C→ [0, 1, 0, 0]T , G→ [0, 0, 1, 0]T ,
and U→ [0, 0, 0, 1]T ).

To pursue improved-resolution in the prediction of RNA modification,
instance length is often set to a small value like 50nt. The used model
architecture is as follows: the first convolutional layer captures motifs;
a max-pooling layer removes weak features and enlarges the receptive
field; a dropout layer prevents overfitting in training, and the second
convolutional layer learns local dependencies among motifs. Each instance
passes through the same networks (weights are shared) and outputs
instance-level features.
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Fig. 2. Data Augmentation. For FRIP-seq technology, the peaks above 300nt are formed from multiple sub-peaks corresponding to multiple modifiable nucleotides located in proximity.
Therefore, tailoring wide peaks allows us to obtain multiple sub-sequences, each of which contains at least one site. Two positive sub-sequences P1 and P2 can be generated from a
single-wide peak, which corresponds to three RNA modification sites located in proximity. The positive sequence P3 corresponds to a single narrow peak, which may be generated from a
single modifiable nucleotide. On the other hand, any sub-sequence from the negative region remains negative, such as N3 and N4.

2.2.4 Score Function
As referred to earlier, in the case of the MIL problem, only an overall
binary label associated with the input bag can be assessed. Therefore,
how to obtain bag-level probabilities from instance-level features without
instance-level labels becomes the key to the MIL framework. Generally, we
can divide existing label probability modeling methods into two categories:

1. The instance score merging approach: this method requires the
construction of an instance-level classifier to estimate the score of
each instance. A chosen pooling method then aggregates all instance
scores and returns the bag-level class (probability of at least one RNA
modification site contained within the input sequence).

2. The instance feature merging approach: this method aims at obtaining
bag-level feature representations using weighted summation along
instance embeddings. The bag-level features are subsequently fed into
the final classifier.

Maximum and Average are the two most common fusion methods
for score merging. However, max-pooling only extracts information
concerning the most favored instance, which overlooks other valuable
instances and may suffer from outliers. This weakness can even be
amplified when our subsequence instances overlap with each other and are
therefore highly correlated. Average pooling, on the other hand, assigns
equal weights to all instances, which ignores the fact that our instances are
sparsely distributed. Other score merging approaches such as, log-sum-
exp pooling (Ramón et al., 2000) and noisy-or (Maron et al., 1997) share
a common drawback that they are rule-based and not learnable.

Noisy-and (Kraus et al., 2016) is the fusion method preferred in
WSCNN and WSCNNLSTM (Zhang et al., 2019, 2020). Unlike the above
methods, it offers a learnable threshold and an auxiliary hyper-parameter
for tuning. However, it is still built based on mean scores of instances,
which may suffer from the same disadvantage of average pooling.

In our framework, we used the gated attention (Dauphin et al., 2017)
as our score function. As a feature merging approach, gated attention
uses a 3-layer neural network to learn weights ak of the low-dimensional
representation of each instance and obtains the bag-level embedding
according to the equation z =

∑K
k=1 akhk , where {h1, . . . , hk} is

a bag of K instance features. When calculating the weights, a gating
mechanism (Dauphin et al., 2017) provides a learnable sigmoid non-
linearity sigm(·) to enhance the tanh non-linearity tanh(·). A fully
connected (FC) layer then takes the element-wise multiplication of two

non-linearities and returns the gated attention weigths for each instance as
presented in equation (1), where w,V and U are parameters in layers and
> stands for transpose.

ak =
exp{w>(tanh(Vh>k )� sigm(Uh>k ))}∑K
j=1 exp{w>(tanh(Vh>j )� sigm(Uh>j ))}

(1)

Attention measures the degree of similarity among instances and
thus is suitable for our context-dependent data. The softmax activation
function ensures that all weights add up to 1, which makes the score
function invariant to bag size. In addition, the learnable weights indicate
the contribution of each instance to bag-level probability. Therefore, the
selected method not only effectively leverages all underlying information
of instances but also gives an estimation of the site-containing regions.
Ideally, the instance that covers a modification should have a specific
pattern (motif) and contribute most (highest attention weight) to bag-level
prediction.

2.3 Validation of Site Prediction

Aside from distinguishing the RNA modification-containing and non-
containing sequences, a key purpose of our model is to identify the
sub-regions containing RNA modifications from a long input sequence.
Unfortunately, for hm5C and ac4C, their transcriptome map of base-
resolution is not yet available. Therefore, we developed a validation
approach based on low-resolution data. For each peak, we obtained the two
marginal areas connecting the negative and positive regions. Specifically,
600nt of sequences were extracted from both the 5′ and 3′ side of the
identified peaks, with 300nt within the peak and 300nt outside of the peak,
respectively. RNA modification sites are expected to be on the 3′ half for
the sequences extracted from the 5′ end of the peak or the 5′half for those
extracted from the 3′ end of the peak (see Figure 3). We can then check
whether this is consistent with the predictions made by WeakRM.

To demonstrate the effectiveness of our model more convincingly, we
select m7G RNA internal modification data for further validation. Both
non-base and single-base techniques are available for m7G, which allows
us to train our model using peak data and validate using ground truth
base-resolution sites. To visually display the results, we placed the known
modifiable sites in the center and extracted 300 flanking regions on both
sides to obtain a set of 601nt sequences. For both cases, we picked the most
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Fig. 3. Data for validation of site prediction. 600nt of sequences were extracted from both
the 5′ and 3′ side of the identified peaks, with 300nt within the peak and 300nt outside
of the peak, respectively. RNA modification sites are expected to appear on the 3′ half for
sequences extracted from the 5′ end of the peak or the 5′ half for those from the 3′ end of
peaks.

important instance from each true positive bag, recorded their distance to
the middle point, and plotted their distributions.

2.4 Model Interpretation

Interpretability of predictive models is often highly desired for biological
systems. In the case of RNA modification prediction, this refers to finding
the recurring sequence patterns preferred by the model and elucidating the
difference between the high-weight and low-weight instances.

Existing motif discovery methods for neural networks can generally
be divided into two types. One method is to extract the weights of
convolutional kernels in the first network layers, count the occurrence of
nucleotides that activate the kernels, and visualize them as position weight
matrices (PWMs) (Alipanahi et al., 2015; Kelley et al., 2016). However,
these methods only analyze the low-level representation captured by
the model, without considering the fact that the neural network learns
distributed patterns and makes decisions through the combination of
multiple neurons in multiple layers. The other method to interpret
predictions is based on the gradients of the output score with respect to
the input nucleotide, which follows the natural design of neural networks
(back-propagation). The gradient can be analogous to the coefficients in
a linear model. Various methods have been developed in the past few
years quantifying either the gradient itself (Simonyan et al., 2014) or the
products of the gradient and feature values (Bach et al., 2015; Shrikumar
et al., 2017; Sundararajan et al., 2017).

In our framework, the Integrated gradients (IG) method (Sundararajan
et al., 2017) was chosen to quantify the attribution scores of each input
feature. As formulated in equation (2), the score sums the gradients of
interpolated points along the linear path from the base reference x′ to the
inputs x. In practice, trapezoidal IG (Sotoudeh and Thakur, 2019) was
used, which is closer to the real theory in the calculation.

IGi(x) = (x− x′)×
m∑

k=1

∂F (x′ + k
m
× (x− x′))

∂x
×

1

m
(2)

As suggested in (Kindermans et al., 2019), the reliability of IG depends
on the choice of the reference input. Instead of feeding a zero matrix
or a fixed letter frequencies matrix into the model as a reference input,
we shuffled the original input to construct a reference sequence while
retaining the dinucleotide frequencies. This dinucleotide shuffled reference
is consistent with the case of regulatory proteins prediction presented in
(Shrikumar et al., 2017) and is suggested in TF-MoDISco (Shrikumar
et al., 2018).

Through the visualization of the per-base contribution score generated
by the IG method as a saliency map, we were able to identify the portion

of each sequence that has a substantial contribution to the prediction.
However, there is still a need for systematic analysis to generate a high-
quality consensus motif for target modification. TF-MoDISco (Shrikumar
et al., 2018), which was developed on the transcription factor, provides a
solid solution to generate non-redundant motifs from sequences and the
corresponding base-resolution important scores. Segments of the input
that are highly relevant to prediction are first identified in all regions of
test sequences, and then their contribution scores are clustered and aligned
into a motif. This method is applicable to RNA modification analysis from
both the biological and computational perspectives, except for the setting
of the reverse complementary strands.

3 Results and discussion

3.1 Model Validation on m7G Data

N7-methylguanine (m7G) has traditionally been considered a cap
modification of mRNAs. Recent studies identified its widespread internal
existence and pivotal roles in translation control (Zhang et al., 2019).
Since we previously established benchmark datasets and developed a base-
resolution m7G predictor (Song et al., 2020), we first verify the proposed
WeakRM on m7G data. The availability of base-resolution profiling (m7G-
seq) also enabled a more reliable validation using data produced from an
independent biotechnology (Zhang et al., 2019).

To reduce the number of false-positive samples, we extracted the
sequences that appear as peaks in both cell lines (HeLa and HepG2) as
the positive samples, as in the case of the original study (Zhang et al.,
2019). For negative data, only the sequences that appeared as negative
in both two cell lines were used. The model performance of each cell
line data and two-way cross cell line evaluation were also provided in
Supplementary Table 1. We treated the base-resolution m7G-seq sites as
our ground truth data and extracted the sequences from the 300nt flanking
region on both sides to form a testing sequence of 601nt. It was expected
that the central instance covering the known m7G site should have greater
attention weights.

3.1.1 Prediction Performance
To reduce the potential perturbation of model performance caused by
randomness in data splitting, data augmentation, and the scoring function
used, an evaluation was performed using 10-fold cross-validation over
the low-resolution m7G datasets (m7G-MeRIP-seq) to produce a reliable
comparison. The data was evenly divided into ten parts, each with the same
amount of positive and negative peaks. For all models, an instance length
of 50nt and a stride size of 10nt were chosen because they generally have
better performance on the m7G dataset (see Supplementary Table 2).

Table 2. Predictive performance on m7G MeRIP data with standard deviation

Model AUROC AP Accuracy

WSCNN (Max) 0.766(±0.072) 0.762(±0.044) 0.667(±0.023)
WSCNN (Avg) 0.664(±0.032) 0.706(±0.043) 0.628(±0.024)
WSCNN (Noisy) 0.775(±0.055) 0.789(±0.062) 0.705(±0.046)
WSCNNLSTM (Max) 0.849(±0.013) 0.837(±0.015) 0.773(±0.015)
WSCNNLSTM (Avg) 0.851(±0.021) 0.858(±0.022) 0.760(±0.024)
WSCNNLSTM (Noisy) 0.862(±0.021) 0.870(±0.019) 0.772(±0.023)
WeakRM 0.892(±0.014) 0.889(±0.020) 0.815(±0.017)
WeakRM (Crop) 0.896(±0.013) 0.897(±0.016) 0.816(±0.015)

All methods were evaluated using the same datasets.

As shown in Table 2, WeakRM outperformed WSCNN under all three
evaluation metrics (especially for the average area under ROC curves
measure, 0.896 versus 0.862). Equipped with random cropping data
augmentation, an overall improvement can be observed, which indicates
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Fig. 4. Density of highest-weight instance location on single-base m7G validation data.
The known site is placed in the center (0 on X-axis). The red dashed line indicates the
boundaries of instances that contain the m7G site.

that by looking at the different sub-sequences of the input, our model can
generalize better. Although the data augmentation does not increase the
actual amount of data, random cropping can ensure that the same target
does not always appear in the same position in the corresponding sequence.
In practice, we have observed that the performance of the WeakRM can
be further improved by using the LSTM layer.

3.1.2 Location Estimation
To explore the potential of identifying RNA modification sites from the
instances with high attention weights, we applied the well-trained model
built on low-resolution m7G-MeRIP-seq data to the sequences generated
from base-resolution data, for which we know the exact location of m7G
sites. For each predicted true positive sequence, we selected the most
important instance based on the gated attention weight and visualized their
relative distances to the known m7G sites in the middle. As shown in
Figure 4, a strong peak of the distribution appeared near the location of
the known m7G site (0 on X-axis). Given the instance length (50) and stride
(10), there exist five instances containing the m7G site detected using base-
resolution technology in each bag. The instances with the m7G site near
their centers are likely to produce the highest attention weights. There are
still some high-weight instances that do not contain known m7G sites.
Among them, those near the center area showed a higher probability to be
high-weight instances. This may indicate that WeakRM has captured some
sequence patterns that are not immediately close to the m7G site, or there
existed previously undetected m7G sites and the modification exhibits a
clustering effect, as previously observed in the case of N6-methyladenosine
(m6A) (Chen et al., 2019). Our results provided strong evidence that the
proposed WeakRM framework has the potential to estimate the location
of RNA modifications from low-resolution data alone.

3.1.3 Model Interpretation
To gain further insights into the sequence-dependent forming mechanism
of RNA modification unveiled by our proposed WeakRM, we implemented
a trapezoidal integrated gradient method with zero matrixes, fixed letter
frequencies (GC content) and dinucleotide shuffled references to obtain
attribution maps on the input instances. For each test sequence, we
simulated 50 shuffled references and used 20 steps in calculating IG values.
As our input data were all one-hot encoded, such scores of contribution
can be easily transformed to the importance of each nucleotide.

As shown in Figure 5, our proposed model assigned high attention
weights to adenine (A) and guanine (G) enriched areas, which coincides

Attribution map of the highest-weight instance

Attribution map of the lowest-weight instance

Fig. 5. Attribution maps for the instance with the highest and lowest attention weight from
the single-base m7G sequence with highest predicted probability.
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HOMOR Top1 motif with m7G-MeRIP-seq

Motif identified by WeakRM using TF-MoDISco
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Fig. 6. Match motif identified by WeakRM to Top-1 motif identified with m7G-MeRIP-seq
by HOMER software.

with the two major bases in known motifs. Our target, m7G, is a
modification that happens on nucleotide G. By observing the distribution
of the G contribution score, we observe that not all guanines have received
high values, and some may even have a negative impact on the positive
peak prediction. Therefore, such interpretable scores can be a potential
way to further narrow the range of predicted modified sites.

On the other hand, continuous cytosine (C) and uracil (U) patterns
were abundant in the low weight instances Figure 5, which often made
a negative contribution to the prediction of m7G-containing region. For
visualization purposes, we individually normalized the contribution scores
for each instance, which resulted in comparable score ranges between the
high-weight and low-weight instances. However, the former is usually
much larger than the latter in the absolute sense.

Attribution maps show only the model preference of nucleotides
in every single test. To summarize the recurring motifs captured by
WeakRM, the current general pipeline carries out high-weight k-mers
selection, clustering of similar patterns, and multiple sequence alignment
for obtained motifs in each cluster. In our work, we use TF-MoDISco to
extract consensus motif from instances with higher than average weights. A
great advantage of TF-MoDISco is that it provides the continuous Jaccard
similarity calculation to carry out alignment directly based on contribution
scores instead of only selecting the most important bases. By allowing 3
gaps and 2 mismatches and trimming using overall letter frequencies, we
found one consensus motif, given in the Figure 6. Compared with the
known motifs identified with m7G-MeRIP-seq using HOMER software
and reported in data source paper (Zhang et al., 2019), we found the motif
learned by WeakRM can be matched to the Top-1 known motif with a
p-value of 8.71e-03. The p-value here represents the probability that a
random motif of the same width has the same or better matching score
as the target. The value 8.71e-03 is sufficient to infer a high similarity
between the motifs.
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3.2 Case Study 1: Prediction of 5-Hydroxymethylcytidine

Recent studies have revealed a relatively high abundance of 5-
hydroxymethylcytidine (hm5C) in fly and mouse brains (Delatte et al.,
2016; Miao et al., 2016). To date, high-throughput profiling of hm5C is
only possible via the hMeRIP-seq technique (Delatte et al., 2016), which
reports regions enriched with hm5C signal (or low-resolution hm5C-
containing peaks). Due to the existence of multiple Cytosines within such
regions, it is not exactly clear which specific Cytosine can be modified by
hydroxylmethylation. When WeakRM was applied to hm5C, all sequences
under the hm5C peaks from Drosophila S2 cells hMeRIP-seq data were
used as the positive samples. Negative samples were collected from
negative regions that do not intersect with the positive peaks in the same
cell line. These samples were further selected and randomly trimmed to
fit the number and width of the positive sequences.

3.2.1 WeakRM outperformed competing algorithms
We randomly split the dataset into training, validation, and testing sets
using a ratio of 8:1:1. Each dataset contains an equal number of positive
and negative sequences and of roughly the same size distribution. The Area
Under the ROC Curve (AUROC), Average Precision (AP), and Accuracy
with 0.5 threshold were selected as the main evaluation metrics during
performance evaluation.

Table 3. Predictive performance on hm5C data with standard deviation

Model AUROC AP Accuracy

WSCNNLSTM 0.889(±0.007) 0.883(±0.011) 0.775(±0.022)
WeakRM 0.894(±0.014) 0.907(±0.007) 0.792(±0.025)
WeakRM (Crop) 0.909(±0.003) 0.912(±0.003) 0.823(±0.018)

All methods were evaluated using the same datasets.

As shown in Table 3, the proposed WeakRM model achieved the
best performance with respect to all three evaluation metrics compared
with WSCNNLSTM with Noisy-and fusion method. Random cropping
data augmentation effectively improved the predictive performance of
WeakRM on hm5C data, and the improvement is more obvious than that
of m7G. This may be because the peak of hm5C has a larger width overall.
Furthermore, through data augmentation, the training is more stable.

It is worth noting that, to the best of our knowledge, there exist only two
computational approaches iRNA5hmC (Liu et al., 2020) and iRNA5hmC-
PS (Ahmed et al., 2020) for predicting hm5C RNA modification from RNA
sequences. Both methods were based on strongly supervised learning of the
same dataset (Delatte et al., 2016) as the one used in our study. Although
both of them achieved positive predicting results (AUROC of 0.70 and
0.86), the performance of WeakRM is even better (AUROC of 0.909),
suggesting the advantage of the proposed computational framework.

3.2.2 WeakRM detected sub-regions containing hm5C
A potentially useful application of the trained WeakRM model is to detect
the sub-regions containing hm5C out of a long input sequence. Since there
exist no high-throughput approaches for profiling hm5C at base-resolution,
ground truth data (base-resolution hm5C sites) was unavailable. As such,
we developed a new peak margin-based method to demonstrate the
effectiveness of our model in identifying the sub-regions containing hm5C
out of a long input sequence. Specifically, the peaks from hMeRIP-seq data
naturally have two margins, one towards the 5′ end and the other towards
the 3′end, which allows us to construct data sets containing both positive
and negative sequences. Ideally, our model should assign higher weights
to the positive side while giving lower weights to the negative. To display
our results, for each sequence, we selected the most important instance and
recorded its relative position to the margin (0 on axis, which indicates the
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Fig. 7. Location of the most important instances reported on the peak-margin datasets.
600nt of sequences were extracted from both the 5′ and 3′ margins of the called peaks,
with 300nt within the peak and 300nt outside of the peak, respectively. With this setting,
hm5C sites are expected to appear on the 3′ half for sequences extracted from the 5′ end
of the peak or the 5′ half for the sequences extracted from the 3′ end of peaks. It is worth
noting that, a single hm5C site can generate a peak of more than 200bp in the MeRIP-seq
data, so the true location of the hm5C site should not be immediately before or after the
edges of the peaks (coordinate 0 of X-axis). These are all consistent with the distribution
pattern of the most important instances of the sequences.

margins of the peaks). We show in Figure 7 the density of these relative
distances. It is clear that the most important instances were enriched on
the positive sides of the corresponding datasets, which provided strong
evidence that our model can discriminate hm5C-containing sub-regions
against the rest of the sequences.

3.3 Case Study 2: Prediction of N4-acetylcytidine

Recently, despite some controversy (Sas-Chen et al., 2020), N4-
acetylcytidine (ac4C) were identified on poly(A) RNA isolated from a
variety of human cells (Dong et al., 2016; Guo et al., 2020). Similar to
hm5C, high-throughput profiling approaches of base-resolution is not yet
available for ac4C. Only low-resolution epitranscriptome data is available
for this modification via acRIP-seq, making it a suitable subject for weakly
supervised learning. When preparing the data, we extracted the ac4C peaks
mutually detected in cell lines as the positive samples. Correspondingly,
the negative data was extracted from the intersection of negative regions
as well. The negative samples were further selected to match the number
and width distribution of the positive samples.

3.3.1 WeakRM outperformed competing algorithms
To the best of our knowledge, only two computation methods, PACES
(Zhao et al., 2019) and XG-ac4C (Alam et al., 2020), have been developed
so far for the prediction of ac4C from sequences, and again, both were
based on strong supervision. Although both approaches achieved positive
prediction performance, they require a very specific sequence pattern and
consider only sequences that have at least five continuous CXX repeats,
which may limit the applicable scope of these methods. Compared to them,
our WeakRM model does not presume any motifs of ac4C in advance and
lets the neural networks learn the sequence patterns associated with ac4C
directly from the complete low-resolution epitranscriptome data, and is
thus applicable to all input sequences with no prerequisites.

Since the webserver of XG-ac4C allows a fixed input of length 415nt,
we constructed our ac4C dataset by selecting the peaks that do not
exceed 415nt and resizing the width of selected peaks to 415nt for a
fair comparison. Following the setting in our previous example, we used
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the same ratio 8:1:1 to split the dataset into the training, validation, and
testing sets. Each dataset contains an equal number of positive and negative
samples.

As shown in Table 4, although trained by strong supervision, XG-
ac4C still achieved positive results on our newly constructed dataset.
Our WeakRM approach performed the best and is more robust than
WSCNNLSTM. Nevertheless, it may not be appropriate to compare
directly WeakRM with existing methods based on strong supervision,
as they have different assumptions and goals, and require different
experimental settings.

Table 4. Predictive performance on ac4C data with standard deviation

Model AUROC AP Accuracy

XG-ac4C 0.786 0.774 0.680
WSCNNLSTM 0.912(±0.012) 0.895(±0.014) 0.835(±0.015)
WeakRM 0.935(±0.007) 0.925(±0.008) 0.863(±0.009)

All methods were evaluated using the same datasets.

3.3.2 WeakRM detected sub-regions containing ac4C
To demonstrate the ability of the proposed WeakRM algorithm in detecting
sub-regions containing ac4C out of a long input sequence, we performed
the peak margin-based testing as described in Case Study 1. As shown in
Figure 8, the high-weight instances were again enriched on the positive
sides of the corresponding datasets, showing strong evidence that our
model is capable of discriminating ac4C-containing sub-regions from the
rest of the sequences. Interestingly, compared with the observed patterns
for hm5C (see Figure 7), the most important instances of ac4C appear
closer to the boundary (coordinate 0 of X-axis), indicating a better spatial
accuracy in detecting RNA-modification containing sub-regions. It may
be because compared with hm5C, the peaks generated from ac4C sites
are narrower and have more accurate boundaries. This may be related
to the experiment protocol (for example fragment size) and peak calling
algorithms (for example sliding window size) used in their original studies.

4 Conclusion
Existing computational approaches for decoding the RNA modifications
are mostly based on strong supervision and ideally require epitranscriptome
data of base-resolution. Due to technical limitations, such data may not be
available for some modifications, such as ac4C and hm5C. We proposed
here the first weakly supervised learning framework WeakRM for learning
RNA modifications from low-resolution epitranscriptome datasets, such
as those generated from hMeRIP-seq and acRIP-seq.

We validated the proposed WeakRM method on three independent
datasets, corresponding to 3 different RNA modification types (m7G,
hm5C, and ac4C) and their respective sequencing technologies (m7G-
MeRIP-seq, hMeRIP-seq, and acRIP-seq). We demonstrated that
WeakRM substantially improved the prediction performance and
applicable scope compared with existing approaches that were based on
strong supervision. Importantly, our model captured sequence patterns
that are consistent to the known motif detected by HOMOR software, and
can vaguely identify regions containing the RNA modifications of interest.
These results together demonstrated the generality and effectiveness of our
approach for learning from low-resolution epitranscriptome data.

Notably, WeakRM also outperformed the existing weakly supervised
learning algorithms for sequence analysis developed on TFBS prediction.
This was made possible by two major improvements from the algorithm
perspective. First, instead of using the widespread instance score merging
approach, we applied an attention-based feature merging strategy to obtain
learnable weights for each instance. Second, data augmentation was
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Fig. 8. Density plot of the most important instance locations on ac4C peak margin datasets.
600nt of sequences were extracted from both the 5′ and 3′ margins of the ac4C peaks,
with 300nt within the peak (positive side) and 300nt outside of the peak (negative side),
respectively. With this setting, the ac4C sites are expected to appear on the 3′ half for
sequences extracted from the 5′ end of the peak or the 5′ half for sequences from the
3′ end of peaks. It is worth noting that, a single ac4C site can generate a peak of more
than 200nt in the MeRIP-seq data, so the true location of hm5C site should not appear
immediately before or after the edges of the peaks (coordinate 0 of X-axis), but with some
shifts. These are all consistent with the observed distribution pattern of the most important
instances of the sequences.

performed by taking advantage of the salient features of the FRIP-seq
protocol via random cropping, which extended the diversity of training
samples.

Given the positive results reported in our study, WeakRM and weakly
supervised learning framework should make a powerful tool for studying
RNA modifications when only low-resolution epitranscriptome data is
available.
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