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Abstract. We are investigating the direct determination and non-perturbative
renormalisation of gluon matrix elements. Such quantities are sensitive to ultra–
violet fluctuations, and are in general statistically noisy. To obtain statistically
significant results, we extend an earlier application of the Feynman–Hellmann
theorem to gluonic matrix elements to calculate a renormalisation factor in the
RI − MOM scheme, in the quenched case. This work demonstrates that the
Feynman–Hellmann method is capable of providing a feasible option for calcu-
lating gluon quantities.

1 Introduction

In this talk we are interested in understanding how the momentum of a nucleon is distributed
amongst its constituent particles. The topic of momentum distribution of the nucleon is an
open area of investigation, with many other works in the area, including [1–7]. We define
〈x〉 f as the total fraction of momentum carried by particle f , so 〈x〉g is the gluon momentum
fraction, 〈x〉u the u–quark, and so on. We then expect the separate components to combine
into the complete nucleon, so in terms of the momentum fractions,

〈x〉g +
∑

q

〈x〉q = 1 . (1)

Directly calculating the gluonic contribution to the nucleon momentum via standard 3–
point function methods often leads to statistically noisy results, so an alternative method of
calculation will be demonstrated here. The work shown here is a direct continuation of that
presented in [8].
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Of particular concern is the direct calculation of the renormalisation factor for the gluon
momentum fraction, Zg. Methods to compute this factor can involve computing the corre-
sponding quark renormalisation factor Zq, and then enforcing the sum rule from eq. (1) in the
continuous scheme to obtain Zg. However, direct computation is also an option of interest to
us, particularly through an RI − MOM renormalisation scheme. In order to help deal with
the issue of statistical noise, we implement a method based on the Feynman–Hellmann (FH)
theorem, referred to as the FH method. From this, the RI − MOM scheme outlined in [9] is
used to obtain Zg.

To begin, noting that we are working in Euclidean space as is typical in lattice calcula-
tions, we consider an operator of the form

O(g)
µν (x, τ) = Fa

µα(x, τ)Fa
να(x, τ), (2)

where

Fa
µν(x, τ) = ∂µAa

ν(x, τ) − ∂νAa
µ(x, τ) − g f abcAb

µ(x, τ)Ac
ν(x, τ) (3)

We also let O(τ) =
∑

x O(x, τ), i.e. we are working at zero momentum transfer. This choice
of operator reflects the decomposition of the energy momentum tensor outlined in [10]. We
now select the components of the above operator to be analysed, choosing

O(b)
g = O

(g)
44 −

1
3

3∑
i=1

O
(g)
ii , (4)

O(b)
g (τ) =

2
3

∑
i

[Ea
i (τ)2 − Ba

i (τ)2] , (5)

and

〈N(p)|O(b)
g |N(p)〉

〈N(p)|N(p)〉
=

1
2E

(−2E2 −
2
3

p2) 〈x〉g , (6)

with Ea
i (τ) = Fa

i4(τ) and Ba
i (τ) = 1

2 εi jkFa
jk(τ), the chromo–electric and chromo–magnetic

fields. The label of (b) here aligns with the convention of previous work. The advantage of
this operator lies in the fact that, as can be seen from eq. (6), the matrix element does not
vanish where p = 0, making calculations more convenient.

2 Feynman–Hellmann Method

The intention behind the FH method is to obtain matrix elements of operators without di-
rectly calculating 3–point correlation functions, which tend to suffer from significant statisti-
cal noise for gluonic quantities, as demonstrated in [1]. Instead, we introduce a modification
to the action, proportionate to a parameter λ:

S → S (λ) = S + λ
∑
τ

O(τ) . (7)

Using this action, gluon 2–point correlation functions 〈A(p)|A(p)〉λ are calculated for various
values of λ. From here, similar to the process outlined in [3], we have

∂

∂λ
〈A(p)|A(p)〉λ

∣∣∣∣∣
λ=0

= − 〈A(p)|: O :|A(p)〉 . (8)

2

EPJ Web of Conferences 245, 06031 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506031



Here : : subtracts the vacuum contributions.
Looking towards the gluonic sector, the usual statement for the Wilson action on the

lattice is Re Trc[1 − UPlaq
µν ] = 1

4 a4g2Fa
µν(x)2 + ..., and so the corresponding chromo–electric

and chromo–magnetic fields definitions are:

1
2
Ea(τ)2 =

1
3
β
∑
x,i

Re Trc[1 − UPlaq
i4 (x, τ)] , (9)

1
2
Ba(τ)2 =

1
3
β

∑
x,(i< j)

Re Trc[1 − UPlaq
i4 (x, τ)] , (10)

where β = 6/g2. The modification we apply to the action in eq. (7) is chosen in such a way
that the modification can be implemented through anisotropic parameters. We select 3

4O
(b) as

the operator to insert, so we have that

S (λ) =
∑
τ

1
2

[Ea(τ)2 + Ba(τ)2] +
3
4
λ
∑
τ

O(b)(τ)

=
∑
τ

1
2

[Ea(τ)2 + Ba(τ)2] − λ
∑
τ

1
2

[−Ea(τ)2 + Ba(τ)2]

= (1 + λ)
1
2

∑
τ

Ea(τ)2 + (1 − λ)
1
2

∑
τ

Ba(τ)2 (11)

where O(b)(τ) is given in eq. (5). Further details of this process are outlined in [3].

3 Renormalisation Factors

As stated, the primary concern of this investigation is to directly determining the relevant
renormalisation factors for the gluon momentum fraction. In general, we expect the quark
and gluon sectors to mix when considering different renormalisation schemes. This mixing
is denoted by (

〈x〉g
〈x〉q

)R

=

(
Zgg Zgq

Zqg Zqq

) (
〈x〉g
〈x〉q

)Lat

. (12)

We note here that we are only considering the quenched case, as in [1, 2], so we have that
Zqg = 0. Due to the sum rule in the renormalised scheme, we have

〈x〉Rg +
∑

q

〈x〉Rq = Zg 〈x〉Lat
g + Zq

∑
q

〈x〉Lat
q = 1 , (13)

with Zq and Zg only coupling dependent and given by

Zg = Zgg, and Zq = ZR
gq + ZR

qq , (14)

where R denotes some renormalisation scheme.
To calculate the renormalisation factor Zg, we first define the propagator and vertex func-

tion, Dλ(p) and Γ(b)(p) respectively, by

Dλ(p) = 〈A(p)A(−p)〉λ , (15)

D0(p)Γ(b)(p)D0(p) =
〈
A(p)O(b)A(−p)

〉
0
. (16)
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By applying the FH method as in eq. (8), we have that〈
A(p)O(b)A(−p)

〉
= −

4
3
∂

∂λ
Dλ(p)

∣∣∣∣∣
λ=0

. (17)

The factor of 4
3 here is due to the fact that the process outlined in eq. (11) inserts the operator

3
4O

(b), and so the shift with λ must be rescaled by this factor. We define renormalisation
factors in terms of operators, so

AR = Z1/2
3 A, and O(b)R = ZgO(b), (18)

=⇒ DR
0 = Z3D0, and Γ(b)R = ZgZ−1

3 Γ(b) . (19)

The renormalisation scheme being considered here is the RI − MOM scheme as shown in
[9], which matches lattice quantities to the respective tree level or Born terms. The tree level
propagator Dλ(p) for a given λ and Lorenz gauge fixing parameter ξ is given by

DBorn
λ (p)ab

µν = δab

 aµν
p2 + λ(p2

4 − p2)
+

bµν
(1 + λ)p2 + ξ

cµν
p2

 , (20)

for

aµν = δµν −
pµpν
p2 −

bµbν
b2 , bµν =

bµbν
b2 , and cµν =

pµpν
p2 , (21)

where bµ = (p4p,−p2). By using the form of DBorn
λ from eq. (20) to find both ∂

∂λ
DBorn
λ and

(DBorn
0 )−1 for a given gauge parameter ξ, we can use the statements for Γ(b)(p) from eq. (16)

and eq. (17) to find that

Γ(b)Born(p)ab
µν =

4
3
δab

[
aµν(p2

4 − p2) + p2bµν
]
. (22)

From here we look to construct an equation for Zg, using eq. (19), eq. (20) and eq. (22).
We could begin with

−
4
3
∂

∂λ
Dλ(p)

∣∣∣∣∣
λ=0

= DBorn
0 (p)Z−1

g Γ(b)BornD0(p) , (23)

and by taking the trace of both sides, we see that

Zg =

(
4
3
∂

∂λ
Tr(Dλ(p))

∣∣∣∣∣
λ=0

)−1

Tr
(
DBorn

0 (p)Γ(b)Born(p)D0(p)
)∣∣∣∣∣

p2=µ2
, (24)

where Tr indicates contraction over all indices (Tr X = Xaa
µµ).

We consider an alternative to eq. (24), for the following reason. Discretisation errors on
the lattice are reduced by minimising each pµ for µ = 1, ..., 4, for a given p2. Due to this,
the most optimal points for examining lattice calculations are at the points where p4 = pi ,
i.e. along the momentum space diagonal. However, the trace of the Born vertex function in
eq. (22) vanishes in this region, so Tr Γ(b)Born(p, p, p, p) = 0, and so it becomes difficult to
examine Zg here as the signal is suppressed. We may choose to examine a different region of
the lattice where the trace of the vertex function does not vanish, or we may instead consider
an alternative formula. Opting for the latter, we choose to multiply both sides of eq. (23) by
Γ(b)Born before taking the trace of both sides, obtaining

Zg =

(
4
3
∂

∂λ
Tr

(
Dλ(p)Γ(b)Born(p)

)∣∣∣∣∣
λ=0

)−1

Tr
(
DBorn

0 (p)Γ(b)Born(p)D0(p)Γ(b)Born(p)
)∣∣∣∣∣

p2=µ2
. (25)

As Tr Γ2 does not vanish in the region of interest, the desired signal is not suppressed and so
this definition is more convenient for a numerical calculation.
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4 Results

Calculations for Zg were conducted on a 243×48 lattice on 1000 configurations, with β = 6.0
in the Laudau gauge (ξ = 0). Three values of the modified action parameter λ are considered,
λ = 0, ±0.0333. As such, in total 3000 configurations were generated.
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Tr
(D

(k
)
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= 0.033
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= + 0.033

Figure 1. Tr
(
Dλ(k)Γ(b)Born

)
for kµ = (k, k, k, k)/

√
4, for 3 values of λ.

All quantities considered here are in units of the lattice spacing. For specificity, we denote
momenta by k and p, where kµ = 2πnµ/Nµ for Nµ the lattice size along axis µ, and pµ =

2 sin
(
kµ/2

)
. To demonstrate the effect of the variation in the action by the λ dependent terms

in eq. (11) figure 1 shows Tr
(
Dλ(k)Γ(b)Born

)
against k2, for 3 values of λ. These points

are taken from along the “4D diagonal”, or where kµ = (k, k, k, k)/
√

4, in order to reduce
discretisation effect due to finite lattice spacing. The relative shift in Tr

(
Dλ(k)Γ(b)Born

)
is

then obtained, or Tr
(
∂
∂λ

Dλ(k)Γ(b)Born
)

at each value of k2, and applied to eq. (25) in order to
determine Zg. The result of this calculation is shown in figure 2. We apply a linear fit with

0 5 10 15 20 25 30 35
k2

0.6

0.8

1.0

1.2

1.4

Z g

0.71(17)

Figure 2. Calculations of Zg using eq. (25) along kµ = (k, k, k, k)/
√

4.
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non-zero gradient, Zg = Ak2 + B, in order to account for discretisation effects for different
values of k2. The shaded region indicates an uncertainty in the fit of 1 standard deviation.

The current analysis finds a value of Zg = 0.71(17). Further work to reduce statistical
effects, e.g. by including more values of kµ, is being conducted. In [11] a value of Zg =

0.748(20) is given at β = 6.0, obtained by considering anisotropic parameters cσ and cτ as
in [12]. This agrees with the obtained result, though more work is required to improve this
calculation.

5 Conclusion

We have demonstrated that the Feynman-Hellmann method provides an alternative to di-
rect calculations of 3–point functions for the renormalisations of gluonic operators. This
is achieved throught the generation of several moderately sized (1000 configurations) en-
sembles of field configurations, each with a differently modified action. Hence so long as
ensemble generation is computationally less costly than calculating 3–point correlation func-
tions, as it typically is in the quenched case, this method should provide a reduction in cost.
Further analysis is required to determine precise cost to benefit ratios once dynamical quarks
are introduced.

The method may be further used by examining the shift in the fermion propagator due to
the change in action from eq. (7). This has the potential to provide a determination of Zgq,
the contribution to renormalisation from mixing between the quark and gluon sectors.
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was supported in part by the STFC under contract ST/G00062X/1. GS was supported by DFG Grant
No. SCHI 179/8-1. RDY and JMZ were supported by the Australian Research Council Grant No.
DP190100297. We thank all funding agencies.
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