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The partonic structure of hadrons plays an important role in a vast array of high-energy and nu-
clear physics experiments. It also underpins the theoretical understanding of hadron structure.
Recent developments in lattice QCD offer new opportunities for reliably studying partonic struc-
ture from first principles. Here we report on the use of the Feynman-Hellmann theorem to study
the forward Compton amplitude in the unphysical region. We demonstrate how this amplitude
provides direct constraint on hadronic inelastic structure functions. The use of external momen-
tum transfer allows us to study the Q2 evolution to explore the onset of asymptotic scaling and
reveal higher-twist effects in partonic structure.
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1. Introduction

Hadron structure functions are ubiquitous in the description of leptonic interactions with
hadrons, encoding: elastic form factors, inclusive electro-(and photo-)production of resonances,
diffractive processes and Regge phenomena, and partonic structure in deep inelastic scattering.
Lattice QCD, however, has really only been able to probe some limited kinematic corners of the
all-encompassing structure functions—primarily being limited to elastic form factors and low(est)
moments of leading-twist parton distributions. The particular interest in partonic structure has mo-
tivated a number of strategies to overcome limitations in the lattice formulation, including: the
Euclidean hadron tensor [1], lattice OPE [2, 3, 4], heavy-quark Compton amplitude [5], symmetry-
improved operator construction [6], factorisable matrix elements1 [8], and the most popular quasi-
PDFs [9, 10] and related quantities [11].

We have embarked on a complementary program to extract the forward Compton amplitude in
the unphysical region [12]—a similar strategy was also suggested by Ji and Jung in Ref. [13]. From
a theoretical perspective, this approach is similar to the Euclidean hadron tensor and heavy-quark
Compton amplitude, however, respectively, we avoid making connection between Euclidean and
Minkowski time coordinates and exploit physical kinematics to ensure the current-current sepa-
ration remains spacelike. Computationally, we are able to take advantage of the efficiency of the
Feynman-Hellmann approach to hadron structure [14, 15] and avoid the need to compute 4-point
functions. Building upon the exploratory study of Ref. [12], here we highlight some recent progress
towards revealing scaling and higher twist-phenomena in the low-order moments of the Compton
amplitude from lattice QCD. For the reconstruction of the x-dependent parton distributions, see
Ref. [16] in these proceedings.

2. Compton amplitude

In this section, we review the familiar features of the hadron tensor and Compton amplitude,
and present our notation. The general description for charged lepton scattering from a hadronic
target is encoded in the hadron tensor:

Wµν(p,q) =
1

4π

∫
d4xeiq·x〈p|[Jµ(x),Jν(0)]|p〉. (2.1)

This can be expressed in terms of the Lorentz decomposition2

Wµν(p,q) =
(
−gµν +

qµqν

q2

)
F1(p ·q,Q2)+

1
p ·q

(
pµ −

p ·q
q2 qµ

)(
pν −

p ·q
q2 qν

)
F2(p ·q,Q2).

(2.2)

The structure functions are related to the imaginary part of the forward Compton amplitude by
the optical theorem, Fi = ImTi/(2π). The Ti are the corresponding scalar functions (analogous to

1Nomenclature attributable to Monahan [7].
2This decomposition is a commonly used form (e.g. the PDG [17]), chosen such that the structure functions map

onto the familar scaling functions in the deep-inelastic scattering region, F1 = 1
2 (q+ q̄) and F2 = x(q+ q̄) (with quark

charges set to unity). Here we will assume spin-averaged quantities, hence spin indices and averaging will be suppressed.
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Eq. (2.2)) of the forward Compton amplitude:

Tµν(p,q) = i
∫

d4xeiq·x〈p|T
{

Jµ(x)Jν(0)
}
|p〉. (2.3)

The Compton amplitude T , at fixed Q2, is an analytic function of the variable p · q with dis-
continuities associated with inelastic particle production for |p · q| > Q2/2. For convenience, we
adopt the variable ω = 2p ·q/Q2. Below the elastic threshold (occuring at |ω|= 1), the amplitude
is purely real and permits a dispersive representation in terms of an integral along the cut:

T1(ω,Q2)−T1(0,Q2) =
4ω2

2π

∫
∞

1
dω
′ ImT1(ω

′,Q2)

ω ′(ω2−ω ′2)
= 4ω

2
∫ 1

0
dxx

F1(x,Q2)

1− (ωx)2 . (2.4)

At the final equality, the integral has been transformed to describe an integral over the Bjorken-x
variable x = 1/ω ′. The integral has been once subtracted, owing to the divergent ω ′ behaviour of
F1. In the following, where necessary, we will the use of the shorthand notation T̃1 to denote the
subtracted quantity. Expanding the geometric series in Eq. (2.4) gives

T̃1(ω,Q2) = 4
∞

∑
j=1

t1,2 j−1(Q2)ω2 j, (2.5)

where the expansion coefficients are given by moments of the structure function:

t1,2 j−1(Q2) =
∫ 1

0
dxx2 j−1F1(x,Q2). (2.6)

Note that there is a singularity at |ω| = 1 on the RHS of Eq. (2.4), which gives rise to a branch
point in T̃1(ω).

At sufficiently large Q2, F1 will be dominated by the leading-twist partonic structure. Here, in
the parton model limit, the moments of the structure function correspond directly to the moments of
the leading-twist parton distributions tPM

1,2 j−1 = 〈x2 j−1〉/2.3 Beyond the parton model, the evolution
in logQ2 is calculable in perturbative QCD. A feature of the present formalism is that, in principle,
one can also study the transition to low Q2—where higher-twist terms become numerically relevent,
and even into the genuinely nonperturbative domain beyond the operator product expansion.

3. Compton amplitude on the lattice

The Feynman-Hellmann relation allows one to relate energy shifts in a weak external field to
matrix elements of corresponding operators—see [15] for general presentation on the application
in lattice field theory. The extension to second order is rather straightforward [12], the details and
lattice subtleties will be presented in a forthcoming publication [18] (see also [19]). To access the
Compton amplitude, the quarks are coupled to a spatially-varying external vector potential by the
modification to the action:

S0→ Sλ = S0 +λµ ∑
x

2cos(q ·x)Jµ(x). (3.1)

3The PM superscript denotes the parton model.

2



Scaling and higher twist in the nucleon Compton amplitude R. D. Young

By a straightforward application of second-order time-independent perturbation theory, with
relativistic normalisation of states, the quadratic energy shift is given by:

∂ 2E
∂λ 2

µ

∣∣∣∣∣
λ→0

= 2∑
X

1
2EX(p+q)

〈p|Jµ |X(p+q)〉〈X(p+q)|Jµ |p〉
Ep−EX(p+q)

+(q→−q) , (3.2)

where the sum runs over all intermediate states of definite momentum p±q. This is precisely the
same sum that appears in the direct evaluation of the time-ordered product in Eq. (2.3), such that
we obtain the result:

∂ 2E
∂λ 2

µ

∣∣∣∣∣
λ→0

=− 1
Ep

Tµµ(p,q), (3.3)

provided one avoids the singularity in Eq. (3.2), such that Ep < EX(p±q). Physically, this restriction
is just the same, as above, that one must stay below the (in)elastic threshold, |p ·q|< Q2/2.

Building upon the first numerical results reported in Ref. [12], we carry out an extensive study
of the Compton amplitude. Here, results are performed on a single 323×64 ensemble at an SU(3)
symmetric point (κ = 0.12090) [20] using a non-perturbatively improved clover action [21]. We
restrict ourselves to the third component local vector current J3 = q̄γ3q, with q3 = 0 and p3 = 0,
such that the energy shift simply isolates T33(p,q) = T1(p ·q,Q2).

Table 1: At fixed q, an example of
the ω values probed by changing the
Fourier momentum on the hadron state.

qL/(2π) pL/(2π) ω

(4,1,0) (1,0,0) 8/17
(1,1,0) 10/17
(1,−1,0) 6/17
(0,1,0) 2/17

For each choice of q, a new propagator must be caclu-
lated in the presence of the weak external field. Given that
the field strengths are weak, the free-field solution serves
as a useful starting point for the conjugate-gradient in-
versions. This makes the Feynman-Hellmann propagators
relatively economical to compute. Also, for each choice
of q a range of ω values can be accessed by changing the
hadron momentum. To highlight this, in Table 1 we give
an example set of ω values probed with the momentum
q = (4,1,0)2π/L.

4. Structure function moments

The lattice Compton amplitude is analysed to determine the low moments of the structure
function. This is most readily achieved by fitting the Compton amplitude using the Taylor series
representation of Eq. (2.5). Unlike a conventional Taylor series fit, the moments are constrained
to be positive definite and monotonically decreasing: t1,1 ≥ t1,3 ≥ t1,5 ≥ . . . ≥ 0. From a fitting
perspective, this is advantageous since the series expansion is rapidly converging and stable to the
order of truncation. While these inequalities add complication to a standard least-squares analysis,
they are straightforward to implement in a Bayesian-style analysis.

For a simplest analysis, the leading moment t1,1 is sampled uniformly on the range (0, tmax).
A finite set of subsequent moments are then uniformly sampled in the range t1,k+2 ∈ (0, t1,k). The
sequences of t1,k are selected according to the likelihood exp(−χ2/2), using the usual definition
for the (correlated) χ2. For the simple case of fitting a single Compton amplitude, a naive Monte
Carlo sampling of the function space is sufficient. Of course a more efficient importance-sampling
algorithm could be used for more complicated higher-dimensional fits.
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Figure 1: Compton amplitude extracted as a function of ω =

2p · q/Q2 for five different Q2 values (2.7 . . .6.9GeV2). The
curve shows a combined fit, as described in the text, including
the leading-order perturbative QCD evolution (at a factorisation
scale µ2 = 4GeV2).

In Figure 1, we show the
u-quark only contribution to the
Compton amplitude as a function
of ω for a selection of Q2 values.
We first perform a Bayesian fit, as
described, to the Compton ampli-
tude at single values of Q2 inde-
pendently. For each Q2, we are
able to resolve clear signals for the
lowest two moments, as displayed
in Fig. 2. The results are certainly
consistent with the Bjorken scaling
behaviour anticipated from pertur-
bative QCD, however the statisti-
cal precision is limited.

To improve the statistical sig-
nal, we consider fitting all Q2 val-
ues simultaneously. For the combined fit, we include the leading perturbative evolution of the
moments. The ω dependence of the combined fit is shown in Figure 1 and the corresponding evo-
lution of the moments in Figure 2. We observe that the predicted Q2 evolution is rather mild,4 and
it is clear that nothing definitively can be said about high-twist with the present statistics.
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Figure 2: The data points display the extraction of the lowest two moments of T1 from independent fits at
fixed Q2. The error bars on the points indicate the 68% confidence level of the parameter determination. The
curve displays the result of a combined fit, including the leading predicted behaviour of perturbative QCD.

To investigate higher twist, we look to a contribution that is expected to vanish in the scaling
region. In particular, we consider the interference structure function, where one current couples to
the u quark and the other to the d. We choose a normalisation on the interference term such that
the full proton structure function, with quark charges, is given by:

T p
1 =

4
9

T uu
1 +

1
9

T dd
1 −

2
9

T {ud}
1 . (4.1)

4Of course one should expect to vary Q2 over orders of magnitude in order to resolve logarithmic evolution.

4



Scaling and higher twist in the nucleon Compton amplitude R. D. Young

Here, {ud} indicates symmetrisation over the flavour indices T {ud} = T ud +T du.
The interfence term can be isolated by considering appropriate combinations of background

field strengths with differing signs on the coupling to u and d quarks. In the left panel of Figure 3 we
show the interference structure function for three values of Q2. In comparison to the uu Compton
amplitude, the interference contribution is noticably smaller in magnitude and there appears to be
a much clearer dependence on Q2. In particular, the signal seems to be significantly suppressed at
higher-Q2, in line with the expectation that this term should vanish in the scaling region.

0.0 0.2 0.4 0.6 0.8
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Figure 3: Compton amplitude for the ud interference structure function (left panel) and the Q2 dependence
of the corresponding leading moment (right panel).

We repeat a similar Bayesian analysis of the ω depedence, as above, to extract the leading
moment of the interference structure function. In this case, we don’t have the same positivity
bound as for the flavour-diagonal contributions. However, since the total structure function should
be positive for any value of the quark charges, the interference term must satisfy the constraint:∣∣∣T̃ {ud}

1 (ω,Q2)
∣∣∣2 ≤ 4T̃ uu

1 (ω,Q2)T̃ dd
1 (ω,Q2). (4.2)

Similarly, since each moment can be written as an integral over a “cross section”, an analagous
inequality holds moment-by-moment in the series expansion in ω . We sample the interference
moments uniformly within the positivity bounds dictated by the corresponding flavour-diagonal
terms. The resultant fits are shown by the continuous curves in the left panel of Fig. 3.

The Q2 dependence of the lowest moment of the ud structure function is shown in the right
panel of Figure 3. Here we directly see the emerging result that the interference term is suppressed
at large Q2 and a signal is apparent at low Q2—and hence has the natural interpretation as a higher-
twist effect. Further details on this novel observation will be reported in a forthcoming publication.

5. Summary

We have presented recent progress on the study of the nucleon Compton amplitude in lattice
QCD. In particular, we have demonstrated that we can directly probe partonic structure. Impor-
tantly, the partonic nature is accessible by kinematic selection, rather than working at the level of
effective operators. Our results show consistency with scaling phenomena that is expected at large
Q2, and reveal a distinct signature of higher-twist effects in the interference ud structure function.
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