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Abstract
In 1979 Valiant introduced the complexity class VNP of p-definable families of polynomials, he
defined the reduction notion known as p-projection and he proved that the permanent polynomial
and the Hamiltonian cycle polynomial are VNP-complete under p-projections.

In 2001 Mulmuley and Sohoni (and independently Bürgisser) introduced the notion of border
complexity to the study of the algebraic complexity of polynomials. In this algebraic machine model,
instead of insisting on exact computation, approximations are allowed. In this short note we study
the set VNPC of VNP-complete polynomials. We show that the complement VNP \ VNPC lies
dense in VNP. Quite surprisingly, we also prove that VNPC lies dense in VNP. We prove analogous
statements for the complexity classes VF, VBP, and VP.

The density of VNP \ VNPC holds for several different reduction notions: p-projections, border
p-projections, c-reductions, and border c-reductions. We compare the relationship of the VNP-
completeness notion under these reductions and separate most of the corresponding sets. Border
reduction notions were introduced by Bringmann, Ikenmeyer, and Zuiddam (JACM 2018). Our
paper is the first structured study of border reduction notions.
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1 Introduction

Valiant’s famous determinant versus permanent conjecture [23] states that the algebraic
complexity class VBP (polynomials that can be written as determinants of polynomially
large matrices of linear polynomials) is strictly contained in the class VNP (polynomials
that can be written as Hamilton cycle polynomials of polynomially large matrices of linear
polynomials, see Section 2.1). In 2001 Mulmuley and Sohoni in their Geometric Complexity
Theory approach towards resolving Valiant’s conjecture [20] stated a strengthening of the
conjecture (VNP 6⊆ VBP) that is based on border complexity, which was stated independently
for circuits by Bürgisser [8, hypothesis (12)] (VNP 6⊆ VP). The advantage of working with the
closures of complexity classes is that this makes a large set of tools from algebraic geometry
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Figure 1 The known inclusions of the classical algebraic complexity classes. VF is the class of
families of polynomials with polynomially sized formulas, VBP is the class of families of polynomials
that can be written as polynomially large determinants of matrices of linear polynomials, VP is the
class of families of polynomials with polynomially sized circuits. VNPC is the set of VNP-complete
families. From a topological perspective such a depiction can be misleading, because VNPC lies
dense in VNP and also VNP\VNPC lies dense in VNP (under p-projections), see Theorem 1.

and representation theory available, see e.g. [4]. The hope is that VBP and VNP can still be
separated in this coarser setting. Indeed, it is a major open question in geometric complexity
theory whether or not VBP = VBP, see [10]. If VBP = VBP, then Valiant’s conjecture must
in principle be provable by algebraic geometry, provided it is true. If VNP ⊆ VBP, then the
Geometric Complexity Theory approach fails unsalvageably, while Valiant’s conjecture could
still be true.

In Boolean complexity theory the relationship between complexity classes is often depicted
in diagrams. An analogue for the classical algebraic complexity classes is given in Figure 1.
In this paper we see that such a depiction presents misleading topological information: We
study the set of VNP-complete polynomials and its complement and see that surprisingly
both lie dense in VNP, see Theorem 1. We prove an analogous result for VF, VBP, and VP.
This highlights that this topology is very coarse.

We take the methods for proving Theorem 1 as a basis for studying VNP-completeness
under different reduction notions, in particular we study border-p-projections, which were
recently introduced in [6] with a focus on the border-p-projections of the iterated 2×2 matrix
multiplication polynomial. We get several separations of the power of different reduction
notions in Theorem 2. Our paper gives the first analysis of border reduction notions and
their relative complexity in comparison to non-border reduction notions. Moreover, our
paper is the first to study border oracle complexity.

2 Preliminaries

2.1 Algebraic Complexity Theory
Fix a field F. An algebraic circuit is defined as a rooted directed acyclic graph which has
its leaf vertices labelled with variables {x1, x2, . . . , xn} and field constants and the internal
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nodes labelled with × (“multiplication gates”) and + (“addition gates”). By induction over
the circuit structure, each internal node computes a polynomial f ∈ F[x1, x2, . . . , xn]. The
output of a circuit is defined as the polynomial computed at its root. The size of an algebraic
circuit is defined as the number of nodes in the circuit.

A sequence of natural numbers (tn)n∈N is called polynomially bounded if there exists a
polynomial function p such that for all n ∈ N we have tn ≤ p(n). A sequence (f) = (fn)n∈N
of multivariate polynomials is defined to be a p-family if the number of variables in fn and
the degree of fn are both polynomially bounded. The complexity class VP is defined as the
set of all p-families that have algebraic circuits whose size is polynomially bounded. If we
only allow skew circuits, i.e., circuits for which each multiplication gate is adjacent to a leaf
node, then we get the complexity class VBP. If instead we insist on the circuits to be rooted
trees, then we get the complexity class VF. We have VF ⊆ VBP ⊆ VP, see e.g. [22].

For fixed natural numbers N and M , a polynomial f ∈ F[x1, x2, . . . , xN ] is said to be
a projection of another polynomial g ∈ F[y1, y2, . . . , yM ] if f = g(α1, α2, . . . , αM ), where
αi ∈ {x1, x2, . . . , xN} ∪ F. This is denoted by f ≤ g. A p-family (f) is said to be the p-
projection of another p-family (g), denoted by (f) ≤p (g), if there is a polynomially bounded
function t : N→ N such that fn ≤ gt(n) for all n.

p-projections are the first type of reductions introduced by Valiant. Another natural
example of reductions are c-reductions, an algebraic analogue of oracle complexity. The
oracle complexity Lg(f) of a polynomial f with oracle g is defined as the minimum size of a
circuit with +,×, and g-oracle gates (the output at these gates is the computation of the
polynomial g on the input values. The arity of a g-oracle gate equals the number of variables
in g) that can compute the polynomial f . Consider two p-families (f) and (g). The p-family
(f) is said to be a c-reduction of (g), denoted by (f) ≤c (g), if there exists a polynomially
bounded function t : N→ N such that Lgt(n)(fn) is polynomially bounded.

Let Sn denote the symmetric group on n symbols. Let Cn ⊆ Sn be the subset of length
n cycles. The Hamiltonian cycle family (HC) is the sequence of homogeneous degree n
polynomials HCn on n2 many variables defined via HCn :=

∑
π∈Cn

∏n
i=1 xi,π(i).

We define the class VNP as the set of all p-families (f) that satisfy (f) ≤p (HC). This is
known to be equivalent to (f) ≤c (HC). Often a different definition is given that is closer
in spirit to the counting complexity class #P, where VNP is defined as a summation of a
VP function over the Boolean hypercube, but Valiant [23] showed that these definitions are
equivalent. In particular, it is easy to see that VP ⊆ VNP. Valiant’s famous conjectures are
VF 6= VNP, VBP 6= VNP, and VP 6= VNP. To find candidates outside of VF, VBP or VP,
the following notion of VNP-completeness is useful.

A p-family (f) is defined to be VNP-p-complete if (f) ∈ VNP and (HC) ≤p (f). The set
of all VNP-p-complete p-families is denoted by VNPC(≤p). Analogously, a p-family (f) is
defined to be VNP-c-complete if (f) ∈ VNP and (HC) ≤c (f). The set of all VNP-c-complete
p-families is denoted by VNPC(≤c).

The main motivation behind VNP-completeness comes from the following simple obser-
vation: If we would find (g) such that both (g) ∈ VNPC(≤p) and (g) ∈ VP, then for all
(f) ∈ VNP we would have (f) ≤p (HC) ≤p (g), and by transitivity (f) ≤p (g), which implies
(f) ∈ VP, thus VP = VNP. Analgously for VF and VBP instead of VP.

A p-family (f) is defined to be VF-p-complete if (f) ∈ VF and (g) ≤p (f) for every
(g) ∈ VF. The set of all VF-p-complete p-families is denoted by VFC(≤p). The iterated
3 × 3 matrix multiplication polynomial family is an example of an element in VFC(≤p),
see [2]. A p-family (f) is defined to be VBP-p-complete if (f) ∈ VBP and (g) ≤p (f) for
every (g) ∈ VBP. The set of all VBP-p-complete p-families is denoted by VBPC(≤p). The
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determinant polynomial family is an example of an element in VBPC(≤p), see [22]. A
p-family (f) is defined to be VP-p-complete if (f) ∈ VP and (g) ≤p (f) for every (g) ∈ VP.
The set of all VP-p-complete p-families is denoted by VPC(≤p). There exist specific graph
homomorphism polynomial families that are in VPC(≤p), see the recent [18]. The search for
natural problems in VPC(≤p) was in fact a long-standing open problem.

2.2 Border complexity
In this section we define so-called border complexity analogues to the reduction notions in
Section 2.1. This was first done explicitly in [6]. In our definitions we will use the polynomial
ring F[ε] and the field extension F(ε). The reduction notions from Section 2.1 are interpreted
over this field extension. Therefore, even if g is a polynomial over F, we can have f ≤ g with
a polynomial f over F(ε).

A polynomial f over F is called a border projection of a polynomial g over F (denoted by
f E g) if f + ε · h ≤ g for some polynomial h over F[ε]. Clearly f ≤ g implies f E g. We
extend this definition to sequences of polynomials as follows. A sequence of polynomials (f)
is defined to be a border p-projection of another sequence of polynomials (g), denoted by
(f) Ep (g), if there is a polynomially bounded function t : N → N such that fn E gt(n) for
all n.

The border oracle complexity Lg(f) of a polynomial f over F with oracle access to a
polynomial g over F is defined as the smallest c such that there exists a polynomial h over
F[ε] such that LgF(ε)(f + ε · h) ≤ c, where LgF(ε) denotes the oracle complexity over the field
F(ε). Clearly Lg(f) ≤ Lg(f) for all f and g. Consider two p-families (f) and (g). The
p-family (f) is said to be a border c-reduction of (g), denoted by (f) Ec (g), if there exists a
polynomially bounded function t : N→ N such that Lgt(n)(fn) is polynomially bounded.

A p-family (f) is defined to be VNP-border-p-complete if (f) ∈ VNP and (HC) Ep (f).
The set of all VNP-border-p-complete p-families is denoted by VNPC(Ep). Analogously, a
p-family (f) is defined to be VNP-border-c-complete if (f) ∈ VNP and (HC) Ec (f). The
set of all VNP-border-c-complete p-families is denoted by VNPC(Ec).

In geometric complexity theory the common type of reduction is similar to p-projections
and border-p-projections, but instead of replacing variables with constants and variables,
variables are replaced by affine linear polynomials. All proofs in this paper also work with
this version of p-projections and border-p-projections.

Let C be a complexity class definable by circuits over F and F(ε) such as VF, VBP, VP,
or VNP. A p-family (g) over F is defined to lie in the closure C of such a class C over F if
there exists a function e : N→ N and a p-family (h) over F[ε] such that (h) ∈ C(F(ε)) and
for every n ∈ N and i ≤ e(n) there exist polynomials fn,i over F with

hn := gn + εfn,1 + · · ·+ εefn,e.

The class VNPC(≤p) is not defined by circuits. A p-family (f) over F is defined to be in
VNPC(≤p) if (HC) ≤p (f) + ε · (g) for some p-family (g) over F[ε]. Analogously for ≤c,
Ep, and Ec. The class VNP \VNPC(≤p) is also not defined by circuits. A p-family (f) is
defined to be in VNP \VNPC(≤p) if (f) + ε · (g) ∈ VNP(F(ε)) for some p-family (g) over
F[ε] and (HC) 6≤p (f) + ε · (g). Analogously for ≤c, Ep, and Ec, but we will not study these
three notions in this context. The closures of VFC, VBPC, VPC, VF \VFC, VBP \VBPC,
VP \ VPC are defined analogously by replacing VNP and using the respective complete
polynomials.

As noted in [6], taking the closure is not a closure operator in the usual sense of the
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definition. Still, we define a sub C ⊆ C ′ to be dense in C ′ if C = C ′. For all the sets VF,
VBP, VP, VNP, it is a major open question if they are equal to their closure, see [10].

3 Main results

Using a fairly elementary proof we obtain the following surprising density results.

I Theorem 1. Let ≤ be one of ≤p, ≤c, Ep, or Ec. Then the set VNPC(≤) is a dense subset
of VNP. Moreover, the complement VNP\VNPC(≤p) is a dense subset of VNP. Additionally,
VFC(≤) and VF \ VFC(≤p) are both dense in VF; VBPC(≤) and VBP \ VBPC(≤p) are
both dense in VBP; and VPC(≤) and VP \VPC(≤p) are both dense in VP.

We leave it as an open problem if VNP \ VNPC(≤) is dense in VNP for the other three
reduction notions. Oracle complexity is obviously too coarse to study VF-completeness,
VBP-completeness, or VP-completeness.

As a second result we initiate the comparison of classical and border reduction notions.
We give an almost complete separation of the sets of VNP-complete polynomials under the
different reduction notions as follows.

I Theorem 2. Over F ∈ {Q,R,C} we have the following diagram of inclusions (solid arrows)
and non-inclusions (dashed arrows).

VNPC(≤p)

VNPC(≤c)

VNPC(Ep)

VNPC(Ec)

[13]

Cor. 5 and Lem. 6
Lem. 7 and Lem. 8

Cor. 5 and Lem. 6

The inclusions (solid arrows) are obvious. The non-inclusions are proved in the respective
lemmas as annotated in the figure.

4 Related work

The relative power of algebraic reduction notions has been studied before: [13] show with a
short argument that

VNPC(≤p) $ VNPC(≤c).

They do not study border complexity though.
Border complexity has already been an object of study in algebraic complexity theory for

bilinear maps since 1980 (see [3]) and is still a very active area of research today [17, 16].
The study of border complexity for polynomials has recently gained significant momentum,
see for example [10, 15, 6, 5]. In fact, [6] prove that VFC(≤p) $ VFC(Ep). Their proof is
based on a fairly involved analysis in [1].

The Boolean world knows many types of reductions. Their relative power has been
analyzed for example in [11, 12]. The notion of c-reductions in algebraic complexity theory is
relatively new [7]. The difference between p-projections and c-reductions plays a prominent
role in [19].
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5 Proof of Theorem 1

We start with an observation of [13] that we state simultaneously for VNP, VF, VBP, and VP.
It is clear that the result holds in much higher generality.

I Proposition 3 ([13]). Fix any field F̃. Given a p-family (f) over F̃ such that each fn has
the following form: fn = q(rgn + cg2

n) for some p-family (g) over F̃, some fixed polynomial r
over F̃ of any degree d2, some fixed polynomial q over F̃ of even degree d1 that is also a perfect
square, and some constant c ∈ F̃. Let s be a univariate polynomial of odd degree > d1 + 2d2.
Then for all n: s 6≤ fn. In particular for the constant family (s) we have (s) 6≤p (f).

Proof. The proof is a very minor generalization of [13, Lemma 3.2]. Consider a univariate
polynomial s(y) of odd degree M > d1 + 2d2. Let degy(h) denote the degree of a polynomial
h in the variable y, when considered as a polynomial over the polynomial ring in all its other
constituent variables. We claim that s cannot be written as a projection of fn, for any n. Let
γ be any linear projection map. Then, degy(γ(fn)) ≤ max[degy(γ(q · r · gn)), degy(γ(q · g2

n))].
Also, note that degy(γ(q)) ≤ d1 and degy(γ(r)) ≤ d2.

If degy(γ(gn)) ≤ d2, then degy(γ(fn)) ≤ d1 + 2d2. If γ(fn) = s(y), this contradicts the
fact that s(y) has degree M .

Otherwise, degy(γ(fn)) = degy(γ(q · g2
n)). But q · g2

n is a perfect square polynomial, hence
degy(γ(fn)) is even, but s(y) has odd degree. Hence, γ(fn) 6= s(y). J

Proof of Theorem 1. First we prove that VNPC(≤p) is dense in VNP. Let (f) ∈ VNP be
arbitrary. Define

hn := fn + εy(HCn − fn),

a polynomial over F(ε). Let γ denote the projection map γ : y 7→ 1
ε . We observe γ(hn) = HCn

and hence (HC) ≤p (f) + ε · (g) with gn = y(HCn − fn). Therefore (f) ∈ VNPC(≤p).
The result for the other reduction types is immediate, because p-projections are the weakest

notion of reduction we consider, in particular VNPC(≤p) ⊆ VNPC(≤c), VNPC(≤p) ⊆
VNPC(Ep), and VNPC(≤p) ⊆ VNPC(Ec).

For the other part, let (f) ∈ VNP be arbitrary. Define

hn := fn + εf2
n

a polynomial over F(ε). Obviously, (h) ∈ VNP(F(ε)), but according to Proposition 3 (taking
F̃ = F(ε), r = q = 1 and c = ε), we have (s) 6≤p (h) for the constant family (s) and hence
(HC) 6≤p (h).

The analogous statements about VF, VBP, and VP that are claimed in the theorem are
proved in exactly the same way by replacing (HC) by a complete polynomial family for the
respective class. J

6 Proof of Theorem 2

We start with a classical lemma about taking roots.

I Lemma 4. Suppose g = fr for some f ∈ F[x] of degree d and constant r, where x denotes
a set of variables. Then f can be computed by a g-oracle circuit of size poly(d). In particular,
if gn = frn for all n, then (f) ≤c (g).
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Proof. (The proof follows that of a special case of [14], the proof technique borrows from
[24] and [9]). Consider a polynomial g = fr, where f has degree d. Notice that for every
infinite field F and every nonzero polynomial f over F[x], there exists α ∈ F|x|, such that
f(α) 6= 0. Also, shifting the variables f(x) 7→ f(x + α) is an invertible operation since you
may re-shift at the input nodes of the circuit. Thus, by appropriately shifting we may assume
w.l.o.g. that g(0) 6= 0. Rescaling at the output node is also an invertible operation, so we
may assume w.l.o.g. that g(0) = 1. Then, we can write:

f = (1 + (g − 1))1/r

Using the binomial theorem for rational coefficients, this gives us:

(1 + (g − 1))1/r = 1 + 1
r

(g − 1) +
(

1/r
2

)
(g − 1)2 + · · ·+

(
1/r
d

)
(g − 1)d + · · ·

Since g(0) = 1, then g − 1 = 0 mod (x). Thus, (g − 1)i has trailing monomial degree larger
than d for i ≥ d+ 1. So,

f = 1 + 1
r

(g − 1) +
(

1/r
2

)
(g − 1)2 + · · ·+

(
1/r
d

)
(g − 1)d mod

(
xd+1)

where xd+1 denotes the set of all monomials of degree d+ 1. We have the oracle circuit for g.
The modular operation can be done via Strassen’s homogenization trick [21]. Specifically,
each homogeneous part can be written as a linear combination of (d+ 1) p-projections of g.
Thus, computing roots using oracle gates is possible with circuits of size poly(d). This
proves the first part. The second part follows from the fact that p-families have polynomially
bounded degrees. J

As an immediate corollary we obtain:

I Corollary 5. (HC2) ∈ VNPC(≤c).

Proof. By Lemma 4 we have (HC) ≤c (HC2). Since (HC) ∈ VNPC(≤c), for every (f) ∈
VNP we have (f) ≤c (HC). By transitivity we have (f) ≤c (HC2). Therefore (HC2) ∈
VNPC(≤c). J

I Lemma 6. (HC2) 6∈ VNPC(Ep).

Proof. (HC2) ∈ VNPC(Ep) is equivalent to (HC) Ep (HC2). Since the constant p-family (x)
satisfies (x) Ep (HC), if we prove that (x) 6Ep (HC2), then (HC) 6Ep (HC2) by transitivity.
Indeed, (x) Ep (HC2) is equivalent to the existence of a polynomially bounded function
t : N→ N and a p-family (g) over F[ε] such that ∀n : x+ εgn ≤ (HCt(n))2. All projections
of (HCt(n))2 are squares over F(ε), but for any gn over F[ε], x + εgn is not a square of a
polynomial over F(ε), which can be seen as follows. For the sake of contradiction, assume
that x + εgn = f2 for some polynomial f over F(ε). Without loss of generality, we can
assume that f is univariate, i.e., f =

∑d
i=0 cix

i, because otherwise we could set all other
variables to 0, which is a ring homomorphism. We denote by g[i], the coefficient of xi in any
polynomial g. Clearly, we have c2

0 = ε · gn[0]. Suppose c0 6= 0. Therefore, c0 is an element of
degree greater than 0 in F[ε]. Now, we consider the coefficient of xd on both sides. Clearly:

2cdc0 +
∑

0<i,j<d
i+j=d

cicj = ε · gn[d]
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So, cdc0 is a rational function of the form p(ε)
q(ε) where both p and q are in F[ε] and q does

not divide p. Thus, cd = p(ε)
r(ε) where r(ε) in F[ε] has degree greater than 0 and r does not

divide p. Now consider the coefficient of x2d on both sides. We get:

p2(ε)
r2(ε) = f2[2d] = ε · gn[2d]

But gn[2d] is in F[ε]. This gives us a contradiction! So, c0 = 0. But then, f = x · h where h
is another polynomial over F(ε). Then, we have:

x+ εgn = x2h2

which is clearly not possible since the left-hand side has a linear term. This completes the
proof. J

We now construct (P ) ∈ VNPC(Ep) \VNPC(≤p) via

Pn := z2(yHCn + y2HC2
n)

where y and z are variables outside the set of variables in HCn, for all n.

I Lemma 7. (P ) 6∈ VNPC(≤p)

Proof. This is a direct consequence of Proposition 3. J

I Lemma 8. (P ) ∈ VNPC(Ep).

Proof. Consider the projection map γε:

y 7→ ε2 and z 7→ 1
ε

We have γε(Pn) ≤ Pn and γε(Pn) = HCn + ε2HC2
n, hence HCn E Pn for all n and thus

(HC) Ep (P ). J
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