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Uniform and graded bed-load sediment transport in a degrading channel with

non-equilibrium conditions

ABSTRACT

Bed-load transport plays a critical role in riveonphological change and has an important
impact on river ecology. Although there is good enmstiinding of the role of the variation of
river bed grain size on transport dynamics in éguim conditions, much less is understood for
non-equilibrium conditions when the channel is @itaggrading or degrading. In particular, the
relative role of different grain sizes in the prdina and hindering of the transport of coarse and
fine fractions in a degrading channel has yet tanbestigated. The current study attempts to
provide new understanding through a series of fllemperiments done using uniform and
graded sediment particles. The experiments reveaadser grain-size fractions for a poorly-
sorted sediment, relative to uniform-sized sedimesduced the transport of finer grains and
finer fractions enhanced the transport of coarséngr This hindering-promotion effect, caused
by relative hiding and exposure of finer and codrsetions, increased with bed slope and
decreased with relative submergence. In particakrelative submergence increased, the graded
fractions tended towards behaving more like theifaum-sized counterparts. Also, the bed-load
parameter of the graded fractions increased maite avrise in bed slope than observed for the
uniform-sized counterparts. These results revedtmddegrading channel conditions, such as
downstream of a dam, bed-load equations develagredniform bed sediment are inappropriate

for use in natural river systems, particularly imumtain streams. Furthermore, changes in river
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bed composition due to activities that enhanceitipait of hill-slope sediment, such as fire,
logging, and agricultural development, are likely tause significant changes in river

morphology.

Keywords. Graded sediment, Exposure, Hiding, Flume ExpanisjeNon-equilibrium.

1. Introduction

Coarse sediment transport in streams is responsisleshaping channel morphology and
controlling morphodynamics (Baewert & Morche, 2014gbault et al.,, 2016). Accurate
guantification of morphodynamic processissneeded for assessment of hazards along river
corridors, such as flooding and pollutant transpamt for defining water and land management
plans that mitigate their impact (Chien & Wan, 1988y & Church, 2009; Graf, 1971; Raven
et al., 2010; Wilcock, 1998). Although traditioriad-load equations are often used for practical
reasons (e.g., Engelund & Hansen, 1967; Meyer-Retduller, 1948), most of them have been
developed based on laboratory data, collected win®alified conditions and using uniform bed
sediment (Li et al., 2016). Uncertainties in prédits when using these traditional formulas are
in the range of orders of magnitude. Thus, bed-Esgbssment in rivers and streams is still one
of the major challenges facing fluvial hydraulicedaiver engineers, especially in channels with

heterogeneous sediment (Bagnold, 1977).

The mobility of sediment in high gradient rivers sgnificantly affected by grain sorting
(Hammond et al., 1984), hiding-protrusion effeddshworth & Ferguson, 1989), low relative

roughness (Bathurst et al., 1983), presence ofraordayer (Lenzi, 2004), and slope (Lamb et
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al., 2008). Traditionally the movement of a singéeticle from a uniform bed in any flow can be
determined by flow velocity, sediment size, andirsedt density (Allen, 1985; Leeder, 1982),
but in graded sediment there is a non-negligiblerigranular effect that must be considered. As
bed-load field measurements are often difficult@ke in a range of flow and channel
conditions, flume experiments have long been a peryerful tool for exploring the process of

bed-load transport (Howard, 2008).

A large body of research has attempted to investifeese processes in graded channels under
equilibrium conditions (Kuhnle, 1993; Kuhnle, 1996uhnle et al., 2013; Wilcock & Crowe,
2003; Wilcock & Kenworthy, 2002; Wilcock et al., @0, Wilcock & McArdell, 1993). Along
with field-gathered data, this approach has ledhi development of bedload equations for
graded sediment (e.g., Almedeij et al.,, 2006; Pé&tdtanga Raju, 1996; Wilcock & Crowe,
2003; Wilcock & Kenworthy, 2002; Wu, 2004). Howeyaon-equilibrium conditions, when the
channel is either aggrading or degrading, are rddfieult to study. For aggrading conditions a
number of models are available (Belleudy & Sogred0; Cui, 2007; Cui et al., 1996; Hu et
al., 2014; Qian et al., 2015; Wu &Wang, 2008), lbuthe case of degrading channels, such as
downstream of a dam, only a few computational nodet available because experimental data
often is insufficient to produce models that perfowell over a range of flow and channel
conditions (e.g., Dietrich et al., 1989; Fuller989 Pender et al., 2001; Willetts et al., 1998)aIn
degrading channel, Li et al. (2016) showed thatisgreatly promotes the transport of gravel,
whilst gravel significantly reduces the transpoftsand, as others observed for equilibrium
conditions (e.g., Venditti et al., 2010; WilcockMcArdell, 1997; Wilcock et al., 2001; Wilcock

& Crowe, 2003). However, the relative role of diffat grain sizes in this promotion and
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hindering effect has yet to be investigated. Faneple, although Li et al. (2016) investigated
the promotion and hindering effect of uniform samdi gravel, no study in degrading channels
has considered how the mobility of grain size fad of graded sediment differ from their
counterpart uniform-sized sediment. Nor has angysexamined how this difference between
graded and uniform-sized sediment varies with Kegnael conditions, such as bed slope and
relative submergence. Such information would previtw understanding on why promotion
and hindering occur for graded sediment. The ctrstndy attempts to provide this new

understanding.

The current paper presents a series of laboratangef experiments done using uniform and
graded sediment, designed to shed further liglitherfractional bed-load sediment transport rate
for poorly-sorted beds in degrading channel coadgi The main goals are to compare transport
rates of uniform and poorly-sorted sediment andr tiaariation with bed slope and relative
submergence under degrading conditions. In paatictihe study aims to determine the mobility
of different graded fractions in comparison to dewpart uniform-sized sediment, and the effect
of fine fractions on the total transport rate cidgd sediment. The current research offers insight
into the significance of grain size variation invgming the transport of coarse-grained river

beds.

2. Experimental methods

2.1. Experimental procedure
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A total of 86 experiments were done in a 12-m lohgrm wide, and 0.5-m deep rectangular
glass-wall flume channel with an adjustable slop@/hich water was recirculated (Fig. 1). Four
naturally rounded groups of uniform sediment pletof mean size 5.17, 10.35, 14, and 20.7
mm were used; along with a graded sediment mixtlntained using the four uniform sizes

mixed with equal proportions in weight (Table 1).

Fig.1.

Table 1.

The slopes used in the experimental runs varied 8d05 to 0.035 m/mepending on the grain

sizes used (Table 2). Nets were installed at thstrepm end of the flume to straighten and
smooth the flow into the channel. The first 4 m dnel last 2.8 m contained fixed bed sections
that were artificially roughened to prevent locabgr and back-water effects (see Fig.1). In

between, the flume was filled with mobile sedimpatticles.

Table 2.

These mobile sediment particles were level flaa epth of ~ 5-@lso (Wheredsg is the median
particle size). These sediment particle were reested and completely re-mixed (for graded
sediment) after each run. A 0.5 m x 0.2 m trap wsesl to collect the transported sediment at the
downstream end of the flume. Whenever the trap fiiesl, another trap was immediately
substituted. The flow was controlled using a tdégat the downstream end of the flume and the

water depth was measured using two moving poingemand three ultrasonic sensors operating
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at 25 Hz (see Fig.1). The first ultrasonic sensas ywositioned in the upstream fixed bed section
and the second and third in the movable bed secliba first and second point gauges were
located in the first and last parts of the movdigd.

Prior to each experiment, the slope of the flumes @&, the tailgate was raised, the flume was
slowly filled with water at the downstream end teyent disruption of the initial bed, the pump
was turned on, and the inlet valve and tailgatellsil@pened to create a low, steady initial flow
condition. This initial inflow was set such that sediment transport took place. Finally, the flow
was gradually increased to the desired value arld benstant. Uniform flow was then
established by adjusting the tailgate and seditnansport sampling began. The duration of each
run depended on the sediment transport rate, tigerlaransport rate, the shorter the duration,
which varied between 1 to 30 min, and the duratibbed-load sampling was several seconds to
several minutes. This sampling allowed the tempcmahge in the transport rate and transported
bed-load composition to be determined. The bedesltipw velocity flow depth, and sediment
transport rate were measured continuously durihgxglerimental runs. Mean flow velocity was
estimated using the travel time of a tracer (pataspermanganate). Due to the short duration
of the experiments, no sediment feeding was dohe. dffect of not-feeding sediment in the
short duration experiments, only affected the @astr-end of the channel, and did not affect the
morphology in the downstream sections of the stre@on the sediment transport rates
determined at the channel outline (Binns & Da SiR@09). Thus, all experiments were done for
a degrading bed. All flows were fully turbulent asupercritical except for tests 1 and 2 in which

the Froude number, Fr, was 0.97 and 1, respect(felgle 2).
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The flume experiments were designed to test tHednte of bed slope and relative submergence
on the sediment transport rate, bed-load compositmd mobility of the uniform-sized and
graded bed sediment. Relative submergence wasededisRS = y/d, wherey is the flow depth
andd is the bed grain size (equal to the mean panticmeter for uniform sediment awlg, for
graded sediment). To determine the impact of bepeslruns were done in which the flow depth
was held constant and the bed slope was increasshing that the discharge, shear stress, and
sediment transport rate increased with each rurihgutelative submergence remained constant
for a given sediment size (Table 2) (For exampae, the bold and highlighted rows in table 2).
To test the effect of both relative submergence lzadl slope, runs were done for in which the
discharge was held constant and the bed slopeasete causing the flow depth and relative
submergence to decrease, and the shear stresstharefpre, the sediment transport rate to

increase.

2.2. Sediment transport rate estimation

The collected sediment samples were dried and wdighfter each run and the sediment
transport rate [kg/m/s] during each run was esehgShvidchenko & Pender, 2000) according
to:

G
b*T

q= (1)

whereG is the collected and dried mass of sediment [kgk the sampling time [s], arfais
width of the flume [0.5 m]. The bed-load transpiotensity| [s*] rate, defined as the relative

number of transported particles in a time unit, estémated as follows:
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wherem is the number of particles transported [-] durangme intervall [s] over an area oA
[m?], andN is the number of surface particles in this argalus, the intensity is defined as the
fraction of all particles transported every secoflde number of particles in a bed-load sample
was estimated by dividing the total dried masshef $ample by the mass of one particle. The
value ofN, which is the number of surface particles in theaawas estimated by assuming a

surface layer with a thickness equal to one gramdterd:

162 3)(
\ 2 Add=a)

Ndés
6
164
whereqa is bed material porosity [-] andifor uniform bed sediment is equal to the mean grain
size [m] and for graded sediments is equaldig[m]. The transport intensity can be also

interpreted as the probability that a particle irbed area with length and unit width is

transported every second. The area of the movauevas estimated as follows:
A=b*| 4

wherel is the effective length of the movable bed [m],ishhwas determined using different
colored sediment set at a downstream interval of &long the flume (Fig. 1). The length of
transport was estimated by the presence of thekgscwithin the bed-load samples. The

Einstein bed load parameter was calculated as d€8henko & Pender, 2000):

q (5)

qr =
f,p.\/(s-Dgd °
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wheres is specific gravity of sediment [-]p, is sediment density [kg/mJ is gravitational
acceleration [m/sjd for uniform bed sediment is equal to the meanngsae [m] and for graded
sediments is equal ts [m], andf; for uniform bed sediment [-] is equal to 1 and ¢paded
sediment is equal to the proportion of size fractitn the bed surface [-]. For graded bedss

equal to the fractional sediment transport rate $hields stresg;* [-], was estimated as:

* = 4 _ RS
9(ps—-p) (s-1d

(6)

where 7 = pgR,Sis the mean bed shear stress [N/mlis fluid density [kg/ni], R, is the

hydraulic radius of the bed [m], a&ds bed slope [-].

In graded mixtures, there is a relative hinderind promotion effect on the transport of fine and
coarse fractions, respectively, that has a sigaiticmpact on the sediment transport rate of these
sediment particles (Einstein, 1950; Parker & Klirmgm 1982; Wu, 2004). To examine this

effect, fractional bed-load mobility was estimagsdifollows (Parker & Klingman, 1982):

Pi
Fi (7)

<
I
|

wherePi [-] andFi [-] are the fractional proportions by weight iretbollected bed-load sample
and within the bed sediment in the flume, respettivihe mobility can be less than 1 (reduced

mobility), equal to 1 (equal mobility), or highédran 1 (enhanced mobility). Reduced/enhanced

9
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mobility takes place whenever the mobility of actran is lower/higher than what is anticipated
for its uniform-sized counterpart, due to hidinghousion effects.

The critical shear stress for incipient motion lre tequilibrium condition has previously been
used for assessing the role of exposure and hmhniged-load transport rates (e.g., Wilcock &
Kenworthy, 2002). However, as it proves challengm@ssess precisely the critical shear stress,
the effect of hindering and promotion in gradedisetit can also be tested using the fractional
sediment transport rate. HeFey, [-] is calculated, representing the impact of ectien with
diameterm [m] on sediment transport of fraction[-] in graded sediment in comparison to its
counterpart in uniform-sized sediment. Thg impact factor can be estimated as proposed by Li

et al. (2016):

— & qn—uni
Frm _( 1:n J/( fn—uni ] (8)

whereq, is unit-width volumetric transport rate [kg/m] fénactionn, uni is for uniform-sized
sediment,f, is volumetric proportion of fractiom in the bed surface [-], and, thug, for
uniform-sized bed sediment is equal to 1. If theeffifractions impact on the mobility of the
coarser fractions, the impact factor is greatenthaOn the contrary, if the coarser fractions

impact the finer fractions, the impact factor issd¢han 1.

3. Results and discussion

3.1. Effect of bed slope and relative submergence on the sediment transport rate

10
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For tests at the same relative submergence, thenesedtransport rate of the uniform-sized
sediment increased with bed slope (Fig. 2a-d).ekample, for bed material of 5.17 mmR8=

13.9, an increase in bed slope from 0.0075 to Or@%6lted in a 98% increase in the transport
rate. This increase is associated with an increaskscharge, and, therefore, shear stress. The
effect of bed slope on the Einstein bed load paramfer a constant flow depth of 9 cm is
compared between the different uniform-sized aradiend sediment in Fig. 2e. The figure shows
that for a given bed sediment, the bed-load pammetreased with an increase in bed slope,

more so for the graded fractions, except for thersest fraction of 20.7 mm.

Fig. 2.

A comparison between the effect of bed slope orbt#tload parameter of graded fractions of
5.17, 10.35, 14, and 20.7 mm and their uniformesigediment counterpart is shown in Fig. 3.
The finer fractions were more stable than the cempatrt uniform-sized sediment. For example,
at a bed slope of 0.015 m/m and a flow depth o€mQthe bed-load parameter of uniform bed
sediment of 5.17 and 10.35 mm was 380 and 310 tmgéer than that of the counterpart graded
fractions (Fig. 3a, b). However for sediment ofizesof 14 mm, the bed-load parameter was
almost equal for the uniform-sized and graded sedinfFig. 3c). Also, at a grain size of 20.7
mm the bed-load parameter of the graded fractios va times greater than its uniform-sized
counterpart at a bed slope of 0.03 m/m and a flepttd of 10 cm (Fig. 3d). This difference in
mobility of the finer and coarser fractions betwées uniform-sized and graded sediment can be

attributed to the greater hiding and protrusion tezurs in the later (Li et al., 2016; Wang et al.

11
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2015). Despite this difference, the transport cdtéhe graded fractions and their uniform-sized

material counterpart increased at a similar rath ed slope.

Fig. 3.

Figure 4 shows an example of the change in therseditransport rate with bed slope and
relative submergence for the tests done at the lamedischarge. In these tests an increase in
bed slope corresponded to a decrease in relativmengence. The figure shows that the bed-
load transport rate increased with bed slope armledsed with relative submergence. For
example, for bed material of 5.17 mm, an increas®dd slope from 0.005 to 0.015 mMm
corresponding with a decrease RS from 17.4 to 11.6, and caused a 99% increase an th
transport rate. This result occurred because tharsdtress was higher at the steeper slopes and
lower submergences. A comparison between the grfadetions and their uniform counterparts
(Fig. 4c) shows that the finer fractions thdwg (e.g., 5.17 and 10.35 mm) had a lower transport
rate, the 14 mm fraction had an equal transpoet aatl the coarsest fraction of 20.7 mm had a

higher transport rate, than their uniform-sizedrtetparts.

Fig. 4.

The transport rate increased with relative submergebecause higher submergences were
related to higher shear stress (Fig. 5). For exanfpt uniform sizes of 5.17, 10.35, 14, 20.7
mm, and the graded sediment, a 1.6, 1.3, 1.3ahdb 1.2 times increase RS at a constant bed

slope of 0.01 m/m, caused 15, 41, 52, 5 and 16stinereases in transport rate, respectively.

12
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Fig.5.

3.2. Effect of relative submergence on the Einstein bed-load parameter and inter-granular effects

Figure 6a shows the relation between the Einstedilbad parameter and relative submergence
at a fixed bed slope of 0.015 m/m for uniform bedtenials of 5.17, 10.35, 14 mm, and the
graded sediment. There was a clear increase in b#tkload parameter with relative
submergence, and the rate of increase was faidgrient with sediment size. In contrast,
relative submergence had a much greater impacherseédiment transport rate of the coarser

fractions within the graded mixture (Fig. 6b).

Fig. 6.

Figure 7 shows the degree to which the impact fad¢k) changed with relative submergence.
For exampleF, represents the impact of three fractions (5.1733,0and 14 mm) on the
sediment transport behavior of fraction 20.7 mmsuRks show that foF,o and Fi4, IF was
higher than 1 meaning finer fractions caused arease in the transport rate of fractions of 20.7
and 14 mm in comparison to their uniform-sized d¢erparts. FoiF;o, the IF values at both
slopes of 0.015 and 0.03 m/m were lower than Icatdhg that the other fractions (5.17, 14, and
20.7 mm) caused a relative decrease in the seditremport rate of fraction of 10 mm in
comparison to the uniform counterpart. These oladgiems show that fine fractions enhanced the
sediment transport rate of the coarser fractiorts tae total sediment transport rate, and that
coarser fractions reduced the transport rate @f ffractions. This result is in accordance with

results for equilibrium (e.g., Venditti et al., ZDMWilcock & Crowe, 2003; Wilcock et al., 2001;

13
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Wilcock & McArdell, 1997) and degrading conditiofls et al., 2016). This behavior occurred
because finer fractions tended to hide betweenebimd coarser fractions, whilst the coarser
fractions were more exposed to the higher hydroetyodorces further up in the flow (Einstein,
1950). Fig. 7 also reveals that the values for the coarser fraction deceased withsa i
relative submergence and that the opposite treadraed for the finer fractions. In other words,
as relative submergence increased the gradeddinactended towards behaving more like their
uniform-sized counterparts. This change is likalyhave occurred because at high relative
submergences there was a larger shear stresstharg],the hydrodynamic exposure of the
different fractions differed less than at lower m#logences, acting to reduce the promotion-

hindering effect on transport rates.

Fig. 7.

3.3. Effect of Shields stress on the bed-load parameter

A comparison between the effect of Shields streasshe bed-load parameter for the graded
fractions and their uniform-sized counterpartshieven in Fig. 8. In the case of 10.35 mm, the
Shields stress and the Einstein bed load paranf@tamiform sediment was higher than the
graded fraction (Fig. 8a). But for sizes of 14 &d7 mm, these parameters were lower (Fig. 8D,
c¢). This hindering and promotion effect is in adzorce with the results of Li et al. (2016) for
mixtures of sand and gravel, and attributed todlevated hiding and protrusion of fine and

coarse fractions within a graded mixture.

Fig.8.

14
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3.4. Effect of bed slope on fractional bed load mobility

Generally the mobility of the coarser fractionspdrser thardsg), was higher than 1 but the
mobility of finer fractions (finer thadsg) was lower than 1 (Fig. 9), as one might expemnfthe
results in Fig. 8. The highest relative mobilitydregs to the 20.7 mm fraction, followed by 14,
10.35, and 5.17 mm. These differences are refléntdue bed-load grain size distribution; in all
experimental runs the transported sediment of tlaelegl mixture was coarser than the bed
surface composition. An example is shown in FigfdkGhe run done at a bed slope of 0.03 m/m

andRS= 6.4.

The results in Fig. 8 also reveal that an increadeed slope caused the mobility of the coarser
fractions to increase from 1 at a slope of 0.01&nt6 1.8 at a slope of 0.03 m/m, but the finest
fraction reduced from 0.3 to 0.13 (Fig. 9). Thisuehe with bed slope occurred because at higher
slopes there is a larger shear stress, and, treater hydrodynamic exposure of the coarser
grains than would occur at lower slopes, makingy ttetative mobility higher at steeper slopes.
Thus, the finer fractions at higher slopes becaehatively less exposed than would occur at

lower slopes, in comparison to the coarser frastion

Fig 9.

Fig 10.

3.5. Implications and recommendations

The results have a number of implications. Firsijar degrading channel conditions, such as

downstream of a dam, coarser grain-size fractions ipoorly-sorted sediment, relative to
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352

uniform-sized sediment, reduce the transport oérfigrains and finer fractions enhance the
transport of coarse grains. This result confirmet ted-load equations developed for uniform
bed sediment are inappropriate for use in natiral systems. Second, this hindering-promotion
effect, caused by relative hiding and exposurararfand coarse fractions, increased with bed
slope and decreased with relative submergence., Tiigrrors in the use of these equations are
likely to be most critical in mountain streams. rohithe large difference in the transport rates of
the fine and coarse fractions of the poorly-sogediment in comparison to their uniform-sized
counterparts also indicates that changes in begasition could lead to significant changes in
river morphology. Such changes could be causedabyra or human activities, such as fire,
logging, flow diversion, road construction, andiegftural development. Thus, measures that
control the input of catchment-stored sediment tlifér to those of river bed sediment, such as
soil conservation techniques, grass-planting, efftation, buffer strips, and check-dams, will

play a useful role in reducing river morphologichhnge.

Future studies should consider a wider range oflp@orted sediment than studied here, and a
wider range of non-equilibrium conditions, suchirashe case of an upstream sediment supply.
Also, information on the changes in bed surface mmsition and topography, and in the near-
bed flow field, would further elucidate the impadtbed slope and relative submergence on the

effect of hiding and exposure on the mobility obdg-sorted sediment.

4. Conclusions

Laboratory experiments in a recirculating flume éawantified the effect of bed grain size

variation on bed-load transport. A comparison betwef the sediment transport behavior of
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373

fractions in a graded mixture with their countetpamiform-sized sediment revealed that finer

fractions had a lower Shields stress and Einsteth Ibad parameter. In contrast, the coarser
fractions had a higher Shields stress and Einsiihload parameter. This difference in mobility

was attributed to hiding and protrusion effects] aras most pronounced at higher slopes and
lower relative submergences. In particular, astikegasubmergence increased the graded
fractions tended towards behaving more like theifaum-sized counterparts. Also, the bed-load
parameter of the graded fractions increased madteam increase in bed slope than observed for
the uniform sized counterparts. These results teuader degrading channel conditions, such as
downstream of a dam, bed-load equations develagedniform bed sediment are inappropriate
for use in natural river systems, particularly imuntain streams. The large difference in the
transport rates of the fine and coarse fractionthefpoorly-sorted sediment in comparison to
their uniform-sized counterparts also indicated ttenges in bed composition could lead to
significant changes in river morphology. Thus, nueas that control the input of hill-slope

erosion, due to activities such as fire, loggingd agricultural development, could play an

important role in reducing river morphological cgan
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Figure captions

Fig. 1. Experimental flume set-up (not to scale).

Fig. 2. Effect of bed slope on sediment transport rate at a constant flow depth for uniform-sized
bed sediment of (a) 5.17 mm, (b) 10.35 mm, (c), 14 mm and (d), 20.7 mm for uniform-sized and
(e) graded sediment.

Fig. 3. A comparison between the effect of bed slope on the bed load parameter for uniform-
sized and graded sediment.

Fig. 4. Effect of (a) bed slope and (b) relative submergence on the sediment transport rate for
uniform sediment of 5.17 mm, and (c) effect of bed slope on sediment transport rate for all
uniform-sized and counterpart fractions.

Fig. 5. A comparison between the effect of relative submergence on sediment transport for
uniform-sized and graded sediment.

Fig. 6. Effect of relative submergence on (@) the Einstein bed load parameter for graded and
uniform-sized sediment at a bed slope of 0.015 m/m and (b) total and fractional sediment
transport rate of the graded mixture at a bed slope of 0.015 m/m.

Fig. 7. Effect of relative submergence on the impact factor.

Fig. 8. Effect of Shields stress on the Einstein bed load parameter for uniform-sized and
counterpart graded fractions of (a) 10.35 mm, (b), 14 mm, and (c) 20.7 mm.

Fig. 9. Effect of bed slope on fractional bed |load mobility.

Fig. 10. Size distribution of transported sediment and the bed surface at a bed slope of 0.03 m/m
and a rel ative submergence of 6.4.



Table 1. Bed sediment properties

Fractions Median
Mean size, d Density,
Sediment (mm) sizeds, O @[] Porosity [-] Grain shape [-]
(mm) (kgm?)
(mm)

Fine gravel 48-55 5.17 - - 2,391 04 Rounded
Medium gravel 1 9.5-11 10.35 - - 2,375 04 Rounded
Medium gravel 2 13-15 14 - - 2,900 0.45 Rounded

Coarse gravel 19-22.4 20.7 - - 2,552 0.43 Rounded
Graded (mixture) 4.8-22.4 135 125 1.7 2,567 0.37 Rounded




Table 2. Summary of the experimental conditions

. Relative
ID d (mm) Slope, S y (cm) Mean velocity, V submergence, | Fr[-] Re[-] T ;. V* ]
(m/m) (m/s) []
RS[-]

1 9 0.92 174 0.97 60,882 0.055 0.062
2 0.005 10 1 19.3 1 71,428 0.060 0.065
3 ’ 11 11 21.2 1.05 84,027 0.065 0.068
4 12 12 23.2 11 97,297 0.070 0.071
5 6 0.83 116 1.08 40,161 0.057 0.064
6 7 0.96 135 1.15 52,500 0.066 0.068
7 8 11 154 1.24 66,666 0.074 0.073
8 0.0075 9 12 17.4 1.27 79,411 0.082 0.076
9 10 1.27 19.3 1.28 90,714 0.090 0.080
10 11 133 21.2 1.29 | 101,597 0.098 0.083
11 12 14 23.2 13 113,513 0.106 0.087
12 517 4 0.75 7.0 1.19 25,862 0.052 0.061
13 ' 5 0.94 9.6 1.24 39,166 0.065 0.067
14 6 1.08 116 131 52,258 0.076 0.073
15 0.01 7 113 135 1.37 61,796 0.088 0.079
16 8 1.25 154 144 75,757 0.099 0.084
17 9 13 174 1.38 86,029 0.110 0.088
18 10 1.35 19.3 1.36 96,428 0.121 0.092
19 4 1 7.0 1.58 34,482 0.078 0.074
20 5 111 9.6 1.59 46,296 0.096 0.083
21 0015 6 1.25 116 1.61 60,483 0.114 0.090
22 ’ 7 13 135 1.58 71,093 0.130 0.097
23 8 14 154 1.59 84,848 0.149 0.103
24 9 15 174 1.6 99,264 0.165 0.108
25 8 111 7.7 1.25 67,340 0.051 0.084
26 001 9 12 8.6 1.27 79,411 0.056 0.089
27 ' 10 13 9.6 13 92,857 0.062 0.093
28 11 142 10.6 1.36 | 108472 0.067 0.097
29 7 11 6.7 1.32 60,156 0.067 0.097
30 8 12 77 1.35 72,727 0.076 0.103
31 0.015 9 131 8.6 1.39 86,691 0.085 0.109
32 10.35 10 142 9.6 143 | 101,428 0.093 0.114
33 ' 11 1.52 10.6 1.46 116,111 0.101 0.119
34 4 1.05 338 1.67 36,206 0.080 0.106
35 5 1.25 4.8 1.78 52,083 0.098 0.118
36 6 15 5.7 1.95 72,580 0.117 0.128
37 0.03 7 1.62 6.7 1.96 88,867 0.135 0.138
38 8 1.75 7.7 1.97 | 106,060 0.153 0.146
39 9 1.85 8.6 1.96 | 122,426 0.170 0.154
40 10 2 9.6 2.00 | 142,857 0.187 0.162
41 8.5 13 6.0 1.42 82,462 0.044 0.107
42 9 14 6.4 1.48 92,647 0.045 0.109
43 0.015 10 15 7.1 1.40 74,230 0.050 0.115
44 11 1.65 7.8 158 | 126,041 0.055 0.120
45 14 12 1.75 8.5 1.61 | 141,891 0.059 0.125
46 6.5 119 4.6 1.49 61,388 0.045 0.109
47 7 13 5 1.56 71,093 0.048 0.113
48 0.02 8 14 5.7 1.58 84,848 0.054 0.120
49 9 16 6.4 17 105,882 0.061 0.126
50 10 1.8 7.1 1.81 128,571 0.067 0.133




51 11 2 7.8 1.92 152,777 0.073 0.138
52 4.5 11 3.2 1.63 42,736 0.049 0.113
53 5 13 35 1.85 54,166 0.053 0.118
54 6 155 4.2 2.00 75,000 0.063 0.128
55 003 7 1.67 5 2.00 91,328 0.072 0.138
56 ’ 8 175 5.7 1.97 106,060 0.082 0.148
57 9 19 6.4 2.02 125,735 0.091 0.155
58 10 21 7.1 212 150,000 0.101 0.162
59 11 24 7.8 2.25 157,145 0.108 0.165
60 8 1.66 38 1.87 100,606 0.068 0.147
61 0.03 9 2.08 4.3 221 137,647 0.076 0.155
62 10 2.17 4.8 2.19 155,000 0.084 0.163
63 6 142 29 1.85 68,709 0.056 0.134
64 7 161 33 1.92 88,046 0.065 0.144
65 0.0325 8 1.76 38 1.99 106,666 0.074 0.153
66 20.7 9 1.92 4.3 2.06 127,058 0.083 0.162
67 10 2.2 4.8 2.22 157,142 0.091 0.170
68 5 1.35 24 1.92 56,250 0.051 0.128
69 6 15 29 1.95 72,580 0.061 0.139
70 0.035 8 18 38 2.03 109,090 0.080 0.159
71 9 2 4.3 212 132,353 0.089 0.168
72 10 2.3 4.8 2.32 164,285 0.098 0.176
73 10 151 8 1.52 107,857 0.068 0.115
74 0.015 11 1.65 8.8 1.58 126,041 0.075 0.120
75 12 18 9.6 1.65 145,945 0.080 0.124
76 7 1.25 5.6 1.50 68,359 0.065 0.112
77 8 1.33 6.4 1.50 80,606 0.074 0.120
78 0.02 9 156 7.2 1.66 103,235 0.082 0.126
79 Graded 10 17 8 171 121,428 0.091 0.132
80 11 1.82 8.8 1.75 139,027 0.099 0.138
81 5 1.25 4.0 1.78 52,083 0.072 0.118
82 6 15 4.8 1.95 72,580 0.085 0.128
83 003 7 1.67 5.6 201 91,328 0.098 0.138
84 ' 8 1.72 6.4 1.94 104,242 0.111 0.147
85 9 1.85 7.2 1.96 122,426 0.124 0.155
86 10 2 8 201 142,857 0.136 0.162

(Froude number (Fr), Reynolds number (Re), Shields stress (t*), and shear velocity (V*)).
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