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Abstract

This paper presents a novel unsupervised
abstractive summarization method for opin-
ionated texts. While the basic variational
autoencoder-based models assume a uni-
modal Gaussian prior for the latent code
of sentences, we alternate it with a recur-
sive Gaussian mixture, where each mixture
component corresponds to the latent code
of a topic sentence and is mixed by a tree-
structured topic distribution. By decoding
each Gaussian component, we generate sen-
tences with tree-structured topic guidance,
where the root sentence conveys generic
content, and the leaf sentences describe spe-
cific topics. Experimental results demon-
strate that the generated topic sentences are
appropriate as a summary of opinionated
texts, which are more informative and cover
more input contents than those generated
by the recent unsupervised summarization
model (Bražinskas et al., 2020). Further-
more, we demonstrate that the variance of
latent Gaussians represents the granularity
of sentences, analogous to Gaussian word
embedding (Vilnis and McCallum, 2015).

1 Introduction

Summarizing opinionated texts, such as product
reviews and online posts on websites, has at-
tracted considerable attention recently along with
the development of e-commerce and social media.
Although extractive approaches are widely used
in document summarization (Erkan and Radev,
2004; Ganesan et al., 2010), they often fail to pro-
vide an overview of the documents, particularly
for opinionated texts (Carenini et al., 2013; Gerani
et al., 2014). Abstractive summarization can over-
come this challenge by paraphrasing and general-
izing an entire document. Although supervised ap-
proaches have seen significant success with the de-
velopment of neural architectures (See et al., 2017;

Fabbri et al., 2019), they are limited to specific
domains, e.g., news articles, where a large num-
ber of gold summaries are available. However, the
domain of opinionated texts is diverse; manually
writing gold summaries is therefore costly.

This lack in gold summaries has motivated prior
work to develop unsupervised abstractive summa-
rization of opinionated texts, e.g., product reviews
(Chu and Liu, 2019; Bražinskas et al., 2020; Am-
playo and Lapata, 2020). While they generated
consensus opinions by condensing input reviews,
two key components were absent: topics and gran-
ularity, i.e., the level of detail. For instance, as
shown in Figure 1, a gold summary of a restaurant
review provides the overall impression and details
about certain topics, such as food, ambience, and
service. Hence, a summary typically comprises di-
verse topics, some of which are described in detail,
whereas others are mentioned concisely.

From this investigation, we capture the topic-
tree structure of reviews and generate topic sen-
tences, i.e., sentences summarizing specified top-
ics. In the topic-tree structure, the root sentence
conveys generic content, whereas the leaf sen-
tences mention specific topics. From the generated
topic sentences, we extract sentences with appro-
priate topics and levels of granularity as a sum-
mary. Regarding extractive summarization, cap-
turing topics (Titov and McDonald, 2008; Ison-
uma et al., 2017; Angelidis and Lapata, 2018) and
topic-tree structure (Celikyilmaz and Hakkani-
Tur, 2010, 2011) is useful for detecting salient sen-
tences. To the best of our knowledge, this is the
first study to use the topic-tree structure in unsu-
pervised abstractive summarization.

The difficulty of generating sentences with tree-
structured topic guidance lies in controlling the
granularity of topic sentences. Wang et al. (2019)
generated a sentence with designated topic guid-
ance, assuming that the latent code of an input sen-
tence can be represented by a Gaussian mixture
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Summary (Set of Topic Sentences)

The food here is fantastic, easily the best sub sandwiches in the Arizona area. 

food ambience service

overall

small small small

large

Review Sentences

The sandwiches are inexpensive and are, in my opinion, the best Italian subs in AZ.

The shop is local and family run, so I definitely choose it over a lot of the large national chains.

The staff are extremely friendly and will always go above and beyond in creating a delicious sandwich. 

You will not be let down by the great food that they make here!

decompose

recursive GMM

(1) training:

(2) inference:

encode

decode

decode

Figure 1: Outline of our approach. (1) The latent distribution of review sentences is represented as a recursive
GMM and trained in an autoencoding manner. Then, (2) the topic sentences are inferred by decoding each Gaussian
component. An example of a restaurant review and its corresponding gold summary are displayed.

model (GMM), where each Gaussian component
corresponds to the latent code of a topic sentence.
While they successfully generated a sentence re-
lating to a designated topic by decoding each mix-
ture component, modelling the sentence granular-
ity in a latent space to generate topic sentences
with multiple granularities remains to be realized.

To overcome this challenge, we model the sen-
tence granularity by the variance size of the la-
tent code. We assume that general sentences have
more uncertainty and are generated from a latent
distribution with a larger variance, analogous to
Gaussian word embedding (Vilnis and McCallum,
2015). Based on this assumption, we represent the
latent code of topic sentences with Gaussian dis-
tributions, where the parent Gaussian receives a
larger variance and represents a more generic topic
sentence than its children, as shown in Figure 1.
To obtain the latent code characterized above, we
introduce a recursive Gaussian mixture prior to
modelling the latent code of input sentences in re-
views. A recursive GMM consists of Gaussian
components that correspond to the nodes of the
topic-tree, and the child priors are set to the in-
ferred parent posterior. Because of this configu-
ration, the Gaussian distribution of higher topics
receives a larger variance and conveys more gen-
eral content than lower topics.

The contributions of our work are as follows:
• We propose a novel unsupervised abstractive

opinion summarization method by generating
sentences with tree-structured topic guidance.
• To model the sentence granularity in a latent

space, we specify a Gaussian distribution as the
latent code of a sentence and demonstrate that
the granularity depends on the variance size.
• Experiments demonstrate that the generated

summaries are more informative and cover
more input content than the recent unsupervised
summarization (Bražinskas et al., 2020).

2 Preliminaries

Bowman et al. (2016) adapted the variational
autoencoder (VAE; Kingma and Welling, 2014;
Rezende et al., 2014) to obtain the density-based
latent code of sentences. They assume the genera-
tive process of documents to be as follows:

For each document index d∈{1, . . . , D}:
For each sentence index s∈{1, . . . , Sd} in d:

1. Draw a latent code of the sentence xs∈Rn:

xs ∼ p(xs) (1)

2. Draw a sentence ws:

ws|xs∼p(ws|xs)=RNN(xs) (2)

where p(ws|xs) =
∏
t p(w

t
s|w<t

s ,xs) is derived
by an recurrent neural networks (RNN) decoder.
The latent prior is a standard Gaussian: p(xs) =
N (xs|µ0,Σ0). The likelihood of a document and
its evidence lower bound (ELBO) are given by (3)
and (4), respectively:

p(W1:Sd)=

Sd∏
s=1

{∫
p(ws|xs)p(xs)dxs

}
(3)

Ld=
Sd∑
s=1

{
Eq(xs|ws)

[
log p(ws|xs)

]
−DKL

[
q(xs|ws)|p(xs)

]}
(4)

q(xs|ws) = N (xs|µ̂s, Σ̂s) is the variational dis-
tribution with µ̂s = fµ(ws), Σ̂s = diag[fΣ(ws)]
where fµ and fΣ are RNN encoders.

By representing sentences by Gaussians rather
than vectors, the decoded sentence from the in-
termediate latent code between two sentences is
grammatical and has a coherent topic with the two
sentences. Extending their work, we construct the
prior as a recursive GMM and infer the topic sen-
tences by decoding each Gaussian component.
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Figure 2: Outline of our model. We set a recursive Gaussian mixture as the latent prior of review sentences and
obtain the latent posteriors of topic sentences by decomposing the posteriors of review sentences.

3 RecurSum: Recursive Summarization

In this section, we explain our model, RecurSum.
Figure 2 shows the outline. The latent code of re-
view sentences is obtained as a recursive GMM
(3.1), and topic sentences are inferred by decod-
ing each Gaussian component (3.2). A summary
is then created by extracting the appropriate topic
sentences (3.3). We introduce additional compo-
nents to improve the quality of topic sentences
(3.4) and explain why general/specific content is
conveyed by the root/leaf topics, referring to the
analogy with Gaussian word embedding (3.5).

3.1 Generative Model of Reviews
We assume the generative process of reviews to
be as follows. We refer to the set of sentences in
multiple reviews of a specific product as instance.
Compared to Bowman et al. (2016), we explicitly
model the topic of review sentences as follows:

For each instance index d∈{1, . . . , D}:
For each sentence index s∈{1, . . . , Sd} in d:

1. Draw a topic of the sentence zs∈{1, . . . ,K}:
zs ∼ Mult(θ) (5)

2. Draw a latent code of the sentence xs∈Rn:

xs|zs ∼
∏K
k=1 p(xs|zs=k)δ(zs=k) (6)

3. Draw a review sentence ws:

ws|xs∼p(ws|xs)=RNN(xs) (7)

where the topic distribution is tree-structured, and
its prior is set to be uniform. In (6), we assume a
recursive GMM as the latent prior of a review sen-
tence (δ is a Dirac delta). Each mixture component

corresponds to the latent distribution of a sentence
conditioned on a specific topic, p(xs|zs=k):
p(xs|zs=1) = N (xs|µ0,Σ0) (8)

p(xs|zs=k) = q(xs|zs=par(k))

= N (xs|µ̂d,par(k), Σ̂d,par(k)) (k 6= 1)
(9)

where par(k) denotes the parent of the k-th topic.
q(xs|zs=par(k)) is the approximated latent pos-
terior of the parent topic sentence as derived later
in Section 3.2. We assume that the latent posterior
of the parent sentence is appropriate as the latent
prior of its child sentences.

Under our generative model, the likelihood of
an instance and its ELBO are given by (10) and
(11), respectively:

p(W1:Sd)=

Sd∏
s=1

∫
p(ws|xs)p(xs|zs)p(zs)dxsdzs (10)

Ld=
Sd∑
s=1

{
Eq(xs|ws)

[
log p(ws|xs)

]
−Eq(xs|ws)q(zs|ws)

[
log q(xs|ws)−log p(xs|zs)

]
−Eq(zs|ws)

[
log q(zs|ws)−log p(zs)

]}
=

Sd∑
s=1

{
Eq(xs|ws)

[
log p(ws|xs)

]
−DKL

[
q(zs|ws)|p(zs)

]}

−
K∑
k=1

Sd∑
s=1

{
θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]}
(11)

where q(xs|ws)=N (xs|µ̂s, Σ̂s) is the latent pos-
terior of a sentence s, inferred by an RNN encoder.
θ̂s,k = q(zs = k|ws) is the variational topic dis-
tribution and inferred by the tree-structured neu-
ral topic model (TSNTM; Isonuma et al., 2020).
More details are provided in Appendix A.1.



3.2 Inference of Topic Sentences

From the latent posterior of review sentences, we
infer the latent posterior of each topic sentence us-
ing the M-step of the EM algorithm. We define
the variational distribution of the latent code of
a topic sentence as (12) and compute the Gaus-
sian parameters as (13) and (14) that maximize∑Sd

s=1 Eq(xs|ws)q(zs|ws)
[
log q(xs|zs)

]
as follows:

q(xs|zs)=
∏K
k=1N (xs|µ̂d,k, Σ̂d,k)

δ(zs=k) (12)

µ̂d,k=

∑Sd
s=1 θ̂s,kEq(xs|ws)[xs]∑Sd

s=1 θ̂s,k
=

∑Sd
s=1 θ̂s,kµ̂s∑Sd
s=1 θ̂s,k

(13)

Σ̂d,k=

∑Sd
s=1 θ̂s,kEq(xs|ws)[(xs−µ̂d,k)(xs−µ̂d,k)

>]∑Sd
s=1 θ̂s,k

=

∑Sd
s=1 θ̂s,k{Σ̂s+(µ̂s−µ̂d,k)(µ̂s−µ̂d,k)>}∑Sd

s=1 θ̂s,k
(14)

From these latent posteriors, we generate the topic
sentences for each instance using the respective
mean not a sample: ŵd,k ∼ p(wd,k|µ̂d,k) =
RNN(µ̂d,k). Similar to Bražinskas et al. (2020);
Chu and Liu (2019), we assume that the average
latent code represents the common contents of the
corresponding topic, while specific contents are
distributed apart from the mean. Therefore, de-
coding the mean rather than a sample would be
desirable for generating a summary.

3.3 Extraction of Summary Sentences

Next, we create a summary by extracting appropri-
ate sentences from the generated topic sentences.
As gold summaries are not available for training,
we need a measure to evaluate candidate sum-
maries using only input reviews. As reported in
Chu and Liu (2019), the ROUGE scores (Lin,
2004) between a candidate summary and the input
reviews effectively measures the extent to which
the summary encapsulates the reviews. Based on
this assumption, we search the topic sentences by
maximizing the ROUGE-1 F-measure with the re-
view sentences in an instance. We use a beam
search and keep multiple highest-score candidates
for each step. Similar to Carbonell and Goldstein
(1998), to eliminate the redundancy of summary
sentences, we do not add a sentence with a high
word overlap (ROUGE-1 precision) against the
sentences already included in the summary. The
hyperparameters are tuned based on the validation
set, as described in Section 4.2.

After selecting the summary sentences, we sort
them in the depth-first order according to the
topic-tree structure, i.e., we begin at the root node

and explore as far as possible along each branch
before backtracking. Barzilay and Lapata (2008)
advocate that adjacent sentences in the coherent
text tend to have similar contents. As we assume
that sentences linked by parent-child relations are
topically coherent, the generated summary is ex-
pected to be locally coherent by extracting child
sentences after their parent sentence.

3.4 Additional Model Components
The basic components of our model have been ex-
plained in the previous sections. This section in-
troduces three additional components to improve
the quality of topic sentences. In ablation studies
(Section 5.2), we will see the effect of these com-
ponents on summarization performance.

Discriminator To ensure that each topic sen-
tence has a specific topic, we introduce a dis-
criminator following Hu et al. (2017); Tang et al.
(2019). We approximate the sample of the topic
sentence by using the Gumbel-softmax trick (Jang
et al., 2017; Maddison et al., 2017) and reuse the
TSNTM to estimate the topic distribution of the
sample, q(zd,k|ŵd,k). By maximizing the likeli-
hood of the specified topic as (15), the discrimina-
tor forces the generated k-th topic sentence to be
coherent with topic k.

Ldisc
d =

∑K
k=1 log q(zd,k=k|ŵd,k) (15)

Attention We use the attention-based RNN de-
coder (Luong et al., 2015) to efficiently reflect
input sentence information into output topic sen-
tences. Given the hidden state of the t-th word in
an output sentence hto and the i-th word in an in-
put review sentence his, we calculate the attention
distribution over all the words in the input review
sentences to compute the word probability.

a(ht
o,h

i
s) =

exp(ht>
o h

i
s)∑

s′
∑

i′ exp(h
t>
o h

i′
s′)

(16)

cto =
∑

s′
∑

i′ a(h
t
o,h

i′

s′)h
i′

s′ (17)

p(wt
o|w<t

o , µ̂o) = softmax(W [ht
o; c

t
o]) (18)

Nucleus Sampling During the inference, we use
nucleus sampling (Holtzman et al., 2019) to de-
code the topic sentences. They reported that
maximization-based decoding methods such as
beam search tend to generate bland, incoherent,
and repetitive text in open-ended text generation.
As we will see in the ablation experiments, nu-
cleus sampling is effective in generating diverse
and informative topic sentences.
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Figure 3: Analogy with Gaussian word embedding.

3.5 Analogy with Gaussian Word Embedding
Here, we explain why a general sentence is gener-
ated from the root topic, while more specific con-
tent is conveyed by the sentences generated by the
leaf topics, referring to Gaussian word embedding.

Gaussian word embedding (Vilnis and McCal-
lum, 2015) represents words as Gaussian distribu-
tions and captures the hierarchical relations among
the words. As shown in Figure 3, by representing
words as densities over a latent space and min-
imizing the KL-divergence of the distributions,
they detect that common words such as “animal”
obtain a larger variance than more specific words,
such as “dog” and “cat”. This can be explained by
the fact that general words have more uncertainty
in their meaning (i.e.,“animal” sometimes denotes
“dog” and other times “cat”).

Similarly, our model minimizes the upper
bound of the KL-divergence of the latent distribu-
tion between a parent topic sentence and its chil-
dren. In (19), we show that the x-related term in
the ELBO (11) is an upper bound of the KL diver-
gence of the latent posteriors between parent-child
topic sentences (derived in Appendix A.3).∑Sd

s=1 θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
≥
∑Sd
s=1 θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]
=
∑Sd
s=1 θ̂s,kDKL

[
q(xs|zs=k)|q(xs|zs=par(k))

] (19)

since p(xs|zs=k)=q(xs|zs=par(k)) as defined
in (9). Similar to Gaussian word embedding, max-
imizing the ELBO forces the latent distribution of
a parent to be close to that of its children, and the
parent receives a larger variance than its children.
This property ensures that the parent-child topics
have a coherent topic, and more general content is
conveyed by the root topic sentences. Intuitively, a
general sentence, such as “I love this restaurant”,
includes several topics, such as “food” and “ser-
vice”, and has a large uncertainty of semantics.
Thus, we assume that a generic sentence is repre-
sented by the mean of the latent distribution with a
larger variance, whereas a more specific sentence
is generated from the distribution with a smaller
variance.

Dataset Yelp Amazon

Training 173,088 280,692
Validation 100 84
Test 100 96

Table 1: Number of instances (pairs of eight reviews
and a gold summary) in the datasets. The training set
does not contain gold summaries.

Similar to Vilnis and McCallum (2015), we
observed that the eigenvalues of the full covari-
ance of topic sentences (14) become extremely
small during training. To maintain a reasonably
sized and positive semi-definite covariance, we
add a hard constraint to the diagonal covariance
of the review sentences as Σ̂s,ii←max(λ, Σ̂s,ii)

since log |Σ̂d,k|≥ (
∑

s θ̂s,k log |Σ̂s|)/(
∑

s θ̂s,k)≥
n log λ, as derived in Appendix A.3.

4 Experiments

4.1 Datasets

In our experiments, we used the Yelp Dataset
Challenge1 and Amazon product reviews
(McAuley et al., 2015). By pre-processing
the reviews similarly as in Chu and Liu (2019);
Bražinskas et al. (2020), we obtained the dataset
as shown in Table 1. Regarding the training
set, we removed products2 fewer than 8 reviews
and reviews in which the maximum number of
sentences exceeds 50. To prevent the dataset
from being dominated by a small number of
products, we created 12 and 2 instances for each
product in Yelp and Amazon, respectively. Then,
we randomly selected 8 reviews to construct an
instance. Regarding the validation/test set of Yelp,
we randomly split 200 instances provided by Chu
and Liu (2019)3 into validation and test sets. For
Amazon, we used the same validation and test sets
provided by Bražinskas et al. (2020)4. These gold
summaries were created by Amazon Mechanical
Turk (AMT) workers, who summarized 8 reviews
for each product. The vocabulary comprises
words that appear more than 16 times in the
training set. The vocabulary sizes are 31, 748 and
30, 732 for Yelp and Amazon, respectively.

1https://www.yelp.com/dataset
2We refer to businesses (e.g., a specific Starbucks branch)

in Yelp and products (e.g., iPhone X) in Amazon as products.
3https://github.com/sosuperic/

MeanSum
4https://github.com/abrazinskas/

Copycat-abstractive-opinion-summarizer

https://www.yelp.com/dataset
https://github.com/sosuperic/MeanSum
https://github.com/sosuperic/MeanSum
https://github.com/abrazinskas/Copycat-abstractive-opinion-summarizer
https://github.com/abrazinskas/Copycat-abstractive-opinion-summarizer


Yelp Amazon

Model Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

Multi-Lead-1 27.42 3.74 14.34 30.32 5.85 15.96
LexRank (Erkan and Radev, 2004) 26.40 3.19 14.35 31.42 5.31 16.70
Opinosis (Ganesan et al., 2010) 25.80 2.92 14.57 28.90 4.11 16.33
MeanSum (Chu and Liu, 2019) 28.66 3.73 15.77 30.16 4.51 17.76
Copycat (Bražinskas et al., 2020) 28.95 4.80 17.76 31.84 5.79 20.00
DenoiseSum (Amplayo and Lapata, 2020) 29.77 5.02 17.63 – – –
RecurSum (Our Model) 33.24 5.15 18.01 34.91 6.33 18.91

PEGASUS (Zhang et al., 2020) 32.03 5.64 18.08 29.30 4.39 18.10

Table 2: ROUGE F1-scores of the test set (%). Boldface shows the highest score excluding the oracle, and
underlined scores are not regarded as statistically significant (p < 0.05) by approximate randomization test as
compared to the highest score.

4.2 Implementation Details

We set the hyperparameters as follows, which
maximize the ROUGE-L in the validation set of
Yelp and use the same hyperparameters on Ama-
zon5. The dimensions of word embeddings and
the latent code of the sentences are 200 and 32,
respectively. The encoder and decoder are single-
layer bi-directional and uni-directional GRU-RNN
(Chung et al., 2014) with 200-dimensional hidden
units for each direction. The threshold of nucleus
sampling is 0.4. We train our model using Adam
(Kingma and Ba, 2014) with a learning rate of
5.0×10−3, a batch size of 8, and a dropout rate
of 0.2. The initial Gumbel-softmax temperature is
set to 1 and decreased by 2.5×10−5 per training
step. Similar to Bowman et al. (2016); Yang et al.
(2017), we avoid posterior collapse by increasing
the weight of the KL-term by 2.5×10−5 per train-
ing step. We set the review sentence’s minimum
covariance to λ = exp(0.5). Regarding the tree
structure, we set the number of levels to 3, and
the number of branches to 4 for both the second
and third levels. The total number of topics is 21.
Regarding the summary sentence extractor in Sec-
tion 3.3, we set the maximum number of extracted
sentences as 6, the beam width as 8, and the re-
dundancy threshold as 0.6.

4.3 Baseline Methods

As a baseline, we use Multi-Lead-1, which ex-
tracts the first sentence of each review. Fur-
thermore, we employ unsupervised extractive ap-
proaches, LexRank (Erkan and Radev, 2004) and
Opinosis (Ganesan et al., 2010). LexRank is a
PageRank-based sentence extraction method that

5https://github.com/misonuma/
recursum

constructs a graph in which sentences and their
similarity are represented by the nodes and edges,
respectively. Opinosis constructs a word-based
graph and extracts redundant phrases as a sum-
mary. As unsupervised abstractive summarization
methods, we use MeanSum (Chu and Liu, 2019),
Copycat (Bražinskas et al., 2020) and DenoiseSum
(Amplayo and Lapata, 2020). MeanSum com-
putes the mean of the review embeddings and de-
codes it as a summary. Copycat generates a con-
sensus opinion by a hierarchical VAE which is
trained by generating a new review given a set of
other reviews of a product. DenoiseSum6 creates
synthetic reviews by adding noise to original re-
views and generates a summary by removing non-
salient information as noise.

As an upper bound of extraction methods, we
also report the performance of Oracle, which ex-
tracts the topic sentences such that they obtain the
highest ROUGE-L against each gold summary. As
the average number of sentences in the gold sum-
maries is approximately four, we extract four topic
sentences to generate a summary.

4.4 Semi-automatic Evaluation of Summaries

Following Chu and Liu (2019); Bražinskas et al.
(2020), we use the ROUGE-1/2/L F1-scores (Lin,
2004) as semi-automatic evaluation metrics.

Table 2 shows the rouge scores of our model,
RecurSum, and the baselines for the test sets. In
most metrics on both datasets, our model out-
performs MeanSum and achieves competitive per-
formance compared with the recent unsupervised
summarization model, Copycat. Regarding the or-

6As a complete code is not available, we report the re-
sult of different test splits from ours, which are used in their
sample of output summaries. https://github.com/
rktamplayo/DenoiseSum

https://github.com/misonuma/recursum
https://github.com/misonuma/recursum
https://github.com/rktamplayo/DenoiseSum
https://github.com/rktamplayo/DenoiseSum


Yelp Amazon

Model Fluency Coherence Informative. Redundancy Fluency Coherence Informative. Redundancy

LexRank -16.88 -13.51 -0.64 -6.83 -18.18 -15.07 14.11 -4.76
MeanSum 5.63 -16.18 -13.73 0.70 2.74 -14.69 -13.70 1.32
Copycat 15.07 7.88 -7.19 4.00 14.65 9.80 -17.65 6.85
RecurSum -2.56 19.46 24.44 2.78 0.70 17.72 17.39 -2.99

Table 3: Human evaluation scores on the quality of the summaries. The scores are computed by using the best-
worst scaling (%) and range from −100 (unanimously worst) to +100 (unanimously best). Boldface denotes the
highest score, and underlined scores are not regarded as statistically significant (p < 0.05) by Tukey HSD test as
compared to the highest score.

Yelp Amazon

Copycat RecurSum Copycat RecurSum

Full 47.79 47.43 45.64 44.74
Partial 41.59 40.00 40.94 38.95
No 10.62 12.57 13.42 16.32

Table 4: Human evaluation scores on the faithful-
ness of the summaries (%). The difference of each
system’s frequency distribution is not regarded as
statistically significant (p < 0.05) by χ2 test.

Yelp Amazon

Copycat RecurSum Gold Copycat RecurSum Gold

Full 23.94 31.05 34.52 29.15 33.31 38.41
Partial 30.02 37.73 40.91 29.15 36.53 39.63
No 46.04 31.22 24.58 41.71 30.16 21.96

Table 5: Human evaluation scores on the coverage of the
summaries (%). The difference of the frequency distribu-
tion between Copycat and RecurSum is statistically signifi-
cant (p < 0.05) by χ2 test.

acle, our model significantly outperforms the other
models. This result suggests that our model can
improve the performance by using more sophisti-
cated extraction methods. Although we have also
attempted to use the integer linear programming-
based method (Gillick and Favre, 2009), it did not
improve the performance. Developing such ex-
traction techniques is beyond the scope of the cur-
rent study, which focuses on topic structure and is
deferred to future work.

4.5 Human Evaluation of Summaries
We conducted a human evaluation using AMT.
Following Bražinskas et al. (2020); Amplayo and
Lapata (2020), we randomly selected 50 instances
from each test set and asked AMT workers7 to an-
swer the following three tasks:

Quality of the Summaries We presented four
system summaries in random order and asked six
AMT workers to rank the summzarization quality
referring to the gold summary. We compute each
system’s score as the percentage of times selected
as the best minus those are selected as the worst by
using the best-worst scaling (Louviere et al., 2015;
Kiritchenko and Mohammad, 2016).

Following Bražinskas et al. (2020); Amplayo
and Lapata (2020), we use the following four cri-

7To obtain reliable answers, we set the worker require-
ments to 98% approval rate, 1000+ accepted tasks, and loca-
tions in the US, UK, Canada, Australia, and New Zealand.

teria: Fluency: the summary is grammatically cor-
rect, easy to read, and understand; Coherence: the
summary is well structured and organized; Infor-
mativeness: the summary mentions specific as-
pects of the product; Redundancy: the summary
has no unnecessary repetitive words or phrases.

Table 3 shows the human evaluation scores of
four systems. In terms of coherence and infor-
mativeness, RecurSum achieves the highest score
among all approaches across the two datasets.
This result indicates the effectiveness of consid-
ering topics and structure in unsupervised abstrac-
tive opinion summarization. As regards fluency,
Copycat is superior to our model because our
model sometimes makes a grammatical or referen-
tial error, which has a negative impact on fluency,
as will be shown later in Section 5.1.

Faithfulness of the Summaries Abstractive
summarization sometimes hallucinates content
that is unfaithful to the input texts (Maynez et al.,
2020). The next study assesses whether the con-
tents mentioned in the generated summaries are
included in the input reviews. We use the same
summary sets as in the quality evaluation and split
them into sentences. For each summary sentence,
we asked the AMT workers to judge whether the
content is fully mentioned (Full), some of the con-
tent is mentioned (Partial), or no content is men-
tioned (No) in the reviews.

Table 4 shows the percentage of each answer.



1. The chairs are perfect for our living room.

11. The table is sturdy and easy to put together.

12. The drawers are small and the chairs are very pretty.

112. I was hoping to find the matching tables with my tv.

111. I bought this table for a small girl and it was easy to assemble.

121. The stool is very sturdy and the quality is very nice.

RecurSum: Copycat: 
This is a great table set for the price. It was easy to put together and 
looks great. The only thing is that the chairs are a little flimsy, but they 
are easy to assemble.

Gold summary: 
The dinning room set is very sturdy, seats are very comfortable and has 
a nice color. Great for small area, but I will not advice usage for a large 
eating area. It looks great and it is easy to put together. The top scratches 
easily. It was delivered on time and I'm pleased with the purchase.

Copycat: 
This place has the best bubble tea I've ever had in my life. It's hard to 
find a place that serves bubble tea and boba tea, but I think it's worth the 
money. The staff is very friendly and helpful. I will definitely be back!

Gold summary: 
Great place for bubble tea, lots of options to customize your drinks and 
toppings! They also offer loose teas and milk teas. The desserts are nice 
as well, they offer mousse, macaroons, and pastries ect. The price point 
is fair, cheaper than some other local options. Great atmosphere to meet 
up with friends and chat, but also relaxing enough to come in and study.

1. This is a great place to go.

11. They have a wide variety of options.

12. It's also a nice place to grab a bite.

111. It's a little bit of the best bubble tea.

121. I love the fruity pebbles chocolate, chocolate and the ice cream.

RecurSum:

(c)

(b)

1. I bought these for my wedding.

11. The shoe is nice and the color is very well made.

12. The shoes are comfortable and the material is very nice.

112. I was looking for a shoe that would be perfect for my wedding.

111. I bought a pair of black and they were so beautiful.

121. The size is a bit too small for my needs.

RecurSum: Copycat: 
This is my second pair of these shoes and I love them. They are true to 
size and are comfortable to wear. I wear them to work and they are very 
comfortable.

Gold summary: 
Very pretty shoes and nice quality. The shoes run a bit small, about half 
a size and there is a ridge in the shoe that rubs on your toe. Nice formal 
night shoe, not so much for every day.

(a)

13. I will definitely be back.

131. The place is clean and the food is delicious.

Figure 4: Generated topic sentences of (a) an Amazon review of heal shoes, (b) a Yelp review of a coffee shop,
and (c) an Amazon review of table chair set. Topic sentences selected as a summary are highlighted in italic.

The frequency distribution is not regarded as sta-
tistically significant by χ2 test (p < 0.05). This re-
sult indicates that our model correctly reflects the
content in the input reviews as well as Copycat.

Coverage of the Summaries Another desirable
property of summaries is that they cover more con-
tent mentioned in the input reviews. As reported
in Bražinskas et al. (2020), Copycat and Mean-
Sum achieve relatively low scores for the human
evaluation of opinion consensus, which captures
the coverage of common opinions in the input re-
views. In contrast, as RecurSum explicitly gen-
erates summary sentences for each topic, it could
cover more input content across diverse topics. To
assess this assumption, we conducted the opposite
study from the faithfulness evaluation. Similar to
the faithfulness evaluation, we split reviews into
sentences. For each review sentence, we asked the
AMT workers to rate the extent to which the gen-
erated summaries cover the input content.

Table 5 shows the percentage of fully-covered
(Full), partially-covered (Partial), and un-covered
(No) sentences. In addition to the two models, we
also included gold summaries as the upper bounds.
For both datasets, RecurSum covers more number
of common opinions by capturing diverse topics.

5 Discussion

5.1 Analyzing Generated Summaries

In this section, we discuss the strengths and weak-
nesses of our method by presenting examples of
the generated summaries and tree structures.

In Figure 4 (a), we present a summary of a re-
view of shoes in Amazon. RecurSum generates
topic sentences about fitness and size (12, 121),
similar to Copycat. In addition, our model also
mentions color and use (11, 111, 112), which is
also described in the gold summary. While we
cannot grasp that the shoes are appropriate for
weddings from Copycat’s summary, RecurSum
covers such topics and provides more useful in-
formation.

Figure 4 (b) shows the generated summaries on
a coffee shop review in Yelp. While both Recur-
Sum and Copycat present a positive review about
the taste of bubble tea (tea with tapioca), Recur-
Sum also focuses on the dessert (12, 121), similar
to the gold summary. While Copycat also refers to
friendly staff, they are not mentioned in the input
review. Our model successfully does not extract
topic sentences about staff by measuring content
overlap with the input reviews. However, Recur-



Sum sometimes makes grammatical or referential
errors such as “It’s a little bit of the best bubble
tea”. These errors cause the inferior performance
of RecurSum in terms of fluency.

Figure 4 (c) shows the summary of an Amazon
review on a table chair set. RecurSum accurately
captures opinions about the table (11, 111, 112)
and chair (12, 121). The topic sentences on the
bottom level elaborate on the parent sentences, re-
ferring to the easy assembly (111), the appropriate
use of table (112), and the quality of chair (121).
By inferring topics in the tree structure, RecurSum
can offer summary sentences over multiple granu-
larities of topics.

5.2 Ablation Study of Model Components

We report the results of the ablation study to inves-
tigate how individual components affect summa-
rization performance. In addition to the ROUGE
scores, we also report self-BLEU scores (Zhu
et al., 2018) to investigate the diversity of the gen-
erated summaries. Self-BLEU is computed by cal-
culating the BLEU score of each generated sum-
mary with all other generated summaries in the
test set as references. A higher self-BLEU implies
that the generated summaries are not diversified,
i.e, the model tends to generate a generic summary
similar to the other summaries. Table 6 shows the
performances of model variants on Yelp dataset.

w/o Disc denotes our model without a discrimi-
nator. The ROUGE scores are significantly lower
than the full model. Without the discriminator,
the topic distribution becomes sparse, i.e., most of
the review sentences are assigned to some specific
topics. Therefore, the model obtains incoherent
topics and generates unfaithful summaries for the
input review. Discriminator penalizes this situa-
tion by assigning an appropriate topic to topically
different sentences. This mechanism makes the
generated topic sentences topically coherent and
improves ROUGE scores.

w/o Attention indicates our model without an at-
tention mechanism. Although the generated sen-
tences are faithful to the input review, they are of-
ten generic and miss some specific details of the
content. By adding the attention mechanism, the
generated summary effectively reflects the content
of the input reviews and provides more detailed
information. Although the copy-mechanism (See
et al., 2017) has also been reported to be useful in
previous summarization models (Bražinskas et al.,

Model Variants R-1 R-2 R-L B-3 B-4

w/o Discriminator 30.52 3.50 16.43 54.18 30.42
w/o Attention 30.62 4.87 17.01 66.11 50.89
w/o Nucleus 31.71 5.10 17.70 69.13 55.81

Full 33.24 5.15 18.01 64.30 48.37

Table 6: Ablation study of RecurSum on Yelp. R-1/2/L
denote ROUGE-1/2/L, respectively. B-3/4 denote self-
BLEU3/4, respectively.

2020; Amplayo and Lapata, 2020), it degrades the
performance of our model. While their models use
different input-output pairs (reviews vs. pseudo-
summary), our model uses the same input-output
pairs in an autoencoder manner and tends to fully
copy the input sentences. Thus, our model fails to
obtain a meaningful latent code.

w/o Nucleus denotes our model using a beam-
search decoder (beam width=5) instead of nucleus
sampling when decoding topic sentences in infer-
ence. As reported by Holtzman et al. (2019), we
also confirmed that the beam-search decoder tends
to generate bland or repetitive text and sometimes
fails to capture product-specific words. Owing
to nucleus sampling, the decoder generates more
informative content and improves the ROUGE-1
score with a significant decrease in self-BLEU.

We also attempted to replace the encoder with
BERT (Devlin et al., 2019). However, fine-tuning
of pretrained components with non-pretrained
components is unstable as reported by Liu and La-
pata (2019b), and it does not contribute to the im-
provement of ROUGE scores.

5.3 Analyzing Topic-Tree Structure

As generating sentences with tree-structured topic
guidance is a novel challenge, we introduce new
measures to verify that the generated sentences
exhibit the desired properties of tree structures.
Based on the work of tree-structured topic model
(Kim et al., 2012), we introduce two metrics: hi-
erarchical affinity and topic specialization.

Hierarchical Affinity: An important character-
istic of the tree structure is that a parent topic
sentence is more similar to its children than the
sentences descending from the other parents. To
confirm this property, we estimated the similarity
of sentences in parent-child pairs and non parent-
child pairs. To measure sentence similarity, we
used the ALBERT (Lan et al., 2019), which is
a SoTA model on the semantic textual similar-
ity benchmark (STS-B; Cer et al., 2017). In our



1

11

112
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12

121 122

1. A great thing to go to the place.

11. Friendly staff and I appreciated the food.

12. There is a lot of a great meal.

112. Food was great, and the service was great.

111. The staff is very friendly and knowledgable.

121. The meal was great, but the food was fantastic.

122. The <unk> was delicious and the fish tacos were great.

Figure 5: 2-D latent space projected by principal component analysis. Each point corresponds to the mean of the
latent distribution of a topic sentence, and each circle denotes the same Mahalanobis distance from the mean.

Hierarchical Affinity Yelp Amazon

Parent-child pairs 2.39 1.33
Non parent-child pairs 1.59 0.76

Table 7: Average sentence similarity of the topic sen-
tence pairs, ranging from 0 (different) to 5 (similar).

Topic Specialization Yelp Amazon

First level 1.68 1.60
Second level 1.99 1.63
Third level 2.16 1.84

Table 8: Average specialization score of each level top-
ics, ranging from 1 (general) to 5 (specific).

experiment, we used the ALBERT-base, which
achieves a 84.7 Pearson correlation coefficient
against the test sets of STS-B. As shown in Ta-
ble 7, parent-child sentence pairs are more sim-
ilar than those of non parent-child pairs in both
datasets. This result indicates that the generated
sentences linked by parent-child relations are top-
ically coherent.

Topic specialization: In tree-structured topics,
we would expect the root topic to generate gen-
eral sentences, whereas more specific content is
conveyed by the sentences generated by the leaf
topics. To empirically test this property, we esti-
mated the average specificity of sentences at each
level of the tree-structured topics. We fine-tuned
ALBERT-base on the task of estimating the speci-
ficity of sentences (Louis and Nenkova, 2011).
We used the dataset provided by Ko et al. (2019),
which comprises the Yelp, Movie, and Tweet do-
mains. The fine-tuned model achieves a SoTA per-
formance of 86.2 Pearson correlation coefficient
on the test sets in Yelp. As shown in Table 8, we
see that sentences with lower topics are more spe-
cific than higher topics. This indicates that the root
sentences refer to general topics, whereas leaf sen-
tences describe more specific topics.

LogDetCov Yelp Amazon

First level 28.83 27.21
Second level 26.22 26.54
Third level 23.28 24.55

Table 9: Average log determinant of covariance matri-
ces (LogDetCov) on each level.

5.4 Analyzing Latent Space of Sentences

In Figure 5, we project the latent code of topic sen-
tences of a restaurant review onto the top two prin-
cipal component vector space. Following the mod-
elling assumption, the latent distributions of child
sentences are located relatively near their parent
distributions. This property ensures that the par-
ent and child sentences are topically coherent, as
shown in Table 7. Furthermore, we present the av-
erage log determinant of the covariance matrices
at each level in Table 9. We confirm that the latent
code of the topic sentences has a smaller variance
towards the leaves. This property forces the topic
sentences to be more specific as the level becomes
deeper, as described in Table 8.

6 Related Work

6.1 Text Generation with Topic Guidance

The VAE is intensively used to obtain disentangled
latent code of sentences (Bowman et al., 2016; Hu
et al., 2017; Tang et al., 2019). Closely related
to ours, Wang et al. (2019) specify the prior as
a GMM, where each mixture component corre-
sponds to the latent code of a topic sentence and
is mixed with the topic distribution inferred by the
flat neural topic model (Miao et al., 2017).

In contrast, we address a novel challenge to
generate topic sentences with tree-structured topic
guidance, where the root sentence refers to a gen-
eral topic, whereas the leaf sentences describe
more specific topics. We adopt the tree-structured
neural topic model (Isonuma et al., 2020) to infer



the topic distribution of sentences and introduce a
recursive Gaussian mixture prior for modelling the
latent distribution of sentences in a document.

6.2 Unsupervised Summary Generation
Owing to the success of supervised abstractive
summarization by neural architectures (Nallap-
ati et al., 2016; See et al., 2017; Liu and Lap-
ata, 2019a), unsupervised sentence compression
(Fevry and Phang, 2018; Baziotis et al., 2019) and
unsupervised summary generation (Isonuma et al.,
2019) have recently drawn attention.

Recently, specifically for opinionated texts, sev-
eral abstractive multi-document summarization
methods have been developed, such as Mean-
Sum, Copycat, and DenoiseSum, as explained in
Section 4.3. Concurrently with ours, Angelidis
et al. (2021) use quantitized transformers enabling
aspect-based extractive summarization, and Am-
playo et al. (2020) incorporate the aspect and
sentiment distributions into the unsupervised ab-
stractive summarization. Our method incorporates
topic-tree structure into unsupervised abstractive
summarization and generates summaries consist-
ing of multiple granularities of topics.

7 Conclusion

In this paper, we proposed a novel unsuper-
vised abstractive opinion summarization method
by generating topic sentences with tree-structured
topic guidance. Experimental results demon-
strated that the generated summaries are more in-
formative and cover more input content than those
generated by the recent unsupervised summariza-
tion (Bražinskas et al., 2020). Additionally, we
demonstrated that the variance of latent Gaussians
represents the granularity of sentences, analogous
to Gaussian word embedding (Vilnis and McCal-
lum, 2015). This property will be useful not only
for summarization but also for other tasks that
need to consider the granularity of the contents.

A Appendices

A.1 Inference of Topic Distribution
To approximate the tree-structured topic distribu-
tion of a sentence, we use a tree-structured neu-
ral topic model (TSNTM; Isonuma et al., 2020),
which transforms a sentence into a tree-structured
topic distribution using neural networks. While
their model is based on the nested Chinese restau-
rant process (nCRP; Griffiths et al., 2004), we
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π112 = 0.3π111 = 0.5 φ112 = 0.3

φ12 = 0.8
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Figure 6: Example of a path distribution (blue) and
level distribution (red). Both the sum of a path distribu-
tion over each level and the sum of a level distribution
over each path are equal to 1.

make a minor change to use the nested hierarchi-
cal Dirichlet process (nHDP; Paisley et al., 2014).
The nHDP generates a sentence-specific path dis-
tribution πs and level distribution φs as

νs,k∼Beta(1, γ), πs,k=πs,par(k)νs,k
∏

j∈Sib(k)

(1− νs,j)

(20)

ηs,k∼Beta(α, β), φs,k=ηs,k
∏

j∈Anc(k)

(1− ηs,j) (21)

θs,k=πs,k · φs,k (22)

where Sib(k) and Anc(k) are the sets of the k-th
topic’s preceding-siblings and ancestors, respec-
tively. As described in Figure 6, πs,k denotes the
probability that a sentence s selects a path from
the root to the k-th topic. φs,k denotes the proba-
bility that a sentence s does not select the ancestral
topics j ∈ Anc(k) but remains in the k-th topic
along the path. By multiplying these two proba-
bilities, we obtain θs,k; the probability that a sen-
tence s selects the topic k. The nHDP does not
make a significant difference in the summarization
performance from the nCRP. However, the nHDP
permits different lengths of each path, whereas the
nCRP restricts each path length to be the same.

Following Isonuma et al. (2020), we use
the doubly-recurrent neural networks (DRNN;
Alvarez-Melis and Jaakkola, 2017) to transform a
sentence embedding ys = RNN(ws) to the path
distribution πs and level distribution φs. The
DRNN consists of two RNN decoders over respec-
tively the ancestors and siblings. We compute the
k-th topic’s hidden state hk using (23) and obtain
the path distribution by alternating νs as (24):

hk = tanh(Wphpar(k) +Wshk−1) (23)

νs,k = sigmoid(h>k ys) (24)

where hpar(k) and hk−1 are the hidden states of
a parent and a previous sibling of the k-th topic,
respectively. Similarly, we obtain the level distri-
bution, φs, by computing ηs with another DRNN.



# of topics for each level (total) R-1 R-2 R-L

1–2–4 (7) 29.03 4.39 16.94
1–3–9 (13) 31.42 4.43 17.19
1–4–16 (21) 33.24 5.15 18.01
1–5–25 (31) 31.94 4.78 17.50
1–6–36 (43) 33.25 4.82 17.81

Table 10: Sensitivity for various number of branches.

# of topics for each level (total) R-1 R-2 R-L

1–3 (4) 23.63 2.38 14.35
1–3–9 (13) 31.42 4.43 17.19
1–3–9–27 (40) 32.55 4.75 17.70

Table 11: Sensitivity for various number of levels.

A.2 Sensitivity for the Number of Topics
We investigated how the number of topics affects
summarization performance. Table 10 shows the
ROUGE scores on the various number of branches
with a fixed depth of 3 in topic-tree structure.
When the number of topics is small, the models
achieve a relatively low score. However, when the
number of branches≥ 4, the performance does not
significantly change for various numbers of topics.
A similar trend is confirmed in Table 10, which
shows the ROUGE scores on the various number
of levels with the fixed number of branches of 3.
These results indicate that our model is relatively
robust for the number of topics.

A.3 Derivation of the Equation (19)

Proposition: when q(xs|zs) is given by (12),
(25) holds:∑

s θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
−∑

s θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]
≥ 0

(25)

Proof: The first term of (25) is re-written as:∑
s θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
=
∑
s θ̂s,kDKL

[
N (µ̂s, Σ̂s)|N (µ̂d,par(k), Σ̂d,par(k))

]
=
1

2

∑
s θ̂s,k

{
log |Σ̂d,par(k)|−log |Σ̂s|+Tr[Σ̂−1

d,par(k)Σ̂s]

+(µ̂s−µ̂d,par(k))>Σ̂−1
d,par(k)(µ̂s−µ̂d,par(k))−n

}
=
1

2

∑
s θ̂s,k

{
Cd,par(k)−log |Σ̂s|+Tr[Σ̂−1

d,par(k)Σ̂s]

+µ̂>s Σ̂−1
d,par(k)µ̂s−2µ̂

>
d,par(k)Σ̂

−1
d,par(k)µ̂s

}
=
1

2

∑
s θ̂s,k

{
Cd,par(k)−log |Σ̂s|+Tr[Σ̂−1

d,par(k)Σ̂s]

+Tr[Σ̂−1
d,par(k)µ̂sµ̂

>
s ]−2µ̂>d,par(k)Σ̂−1

d,par(k)µ̂d,k
}

(26)

as
∑

s θ̂s,kµ̂d,k=
∑

s θ̂s,kµ̂s from (13).

The second term is similarly expanded as:∑
s θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]
=
1

2

∑
s θ̂s,k

{
Cd,par(k)−log |Σ̂d,k|+Tr[Σ̂−1

d,par(k)Σ̂d,k]

+Tr[Σ̂−1
d,par(k)µ̂d,kµ̂

>
d,k]−2µ̂>d,par(k)Σ̂−1

d,par(k)µ̂d,k
}

(27)

Therefore, (25) is arranged as:∑
s θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
−
∑
s θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]
=
1

2

∑
s θ̂s,k

{
−log |Σ̂s|+log |Σ̂d,k|

+Tr
[
Σ̂−1
d,par(k)(Σ̂s+µ̂sµ̂

>
s −Σ̂d,k−µ̂d,kµ̂>d,k)

]}
=
1

2

∑
s θ̂s,k

{
−log |Σ̂s|+log |Σ̂d,k|

}
+
1

2

{
Tr
[
Σ̂−1
d,par(k)∑

s θ̂s,k(Σ̂s+µ̂sµ̂
>
s −Σ̂d,k−µ̂d,kµ̂>d,k)

]}
=
1

2

∑
s θ̂s,k

{
− log |Σ̂s|+ log |Σ̂d,k|

}
(28)

as
∑

s θ̂s,k
{
Σ̂s + µ̂sµ̂

>
s

}
=

∑
s θ̂s,k

{
Σ̂d,k +

µ̂d,kµ̂
>
d,k

}
from (14). The given equation even-

tually comes down to a comparison of the entropy.
Since, in general, −

∫
q1(x) log q2(x) dx ≥

−
∫
q1(x) log q1(x) dx holds, we obtain (29):∑
s θ̂s,k

{
−
∫
q(xs|ws) log q(xs|zs=k) dxs

}
≥
∑
s θ̂s,k

{
−
∫
q(xs|ws) log q(xs|ws) dxs

} (29)

As the right term is a weighted sum of the nor-
mal distribution entropy, it can be rewritten as:∑

s θ̂s,k
{
−
∫
q(xs|ws) log q(xs|ws) dxs

}
=
1

2

∑
s θ̂s,k

{
log |Σ̂s|+n log 2π + n

} (30)

Meanwhile, we can expand the left term as:∑
s θ̂s,k

{
−
∫
q(xs|zs=k) log q(xs|ws) dxs

}
=
1

2

∑
s θ̂s,k

{
log |Σ̂d,k|+n log 2π

+Eq(xs|ws)[(xs−µ̂d,k)
>Σ̂−1

d,k(xs−µ̂d,k)]
} (31)

The last term in (31) is expressed as:∑
s θ̂s,k

{
Eq(xs|ws)

[
(xs−µ̂d,k)>Σ̂−1

d,k(xs−µ̂d,k)
]}

=
∑
s θ̂s,k

{
Eq(xs|ws)[Tr(Σ̂

−1
d,k(xs−µ̂d,k)(xs−µ̂d,k)

>)]
}

=Tr
[
Σ̂−1
d,k

∑
s θ̂s,k

{
Eq(xs|ws)[(xs−µ̂d,k)(xs−µ̂d,k)

>]
}]

=Tr
[
Σ̂−1
d,k

∑
s θ̂s,kΣ̂d,k

]
=
∑
s θ̂s,k n

(32)

Thus, by combining (29), (30), (31), (32),∑
s θ̂s,k

{
log |Σ̂d,k|

}
≥
∑

s θ̂s,k
{
log |Σ̂s|

}
holds

and implies (25).
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