
ar
X

iv
:1

80
5.

12
55

9v
2 

 [
cs

.C
C

] 
 5

 N
ov

 2
01

8

The Complexity of Splitting Necklaces and Bisecting Ham

Sandwiches

Aris Filos-Ratsikas∗1 and Paul W. Goldberg2

1Department of Computer Science, École polytechnique fédérale de Lausanne
aris.filosratsikas@epfl.ch

2Department of Computer Science, University of Oxford
Paul.Goldberg@cs.ox.ac.uk

November 6, 2018

Abstract

We resolve the computational complexity of two problems known as Necklace-splitting and
Discrete Ham Sandwich showing that they are PPA-complete. For Necklace-splitting,
this result is specific to the important special case in which two thieves share the necklace. We do
this via a PPA-completeness result for an approximate version of the Consensus-halving prob-
lem, strengthening our recent result that the problem is PPA-complete for inverse-exponential
precision. At the heart of our construction is a smooth embedding of the high-dimensional
Möbius strip in the Consensus-halving problem. These results settle the status of PPA as a
class that captures the complexity of “natural” problems whose definitions do not incorporate
a circuit.

Keywords: Computational complexity; Tucker’s Lemma; TFNP; fair division

1 Introduction

The complexity classes PPA and PPAD were introduced in a seminal paper of Papadimitriou
[60] in 1994, in an attempt to classify several natural problems in the class TFNP [58]. TFNP
is the class of total search problems in NP for which a solution exists for every instance, and
solutions can be efficiently verified. Various important problems were subsequently proven to
be complete for the class PPAD, such as the complexity of many versions of Nash equilibrium
[19, 14, 26, 59, 63, 15], market equilibrium computation [18, 12, 71, 16, 65], and others [24, 43].
As evidence of computational hardness, PPA-completeness is stronger than PPAD-completeness,
i.e., PPAD ⊆ PPA. Indeed, Jeřábek [40] shows that it indicates cryptographic hardness in a strong
sense: [40] gives a randomised reduction from FACTORING to PPA-complete problems. This is not
known for PPAD-complete problems. For more details, and the significance of PPA-completeness,
we refer the reader to the related discussion in [29]. PPA is the class of problems reducible to Leaf

(Definition 1), and a PPA-complete problem is polynomial-time equivalent to Leaf.

∗Most of this work was performed when the author was at the University of Oxford.
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Definition 1 An instance of the problem Leaf consists of an undirected graph G whose vertices
have degree at most 2; G has 2n vertices represented by bitstrings of length n; G is presented
concisely via a circuit that takes as input a vertex and outputs its neighbour(s). We stipulate that
vertex 0n has degree 1. The challenge is to find some other vertex having degree 1.

Complete problems for the class PPA seemed to be much more elusive than PPAD-complete
ones, especially when one is interested in “natural” problems, where “natural” here has the very
specific meaning of problems that do not explicitly contain a circuit in their definition. Besides
Papadimitriou [60], other papers asking about the possible existence of natural PPA-complete
problems include [36, 13, 19, 22]. In a recent precursor [29] to the present paper we identified the
first example of such a problem, namely the approximate Consensus-halving problem, dispelling
the suspicion that such problems might not exist. In this paper we build on that result and
settle the complexity of two natural and important problems whose complexity status were raised
explicitly as open problems in Papadimitriou’s paper itself, and in many other papers beginning in
the 1980s. Specifically, we prove that Necklace-splitting (with two thieves, see Definition 2)
and Discrete Ham Sandwich are both PPA-complete.

Definition 2 (Necklace Splitting) In the k-Necklace-splitting problem there is an open
necklace with kai beads of colour i, for 1 ≤ i ≤ n. An “open necklace” means that the beads
form a string, not a cycle. The task is to cut the necklace in (k − 1) · n places and partition the
resulting substrings into k collections, each containing precisely ai beads of colour i, 1 ≤ i ≤ n.

In Definition 2, k is thought of as the number of thieves who desire to split the necklace in such a
way that the beads of each colour are equally shared. In this paper, usually we have k = 2 and we
refer to this special case as Necklace-splitting.

Definition 3 (Discrete Ham Sandwich) In the Discrete Ham Sandwich problem, there are
n sets of points in n dimensions having integer coordinates (equivalently one could use rationals).
A solution consists of a hyperplane that splits each set of points into subsets of equal size (if any
points lie on the plane, we are allowed to place them on either side, or even split them arbitrarily).

In Definition 3, each point set represents an ingredient of the sandwich, which is to be cut by a
hyperplane in such a way that all ingredients are equally split.

The necklace-splitting problem was introduced in a 1982 paper of Bhatt and Leiserson ([8],
Section 5), where it arose in the context of VLSI circuit design (the version defined in [8] is the
2-thief case proved PPA-complete in the present paper). In 1985 and 1986, the 2-thief case was
shown to have guaranteed solutions (as defined in Definition 2) by Goldberg and West [34] and
Alon and West [5] and then in 1987, Alon [2] proved existence of solutions for k thieves as well.
Early papers that explicitly raise its complexity-theoretic status as an open problem are Goldberg
and West [34] and Alon [3, 4]. Subsequently, the necklace-splitting problem was found to be closely
related to “paint-shop scheduling”, a line of work in which several papers such as [53, 55, 54]
explicitly mention the question of the computational complexity of necklace-splitting. Meunier [53]
notes that the search for a minimum number of cuts admitting a fair division (which may be smaller
than the number (k− 1)n that is guaranteed to suffice) is NP-hard, even for a subclass of instances
of the 2-thief case. (That is a result of Bonsma et al. [10], for the “paint shop problem with words”,
equivalent to 2-thief Necklace-splitting with 2 beads of each colour.)

In [29], we showed Necklace-splitting to be computationally equivalent to ε-Consensus-

halving for inverse-polynomial precision parameter ε, but the PPA-completeness of ε-Consensus-

halving was only shown for inverse-exponential ε. [29] established PPAD-hardness of Necklace-

splitting, applying the main result of [28]. In this paper, we prove that ε-Consensus-halving is
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PPA-complete for ε inversely polynomial, thus obtaining the desired PPA-completeness ofNecklace-

splitting. While some structural parts of our reduction are extensions of those presented in [29],
obtaining the result for inverse-polynomial precision is much more challenging, as the construction
needs to move to a high-dimensional space (rather than the two-dimensional space which is suf-
ficient for the result in [29]). We highlight the main new techniques that we have developed in
this paper in Section 2.1, where we provide an overview of the reduction. Our PPA-completeness
result gives a convincing negative answer to Meunier and Neveu’s questions [54] about possible
polynomial-time solvability or membership of PPAD for Necklace-splitting; likewise it runs
counter to Alon’s cautious optimism at ICM 1990 ([4], Section 4) that the problem may be solvable
in polynomial time.

The Ham Sandwich Theorem [68] is of enduring and widespread interest due to its colourful
and intuitive statement, and its relevance and applications in topology, social choice theory, and
computational geometry. Roughly, it states that given d measures in Euclidean d-space, there exists
a hyperplane that cuts them all simultaneously in half. Early work on variants and applications
of the theorem focused on non-constructive existence proofs and mostly did not touch on the
algorithmics. A 1983 paper by Hill [37] hints at possible interest in the corresponding computational
challenge, in the context of a related land division problem. The computational problem (and its
complexity) was first properly studied in a line of work in computational geometry beginning in the
1980s, for example [25, 46, 47, 50]. The problem envisages input data consisting of d sets of n points
in Euclidean d-space, and asks for a hyperplane that splits all point sets in half. (The problem
Discrete Ham Sandwich (Definition 3) as named in [60] is essentially this, with d set equal
to n to emphasise that we care about the high-dimensional case.) In this work in computational
geometry, the emphasis has been on efficient algorithms for small values of d; Lo et al. [47] improve
the dependence on d but it is still exponential, and the present paper shows for the first time that we
should not expect to improve on that exponential dependence. More recently, Grandoni et al. [35]
apply the “Generalized Ham Sandwich Theorem” to a problem in multi-objective optimisation
and note that a constructive proof would allow a more efficient algorithm to emerge. The only
computational hardness result we know of is Knauer et al. [44] who obtain a W [1]-hardness result
for a constrained version of the problem; [44] points out the importance of the computational
complexity of the general problem. The PPA-completeness result of the present paper is the first
hardness result of any kind for Discrete Ham Sandwich, and as we noted, is a strong notion
of computational hardness. Karpic and Saha [42] showing a form of equivalence between the
Ham Sandwich Theorem and Borsuk-Ulam, explicitly mention the possible PPA-completeness of
Discrete Ham Sandwich as an “interesting and challenging open problem”.

We prove the PPA-completeness of Discrete Ham Sandwich via a simple reduction from
Necklace-splitting. Ours is not the first paper to develop the close relationship between the
two problems: Blagojević and Soberón [9] shows a generalisation, where multiple agents may share
a “sandwich”, dividing it into convex pieces. Further papers to explicitly point out their computa-
tional complexity as open problems include Deng et al. [23] (mentioning that both problems “show
promise to be complete for PPA”), Aisenberg et al. [1], and Belovs et al. [7].

Further Related Work: The class TFNP was defined in [58] and several of its subclasses were
studied over the years, such as PPA, PPAD and PPP [60], PLS [41] and CLS [20]; here we focus
on the most recent results. As we mentioned earlier, in [29] we identified the first natural complete
problem for PPA, the approximate Consensus-halving problem. In a recent paper, Sotiraki et
al. [67] identified the first natural problem for the class PPP, the class of problems whose totality is
established by an argument based on the pigeonhole principle. For the class CLS, both Daskalakis
et al. [21] and Fearnley et al. [27] identified complete problems (two versions of the Contraction

3



Map problem, where a metric or a meta-metric are given as part of the input). In the latter paper,
the authors define a new class, namely EOPL (for “End of Potential Line”), and show that it is
a subclass of CLS. Furthermore, they show that two well-known problems in CLS, the P-Matrix
Linear Complementarity Problem (P-LCP), and finding a fixpoint of a piecewise-linear contraction
map (PL-Contraction) belong to the class. The End of Potential Line problem of [27] is
closely related to the End of Metered Line of [39].

2 Problems and Results

We present and discuss our main results, and in Section 2.1 we give an overview of the proof and
new techniques, in particular with respect to the precursors [28, 29] to this paper.

Definition 4 (ε-Consensus Halving [66, 29]) An instance ICH incorporates, for 1 ≤ i ≤ n, a
non-negative measure µi of a finite line interval A = [0, x], where each µi integrates to 1 and x > 0
is part of the input. We assume that µi are step functions represented in a standard way, in terms
of the endpoints of intervals where µi is constant, and the value taken in each such interval. We
use the bit model (logarithmic cost model) of numbers. ICH specifies a value ε ≥ 0 also using the
bit model. We regard µi as the value function held by agent i for subintervals of A.

A solution consists firstly of a set of n cut points in A (also given in the bit model of numbers).
These points partition A into (at most) n+ 1 subintervals, and the second element of a solution is
that each subinterval is labelled A+ or A−. This labelling is a correct solution provided that for each
i, |µi(A+)−µi(A−)| ≤ ε, i.e. each agent has a value in the range [12 −

ε
2 ,

1
2 +

ε
2 ] for the subintervals

labelled A+ (hence also values the subintervals labelled A− in that range).

We assume without loss of generality that in a valid solution, labels A+ and A− alternate. We
also assume that the alternating label sequence begins with label A+ on the left-hand side of A
(i.e. A+ denotes the leftmost label in a Consensus-halving solution).

The Consensus-halving problem of Definition 4 is a computational version of the Hobby-Rice
theorem [38]. Most of the present paper is devoted to proving the following theorem.

Theorem 2.1 ε-Consensus-halving is PPA-complete for some inverse-polynomial ε.

As mentioned in the introduction, in [29] it was proven that 2-thief Necklace-splitting and
ε-Consensus-halving for ε inversely-polynomial are computationally equivalent, i.e. they reduce
to each other in polynomial time. Therefore, by [29] and the “in PPA” result proven in Section B.1,
we immediately get the following corollary.

Theorem 2.2 Necklace-splitting is PPA-complete when there are k = 2 thieves.

If we knew that k-Necklace-splitting belonged to PPA for other values of k, we could of
course make the blanket statement “Necklace-splitting is PPA-complete”. Alas, the proofs
that Necklace-splitting is a total search problem for k > 2 [2, 56] do not seem to boil down
to the parity argument on an undirected graph! That being said, we do manage to establish
membership of PPA for k being a power of 2 (essentially an insight of [2]), see Section B of the
Appendix for the details and a related discussion. Of course, the k = 2 result strongly suggests
that k-Necklace-splitting is a hard problem for other values of k.

As it happens, the PPA-completeness of Discrete Ham Sandwich follows straightforwardly,
and we present that next. The basic idea of Theorem 2.3 of embedding the necklace in the moment
curve appears already in [62, 51] and [48], p.48.
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Theorem 2.3 Discrete Ham Sandwich is PPA-complete.

Proof. Inclusion in PPA is shown in Section B.1 of the Appendix. For PPA-hardness, we reduce
from 2-thief Necklace-splitting which is PPA-complete by Theorem 2.2.

The idea is to embed the necklace into the moment curve γ = {(α,α2, . . . , αn) : α ∈ [0, 1]}.
Assume all beads lie in the unit interval [0, 1]. A bead having colour i ∈ [n] located at α ∈ [0, 1]
becomes a point mass of ingredient i of the ham sandwich located at (α,α2, . . . , αn) ∈ IRn. It
is known that any hyperplane intersects the moment curve γ in at most n points, (e.g. see [51],
Lemma 5.4.2), therefore a solution to Discrete Ham Sandwich corresponds directly to a solution
to Necklace-splitting, where the two thieves splitting the necklace take alternating pieces. (In
the k = 2 case, we may assume without loss of generality that they do in fact take alternating
pieces).

A limitation to Theorem 2.3 is that the coordinates may be exponentially large numbers; they could
not be written in unary. We leave it as an open problem whether a unary-coordinate version is also
PPA-complete. As defined in [60], Discrete Ham Sandwich stipulated that each of the n sets
of points is of size 2n, whereas Definition 3 allows polynomial-sized sets. We can straightforwardly
extend PPA-completeness to the version of [60] by adding “dummy dimensions” whose purpose is
to allow larger sets of each ingredient; the new ingredients that are introduced, consist of compact
clusters of point masses, each cluster in general position relative to the other clusters and the
subspace of dimension n that contains the points of interest.

Notation: We use the standard notation [n] to denote the set {1, . . . , n}, and we also use ±[n]
to denote {1,−1, 2,−2, . . . , n,−n}. We often refer to elements of ±[n] as “labels” or “colours”. λ
is usually used to denote a labelling function (so its codomain is ±[n]).

We let A denote the domain of an instance of Consensus-halving; if that instance has com-
plexity n then A will be the interval [0, poly(n)], where poly(n) is some number bounded by a
polynomial in n. Recall by Definition 4 that µa denotes the value function, or measure, of agent a
on the domain A, in a Consensus-halving instance. We also associate each agent with its own
cut (recall that the number of agents and cuts is supposed to be equal) and we let c(a) denote the
cut associated with agent a.

We let pC(n) be a polynomial that represents the number of “circuit-encoders” that we use in
our reduction (see Section 5.1); we usually denote it pC , dropping the n from the notation.

Finally, B denotes the n-cube (or “box”) [−1, 1]n.

Terminology In an instance of Consensus-halving, a value-block of an agent a denotes a sub-
interval of the domain where a possesses positive value, uniformly distributed on that interval. In
our construction, value-blocks tend to be scattered rather sparsely along the domain.

2.1 Overview of the proof

We review the ground covered by the precursors [28, 29] to this paper, then we give an overview of
the technical innovations of the present paper.

2.1.1 Ideas from [28, 29]

[28] established PPAD-hardness of Consensus-halving. An arithmetic circuit can be encoded
by an instance to ε-Consensus-halving, by letting each gate have a cut whose location (in a
solution) represents the (approximate) value taken at that gate. Agents’ valuation functions ensure
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that values taken at the gates behave according to the type of gate. A “PPAD circuit” can then
be represented using an instance of Consensus-halving.

[29] noted that the search space of solutions to instances as constructed by [28], is oriented. A
radical new idea was needed to encode the non-oriented feature of topological spaces representable
by PPA. That was achieved by using two cuts to represent the coordinates of a point on a triangular
region faving two sides identified to form a Möbius strip. (These cuts are the only ones that lie in
a specific subinterval of the interval A of a Consensus-halving instance, called the “coordinate-
encoding (c-e) region”. The two cuts are called the “coordinate-encoding cuts”.) Identifying two
sides in this way is done by exploiting the equivalence of taking a cut on the LHS of the c-e
region, and moving it to the RHS. In order to embed a hard search problem into the surface of
a standard 2-dimensional Möbius strip, it was necessary to work at exponentially-fine resolution,
which immediately required inverse-exponential ε for instances of ε-Consensus-halving. In [29]
we reduced from the PPA-complete problem 2D-Tucker [1] (Definition 5 below), a search problem
on an exponential-sized 2-dimensional grid.

In [29], the rest of A is called the “circuit-encoding region” R, and the cuts occurring within R
do the job of performing computation on the location of cuts in the c-e region. The present paper
retains this high-level structure (Section 4.1). As in [29] we use multiple copies of the circuit that
performs the computation, each in its own subregion of R. Here we use pC(n) copies where pC is
a polynomial; in [29] we used 100 copies. Each copy is called a circuit-encoder. The purpose of
multiple copies is to make the system robust; a small fraction of copies may be unreliable: as in
[29] we have to account for the possibility that one of the c-e cuts may occur in the circuit-encoding
region, rendering one of the copies unreliable. We re-use the “double negative lemma” of [29] that
such a cut is not too harmful. We also adapt a result of [29] that when a cut is moved from the
one end to the other end of the c-e region, this corresponds to identifying two facets of a simplex
to form a Möbius strip.

[29] uses a sequence of “sensor agents” to identify the endpoints of intervals labelled A+ and
A− in the coordinate-encoding region, and feed this information into the above mentioned circuit-
encoders, which perform computation on those values. As in [29] we use sensor agents. We obtain
a simplification with respect to [29] which is that we do not need the gadgets used there to perform
“bit-extraction” (converting the position of a c-e cut into n boolean values). In [29], a solution to
an instance of Consensus-halving was associated with a sequence of 100 points in the Möbius-
simplex (referred there as the “simplex-domain”), and the “averaging manoeuvre” introduced in
[19] was applied. In this paper, for a polynomial pC(n), we sample a sequence of pC points in a
more elegant manner, again exploiting the inverse-polynomial precision of solutions that we care
about.

2.1.2 Technical innovations

As in [29], we reduce from the PPA-complete problem 2D-Tucker [1] (Definition 5). That com-
putational problem uses an exponentially-fine 2D grid, and (unlike [29]), in Section 3 we apply the
snake-embedding technique invented in [14] (versions of which are used in [22, 23] in the context of
PPA) to convert this to a grid of fixed resolution, at the expense of going from 2 to n dimensions.
The new problem, Variant high-D Tucker (Definition 7) envisages a 7× 7× · · · × 7 grid. Here,
we design the snake-embedding in such a way that PPA-completeness holds for instances of the
high-dimensional problem that obey a further constraint on the way the high-dimensional grid is
coloured, that we exploit subsequently. A further variant, New variant high-D Tucker (Def-
inition 8) switches to a “dual” version where a hypercube is divided into cubelets, and points in
the hypercube are coloured such that interiors of cubelets are monochromatic. A pair of points is
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sought having equal and opposite colours and distant by much less than the size of the cubelets.
We encode a point in n dimensions using a solution to an instance of Consensus-halving

as follows. Instead of having just 2 cuts in the coordinate-encoding region (as in [29]), suppose
we ensure that up to n cuts lie there. These cuts split this interval into n + 1 pieces whose total
length is constant, so represent a point in the unit n-simplex (in [29], the unit 2-simplex). This
“Möbius-simplex” (Definition 17; Figure 10) has the further property that two facets are identified
with each other in a way that effectively turns the simplex into an n-dimensional Möbius strip.

In Section 5.2 we define a crucially-important coordinate transformation (see Figure 11) with the
following key properties

• the transformation and its inverse can be computed efficiently, and distances between trans-
formed coordinate vectors are polynomially related to distances between un-transformed vec-
tors;

• at the two facets that are identified with each other, the coordinates of corresponding points
are the negations of each other; our colouring function (that respects Tucker-style bound-
ary conditions) has the effect that antipodal points get equal and opposite colours, and no
undesired solutions are introduced at these facets.

This is the “smooth embedding” referred to in the abstract.

With the aid of the above coordinate transformation, we divide up the Möbius-simplex:

• The twisted tunnel (Definition 23) is an inverse-polynomially thick strip, connecting the two
facets that are identified in forming the Möbius-simplex. It contains at its centre an embedded
copy of the hypercube domain of an instance IV T of New variant high-D Tucker. Outside
of this embedded copy, it is “coloured in” (using our new coordinate system) in a way that
avoids introducing solutions that do not encode solutions of IV T .

• The Significant Region contains the twisted tunnel and constitutes a somewhat thicker strip
connecting the two facets. It serves as a buffer zone between the twisted tunnel and the rest of
the Möbius-simplex. It is subdivided into subregions where each subregion has a unique set of
labels, or colours, from ±[n]. (We sometimes refer to these as “colour-regions”.) It is shown
that any solution to an instance of Consensus-halving constructed as in our reduction,
represents a point in the Significant Region.

• If, alternatively, a set of cuts represents a point from outside the Significant Region, then
certain agents (so-called “blanket-sensor agents”) will observe severe imbalances between
labels A+ and A−, precluding a solution.

In [29], it was relatively straightforward to integrate the subset of the 2-dimensional Möbius-
simplex that corresponds with the twisted tunnel, with the parts of the domain where the blanket-
sensor agent became active (ruling out a solution) in a way that avoided introducing solutions that
fail to encode solutions of Tucker. In the present paper, that gap has to be “coloured-in” in a
carefully-designed way (Section 5.3, list item 3), and this is the role of the part of the Significant
Region that is not the twisted tunnel. The proofs that they work correctly (Sections 6.2, 6.3)
become more complicated.
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3 Snake embedding reduction

The purpose of this section is to establish the PPA-completeness ofNew variant high-D Tucker,
Definition 8. The snake embedding construction was devised in [14], in order to prove that ε-Nash
equilibria are PPAD-complete to find when ε is inverse polynomial; without this trick the result
is just obtained for ε being inverse exponential. We do a similar trick here. We will use as a
starting-point the PPA-completeness of 2D-Tucker, from [1], which is the following problem:

Definition 5 (Aisenberg et al. [1]) An instance of 2D-Tucker consists of a labelling λ : [m] ×
[m] → {±1,±2} such that for 1 ≤ i, j ≤ m, λ(i, 1) = −λ(m−i+1,m) and λ(1, j) = −λ(m,m−j+1).
A solution to such an instance of 2D-Tucker is a pair of vertices (x1, y1), (x2, y2) with |x1−x2| ≤ 1
and |y1 − y2| ≤ 1 such that λ(x1, y1) = −λ(x2, y2).

The hardness of the problem in Definition 5 arises when m is exponentially-large, and the
labelling function is presented by means of a boolean circuit.

We aim to prove the following is PPA-complete, even when the values mi are all upper-bounded
by some constant (specifically, 7).

Definition 6 (Aisenberg et al. [1]) An instance of nD-Tucker consists of a labelling λ : [m1] ×
· · · × [mn] → {±1, · · · ,±n} such that if a point x = (x1, . . . , xn) lies on the boundary of this
grid (i.e., xi = 1 or xi = mi for some i), then letting x̄ be the antipodal point of x, we have
λ(x̄) = −λ(x). (Two boundary points are antipodal if they lie at opposite ends of a line segment
passing through the centre of the grid.) A solution consists of two points z, z′ on this grid, having
opposite labels (λ(z) = −λ(z′)), each of whose coordinates differ (coordinate-wise) by at most 1.

It is assumed that λ is presented in the form of a circuit, syntactically constrained to give
opposite labels to antipodal grid points.

Definition 7 An instance of Variant high-D Tucker is similar to Definition 6 but whose in-
stances obey the following additional constraints. The mi are upper bounded by the constant 7. We
impose the further constraint that the facets of the cube are coloured with labels from ±[n] such that
all colours are used, and opposite facets have opposite labels, and for 2 ≤ i ≤ n it holds that the
facet with label i (resp. −i) has no grid-point on that facet with label i (resp. −i).

Theorem 3.1 Variant high-D Tucker is PPA-complete.

Informal description of snake embedding A snake-embedding consists of a reduction from
kD-Tucker to (k+1)D-Tucker, which we describe informally as follows. See Figure 1. Let I be
an instance of kD-Tucker, on the grid [m1]× · · · × [mk]. Embed I in (k + 1)-dimensional space,
so that it lies in the grid [m1] × · · · × [mk] × [1]. Then sandwich I between two layers, where all
points in the top layer get labelled k + 1, and points in the bottom layer get labelled −(k + 1), as
in the left part of Figure 1. We now have points in the grid [m1]× · · · × [mk]× [3], and notice that
this construction preserves the required property that points on the boundary have labels opposite
to their antipodal points.

Then, the main idea of the snake embedding is the following. We fold this grid into three
layers, by analogy with folding a sheet of paper along two parallel lines so that the cross-section is
a zigzag line, and one dimension of the folded paper is one-third of the unfolded version, the other
dimension being unchanged (see the right hand side of Figure 1). In higher dimension, suppose
that m1 is the largest value of any mi. Then, we can reduce m1 by a factor of about 3, while
causing the final coordinate to go up from 3 to 9. By merging layers of label k+1 and −(k+1), the
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side view after folding

Figure 1: Snake embedding from 2 to 3 dimensions.

thickness of 9 reduces to 7. This operation preserves the labelling rule for antipodal boundary points.

However, there are two points that need extra care for the reduction to go through:

• Firstly, simply folding the layers such that their cross-sections are zigzag lines may intro-
duce diagonal adjacencies between cubelets that were not present in the original instance
in k-dimensions, i.e. we might end up generating adjacent cubelets with equal-and-opposite
colours, see the left part of Figure 2 for an illustration. To remedy this, we will “copy” (or
“duplicate”) the cubelets at the folding points, essentially having three cubelets of the same
colour, whose cross-sections are the short vertical section in the right hand side of Figure 1,
see also the right hand side of Figure 2 for an illustration. From now on, when referring to
“folding”, we will mean the version where we also duplicate the cubelets at the folding points,
as described above.

• Secondly, the folding and duplicating operation only works ifm1 is a multiple of 3, as otherwise
the (k+1)-dimensional instance may not satisfy the boundary conditions of Definition 6, i.e.
we might end up with antipodal cubelets that do not have equal-and-opposite colours. To
ensure that m1 is a multiple of 3 before folding, we can add 1 or 2 additional layers of
cubelets to m1, (depending on whether the remainder of the division of m1 by 3 is either 2 or
1 respectively). These layers are duplicate copies of the outer layers of cubelets at opposite
ends of the length-m1 direction; if there is only one additional layer to be added, we can add
on either side. Note that this operation does not generate any cubelets of equal-and-opposite
labels that were not there before and the same will be true for the instance after the folding
operation. See Figure 3 for an illustration.

Formal description of snake embedding Let I be an instance of kD-Tucker having coor-
dinates in ranges [m1], . . . , [mk] and label function λ. Select the largest mi, breaking ties lexico-
graphically. Assume for simplicity in what follows that m1 is largest.

9



1
2

−1

−2

−2

side view without duplication

1
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−2

2

side view with duplication

Figure 2: Side views of the folding operation with and without duplications of cubelets. On the left, simply
folding generates equal-and-opposite labels diagonally in the shaded cubelets. On the right, the duplication
of the cubelet at the folding position in three copies prevents this from happening.

2
2
1
−2

2
2
1
−2

2
−1
−2
−2

2
−1
−2
−2

Figure 3: Extending the colouring to ensure that m1 is a multiple of 3. In the figure, the case when m1

mod 3 = 1 is shown, i.e. one layer needs to be added at each side.

Fixing the length to a multiple of 3. Let r = m1 mod 3 and let ℓ = 3−r. Consider the instance
I3 of kD-Tucker having coordinates in ranges [m′

1], . . . , [mk], with m′
1 mod 3 = 0, constructed

from I as follows. For any point x′ = (x′1, . . . , x
′
k) in [m′

1]× . . . × [mk], x
′ is mapped to a point x

in [m1]× . . .× [mk] and receives a colour λ′(x′) such that,

• if ℓ = 0, then x′ is mapped to x = (x′1, . . . , x
′
k) and λ′(x′) = λ(x), i.e. x′ is mapped to itself

and receives its own label, since m1 is already a multiple of 3.

• If ℓ = 1, then

– if x′1 ≤ m1, x
′ is mapped to x = (x′1, . . . , x

′
k) and λ′(x′) = λ(x).

– if x′1 = m1 + 1, x′ is mapped to x = (m1, . . . , x
′
k) and λ′(x′) = λ(x).

In other words, points for which the first coordinate ranges from 1 to x′1, are mapped to
themselves and receive their own label, and points for which the first coordinate is m1 + 1
are mapped to the points where the first coordinate is m1, receiving the label of that point.
This essentially “duplicates” the layer of cubelets on the right endpoint of the m1-direction.
See Figure 3 for an illustration.

• If ℓ = 2, then

– if x′1 = 1, x′ is mapped to x = (1, . . . , x′k) and λ′(x′) = λ(x).

– if 2 ≤ x′1 ≤ m1 + 1, x′ is mapped to x = (x′1 − 1, . . . , x′k) and λ′(x′) = λ(x). This is
similar to the mapping and labelling in the previous case, except for the fact that we
need to “shift” the labels of the points, since we essentially introduced a copy of the layer
of cubelets on the left endpoint of the m1-direction. See Figure 3 for an illustration.

Note that by the operation of adding ℓ layers as above, we do not introduce any cubelets with
equal-and-opposite labels that were not present before. To avoid complicating the notation, in the
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following we will use m1 to denote the maximum size of the first coordinate (instead of m′
1) and we

will assume that m1 is a multiple of 3. We will also use I to denote the instance of kD-Tucker

where m1 is a multiple of 3, instead of I3 as denoted above.

From k to k + 1 dimensions. Starting from an instance I of kD-Tucker, we will construct an
instance I ′ of (k + 1)D−Tucker as follows. Let x = (x1, . . . , xk) be a point in [m1] × . . . × [mk]
with labelling function λ. We will associate each such point with a corresponding point x′ in
[
m1

3 + 2
]
× . . . × [mk]× [7] and a label λ′(x′) as follows.

• If x1 ≤
m1

3 , then x is mapped to x′ = (x1, . . . , xk, 2), and λ′(x′) = λ(x).

• If x1 = m1

3 + 1 (the first “folding” point), then x is mapped to the following three points in
I ′ and receives the following colours (see the shaded cubelets at the right-hand side of Figure
2):

– x′ = (m1

3 + 1, . . . , xk, 2) (the original cubelet) and λ′(x′) = λ(x).

– x′ = (m1

3 + 1, . . . , xk, 3) (the first copy) and λ′(x′) = λ(x).

– x′ = (m1

3 + 1, . . . , xk, 4) (the second copy) and λ′(x′) = λ(x).

• If m1

3 + 2 ≤ x1 ≤ 2m1

3 − 1, then x is mapped to x′ = (2m1

3 + 2 − x1, x2, . . . , xk, 4), with
λ′(x′) = λ(x).

• If x1 =
2m1

3 (the second “folding” point), then x is mapped to the following three points in I ′

and receives the following colours:

– x′ = (2, . . . , xk, 4) (the original cubelet) and λ′(x′) = λ(x).

– x′ = (2, . . . , xk, 5) (the first copy) and λ′(x′) = λ(x).

– x′ = (2, . . . , xk, 6) (the second copy) and λ′(x′) = λ(x).

• If 2m1

3 +1 ≤ x1 ≤ m1, then x is mapped to x′ = (x1+2− 2m1

3 , x2, . . . , xk, 6), with λ′(x′) = λ(x).

• Set λ′(1, . . . , 1) = −k, along with any point x connected to it via a path of points that have
not been labelled by the above procedure.

• Set λ′(m1

3 +2,m2, . . . ,mk, 7) = k, along with any point x connected to it via a path of points
that have not been labelled by the above procedure.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. First, it is not hard to check that the the composition of O(n) snake-
embeddings is a polynomial-time reduction. Also note that, by the way the high-dimensional
instances is constructed, we have not introduced any adjacencies that did not already exist, i.e. if
there is a pair of adjacent cubelets with equal-and-opposite labels in the instance I ′ of the high-
dimensional version, this pair is present in the instance I of the 2D version as well, and it is easy to
recover it in polynomial time. Therefore, it suffices to show how to obey the additional constraint
of Variant high-D Tucker, namely that for i ≥ 2, a side having label i has no grid-points with
label i, and similarly for −i.

We begin as in [29] (see Figure 1 in that paper), by taking the original 2D instance I, of size
m×m, and extend to an instance of size 3m×m as follows. The original instance is embedded in
the centre of the new instance. Each region R to the sides (of size m×m) are labelled by copying
the edge of I facing R, along an adjacent edge of R, and connecting these two edges with paths
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that have two straight sections and connect 2 points of the same label, and points along that path
have that label. The outermost path then labels a side of the new instance of length m, so these
two opposite sides get opposite labels. We may assume (by switching 1’s and 2’s if needed) that
these new opposite sides are labelled ±2.

The S-fold approach shown in Figure 1 (in this paper) can be checked to retain this property.
When we sandwich a cuboid between two layers of opposite (new) colours (call them c and −c),
as shown in Figure 1, we label the new facets thus formed with −c and c respectively. We label
the other facets with their original labels (each of these facets has acquired the labels c and −c,
and no other labels). The folding operation has a natural correspondence between the facets of
the unfolded and folded versions of the cuboid. It can be checked that the set of colours of a facet
before folding is the same as the set of colours of the corresponding facets after folding.

It is convenient to define the following problem, whose PPA-completeness follows fairly directly
from the PPA-completeness of Variant high-D Tucker.

Definition 8 An instance of New variant high-D Tucker in n dimensions is presented by a
boolean circuit CV T that takes as input coordinates of a point in the hypercube B = [−1, 1]n and
outputs a label in ±[n] (assume CV T has 2n output gates, one for each label, and is syntactically
constrained such that exactly one output gate will evaluate to true), having the following constraints
that may be enforced syntactically.

1. Dividing B into 7n cubelets of edge length 2/7 using axis-aligned hyperplanes, all points in
the same cubelet get the same label by CV T ;

2. Interiors of antipodal boundary cubelets get opposite labels;

3. Points on the boundary of two or more cubelets get a label belonging to one of the adjacent
cubelets;

4. Facets of B are coloured with labels from ±[n] such that all colours are used, and opposite
facets have opposite labels. For 2 ≤ i ≤ n it also holds that the facet with label i (resp. −i)
does not intersect any cubelet having label i (resp. −i). Facets coloured ±1 are unrestricted
(we call them the “panchromatic facets”).

A solution consists of a polynomial number pC of points that all lie within an inverse polynomial
distance δ(n) of each other (for concreteness, assume δ(n) = 1/100n). At least two of those points
should receive equal and opposite labels by CV T .

New variant high-D Tucker corresponds to the problem Variant Tucker in [29]; in that
paper a solution only contained 100 points, while here we use pC points. Here we need more points
since we are in n dimensions, and our analysis needs to tolerate n points receiving unreliable labels.

4 Some building-blocks and definitions

Here we set up some of the general structure of instances of Consensus-halving constructed in
our reduction. We identify some basic properties of solutions to these instances. We define the
Möbius-simplex and the manner in which a solution encodes a point on the Möbius-simplex. The
encoding of the circuitry is covered in Section 5.
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Useful quantities: We use the following values throughout the paper.

• δtiny is an inverse-polynomial quantity in n, chosen to be substantially smaller than any other
inverse-polynomial quantity that we use in the reduction, apart from ε (below).

• δT is an inverse-polynomial quantity in n, which is smaller than any other inverse-polynomial
quantity apart from δtiny and is larger than δtiny by an inverse-polynomial amount. The
quantity δT denotes the width of the so-called “twisted tunnel” (see Definition 23).

• phuge denotes a large polynomial in n; specifically we let phuge = n/δtiny. The quantity phuge

represents the number of sensor agents for each circuit encoder (see Definition 13).

• plarge denotes a large polynomial in n, which is however smaller than phuge by a polynomial
factor. The quantity plarge will be used in the definition of the “blanket-sensor agents” (see
Definition 14) and will quantify the extent to which the cuts in the “coordinate-encoding
region” (Definition 9) are allowed to differ from being evenly spaced, before the blanket-
sensor agents become active (see Section 4). The choice of plarge controls the value δw of the
radius of the Significant Region (see Proposition 4.4), with larger plarge meaning larger δw.

• ε is the precision parameter in the Consensus-Halving solution, i.e. each agent i is satisfied
with a partition as long as |µi(A+)− µi(A−)| ≤ ε. Henceforth, we will set ε = δtiny/10.

4.1 Basic building-blocks

We consider instances ICH of Consensus-halving that have been derived from instances IV T of
New variant high-D Tucker in n dimensions. The general aim is to get any solution of such
an instance ICH to encode a point in n dimensions that “localises” a solution to IV T , by which we
mean that from the solution of ICH , we will be able to find a point on the IV T instance that can
be transformed to a solution of IV T in polynomial time and fairly straightforwardly.

Definition 9 Coordinate-encoding region (c-e region) Given an instance of Variant high-

D Tucker in n dimensions, the corresponding instance of Consensus-halving has a coordinate-
encoding region, the interval [0, n], a (prefix) subinterval of A.

The valuation functions of agents in an instance ICH of Consensus-halving obtained by our
reduction from an instance of New variant high-D Tucker in n dimensions, will be designed in
such a way that either n−1 or n cuts (typically n) must occur in the coordinate-encoding region, in
any solution. Furthermore, the distance between consecutive cuts must be close to 1 (an additive
difference from 1 that is upper-bounded by an inverse polynomial), shown in Proposition 4.4.

Definition 10 Coordinate-encoding agents (c-e agents). Given an instance of New vari-

ant high-D Tucker in n dimensions, the corresponding instance of Consensus-halving has n
coordinate-encoding agents denoted {a1, . . . , an}.

The n c-e agents have associated n coordinate-encoding cuts (Definition 11). It will be seen that the
c-e cuts typically occur in the c-e region. The c-e agents do not have any value for the coordinate-
encoding region; their value functions are only ever positive elsewhere. In particular, they have
blocks of value whose labels A+/A− are affected by the output gates of the circuitry that is encoded
to the right of the c-e region.
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Definition 11 Coordinate-encoding cuts (c-e cuts). We identify n cuts as the coordinate-
encoding cuts. In the instances of Consensus-halving that we construct, in any (sufficiently
good approximate) solution to the Consensus-halving instance, all other cuts will be constrained
to lie outside the c-e region (and it will be straightforward to see that the value functions of their
associated agents impose this constraint). A c-e cut is not straightforwardly constrained to lie in
the c-e region, but it will ultimately be proved that in any approximate solution, the c-e cuts do in
fact lie in the c-e region.

Recall that phuge = n/δtiny from Section 2, which implies that the c-e region can be divided into
phuge intervals of length δtiny (see also Figure 4).

Definition 12 σ-shifted version. Given a value function f (or measure) on the c-e region [0, n],
we say that another function f ′ on the c-e region is a σ-shifted version of f , when we have that
f ′((x− σ) mod n) = f(x).

Recall that the circuit-encoding region (details in Section 5) contains pC circuit-encoders, men-
tioned in the following definitions.

Definition 13 Sensor agents. Each circuit-encoder Ci, i = 1, . . . , pC , has a set Si of sensor
agents. Si = {si,1, . . . , si,phuge} where the si,j are defined as follows. When i = 1, s1,j has value 1

10
uniformly distributed over the interval

[

(j − 1)δtiny, (j − 1)δtiny +
δtiny

pC

]

.

For i > 1, si,j is a 1
pC

(i− 1)δtiny-shifted version of s1,j.

Each sensor agent si,j also has valuation outside the c-e region, in non-overlapping intervals of
the circuit-encoding region Ri (see Section 5.1). This valuation consists of two valuation blocks of
value 9

20 each, with no other valuation block in between. These are exactly as described in [29], see
also Appendix A and Figure 16 for an illustration.

This value gadget for si,j causes the j-th input gate in the circuit-encoder Ci to be set according
to the label received by si’s block of value in the c-e region, i.e. jump to the left or to the right in
order to indicate that the corresponding value-block of si in the c-e region is labelled A+ or A−.

According to the definitions above, C1 has a sequence of (a large polynomial number of) sensor
agents that have blocks of value in a sequence of small intervals going from left to right of the c-e
region (see Figure 4). For 1 < i ≤ pC , Ci has a similar sequence, shifted slightly to the right on
the c-e region (by δtiny(i− 1)/pC ). For j ∈ [phuge], the intervals defined by the value-blocks of the
sensor agents s1,j, . . . , spC ,j (for C1, . . . , CpC ) partition the interval [(j − 1)δtiny , jδtiny].

Remark: Note that a c-e cut may divide one of the above value-blocks held by a sensor agent in the
c-e region, and in that case the input being supplied (using the gadget of [29]) to its circuit-encoder
is unreliable. However, only n sensor agents may be affected in that way, and their circuit-encoders
will get “out-voted” by the ones that receive valid boolean inputs. This is part of the reason why we
use pC circuit-encoders in total. More details on this averaging argument are provided in Section 5.

Definition 14 Blanket-sensor agents. Each circuit-encoder Ci shall have n− 1 blanket-sensor
agents bi,2, . . . , bi,n.
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Figure 4: Sensor illustration: example of n = 4 c-e cuts representing 5 coordinates summing to 1 (a typical
point in the Möbius-simplex). Vertical lines depict the cuts, resulting in labels that alternate between A+

and A−, starting with A+. Shaded blocks over agents’ lines indicate value-blocks of their value functions.
We only depict sensors for circuit-encoders C1 and C2.
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1. In C1, for each j = 2, . . . , n, blanket-sensor agent b1,j has value 1/10 distributed over [j−2, j]
(see Figure 4). This value consists of a sequence

[

(j − 2), (j − 2) +
δtiny

pC

]

, · · · ,

[

j − δtiny, j − δtiny +
δtiny

pC

]

of 2/δtiny = 2phuge/n value-blocks, each of length δtiny/pC and of value 1
10 · (δtiny/2).

2. In each Ci, 1 < i ≤ pC , and for each j = 2, . . . , n, the value function of bi,j that lies in the

c-e region is an (i− 1) δ
tiny

pC
-shifted version of b1,j .

3. The remaining value 9/10 of each bi,j consists of 3 value-blocks of width δtiny lying in a
subinterval Ii,j of the circuit-encoding region Ri (see Section 5.1), such that:

- the value-blocks have values

9(1 − κ)

20
,

9κ

10
,

9(1− κ)

20

respectively, where κ =
(

1
10

δtiny

2

)

plarge.

- Ii,j contains also value-blocks of agents for each gate that takes the value of bi,j as input
(the feedback gadgetry, see Section 5.1.2).

The value of the blanket-sensor agents in Ii,j is very similar to the gadget used in [29], see Appendix
A (of the present paper) and Figure 17. The structure of the blanket-sensor agents in the c-e region
is shown in Figure 4.

Notes on the blanket-sensors

Each blanket-sensor agent bi,j has an associated cut c(bi,j) that lies in the subinterval Ii,j. Agent bi,j
“monitors” an interval of length 2, namely the interval [j−2, j] within which the sequence of 2/δtiny

value-blocks lie. If, in this interval, the number of these value-blocks labelled A+ exceeds the number
labelled A− by at least plarge (recall that plarge is a large polynomial which is however polynomially
smaller than phuge) then (in any ε-approximate solution to ICH , where, recall, ε = δtiny/10), the cut
c(bi,j) in Ii,j lies in either the right-hand or the left-hand value-block, otherwise it lies in the central
value-block. Note that these three possible positions may be converted to boolean values that
influence circuit-encoder Ci; this was referred to as a “bit-detection gadget” in [29], see Appendix
A for more details.

Definition 15 (Active blanket-sensor) We say that blanket-sensor bi,j is active if bi,j in fact
observes a sufficiently large label discrepancy in the c-e region, that c(bi,j) lies in one of the two
outer positions, left or right, and not in the central position. We say that bi,j is active towards A+

if A+ is the overrepresented label, with similar terminology for A−.
When blanket-sensor agent bi,j is active, it provides input to Ci that causes Ci to label the value

held by aj and controlled by Ci, to be either A+ or A−; the choice depends on the over-represented
label in [j − 2, j] and the parity of the index of the blanket-sensor agent. The precise feedback
mechanism to the c-e agent aj by the blanket-sensor bi,j is described in Section 5.1.3.

When no blanket-sensors are active, the sequence of c-e cuts encodes a point in the Significant
Region (Definition 18).
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In [29], we worked just in two dimensions and there was just one blanket-sensor agent for the
entire c-e region, for each circuit-encoder. Note also that there, the blanket-sensor agent had a
single value-block of length 2; here we split it into a polynomial sequence of small value-blocks.
The advantage of using a polynomial sequence of value-blocks (which could not have been done in
[29] due to the exponential precision requirement) is that we can argue that in all but at most n
circuit-encoders, the blanket-sensor agents have value-blocks that are not cut by the c-e cuts, so we
can be precise about how big a disparity between blocks labelled A+ and A− cause a blanket-sensor
to be active, and for at most n circuit-encoders, we regard them as having unreliable inputs (see
Definition 16 and Observation 4.2).

4.2 Features of solutions

The main result of this section is Proposition 4.4, that in a solution to approximate Consensus-

halving as constructed here, the sequence of cuts in the c-e region are “evenly spaced” in the sense
that the gap between consecutive cuts differs from 1 by at most an inverse-polynomial.

Observation 4.1 (At most n cuts in the c-e region) Given an instance ICH derived by our
reduction from an instance of New variant high-D Tucker in n dimensions, any inverse-
polynomial approximate solution of ICH has the property that at most n cuts lie in the coordinate-
encoding region. This is because all other cuts are associated with agents who have at least 9/10 of
their value strictly to the right of the c-e region, thus in a solution, those cuts cannot lie in the c-e
region.

Definition 16 (Reliable input) We will say that a circuit-encoder receives reliable input, if no
coordinate-encoding cut passes through value-blocks of its sensor agents.

Observation 4.2 At most n circuit-encoders fail to receive reliable input (by Observation 4.1 and
the fact that sensors of distinct circuit-encoders have value in distinct intervals).

When a circuit-encoder receives reliable input, it is straightforward to interpret the labels allo-
cated to its sensors, as boolean values, and simulate a circuit computation on those values, ultimately
passing feedback to the c-e agents via value-blocks that get labelled according to the output gates of
the circuit being simulated. This is done in a conceptually similar way to that described in [29]
(e.g. see Sections 4.4.2 and 4.6 in [29]), see also Appendix A of the present paper.

Definition 17 The Möbius-simplex. The Möbius-simplex in n dimensions consists of points x
in IRn+1 whose coordinates are non-negative and sum to 1. We identify every point (x1, . . . , xn, 0)
with the point (0, x1, . . . , xn), for all non-negative x1, . . . , xn summing to 1. We use the following
metric d(·, ·) on the Möbius-simplex, letting L1 be the standard L1 distance on vectors:

d(x,x′) = min
(

L1(x,x
′), min

z,z′:z≡z
′

(L1(x, z) + L1(z
′,x′))

)

(1)

where (0, x1, . . . , xn) ≡ (x1, . . . , xn, 0).

How a consensus-halving solution encodes a point in the Möbius-simplex Let ICH be
an instance of Consensus-halving, obtained by reduction from New variant high-D Tucker

in n dimensions, hence having c-e region [0, n]. Note that, by Observation 4.1, at most n cuts may
lie in the c-e region. A set of k ≤ n cuts of the coordinate-encoding region splits it into k+1 pieces.
We associate such a split with a point x in IRn+1 as follows. The first coordinate is the distance

17



from the LHS of the consensus-halving domain to the first cut, divided by n, the length of the c-e
region. For 2 ≤ i ≤ k + 1, the i-th coordinate of x is the distance between the i − 1-st and i-th
cuts, divided by n. Remaining coordinates are 0.

If there are n − 1 cuts in the c-e region, suppose we add a cut at either the LHS or the RHS.
These two alternative choices correspond to a pair of points that have been identified as the same
point, as described in Definition 17. (Observation 5.3 makes a similar point regarding transformed
coordinates.)

Observation 4.3 Each circuit-encoder reads in “input” representing a point in the Möbius-simplex.
Any circuit-encoder Ci (i ∈ [pC ]) behaves like C1 on a point xi, for which (for all i, j ∈ [pC ])
d(xi,xj) ≤ δtiny (recall d is defined in (1)). Consequently their collective output (the split between
A+ and A− of the value held by the c-e agents) is the output of a single circuit-encoder averaged
over a collection of pC points in the Möbius-simplex, all within δtiny of each other.

This follows by inspection of the way the pC circuit-encoders differ from each other: their
sensor-agents are shifted but their internal circuitry is the same.

Definition 18 The Significant Region of the Möbius-simplex D. The Significant Region
of D consists of all points in D where no blanket-sensors are active (where “blanket-sensors” and
“active” are defined in Definition 15).

Proposition 4.4 There is an inverse-polynomial value δw such that all points x = (x1, . . . , xn+1)
in the Significant Region have coordinates xi that for 2 ≤ i ≤ n differ from 1/n by at most δw, if
x is encoded by the c-e cuts of an ε-approximate solution to one of our instances of Consensus-

halving. (Recall that ε = δtiny/10).
Thus, if an instance ICH of Consensus-halving (obtained using our reduction) has a solution

SCH , then all the c-e cuts in SCH have the property that the distance between two consecutive c-e
cuts differs from 1 by at most some inverse-polynomial amount.

Before we proceed with the proof of the proposition, we will state a few simple lemmas that will
be used throughout the proof. We start with the following definition.

Definition 19 (Cut δ-close to integer point) For ℓ ∈ {0, . . . , n}, we will say that a cut c is
δ-close to integer point ℓ, if it lies in [ℓ − δ, ℓ + δ]. We will say that cut c is δ-close to an integer
point if there is some integer ℓ ∈ {0, . . . , n} such that c is δ-close to integer point ℓ.

Intuitively, cuts that are δ-close to integer points lie close (within distance at most δ) to either the
endpoints or the midpoint of some monitored interval [j − 2, j].

Note that, by Definition 14, a blanket-sensor agent will be active when at least phuge/n+ plarge

value-blocks of volume 1
10 ·

δtiny

2 in an interval monitored by the blanket-sensor agent receive the same
label. This will happen if there is a union

⋃

ℓ Iℓ of subintervals Iℓ of some monitored subinterval
[j−2, j], for some j ∈ {2, . . . , n}, which will have total length larger than 1+δ, where δ > plarge·δtiny.

This means that in [j − 2, j], there will be at least phuge/n+ plarge value-blocks of volume 1
10 ·

δtiny

2
that receive the same label, since by construction, there are at least phuge/n + plarge such value-
blocks in any interval of length at least 1 + plarge · δtiny. In such a case, the blanket-sensor agent
b1,j is active and the set of cuts is not a solution to ICH . In the following, we will consider δ such
that plarge · δtiny < δ < 1/2n.

Definition 20 (Monochromatic interval of label Aj) An interval I is a monochromatic in-
terval if it is not intersected by any cuts (which means that it receives a single label). Additionally,
if for Aj ∈ {A+, A−}, I is labelled with Aj , then we will say that I is a monochromatic interval of
label Aj.
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0 1 2 3 4 5 0 1 2 3 4 5

Figure 5: The case of an interval of length k being intersected by k − 2 (left) or k − 1 (right)
cuts, here k = 5. The monitored subintervals are depicted in blue. On the left, an interval of
length 5 is cut by only 3 cuts. The interval defined by the second and third cuts is of length
larger than 1 + 1/k = 6/5. On the right, an interval of length 5 is cut by 4 cuts. It is possible to
achieve an approximately balanced partition, but only if all cuts are δ-close to integer coordinates
and specifically to midpoints of the monitored subintervals, which is indicated by the red cuts. A
case where this does not happen is indicated by the green cuts, where the blanket-sensor agent of
interval [2, 4] is active. Note that while in the figure, in both cases, the interval of length k contains
only full monitored intervals, the same arguments go through if it contains half intervals instead,
e.g. considering the interval [1, 5] and 2 cuts (left) and 3 cuts (right).

It should be clear that if any monitored interval [j − 2, j] has a large enough (larger than 1 + δ)
monochromatic subinterval, then the blanket-sensor agent b1,j is active.

Lemma 4.5 For some ℓ ∈ {0, n−k},with k > 1, consider the interval I = [ℓ, ℓ+k] of length k and
assume that there are at most k − 2 cuts in this interval. Then at least one of the blanket-sensors
monitoring the subintervals in I will be active.

Proof. In I, there are at least k − 1 intervals monitored by blanket-sensor agents and we only
have at most k − 2 cuts at our disposal. With k − 2 cuts, we can partition an interval of length
k in at most k − 1 intervals, the largest of which, call it Imax, will have length at least 1 + 1/k.
Since δ < 1/2n, the length of Imax is actually larger than 1 + δ. The lemma follows then from the
fact that, since the monitored intervals partition the interval I, Imax will contain a monochromatic
interval of length at least 1 + δ, which will be entirely contained in some monitored interval, and
the corresponding blanket-sensor agent will be active.

Lemma 4.6 For some ℓ ∈ {0, n − k}, with k > 1, consider the interval I = [ℓ, ℓ + k] of length k
and assume that there are k − 1 cuts in this interval. Then either

- each of the k − 1 cuts in I will be δ-close to a different integer point and these integer points
will be the midpoints of the monitored subintervals contained entirely in I or

- at least one of the blanket-sensors monitoring the subintervals in I will be active.

Proof. In I, there are at least k−1 intervals monitored by blanket-sensor agents and we have k−1
cuts at our disposal. Assume that there exists some integer point j−1 which is a midpoint of some
monitored interval [j − 2, j] ⊆ I such that there exists no cut that is δ-close to j − 1. This implies
that either [j − 2, j] is intersected by at least 2 cuts, or the blanket-sensor agent corresponding to
[j − 2, j] will be active. To see this, note that if there were not any cuts in [j − 2, j] then obviously
the whole interval [j − 2, j] would be monochromatic and the corresponding blanket-sensor would
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be active. If [j − 2, j] was intersected by a single cut, since the cut lies at distance at least δ from
the midpoint of the interval, there would exist a monochromatic subinterval of [j − 2, j] of length
at least 1 + δ, activating the corresponding blanket-sensor agent b1,j.

However, for the blanket-sensor agent b1,j to not be active, it would have to be the case that
some other cut in the interval [j − 2, j] is also not δ-close to the midpoint of one of the adjacent
monitored intervals, therefore generating an imbalance in labels that has to be compensated with
at least one additional cut in that interval. Given that there are only k − 1 cuts in the interval I,
it follows that in some monitored subinterval [j′, j′ − 2] there will be a large enough imbalance, i.e
a monochromatic subinterval of length at least 1 + δ, and the corresponding blanket-sensor agent
b1,j′ will be active. See the right-hand side of Figure 5 for an illustration.

We are now ready to proceed with the proof of Proposition 4.4.

Proof of Proposition 4.4. First, recall that by Observation 4.1, at most n cuts can lie in the c-e
region. Also recall that from Definition 14, for the circuit encoder C1, the blanket-sensor agent b1,j ,
j ∈ {2, . . . , n} has valuation only in the interval [j − 2, j] of the c-e region, i.e. it “monitors” the

interval [j − 2, j]. The blanket-sensor agent bi,j for i ∈ {2, . . . , pC} is a (i − 1) δ
tiny

pC
-shifted version

of b1,j . We will make the argument for the blanket-sensor agents of the circuit-encoder C1; the
argument for any Ci, with i 6= 1 is very similar.

It suffices to prove that if consecutive cuts are too far apart or too close together, some blanket-
sensor agent will be active.

Case 1: The cuts are too far apart. First consider the case when two consecutive cuts are too
far apart (by more than 1 plus some inverse-polynomial amount 2δ). More formally, assume that
there are two cuts c1 and c2 such that c2 > c1 and c2 − c1 > 1 + 2δ. Then, as we explain below,
there is some j ∈ {2, . . . , n} such that some subinterval Ij = [j1, j2] ⊆ [j − 2, j] with j2 − j1 > 1+ δ
will receive a single label, either A+ or A−. In particular, we have the following cases:

- There is a j such that [c1, c2] ⊆ [j − 2, j]. In that case, [c1, c2] is such a monochromatic
subinterval.

- There is a j such that [j − 2, j] ⊆ [c1, c2]. In that case, the whole monitored subinterval
[j − 2, j] is such a monochromatic subinterval.

- For all j, the interval [j − 2, j] is intersected by at most one cut cℓ, ℓ ∈ {1, 2}. Obviously,
both cuts will intersect some interval, since they lie in the c-e region. Consider cut c1 and let
[j − 2, j] be an interval that is intersected by c1. If c1 lies in [j − 2, j − 1], then, since there
exists no other cut between c1 and c2 and since c2 does not intersect [j− 2, j] by assumption,
the interval [c1, j] will be a monochromatic interval of length at least 1 + δ and we are done.
If c1 lies in [j − 1, j], then first observe that j 6= n, as otherwise both cuts c1 and c2 would
have to lie in [n − 2, n] violating the assumption of the case. Therefore, we can look at the
interval [j − 1, j + 1] and notice that again by the assumption of the case, since cut c1 does
intersect the interval [j − 1, j + 1], we must have that c2 > j + 1. This is either impossible
(when j = n− 1) or otherwise [c1, j + 1] is a monochromatic interval of length at least 1 + δ,
and we are done.

Case 2: The cuts are too close together. Now consider the case when two consecutive cuts are
too close together, closer than 1− 2nδ. More formally, assume that there are two consecutive cuts
c1 and c2 in the c-e region such that c2 > c1 and c2−c1 < 1−2nδ. Since the cuts are close together,
there exists a monitored interval that is intersected by both c1 and c2 and let [j − 2, j] be such an
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interval. Notice that if there exists no other cut that intersects [j − 2, j], then [j − 2, c1] ∪ [c2, j]
is a union of subintervals of length at least 1 + δ that receive the same label, and we are done.
Therefore there must exist at least 3 cuts that lie in [j − 2, j]. We consider three cases.

There are 5 or more cuts in [j − 2, j]. This is an easy case to argue, as if that happens, there will
be some interval, either [0, j − 2] or [j, n] of length k that is only intersected by at most k− 2 cuts.
By Lemma 4.5, some blanket-sensor agent will be active and we are done.

There are 4 cuts in [j−2, j]. Consider the intervals [0, j−2] and [j, n]. If either [0, j−2] is intersected
by at most (j − 2) − 2 cuts or [j, n] is intersected by at most n − j − 2 cuts, then by Lemma 4.5,
some blanket-sensor will be active and we are done. Note also for completeness that, if j = 2
(respectively j = n), it is necessarily the case that [j − 2, n] (respectively [0, j − 2]) is intersected
by n− 4 cuts and Lemma 4.5 again applies. Therefore, we can assume that j ∈ {3, . . . , n− 1}, and
that there are exactly (j − 2)− 1 cuts in [0, j − 2] and n− j − 1 cuts in [j, n].

Consider the interval [j, n] without loss of generality, as the argument for [0, j−2] is symmetric.
By Lemma 4.6, we know that the cuts in [j, n] are δ-close to integer points and particularly, they
are δ-close to the midpoints of the monitored intervals [j, j +2], . . . , [n− 2, n]. This implies that in
the monitored subinterval [j, j + 2], the subinterval [j, j + 1− δ] will be a monochromatic interval
of label Aj for some Aj ∈ {A+, A−},

In turn, this implies that [j− 1, j] has a monochromatic subinterval of length at least 1− δ that
receives the label A−j , where A−j ∈ {A+, A−} is the complementary label to Aj , for the blanket-
sensor agent to not be activated, which is only possible if one of the 4 cuts in [j − 2, j] is δ-close
to the integer point j. Propagating the effect of this cut sequence/labelling into the monitored
interval [j − 2, j] in question, we obtain that [j − 2, j − 1] also contains a monochromatic interval
of length at least 1− δ and label Aj , as otherwise blanket-sensor agent b1,j would be active. From
this discussion, it follows that:

- all the cuts in [j − 2, j] are δ-close to integer coordinates within the interval and

- there is at least one cut in [j − 2, j] that is δ-close to the midpoint j − 1 of the monitored
interval, one cut that is δ-close to the right endpoint j of the monitored interval and at least
one cut that is δ-close to the left endpoint j − 2 of the monitored interval,

where the very last statement follows from the symmetric argument to the one developed above,
for the interval [0, j − 2]. See Figure 6 for an illustration.

Now, we consider three cases with respect to the positions of the 4 cuts in [j − 2, j], illustrated in
Figure 7. From the discussion above, we know that three of the cuts will be δ-close to the left-
endpoint, midpoint and right-endpoint of [j − 2, j] respectively, so it suffices to consider the cases
depending on the position of the fourth cut. Henceforth, we use c1, c2, c3 to denote these three cuts,
from left to right in terms of their position within the interval and c̃ to denote the aforementioned
fourth cut.

(A) c̃ is δ-close to j − 1. In that case, assuming wlog that c̃ < c2, due to the parity of the cut
sequence, the union of intervals [c1, c̃] ∪ [c2, c3] contains monochromatic intervals of the same
label and length at least 1+δ and therefore blanket-sensor b1,j will be active. See the left-hand
side of Figure 7.

(B) c̃ is δ-close to j. In that case, it is possible that [j − 2, j] does not contain a union of
monochromatic intervals of the samel label of length at least 1+ δ. However, by the parity of
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2 cuts here 4 cuts here

Figure 6: The case in which there are 4 cuts in the interval [j− 2, j] (shown in red), here for j = 5.
The 3 cuts that lie in δ-distance from the left endpoint, midpoint and right endpoint of [j−2, j] are
depicted with thick dashed red lines. The other cut in the interval (based on the position of which
the different cases are considered) is depicted by a thick dashed blue line and in the particular case,
it is shown to be δ-close to the midpoint of the interval. Notice that the positioning of the cuts in
[0, 3] and in [5, 10] is such that the cuts are δ-close to integer coordinates which are the midpoints
of the monitored subintervals. If that was not the case, then some subintervals would be sufficiently
imbalanced and the corresponding blanket-sensor agent would be active.

the cut sequence, in the interval [j−1, j+1], now most of the interval [j−1, j+1] will receive
the same label, and [j − 1, j +1] will contain a union of monochromatic intervals of the same
label of total length at least 1 + δ, activating the blanket-sensor b1,j+1. See the right-hand
side of Figure 7.

(C) c̃ is δ-close to j − 2. This case is symmetric to Case (B) above.

There are 3 cuts in [j − 2, j]. Again, considering the intervals [0, j − 2] and [j, n] as we did in the
case of 4 cuts in [j − 2, j], we can now observe that one of the intervals will be intersected by at
most k−1 cuts, where k ∈ {j−2, n− j} is its length. Furthermore, if it is intersected by fewer than
k− 1 cuts, by Lemma 4.5 some blanket-sensor agent will be active and we are done. Therefore, we
will consider the case when one of the intervals is intersected by exactly k− 1 cuts and let [j, n] be
that interval, without loss of generality, as the argument for [0, j − 2] is symmetric.

Following exactly the same arguments as in the second and third paragraph of the case of 4
cuts above, we can establish a very similar statement, namely that:

- all the cuts in [j − 2, j] are δ-close to integer coordinates within the interval and

- there is at least one cut in [j − 2, j] that is δ-close to the midpoint j − 1 of the monitored
interval, and one cut that is δ-close to the right endpoint j of the monitored interval.

Again, letting c1 and c2 denote the two cuts mentioned in the second item above from left to right
in terms of their positions, we will consider some cases depending on the position of the third cut,
which we will denote by c̃.

(a) c̃ is δ-close to j − 2. In that case, considering the intervals [c̃, c1] and [c1, c2], we observe that
since the cuts c̃, c1 and c2 are δ-close to the integer points j−2, j−1 and j respectively, both
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A+ A− A− A+

A+

A+ A− A+ A+ A−

A−

Figure 7: The two subcases of the case when there are 4 cuts in the interval [j − 2, j]. The three
cuts c1, c2 and c3 that are δ-close to the integer points j − 2, j − 1 and j in the interval are shown
in red, the other cut c̃ is shown in blue. On the left, when c̃ is δ-close to the midpoint j − 1 of
the interval, most of [j − 2, j] is coloured with the same label, here A−, by the parity of the cut
sequence. On the right, c̃ is δ-close to the right endpoint j of the interval which means that, by the
parity of the cut sequence, most of [j − 1, j + 1] receives the label A+, since if there is another cut
in the interval, it is constrained by the arguments of the proof to be δ-close to the right endpoint
j + 1 (shown in red here).

intervals have length at least 1 − 2δ. However, this contradicts the assumption of the case,
namely that there exists two cuts in [j − 2, j] that are within distance at most 1 − nδ from
each other. See Figure 8, left-hand side.

(b) c̃ is δ-close to j − 1. In that case, similarly to Case (A) for the case of 4 cuts, the parity of
the cut sequence is such that most of [j − 2, j] will receive the same label and in particular
[j − 2, j] will contain a union of monochromatic intervals of the same label with total length
at least 1 + δ, activating blanket-sensor b1,j. See Figure 8, middle.

(c) c̃ is δ-close to j. Again, similarly to Case (B) for the case of 4 cuts, it is possible that [j−2, j]
does not contain a union of monochromatic intervals of the samel label of length at least
1 + δ. However, by the parity of the cut sequence, in the interval [j − 1, j + 1], now most of
the interval [j − 1, j + 1] will receive the same label, and [j − 1, j + 1] will contain a union
of monochromatic intervals of the same label of total length at least 1 + δ, activating the
blanket-sensor b1,j+1. See Figure 8, right-hand side.

This completes the proof.

Remarks: Looking ahead, certain points in the Significant Region encode New variant high-

D Tucker (namely, the ones in the “twisted tunnel”, Definition 23). The Significant Region
contains the twisted tunnel, being a somewhat wider 1-dimensional “tunnel” of inverse-polynomial
width at most 1/pw(n), whose central axis is the set of points (α, 1/n, . . . , 1/n, 1/n−α), where the
endpoints are identified together (noting Definition 17). Topologically, the Significant Region is a
high-dimensional Möbius strip.
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Figure 8: The three subcases of the case when there are 3 cuts in the interval [j − 2, j]. The two
cuts c1, c2 and that are δ-close to the integer points j−1 and j in the interval are shown in red, the
other cut c̃ is shown in blue. On the left, when c̃ is δ-close to the left endpoint j− 2 of the interval,
at least one of the subintervals defined by the cuts will have length at least 1 − 2δ, contradicting
the assumption of the case. In the middle, c̃ is δ-close to the midpoint j− 1 of the interval [j− 2, j]
and by the parity of the cut sequence, most of the interval receives the same label, here A−. Finally
on the right, c̃ is δ-close to the right endpoint j of the interval which means that, by the parity of
the cut sequence, most of [j − 1, j + 1] receives the label A+, since if there is another cut in the
interval, it is constrained by the arguments of the proof to be δ-close to the right endpoint j + 1
(shown in red here).

5 Reducing from New variant high-D Tucker to Consensus-

halving

In Sections 5.1 we give an overview of aspects of how we construct an instance ICH of ε-Consensus-

halving (in poly-time) from an instance of New variant high-D Tucker, for inverse polynomial
ε. Section 5.2 describes the new coordinate system for the Möbius-simplex D and establishes key
properties. Section 5.3 presents a colouring function of D in terms of the coordinate system of
Section 5.2. Section 5.4 describes how to construct a purported solution to n-dimensional New

variant high-D Tucker from a solution to ε-Consensus-halving. In Section 6 we prove that
a solution to New variant high-D Tucker that is obtained by reducing to ε-Consensus-

halving, solving it, and converting that solution to a solution to n-dimensional New variant

high-D Tucker, really is a valid solution.

5.1 Overview of the construction of an instance of ε-Consensus-halving from
an instance of New variant high-D Tucker

We define the reduction from New variant high-D Tucker (Definition 8) to ε-Consensus-

halving.
Let IV T be an instance of New variant high-D Tucker in n dimensions; let CV T be the

boolean circuit that represents it. ICH will be the corresponding instance of Consensus-halving.
We list ingredients of ICH and give notation to represent them, as follows. A is the consensus-
halving domain, an interval of the form [0, poly(n)]. Any agent a has a measure µa : A −→ IR
represented as a step function (thus having a polynomial number of steps).

• ICH has n coordinate-encoding agents a1, . . . , an (Definition 10). See Figure 9.
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• The consensus-halving domain A of ICH has a coordinate-encoding region (c-e region) (Defi-
nition 9) consisting of the interval [0, n].

• ICH has pC circuit-encoders (Sections 5.1.1, 5.1.4), C1, . . . , CpC .

– Each Ci has a set Ai of agents (see Figure 9) which includes Ci’s sensor agents, also
circuit-encoding agents (below).

– Each Ci has an associated circuit-encoding region Ri of A; each Ri is an interval of
polynomial length, and the Ri do not intersect with each other or with the coordinate-
encoding region.

– Ai contains a polynomial number of circuit-encoding agents (one for each gate of CV T ),
having value in Ri.

– Each Ci has phuge sensor agents as defined in Definition 13 each of which has a block
of value 1/10 in a small subinterval of the c-e region as specified in Definition 13, and
further value in region Ri.

– Each Ci has n− 1 blanket-sensor agents as in Definition 14.

Remarks: We associate one cut with each agent; let c(a) be the cut associated with agent a. The
cuts c(ai) for coordinate-encoding agents, are called the coordinate-encoding cuts (or c-e cuts). A
straightforward consequence of Proposition 4.4 is that in any solution, either all n, or n − 1, of
the coordinate-encoding cuts must lie in the coordinate-encoding region. All other cuts must lie
in the regions Ri, indeed, every cut, other than the c-e cuts, is constrained by the value of its
associated agent, to lie in a small interval that does not overlap any other such intervals. In the
event that a c-e cut lies outside the c-e region, we refer to it as a “stray cut”, and while such a
cut may initially appear to interfere with the functioning of the circuitry, similarly to [29] we have
that the duplication of the circuit using pC circuit-encoders, allows the circuitry to be robust to
this problem. See Appendix A for more details.

5.1.1 Construction of C1

Recall CV T is the boolean circuit in the instance IV T of New variant high-D Tucker.

• We assume that CV T has 2n output gates g1, . . . , gn and g−1, . . . , g−n having the property
that exactly one of them will take value true (this may be enforced syntactically). gi getting
value 1 (true) means that the point at coordinates represented by the input gets coloured i.

• CV T has n · polylog(n) input gates, representing the coordinates of a point in B = [−1, 1]n,
each represented with inverse-polynomial precision.

We describe how circuit-encoder C1 is derived from CV T . The subsequent circuit-encoders can
then be specified in terms of C1. Each gate g of CV T is simulated using a “gate agent” a(g), as
constructed in [29] (see Appendix A for a more detailed exposition). a(g)’s cut c(a(g)) occupies
a right position, or a left position, representing true or false, as a function of the cut(s) that
represent boolean inputs to g.

The circuit-encoding agents A1 of C1 thus include 2n gate agents whose corresponding cuts
simulate the values of the output gates of CV T , provided that the input represented by the c-e
cuts lies in the “Significant Region” (Definition 18). The positions of these cuts affect the labels of
blocks of value held by the n coordinate-encoding agents, as detailed in Section 5.1.2.
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Figure 9: An overview of ICH , denoting all the different regions and the agents of C1 . . . , Cn, as well as the
coordinate-encoding agents. The highlighted areas denote that the corresponding agent has non-zero value
on these regions.

Definition 21 Reference sensor-agent. Noting from Definition 13 that the sensor agents for
Ci are denoted Si = {si,1, . . . , si,phuge}, we let s1,1 be the reference sensor-agent: Outputs produced
by the circuit Ci are taken with reference to the value1 s1,1, in the sense that after simulating CV T

we take the exclusive-or with s1,1.

We used this crucial technique of Definition 21 in [29]: it performs the task of disorienting the
domain while at the same time ensuring continuity when we move a cut from the left-hand side of
the c-e region to the right-hand side.

Preprocessing, prior to simulating CV T For each Ci, we take all phuge input bits, which
appear in up to n + 1 blocks of consecutive 1’s and 0’s, and convert them into the coordinates
of a point in the Möbius-simplex (Definition 17). As noted earlier (Observation 4.2) at most n
circuit-encoders may receive ill-defined inputs caused by c-e cuts cutting through value-blocks in
the c-e region that belong to their sensor agents; we simply assume that the output of those agents
is unreliable, indeed adversarially chosen.

We then perform a coordinate transformation described in Section 5.2. A subset of points in the
Möbius-simplex maps to a copy of the domain B of the instance IV T (recall Definition 8). These
points get their coordinates passed directly to a copy of CV T , and the outputs of CCV are used to
provide feedback to the c-e agents as described in Section 5.1.2 (and discussed in Observations 4.2
and 4.3). Other points get coloured in a manner that avoids allowing bogus solutions to ICH (i.e.
ones that do not encode solutions to IV T ).

1We are using s1,1 to denote the boolean value taken by s1,1 as well as the sensor itself.
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5.1.2 Output gates of C1, and the feedback they provide to the coordinate-encoding
agents

The following generalises [29]. CV T has output gates gj , j ∈ ±[n], with the property that when
inputs are well-defined, exactly one output gate evaluates to true. A circuit-encoder simulates
CV T using the gate gadgets introduced in [28, 29] (see Appendix A). Let xREF ∈ {true, false}
be the negation of the value of the reference sensor (Definition 21). We use additional gates g′j ,
j ∈ ±[n] where

• if gj = g−j = false then g′|j| = true and g′−|j| = false;

• if j > 0 and gj = true (so g−j = false) then g′j = g′−j = true⊕ xREF ;

• if j < 0 and gj = true (so g−j = false) then g′j = g′−j = false⊕ xREF ;

Each of the c-e agents a1, . . . , an has 2 value-blocks of value 1/(2pC ) in region R1, and each gate
g′j of C1 is able to select the label of one of these value-blocks (recall that the boolean value at a
gate is represented by two positions that may be taken by the corresponding cut, so that a block
of value lies between these two positions.) Figure 20 in Appendix A shows an example of how this
feedback works.

5.1.3 How C1’s blanket-sensors affect the feedback mechanism

Let Aj ∈ {A+, A−} and let A−j ∈ {A+, A−}, A−j 6= Aj be the complementary label. The blanket-
sensor agents b1,2, . . . , b1,n affect the output of the circuit-encoders as follows:

1. If none are active, the 2n outputs of C1 are computed as described in Section 5.1.2.

2. If j is odd and b1,j is active in direction Aj then the output gates g′j , g
′
−j are both set to the

value that causes c-e agent aj to observe more Aj.

3. If j is even and b1,j is active in direction Aj then the output gates g′j , g
′
−j are both set to the

value that causes c-e agent aj to observe more A−j.

Rules 2 and 3 override Rule 1, which allocates values that directly encode values output by CV T .
Note that the gadgetry of the circuit can ensure that either an excess of A+ or an excess of A−

can be shown to the corresponding c-e agent as feedback, as the circuit can convert the input
value encoded by the value gadget of the blanket-sensor agent in R1 to either a “right” or “left”
output position, depending on the parity of the index. Also, if more than one blanket-sensor agent
is active, they all affect their corresponding gates. The reason for requiring blanket-sensors of
different parities to feedback different labels to the c-e agents is to be consistent with the definition
of “consistent colours”, see Definition 24.

Note that we do not define the behaviour of the blanket-sensor agents in terms of the reference
sensor. They essentially look for an imbalance between A+ and A− within some interval of length 2,
and when they find a sufficiently large imbalance, they force the circuit C1 to show their associated
c-e agent more of the over-represented or under-represented label, depending on their parity, which
can be done using gadgetry of [29].
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Comment. Consider the operation of moving a cut from near the left-hand side of the c-e region
to the right-hand side, which corresponds to two points in the Möbius-simplex that are close to each
other via a path through the facets that have been identified according to Definition 17. Suppose
also that within the c-e region, we do not change the label of any point. Then the blanket-sensor
agents behave the same way: if some blanket-sensor agent sees an excess of A+ in its interval then
it will continue to see an excess of A+. Regarding the (non-blanket) sensor agents, our reduction
will make them “want” to produce opposite outputs, but due to the flipping of xREF , the reference
sensor value, the final output values produced by g′j , j ∈ ±[n] are the same, and we will have
continuity across this facet.

5.1.4 Construction of circuit-encoders C2, . . . , CpC

We next describe how the pC circuit-encoders differ from each other. Each Ci has a set of circuit-
encoding agents Ai, which contains Ci’s sensor agents Si. For i ∈ [n] letAi be the agents ai,1, . . . , ai,p
for some polynomial p.

• For all i, j, µai,j (x) = µa1,j (y) where x and y are corresponding points in Ri and Rj. By
“corresponding points” here we mean points that lie in the same distance from the left-
endpoint of the respective intervals Ri and Rj ; see [29], Section 4.4.3 for the precise definition.

• For all i, j, all x in the c-e region, µai,j (x), is specified in Definition 14.

The second of these items says that in the c-e region, the valuation function of the agents that
make up Ci differ from those of C1 by having been shifted to the right by δtiny(i − 1), where this
shift wraps around in the event that we shift beyond n (the right-hand point of the c-e region). In
other respects, Ci is an exact copy of C1, save that Ci’s internal circuitry lies in Ri rather than R1.

For each Ci, the c-e agents have a further 2n value-blocks of value 1/(2pC ) in region Ri, whose
labels are governed by the outputs produced by Ci in the same way as for C1. Consequently we
have the following observation.

Observation 5.1 The value that is labelled A+ held by any c-e agent aj, is the average of the
output values that the Ci’s allocate to aj. If, say, all the Ci receive inputs representing a point in
the significant region with label ℓ, then aℓ observed an imbalance between A+ and A−, but aj for
j 6= ℓ will have g′j output the opposite value to g′−j , resulting in aj’s value-blocks receiving opposite
labels.

5.2 An alternative coordinate system for the Möbius-simplex

Recall that the Möbius-simplex D is the n-simplex consisting of points (x1, . . . , xn+1) whose com-
ponents are non-negative and sum to 1. Furthermore, a typical point in D is directly encoded via
the positions of n cuts in the c-e region.

Here we specify a transformed coordinate system that is needed in order to encode instances
of New variant high-D Tucker. We will embed the hypercube-shaped domain of an instance
of New variant high-D Tucker in a hypercube in the transformed coordinates, and then use
properties of the transformed coordinate system to extend the labelling function to the rest of the
domain in a way that does not introduce bogus solutions (i.e. fixpoints of the extended function
that lie outside the hypercube and do not encode solutions of New variant high-D Tucker).

Let F0 be the set of points in D of the form (0, x2, . . . , xn, 0); thus F0 is a (n − 2)-face of D.
See Figure 10. For τ ∈ [0, 1], let xτ be the point

xτ := τ(1, 0, . . . , 0) + (1− τ)(0, . . . , 0, 1) = (τ, 0, . . . , 0, 1 − τ).

28



00

0τ

01

axis

x0
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x1

(1, 0, ..., 0)

D0

D1

Dτ

F0
F0 is points
of the form
(0, x2, . . . , xn, 0)

Figure 10: Subspaces of the Möbius-simplex D: D0 is the triangle spanned by x0 and F0, and 00 is its
centre; similarly for Dτ and D1.

(So, x0 and x1 are the endpoints of the 1-dimensional edge of D that is not contained in F0.) Let
Dτ be the (n − 1)-simplex consisting of convex combinations of F0, and xτ . Thus D0 and D1 are
the two facets of D that have been identified together as in Definition 17.

Dτ contains the point 0τ = (τ/n, 1/n, . . . , 1/n, (1− τ)/n), which we regard as the origin of Dτ .
The set of points {0τ : 0 ≤ τ ≤ 1} will be referred to as the axis; it will transpire that all solutions
must lie within an inverse polynomial distance from the axis (in particular will be in the Significant
Region).

We then refer to points in Dτ by means of the coordinates in a coordinate system that itself is
a linear function of τ . With respect to any fixed τ ∈ [0, 1] we define n − 1 vectors (dτ2 , . . . , d

τ
n) as

follows. A key feature is that (dτ2 , . . . , d
τ
n) form a basis of Dτ (so that with respect to the origin

0τ , any point in Dτ has unique coordinates). The other key feature (Observation 5.3) is that at
τ = 0 the coordinate/directions are “equal and opposite” to the coordinates at τ = 1. Also, the
coordinate system varies suitably smoothly.

As a warm-up we start by considering dτ2 :

dτ2 := (1− τ)(0, 1,−1, 0, . . . , 0) + τ(−1, 1, 0, . . . , 0).

dτ2 consists of increasing the second coordinate at the expense of its neighbours. For small τ we
increase mainly at the expense of the third coordinate and as τ increases, we increase the sec-
ond coordinate more at the expense of the first. Notice in particular that at τ = 1

2 we have
dτ2 = (−1

2 , 1,−
1
2 , 0, . . . , 0).

Generally, for 2 ≤ i ≤ n we define

dτi := (1− τ)( 0, . . . , 0
︸ ︷︷ ︸

i−1 zeroes

, 1,−1, 0, . . . , 0
︸ ︷︷ ︸

n−i

) + τ( 0, . . . , 0
︸ ︷︷ ︸

i−2 zeroes

,−1, 1, 0, . . . , 0
︸ ︷︷ ︸

n−i+1

) (2)
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Thus, again this consists of the i-th coordinate increasing at the expense of its neighbours, and we
have in particular

d
1
2

i = ( 0, . . . , 0
︸ ︷︷ ︸

i−2 zeroes

,−
1

2
, 1,−

1

2
, 0, . . . , 0)

For i = 2, . . . , n, define
dτ−i := −dτi . (3)

Observation 5.2 makes the important point that by linearity, the vectors dτi , i = 2, . . . , n, can be
used as a coordinate system to refer to points in Dτ .

Observation 5.2 Any point x in Dτ can be uniquely expressed as a sum

x = 0τ +
n∑

i=2

αid
τ
i . (4)

To see this, note first that D0 is points in D of the form (0, x2, . . . , xn+1), and D1 is points of the
form (x1, . . . , xn, 0). Note that the observation certainly works for τ = 0 or τ = 1. To see that it
works for intermediate τ , note that the vectors dτi are linearly independent, and the reason why they
span Dτ is that any vector dτi is equal to (1− τ) multiplied by a vector in D0, added to τ multiplied
by an equal-length vector in D1. So these vectors do indeed lie in Dτ .

Definition 22 For a point x ∈ Dτ as in (4) we say that the transformed coordinates of x are
(α2, . . . , αn). More generally, a point x ∈ D can be expressed as (τ ;α2, . . . , αn), where τ is chosen
such that x ∈ Dτ . We use the following metric d̃(·, ·) on transformed coordinate vectors, where
similarly to (1), L1 denotes the standard L1 distance on vectors.

d̃(x,x′) = min
(

L1(x,x
′), min

z,z′:z≡z
′

(L1(x, z) + L1(z
′,x′))

)

(5)

where (0;α2, . . . , αn) ≡ (1;−α2, . . . ,−αn).

Observation 5.3 With regard to Definition 22, consider two points x = (0;α2, . . . , αn), x′ =
(1;−α2, . . . ,−αn), that have been equated with each other. Assume these points are near the axis,
specifically |αj | < 1/10n for all j. Notice that

• the cuts in the c-e region for x and x′ partition the c-e region in the same way.

• (with reference to Figure 11) when we move from a point in D1−ε to a nearby point in Dε,
for any j ∈ {2, . . . , n}, the direction of increasing αj segues smoothly to the direction of
decreasing αj.

Our assumption that |αj | < 1/10n ensures that cuts are fairly evenly-spaced, and movement in any
of the directions dτj does not cause the cuts to cross each other.

Proposition 5.4 says that if we perturb a point x ∈ D that lies close to the axis, then the total
perturbation of the transformed coordinates of x is polynomially related to the total perturbation
of the untransformed coordinates; d and d̃ are polynomially related.

Proposition 5.4 (Polynomial distance relation) There is some polynomial p(n) such that for
all x,x′ ∈ D within Euclidean distance 1/10n2 of the axis, letting x̃ and x̃′ be their transformed
coordinates, and letting d, d̃ be the metrics defined as in (1),(5), we have

1

p(n)
≤

d(x,x′)

d̃(x̃, x̃′)
≤ p(n).
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Proof. In Subsection 5.2.1, we show that for points near the axis (i.e. within Euclidean distance
1/10n2 of the axis), the computation of the coordinate transformation —and its inverse— have the
property that small perturbations of the input values lead to inverse-polynomial upper bounds on
the resulting perturbations of the output values. Since we have this for both the transformation
and its inverse, it follows that there are also inverse-polynomial lower bounds on the resulting
perturbations of the output values.

The identification of transformed coordinates (0;α2, . . . , αn) and (1;−α2, . . . ,−αn) is of course
equivalent to the identification of untransformed coordinates (0, x1, . . . , xn) and (x1, . . . , xn, 0) in
(1). If, say, x and x′ are very close together due to being linked via z, z′ for which z ≡ z′, then
the transformed versions z̃, z̃′ would cause d̃(x̃, x̃′) to be very close. So the “polynomially related”
result for this space in which these two facets have not been identified with each other, carries over
to a “polynomially related” result in which they have been identified with each other.

Note that a similar result would hold if in the definitions of the metrics d and d̃, we replace the L1

metric with, say, L2 or L∞, since these are polynomially related to L1.

Note that Proposition 5.4 does not hold for all points in D; the restriction to a neighbourhood
of the axis is needed. For points on F0, all values of τ are equivalent, and for points close to F0,
perturbed versions of them could result in large perturbations of τ .

We show in the next section that the coordinate transformation, and its inverse, can be computed
in polynomial time, for points in D that are within some inverse polynomial distance from the axis.

5.2.1 Computation of the transformation, and its inverse

We verify here that (for points in the vicinity of the axis), our transformation may be performed
efficiently, and that small perturbations of inputs lead to small perturbations of the outputs (in
either direction). The easy direction is the computation of (x1, . . . , xn+1) from (τ ;α2, . . . , αn). Re-
call that a point x on the original domain can be expressed in terms of the transformed coordinates
(τ ;α2, . . . , αn) and the origin 0τ = ( τ

n
, 1
n
, . . . , 1

n
, 1−τ

n
) as x = 0τ +

∑n
i=2 αid

τ
i . Therefore we have:

x1 =
τ

n
− τ.α2

x2 =
1 + τ

n
+ (1− τ)α2 − τα3 − x1

x3 =
2 + τ

n
+ (1− τ)α3 − τα4 − (x1 + x2)

...

xn =
n− 1 + τ

n
+ (1− τ)αn −

n−1∑

i=1

xi

xn+1 = 1−
n∑

i=1

xi

In the other direction, given (x1, . . . , xn+1) we first compute the value of τ for the transformed
coordinate system: Note that (x1, . . . , xn+1) must be a convex combination of xτ and F0 (where
recall that xτ = (τ, 0, . . . , 0, 1 − τ) and F0 is points of the form (0, x2, . . . , xn, 0)), therefore τ can
be computed as the solution to the equation

τ

1− τ
=

x1
xn+1

.
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coordinate-encoding region [0, 4]

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

Dτ

(τ ≈ 0)

Dτ

(small τ)

Dτ

(τ ≈ 1
2 )

Dτ

(large τ)

Dτ

(τ ≈ 1)

x2 x3 x4 x5

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

x1 x2 x3 x4

Figure 11: The diagram shows (for n = 4) sets of cuts (in red) that correspond to points on the axis, for
various values of τ . It also shows how movements of the cuts correspond to movement of a point in D away
from the axis. For example, for small τ , a move in direction dτ2 corresponds to moving the second cut to the
right and the first only slightly to the left. Generally, a movement in direction dτi tends to increase xi at the
expense of xi’s neighbours xi−1 and xi+1. As τ increases, the movement in direction dτi tends increasingly
to moving the cut to the left of interval xi to the left, as opposed to moving the cut to the right of interval
xi to the right. In the limit as τ approaches 0 from above, the direction dτi approaches the negative of the
limit approached by dτi when τ approaches 1 from below.
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Note that the dependence of τ on x1 and xn+1 is not excessively sensitive near the axis, since
x1 + xn+1 is close to 1/n. Having computed τ ∈ [0, 1], we could simply solve the equations above
(the ones used to compute x1, . . . , xn+1) for α2, α3 and so on successively, using the derived formu-
las for αi for the computation of αi+1 and express each αi as a function of only τ and the values
x1, x2, . . . xn+1. However, in the extremal cases of τ = 0 and τ = 1, some of the αi values might
“disappear”; for example, for τ = 0, expressing α3 in terms of only τ , x1 and x2 is not possible,
since for τ = 0 we do not obtain a formula for α2 to substitute into the equation for x2. To remedy
this, we consider two cases:

Case 1: τ ≥ 1
2 . We compute α2, . . . , αn as follows:

α2 =
1

n
−

1

τ
· x1

α3 =
1 + 1/τ

n
+

(1− τ)

τ
· α2 −

1

τ
· (x1 + x2)

...

and so on for α4, . . . , αn.

Case 2: τ ≤ 1
2 . We compute α2, . . . , αn starting at the opposite end:

αn = −
n− 1 + τ

n(1− τ)
+

∑n
i=1 xi
1− τ

αn−1 =
τ

1− τ
· αn −

n− 2 + τ

n(1− τ)
+

∑n−1
i=1 xi
1− τ

...

and so on for αn−2, . . . , α2.
Note that inverse polynomial-size perturbations of the xi lead to inverse polynomial-size per-

turbations of the transformed coordinates. As a sanity check, note that at the boundary (points
with τ = 0 are the same as points with τ = 1), if we move a cut at the LHS to the RHS (so
(0, x2, . . . , xn+1) becomes (x2, . . . , xn+1, 0)), it can be checked that the αi get negated.

Note that these computations should be done with a precision (or rounding error) polynomially
smaller than δtiny.

5.3 A (poly-time computable) partial colouring function f : D → {−1, 0, 1}n

This section defines a partial function f : D → {−1, 0, 1}n (D being the n-dimensional Möbius-
simplex (Definition 17)). f is constructed in polynomial time based on an instance IV T of New

variant high-D Tucker in n dimensions, defined using circuit CV T . f is defined in the Significant
Region (Definition 18) which is the set of points where no blanket-sensor agents (Definition 14) are
active, thus it includes the twisted tunnel T (Definition 23). f is computable by a circuit C, that is
used to define the operations of the circuit-encoders in a derived instance of Consensus-halving.
Within the Significant Region, f determines the outputs of the circuit-encoders.

The function f maps a point x in the Significant Region to a vector of length n, ef (x), where
ef (x)j = 1 means that the point receives colour j, ef (x)j = −1 means that the point receives colour
−j and ef (x)j = 0 means that the point does not receives colour j or −j. In general, ef (x) may
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have multiple non-zero entries. We will use the term the colour of x for points that only receive a
single colour (and therefore their outputs are vectors with only one non-zero entry).

The function f will have a corresponding vector-valued function f ′ (Section 6.1) that more
closely represents choices of labels A+/A− that the circuit shows to the c-e agents. We will do this
in such a way that no “bogus” solutions result from the transition to parts of D where blanket-
sensor agents are active. By construction, there are no solutions where blanket-sensor agents are
active, so all solutions occur where f is defined.

In Section 6.1 we then define a vector-valued “Borsuk-Ulam style” function F in terms of f .
Letting IV T be an instance of New variant high-D Tucker, F (x) will be approximately zero
iff given x, we can derive an approximate consensus-halving solution to IV T . It will be shown that
approximate zeroes of F provide solutions to IV T .

Recall that D is the set of points (x1, . . . , xn+1) whose components are non-negative and sum
to 1. And, the “Significant Region” (Definition 18) of D consists of points (x1, . . . , xn+1) for which
coordinates xi (2 ≤ i ≤ n − 1) differ from 1/n by at most an inverse polynomial δw = 1/pw(n)
(Proposition 4.4). (δw represents an upper bound on the thickness of the Significant Region.)

Let B be the n-dimensional “box” associated with IV T (recall IV T is represented by circuit
CV T that maps points in B to ±[n]). We embed a copy of B in D as follows. Recall the way
facets of B are coloured in Definition 8. Let (x1, . . . , xn) denote a typical point in B, and assume
that the facets of B with maximum and minimum x1 (i.e. x1 = 1 and x1 = −1 respectively) are
the panchromatic facets of B (as in Definition 8), and for i ≥ 2 the facet of B with maximum xi
(xi = 1) consists of points that do not have colour i, and the the facet of B with minimum xi
(xi = −1) consists of points that do not have colour −i.

Definition 23 The twisted tunnel T is defined as follows. The axis of T is the set of all points 0τ
as defined in Section 5.2. The twisted tunnel is the set of all points with transformed coordinates
(τ ;α2, . . . , αn) such that for all i, |αi| < δT . Note that δT is an inverse polynomial quantity
sufficiently small that T is a subset of the Significant Region; this is achieved since by definition,
δT is polynomially smaller than δw of Proposition 4.4. Thus, T has (with respect to the transformed
coordinates) a (n− 1)-cube-shaped intersection with any Dτ .

We define the behaviour of f over the Significant Region (Definition 18) in 3 stages, as follows.

1. Embedding B in D (recall B = [−1, 1]n)

A point x = (x1, . . . , xn) in B is mapped to a point g(x) inD as follows. g(x) lies in Dτ , where
we choose τ = 1

2 +δT ·x1. Then (noting (4)) we set g(x) equal to 0τ +
∑n

i=2 δ
T ·xid

τ
i (i.e. g(x)

has transformed coordinates (12 + δTx1; δ
Tx2, . . . , δ

Txn)). g(x) will receive a single colour;
the colour of g(x) — i.e. the non-zero entry of f(g(x)) — is set equal to the colour allocated
to x in B by IV T . (Notice that the centre of B is mapped to (1/2n, 1/n, . . . , 1/n, 1/2n),
which is the origin of D 1

2
, and the centre of the Significant Region. This point has (recalling

Definition 22) transformed coordinates (12 ; 0, . . . , 0) where the first entry is the value of τ .)

2. Extending f to be defined on T

We also colour other points in T as follows — these will also receive single colours. Suppose
y belongs to Dτ , where τ < 1

2 − δT or τ > 1
2 + δT . According to (4), y = 0τ +

∑n
i=2 αid

τ
i , and

y has transformed coordinates (τ ;α2, . . . , αn). Suppose all the αi lie in the range [−δT , δT ].
Then if τ < 1

2 − δT , we set the colour of y to the colour of a point y′ = (12 − δT ;α2, . . . , αn).
Thus y′ ∈ D 1

2
−δT , and the other transformed coordinates (Definition 22) are the same for

y and for y′. We do a similar thing for points in Dτ for τ > 1
2 + δT . That is, if y has
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Figure 12: Cross-section of the twisted tunnel (for n = 3), with examples of possible labels of regions. Note
that the outer regions of the Significant Region are not adjacent to any cubelet having an opposite colour
to that outer region. For example, the left-hand column is free of cubelets with colour 3, and is adjacent to
the outer region with colour −3.

transformed coordinates (τ ;α2, . . . , αn) where τ > 1
2 + δT and the αi are all at most δT in

absolute value, then y gets the same colour as a point y′ whose transformed coordinates are
(12 + δT ;α2, . . . , αn).

3. Extending f to the Significant Region

The Significant Region (Definition 18) is points in D where no blanket-sensor agents are
active, a subset of points that are close to the axis in the sense of Proposition 4.4. Consider
x ∈ D \ T with transformed coordinates (τ ;α2, . . . , αn).

(a) For each j ∈ {2, . . . , n} if αj > δT then x gets colour −j;

(b) For each j ∈ {2, . . . , n} if αj < −δT then x gets colour j;

(c) these are not mutually exclusive, x gets at least one colour, possibly more.

Notice that (within the subspace Dτ ) the side(s) of the twisted tunnel T closest to x is
guaranteed not to be opposite to any colour of x.

For a subset S of colours, let R(S) be the region with colours in S. We call these the “outer
regions”.

Proposition 6.7 notes that when colour-regions meet each other at opposite ends of T (which have
been identified with each other according to the definition of the Significant Region), they will have
equal and opposite colours.

5.4 How to compute a solution to New variant high-D Tucker from a solution
to Consensus-halving

Suppose we have a solution SCH to an instance ICH of Consensus-halving, derived by our
reduction from an instance IV T of New variant high-D Tucker.

Let x be the point in the Möbius-simplex represented by the c-e cuts of SCH . Proposition 4.4
already tells us that x must lie within some inverse-polynomial distance of the axis, since if not,
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some blanket-sensor agent will be active. We prove in Section 6 that x must lie within, or very
close to, the twisted tunnel.

From this we identify two colour-regions that have equal and opposite colours, as follows. Let
x have transformed coordinates (τ ;α2, . . . , αn), which can be computed with inverse-polynomial
precision from the c-e cuts.

If x occurs within the embedded copy of B (Section 5.3) then identify two circuit-encoders
Ci and Ci′ that both receive reliable inputs and have equal and opposite outputs. The proof of
Proposition 6.4 tells us that this is always possible.

Now we have two points x′ and x′′ within distance δtiny of each other, that lie in oppositely
coloured cubelets. With respect to transformed coordinates, x and x′ are within some distance
δ̃tiny that we can assume by Proposition 5.4 to be much smaller than the widths of the cubelets
and other colour-regions. So these two cubelets are adjacent and we are done.

If x lies in T but not in the embedded copy of B, then we similarly find two distinct colour-
regions that are adjacent and with opposite colours. Since these colour-regions are just extensions
of the cubelets that lie on the panchromatic facets of the embedded instance of New variant

high-D Tucker, we are done. Formally, if SCH represents a point with transformed coordinates
(τ ;α2, . . . , αn) where τ > 1

2 + δT , we take the point (12 + δT ;α2, . . . , αn), and similarly, if SCH

represents a point with transformed coordinates (τ ;α2, . . . , αn) where τ < 1
2 − δT , we take the

point (12 − δT ;α2, . . . , αn).

6 Completing the Proof of Theorem 2.1

Let IV T be an instance of New variant high-D Tucker in n dimensions, given in terms of circuit
CV T ; suppose Consensus-halving instance ICH is derived from it by our reduction. Recall that
ε = δtiny/10. We show that any ε-approximate solution SCH to ICH allows a solution to IV T to be
recovered using Section 5.4.

In SCH , only the c-e cuts may lie in the c-e region (Observation 4.1), and every other cut c(a)
for a not a c-e agent, must lie in some interval outside the c-e region (in order for a’s value to be
evenly split). It follows from Proposition 4.4 that at least n− 1 c-e cuts must lie in the c-e region,
and they are evenly-spaced (the gaps between them differ from 1 by an inverse polynomial). The
remaining cut may occur elsewhere, in which case it becomes what we called a “stray cut” in [29],
and in that case, the “double negative lemma” of [29] may be applied to prove that it has little
effect on the quality of a solution: it causes a single circuit-encoder to have unreliable output.

Recalling Observation 4.3, the c-e cuts of SCH encode a collection of pC points x1, . . . ,xpC in the
Möbius-simplex where d(xi,xj) ≤ δtiny (d is the metric defined in (1)). In transformed coordinates
we have d̃(xi,xj) ≤ δ̃tiny (d̃ as in (5)), and by Proposition 5.4, δ̃tiny is much smaller than other
inverse-polynomial quantities that we work with. Recall also that at most n of these points are
incorrectly labelled since all but n of the circuit-encoders receive reliable inputs. Alternatively, up
to n − 1 circuit-encoders receive unreliable input and one circuit-encoder is affected by the stray
cut. We proceed by case analysis. Note that there is an inverse-polynomial gap between the twisted
tunnel and the boundary of the Significant Region, which is much larger than δtiny. So the cases
to consider are:

- Most or all of the points are in the twisted tunnel. In that case it will be proved that the
procedure of Section 5.4 identifies a solution to New variant high-D Tucker; see Sections
6.1, 6.2.

- Most or all are in the outer regions. In that case we are not at a solution since the colours
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cannot cancel each other.

- Some of the points are outside the Significant Region. In that case we are far from the twisted
tunnel, and Section 6.3 argues that no solution is possible here.

- All points are outside the Significant Region. Then, we are certainly far from a solution since
various blanket-sensor agents will be active, and the points are so close together (within δtiny)
that the directions in which they are active, cannot cancel.

6.1 A Borsuk-Ulam-style function F : D → [−1, 1]n

Recall that D denotes the n-dimensional Möbius-simplex (Definition 17). We start by defining a
function f ′ : D → [−1, 1]n based on f defined as in Section 5.3. f ′ simulates the effect of the
blanket-sensor agents as described in Section 5.1.3. Let x ∈ D.

1. When no blanket-sensor agents are active at x. Here we are in the Significant Region.

• In T , f ′ behaves like f in the sense that if f assigns the colour i to x (recall that it
assigns a single colour to points in T ), then set f ′(x) := ei if i > 0, f ′(x) := −e|i| for
i < 0.

• Outside T , in outer region R(S), f ′(x) :=
∑

i∈S,i>0 ei +
∑

i∈S,i<0−e|i|.

2. When one or more blanket-sensor agents are active. If the j-th blanket-sensor agent
of C1, b1,j is active towards A+ (respectively A−) then the j-th entry of f ′(x) is set to 1 if j
is odd and to −1 if j is even (respectively, to −1 if j is odd and 1 is j is even). This is done
for all active blanket-sensor agents, thus f ′(x) can contain multiple 1’s and −1’s.

The following points are similar to Observation 4.3:

Observation 6.1 Suppose that circuit-encoder Ci (some i ∈ [pC ]) of ICH receives reliable inputs.
(Observation 4.2 tells us that at most n of them fail to receive reliable inputs.) Then Ci computes f ′

at a point within distance δtiny from the x ∈ D encoded by the c-e cuts, in the sense that the value
observed by each c-e agent aj that is labelled by A+, minus the amount labelled A−, restricted to
that part of aj’s value that lies in Ri and so is governed by the output of Ci, is the j-th component
of f ′.

This follows from the construction of Section 5.1.2 and the association of boolean values
true, false with the labels A+ and A−. For x ∈ D, F (x) is the average of the outputs of
the Ci; Proposition 6.2 provides the details.

Proposition 6.2 ICH computes a function F in the following sense. Let x be the point encoded by
the c-e agents. Suppose all agents other than the c-e agents have error (i.e. discrepancy between A+

and A− that they observe) at most ε. Then the error of the c-e agents is within additive distance
1/n from the average value of f ′, averaged over a set of points all within δtiny of x.

Proof. We put together various observations about the way ICH is constructed. Observation 4.3
told us that the values observed by the c-e agents are the average of a set of points all within
distance δtiny of each other. The additive distance 1/n results from the existence of up to n circuit-
encoders that either fail to receive good inputs (Observation 4.2), or are affected by the stray cut,
taken in conjunction with the fact that we average over pC points, where pC can be taken to be at
least 2n2.
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Proposition 6.3 δtiny can be chosen to be sufficiently small (but still inverse-polynomial) that
given a set of pC points x1, . . . ,xpC ∈ D within distance δtiny of each other, when we compute their
transformed coordinates y1, . . . ,ypC , we have:

Every pair of points y,y′ ∈ {y1, . . . ,ypC} has the property that they either lie in the same colour-
region, or adjacent colour-regions (where a “colour-region” is one of monochromatic regions of
Section 5.3), or one of the outer regions.

Proof. In identifying which colour-region a point with transformed coordinates y belongs to, for
the colour-regions in the twisted tunnel T , we compare coordinates with certain threshold values.
These threshold values differ from each other by inverse-polynomial amounts, and the smallest
difference between any pair of them is inverse-polynomial. Applying Proposition 5.4, we can keep
the yi closer to each other than this. (Colour-regions lie in the Significant Region, so these points
lie within 1/10n2 of the axis, so Proposition 5.4 is applicable.)

This applies also to the outer regions R(S) for sets of colours S. Identifying which R(S) a
point y belongs to, uses the same information on comparisons of its coordinates with inverse-
polynomials.

Observations on F

- We call F a Borsuk-Ulam-style function — The suffix “style” is to note that we define a
kind of function that has desirable properties similar to those of a Borsuk-Ulam function,
but for example the domain of the function is D as opposed to a sphere. Also, the function
F is “approximately Lipschitz” rather then truly continuous, which is good enough for our
purposes.

- |F (x)| ≤ ε (here, |F | denotes the L∞ or “maximum” norm of F ) iff x encodes an approximate
Consensus-halving solution. Regarding this point, F is not simulating a Borsuk-Ulam
function, but rather simulating a function consisting of the difference between the values
taken by a Borsuk-Ulam function, at two antipodal points.

6.2 Encoding the output of F with a Consensus-halving solution

Proposition 6.4 Let SCH be an ε-approximate solution to ICH . Suppose that the c-e cuts of SCH

represent a point x that lies in the twisted tunnel. Then we can reconstruct a solution to IV T in
polynomial time.

Recall that SCH , ICH and IV T and ε are as introduced at the start of Section 6.

Proof. Observation 6.1 tells us that if a circuit-encoder Ci receives reliable inputs, it outputs the
colour of a point in the Möbius-simplex that lies within δtiny of x.

We note next that the feedback received by the c-e agents in ICH corresponds to the average
(over i ∈ [pC ]) of the feedback received by the individual circuit-encoders Ci. In detail, the i-th
coordinate of a typical point in B = [−1, 1]n is obtained by taking c-e agent ai, and (given any
attempt at a consensus-halving solution S) subtracting ai’s value for the parts of the consensus-
halving domain labelled A− according to S, from those labelled A+. The resulting point is at the
centre (or origin) of B iff the c-e agents have balanced allocations of A+ and A− (as required for
a consensus-halving solution), and more generally, a point in [−1, 1]n is close to the centre of B iff
the c-e agents have approximately balanced allocations of A+ and A−.
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Observation 4.2 tells us that at most n circuit-encoders fail to receive reliable input. If all
circuit-encoders received reliable input, then the total error at a solution would be at most ε, i.e.
the precision parameter of the ICH instance. However, since at most n of them receive unreliable
input, we might have an added discrepancy of at most n/pC when taking the average and therefore
we need to get within distance ε + 2n

pC
of the centre of B. For this to be possible, we need some

of the cancelling to take place amongst the outputs of the circuit-encoders that received reliable
inputs, so we really can find a pair of correctly oppositely-coloured points.

Proposition 6.3 tell us that if x ∈ D is the point in D represented by some Consensus-halving

solution, then provided x lies in the twisted tunnel, the corresponding cluster of pC points must
be mapped by the circuit-encoders Ci that mostly cancel each other out, so we find pairs of points
that belong to oppositely-labelled colour-regions, from which Section 5.4 tells us how to recover
two oppositely-coloured cubelets of IV T .

It remains to rule out the possibility of x occurring outside the twisted tunnel.

6.3 No bogus approximate-zeroes of F at boundary of Significant Region

Proposition 6.4 tells us that ε-approximate zeroes of F (inputs for which F has value in [−ε, ε]n)
within the twisted tunnel T must encode solutions. Around T , there are outer regions R(S); note
that if i ∈ S then −i 6∈ S and moreover there is an inverse-polynomial lower bound on the distance
between any pair of points belonging to outer regions containing opposite colours. But we have to
rule out points with colour j ∈ S being averaged with nearby points that are “coloured” −j due
to a blanket-sensor agent. In more detail, if x ∈ R(S) and x is within δtiny of x′ for which the j-th
blanket-sensor agent is active and provides feedback corresponding to −j, then we will prove that
S contains some other colour k 6= j and no point in a δtiny-neighbourhood of x activates the k-th
blanket-sensor b1,k to provide feedback corresponding to −k.

In the following, we will refer to cuts in the following manner: “cut i” refers to the i-th cut
(from left to right) in the c-e region. Also, recall that the width δT of the twisted tunnel is smaller
than any other inverse-polynomial quantities of interest, apart from δtiny, which itself is smaller
than all other inverse-polynomials of interest, including δT . We provide the following definition of
a consistent colour.

Definition 24 (Consistent Colour) For x = (τ ;α2, . . . , αn) in the Significant Region, colour
j ∈ {±2, . . . ,±n}, let Aj ∈ {A+, A−} be the label that tends to increase in interval [j − 2, j] when
the |j|-th coordinate αj of x is increased if j > 0, or decreased if j < 0. (Aj depends on the sign
and parity of j.) We say that x has consistent colour j if

1. if j > 0 then αj > 2δT ; if j < 0 then α|j| < −2δT ;

2. at least 1
2 − plarge

2phuge
of the interval [j − 2, j] gets the label Aj .

Condition 1 says that at x ∈ R(S), colour j is a member of S and the corresponding transformed
coordinate is sufficiently far from the twisted tunnel. Condition 2 says that we are at least some
(small but significant) distance from triggering the j-th blanket-sensor in a direction that corre-
sponds to excessive colour −j. In other words, for the j-th blanket-sensor to become active in
direction −j, we would have to increase A−j by an inverse-polynomial amount.

The following proposition establishes that for points in the outer regions R(S), consistent colours
exist.
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Proposition 6.5 Suppose x = (τ ;α2, . . . , αn) belongs to outer region R(S) and that x is within dis-
tance δtiny of the boundary of the Significant Region. Then x has a consistent colour in {±2, . . . ,±n}.

Proof. Let ℓ ∈ argmaxi∈{2,...,n} |αi| be the index of a transformed coordinate with maximum
absolute value. We may assume there is an inverse-polynomial quantity δ+ such that for any
point x = (τ ;α2, . . . , αn) within distance δtiny of the boundary of the Significant Region, we have
|αℓ| ≤ δ+. Moreover, the width δT of the twisted tunnel is chosen to be much smaller that δ+ (by
an inverse-polynomial amount) but much larger than δtiny (by an inverse-polynomial amount), as
explained earlier. Let

j =

{

ℓ, if αℓ > 0

−ℓ, if αℓ < 0

and let δ = |αℓ|, so x is displaced distance δ > 0 from the axis in direction dτj . Recall that
Aj ∈ {A+, A−} denotes the label that increases in the c-e region when we move in direction dτj .
Also, let A−j ∈ {+,−}, A−j 6= Aj, be the complementary label. For j > 0, this involves cuts j and
j − 1 moving away from each other; for j < 0, this involves them moving towards each other. We
consider two main cases, depending on the sign of j.

Case 1: j > 0 (i.e., αj > 0). In this case, moving in direction dτj causes cuts j − 1 and j to move
away from each other; this is illustrated in Figure 13.

We claim that j is a consistent colour for x. Note first that αj > 2δT and therefore Condition 1
is satisfied, since j > 0 in this case. αj > 2δT follows from the fact that j ∈ argmaxi∈{2,...,n} |αi|,
we are close to the boundary of the Significant Region, and the width of Significant Region is
polynomially larger than that of the twisted tunnel. In order to be close to the boundary of the
Significant Region, we must have moved more than 2δT in some direction from 0τ and by the choice
of j, it holds that αj > 2δT .

For Condition 2, recall first that x has transformed coordinates (τ ;α2, . . . , αn), and that the
origin of Dτ has transformed coordinates 0τ = (τ ; 0, . . . , 0). The (j − 1)-st and j-th cuts corre-
sponding to the point 0τ are located at positions j − 2 + τ and j − 1 + τ respectively, and are
shown in red in Figure 13. Near the axis, where the cuts are evenly-spaced (see Proposition 4.4),
movement in direction dτj corresponds to moving the (j − 1)-st and j-th cuts (in the c-e region)
away from each other. We will consider moving from 0τ to x via a point xj in which we will only
have increased the transformed coordinate αj.

First, consider moving from 0τ to point xj = (τ ; 0, . . . , 0, αj , 0, . . . , 0) for αj > 0. In this pro-
cess, we move the (j − 1)-st cut to the left by αj · τ and the j-th cut to the right by αj · (1 − τ);
all this takes place within the interval [j − 2, j], see Figure 13. Now consider moving from xj to
x. In this process, the (j − 1)-st cut moves to the right by αj−1 · (1 − τ) and the (j + 1)-st cut
moves to the left by αj+1 · τ . From the choice of j to be j ∈ argmaxi∈{2,...,n} |αi|, it follows that
αj−1 ≤ αj and αj+1 ≤ αj . Then, there is a sub-interval of [j − 2, j] that contains the unit-length
interval I = [j − 2 + τ + αj · (1− 2τ), j − 1 + τ +αj · (1− 2τ)] which ends up coloured entirely Aj ,
implying Condition 2. Overall, we obtain that j is a consistent colour.

Case 2: j < 0 (i.e., αj < 0). In this case, moving in direction dτj causes cuts |j| − 1 and |j| to
move towards each other; this is illustrated in Figure 14.

Case 2a: τ ∈ [1/2n, 1 − (1/2n)]. In this case, all movements of the cuts, in and around the
Significant Region, are in distances upper-bounded by δw, which by Proposition 4.4 is smaller than
1/2n by an inverse-polynomial amount. This means that if we start at 0τ and re-set individual
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transformed coordinates to those of x, in any order (i.e. going through any intermediate point
xj , similarly to above), the movement of the cuts will never force them to cross integer-valued
thresholds. In other words, in moving from 0τ to x, only the relevant cuts j−1 and j will lie in the
interval [j−2, j]. This case can be seen in the illustration of Figure 13, if one reverses the direction
of the arrows, switches the labels Aj to A−j and vice-versa, and substitutes j by |j| in the labelling
of cuts. The argument establishing the existence of a consistent colour is exactly symmetric to that
of Case 1 above.

Case 2b: τ ∈ [0, 1/2n] ∪ [1 − (1/2n), 1]. Here, we consider the case where τ ∈ [0, 1/2n]; the other
case is similar by symmetry. This case is illustrated in Figure 14; note that the sequence of labels
Aj/A−j is switched to make Aj the label that increases when we move in direction dτj .

Moving in direction dτj causes an increase of the label Aj in the interval [|j|−2, |j|]. For j not to
be a consistent colour, we should observe an excess of the label A−j in this interval. In generating
cut locations from coordinates of x, the amount of A−j in [|j|−2, |j|] can be raised in the following
ways (see Figure 14):

• By increasing the transformed coordinate α|j|−1 in the negative direction, moving in direction
dτ−(|j|−1). This causes cuts |j| − 2 and |j| − 1 to move towards each other and therefore

importantly for us here, cut |j| − 1 to move to the left (towards integer point |j| − 2).

• By increasing the transformed coordinate αj+1 in the negative direction, moving in direction
dτ−(|j|+1). This causes cuts |j| and |j|+ 1 to move towards each other.

Note that what may happen in this last case, is that cut |j| + 1 which used to lie to the right of
the integer point |j|+2 before moving in direction dτ−(|j|+1), now lies to the left of the integer point

|j|+2 after the movement, therefore increasing the label A−j at the right-hand-side of [|j| − 2, |j|].
We consider two more cases, depending on whether or not this is the case.

Case 2b(i): At x, cut |j| + 1 is to the right of location |j| or at location |j|.

There are two ways to restore the deficit of A−j that resulted from moving in direction dτj from 0τ
to xj . Moving in direction dτ−(|j|−1) moves cut |j| − 1 to the left, and moving in direction dτ−(|j|+1)

moves cut |j| to the right. (Note that the movement of cut |j| + 1 to the left has not changed the
balance of Aj and A−j in the interval [|j|−2, |j|] any further, by the assumption of the case). Since
j was chosen to be in argmaxi∈{2,...,n} |αi|, it is easy to verify that

• Cut |j| − 1 has moved to the left as a result of moving in direction dτ−(|j|−1) at most as much

as cut |j| has moved to the left as a result of moving in direction dτj (from 0τ to xj).

• Cut |j| has moved to the right as a result of moving in direction dτ−(|j|+1) at most as much as

cut |j| − 1 has moved to the right as a result of moving in direction dτj (from 0τ to xj).

Therefore a large enough subinterval of [|j| − 2, |j|] has been coloured with Aj, which means j is a
consistent colour.

Case 2b(ii): At x, cut |j|+ 1 is to the left of location |j|.

In this case, we have α|j|+1 < 0 and movement in direction dτ−(|j|+1) causes cuts |j| and |j| + 1 to
move towards each other. Note also that besides the effect of the movement in direction dτ−(|j|+1),
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cut |j|+1 may move to the left due to movement in direction dτ|j|+2, since such a movement would

cause cuts |j| + 1 and |j| + 2 to move away from each other and therefore, cut |j| + 1 to move to
the left. However, the distance moved in direction dτ|j|+2 is small; it is at most τ · |αj |, which is at

most τ · δ+. Therefore, we need movement at least τ(1− δ+) in direction dτ−(|j|+1) in order to cover
the distance moved in direction dτj .

First, we verify that −(|j| + 1) satisfies Condition 1 of Definition 24, i.e. that α|j|+1 < −2δT

(at this point we know that αj+1 is a negative quantity). We consider two cases, depending on
whether τ is “small” or “large” (relatively to the small interval [0, 1/2n]).

• In the case when τ < 1
4 |αj |, the largest part of the deficit of A−j introduced by moving

from 0τ to xj results from moving cut |j| to the left. However, letting c(|j| − 1) denote the
position of cut |j| − 1 after this movement, the interval [|j| − 2, c(|j| − 1)] is too small for the
movement of cut |j|−1 in direction dτ−(|j|−1) to compensate. In other words, even if movement

in direction dτ−(|j|−1) moves cut |j| − 1 to the left endpoint of the interval [|j| − 2, |j|], this is
not enough to make up for the deficit of A−j introduced from the movement in direction dτj .
This means that cut |j| + 1 needs to move to the left as well and in particular, it needs to
move by more than τ/4 to the left of location j. This is only possible if α|j|+1 < −2δT .

• In the case when τ ≥ 1
4 |αj |, since τ is large enough, cut |j| + 1 needs to move a substantial

distance to the left, in order to end up positioned to the left of integer position |j|. In
particular, it needs to move at least 1

4 |αj | − τ · δ+ to the left. This implies that Condition 1
is satisfied for colour −(|j| + 1).

Now consider what needs to happen in order for the second condition to fail. Consider the interval
[|j| − 1, |j|+1] (which is monitored by the (j +1)-st blanket-sensor). Since cut |j|+1 is located to
the left of location |j| (the midpoint of this interval), there exists a subinterval of length at most 1
labelled Aj , within [|j| − 1, |j| + 1]. This means that either

- the colour −(|j|+ 1) is a consistent colour and we are done, or

- there is an additional amount of label Aj within interval [|j|−1, |j|+1] and the total number
of value-blocks labelled Aj outnumbers that of those labelled A−j by at least plarge. The only
way this can happen is if cut |j|+2 lies to the left of the integer location |j|+1, and in fact,

it has to lie an inverse-polynomial distance, at least plarge

2phuge
, to the left of |j|+ 1.

In case that happens, we move on to consider interval [j, j + 2] and we apply the same argument.

Again, αj+2 is negative, and since cut |j|+2 is to the left of location j+1 by a margin plarge

2phuge
< 2δT ,

−(|j|+2) satisfies Condition 1 to be a consistent colour. It will also satisfy Condition 2, unless cut

|j|+3 lies to the left of location |j|+2 by an inverse-polynomial distance, at least plarge

2phuge
, similarly

to before.
Continuing like this, we will either find a consistent colour in some interval [j−2, j] with j < n,

or we will reach interval [n− 2, n]. When we reach interval [n− 2, n], cut n has had to move to the
left of integer location n−1 in order to prevent −(n−1) from being a consistent colour (as otherwise
we would have identified a consistent colour in some already examined interval). But then −n is

a consistent colour, since we have moved an inverse-polynomial distance (at least plarge

2phuge
< 2δT ) in

direction dτ−n (Condition 1), and at least 1/2 of the interval [n − 2, n] is coloured in a way that
agrees with this (Condition 2).
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Figure 13: Illustration for Proposition 6.5, Case 1. For i ∈ [n], cut i denotes the i-th (c-e) cut from the
left. The cuts j − 1 and j coloured red correspond to positions encoding part of 0τ . The dashed lines (to
the left and to the right of the positions of the red cuts respectively) correspond to positions encoding part
of point xj , after we have only moved αj in direction dτj . The cuts coloured blue correspond to positions
resulting from subsequent movement in directions dτj−1 and dτj+1, which encode part of x. In the figure,
the case where the average of the movements in dτj−1, d

τ
j and dτj+1 forces both cuts to move to the right,

compared to their original positions in the encoding of 0τ , is shown.

[|j| − 2, |j|]

Aj A−j Aj

cu
t
|j
|
−

1

cu
t
|j
|

cu
t
|j
|
+

1

cu
t
|j
|
−

1

cu
t
|j
|

cu
t
|j
|
+

1

dτ−|j|

dτ−(|j|−1) dτ−(|j|+1) dτ−(|j|+1)

Figure 14: Illustration for Proposition 6.5, Case 2b(i). In this case, j is negative and therefore we use |j|
to represent the j-th cut from the left. Moving in direction dτj causes cuts |j| − 1 and |j| to move towards
each other. Again, the red cuts correspond to part of 0τ and the blue cuts correspond to the encoding of
part of x, after averaging over the movement in directions dτ−(|j|−1), dj = d−|j| and dτ−(|j|+1). The figure

shows a case where cut |j| − 1 has moved outside the interval [|j| − 2, |j|] to the left, in which case the whole
subinterval [|j| − 2, c(|j|)] (the interval between |j| − 2 and the position of the blue cut |j|) receives the label
A−j . Note however that |j|+1 does not intersect the interval [|j|−2, |j|] and therefore there is no additional
amount of A−j introduced to the right-hand side of [|j| − 2, |j|], therefore we are in Case 2b(i). The increase
of A−j due to the movement of cut |j|− 1 to the left is entirely compensated by the decrease of A−j because
of the movement of cut |j| to the left.
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Figure 15: Illustration for Proposition 6.5, Case 2b(ii). In this case, j is negative and therefore we use |j|
to represent the j-th cut from the left. Moving in direction dτj causes cuts |j| − 1 and |j| to move towards
each other. Again, the red cuts correspond to part of 0τ and the blue cuts correspond to the encoding of
part of x, after averaging over the movement in directions dτ−(|j|−1), dj = d−|j| and dτ−(|j|+1). The figure

shows a case where cut |j| − 1 has moved outside the interval [|j| − 2, |j|] to the left, in which case the whole
subinterval [|j| − 2, c(|j|)] (the interval between |j| − 2 and the position of the blue cut |j|) receives the label
A−j . Additionally, cut |j|+ 1 has moved to the left and now intersects the interval [|j| − 2, |j|] introducing
an additional amount of A−j to the right-hand side of [|j| − 2, |j|]. By the argument of Case 2b(ii), either
−(|j| + 1) will be a consistent colour, or there will be some interval [l − 2, l] (l > 0, possibly [n − 2, n]) for
which the overlap between [l − 2, l] and the cut l + 1 will be bounded by plarge/2phuge and we will have a
consistent colour.

Corollary 6.6 A solution SCH to ICH cannot encode a point x in the Significant Region, within
distance δtiny of the boundary (where blanket-sensor agent(s) become active).

Proof. Observation 6.1 tells us that the k-th component of f ′ is the difference between A+ and
A− observed by c-e agent ak, and Proposition 6.2 tells us that all these components, averaged over
a set of points within δtiny of x need to be close to zero, at a solution.

Proposition 6.5 tells us that x has some consistent colour k. All points within δtiny of x cause
two outputs (gates g′k, g

′
−k as defined in Section 5.1.2) of the circuit-encoders to represent colour k.

This includes points where blanket-sensor agents are active, since by the properties of consistent
colours, we are at least an inverse-polynomial distance from any point where any bi,k can be active
in the wrong direction. In Section 5.1.3 the blanket-sensor agents are designed to agree with the
definition of consistent colour, Definition 24. So c-e agent ak observes a large imbalance between
A+ and A−.

6.4 No bogus approximate-zeroes of F due to the connecting facet

Proposition 6.7 Let x, x′ be points in the Significant Region having transformed coordinates
(τ ;α2, . . . , αn) and (1− τ ;−α2, . . . ,−αn) respectively, for τ < 1

2 − δT . Then f(x) = −f(x′).

Proof. The proposition extends Observation 5.3. The points x and x′ have been coloured according
to Item 2 of Section 5.3, and they belong to two long thin colour-regions that extend the cubelets
that lie on the panchromatic facets of the cube embedded at the centre of T , all the way to the
ends of T . From the boundary conditions on the colouring of box B in New variant high-D

Tucker, and the way f is constructed above, their colours are equal and opposite.

Remark: The x, x′ in Proposition 6.7 will “approach each other” as τ → 0. That is, they
correspond to sequences of Consensus-halving cuts where the left-hand cut in the c-e region
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“wraps around” to the right-hand side of the c-e region. Proposition 6.7 may thus seem to create
Borsuk-Ulam directions that are in conflict with each other as we cross from facet D0 to D1, but in
fact the flip of labels in Consensus-halving that occurs when we move from D0 to D1 will mean
that they are in agreement with each other.

We consider the case where the set of pC points in D represented by the solution SCH to ICH ,
contains points on opposite sides of the facets of D that have been identified with each other.
Proposition 6.7 tells us that colour-regions are adjacent to colour-regions having the opposite colour.
We need to verify that for a pair x,x′ of points that are close together but have opposite colours
(due to lying in such a pair of colour-regions) the same (and not opposite) feedback is provided
to the c-e agents. (So, in contrast with a pair of opposite-colour points that represent a solution,
whose feedback to the c-e agents cancel each other out.)

In reasoning about these elements x,x′ ∈ D, it is helpful to depart from our convention that
the label-sequence begins with A+, and suppose that for x′, the label-sequence begins with A−.
Suppose x,x′ have corresponding circuit-encoders Ci, Ci′ and assume that Ci and Ci′ receive reliable
inputs, recalling that only n circuit-encoders may fail to receive reliable inputs. Notice that if x
causes a blanket-sensor agent bi,j to be active in direction A+, then x′ typically causes bi′,j to be
active in direction A+ also (the over-represented label is fed back to c-e agent aj).

In the case that no blanket-sensor agents are active, if x,x′ receive opposite colours from Ci, Ci′ ,
then, reverting to our convention that the shared label-sequence begins with A+, we note that their
reference-sensor agents get opposite labels, which causes Ci and Ci′ to agree with each other.

Remark. For intuition, it is possibly helpful to think about the move from x to x′ in terms of
operations on the coordinate-encoding cuts. At x, there is a cut on the right-hand side of the c-e
region, and in moving to x′ we move that cut to the left-hand side. If we move the cut while leaving
the labels of the c-e region unchanged (apart from at the ends) we expect the circuit to behave as
before, but since we have switched the roles of labels A+ and A−, the feedback to agents a1, . . . , an
gets inverted. We re-invert this feedback by reversing the colour, and hence the output of f ′. This
is very similar (in fact, an n-dimensional analogue) to the handling of the “wrap-around points” in
the sequence via the interpretation in terms of the virtual cuts in [29].

7 Further work

What is the computational complexity of k-thief Necklace-splitting, for k not a power of 2?
As discussed in [56, 49], the proof that it is a total search problem, does not seem to boil down to
the PPA principle. Right now, we do not even even know if it belongs to PTFNP [33].

Interestingly, Papadimitriou in [60] (implicitly) also defined a number of computational com-
plexity classes related to PPA, namely PPA-p, for a parameter p ≥ 2. PPA-p is defined with
respect to an input bipartite graph and a given vertex with degree which is not a multiple of p,
and the goal is to find another vertex with degree which is not a multiple of p (it follows that
PPA=PPA-2). This was done in the context of classifying the computational problem related to
Chévalley’s Theorem from number theory, and it was proven that for prime p, Chevally mod p
is in PPA-p [60]. Given the discussion above, it could possibly be the case that the the principle
associated with Necklace-splitting for k-thieves is the PPA-k principle instead.

What about the computational hardness of the problem? Is 3-thief Necklace-splitting

hard for PPA? At first glance, it seems like a more complicated problem, but there this is not
obvious; for example, there is no way to cause the third thief to be a dummy agent and therefore a
straightforward reduction is unlikely. However, it is worth mentioning here that the computational
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equivalence between ε-Consensus-halving and Necklace-splitting that was proven in [29]
is actually established between the Necklace Splitting problem for any k and the corresponding
approximate 1/k-Division problem, a generalization of ε-Consensus-halving (see [66]); a PPA-
hardness or PPA-membership result for k > 2 for the latter problem would imply a corresponding
result for Necklace-splitting with k > 2. En route to either of these results, a possible approach
that was suggested in [66], would be to define an appropriate generalisation of Tucker’s Lemma
and prove it constructively (see Section 8 in [66]).

We have left open the questions of whether ε-Consensus-halving remains PPA-complete for
constant ε, and whether Discrete Ham Sandwich remains PPA-complete when coordinates of
points are given in unary. Recall that for the former problem, a PPAD-hardness result is known
from [28]; it would be quite interesting to settle this, to verify whether it is possible for the precision
parameter to play such an important role in the problem classification.

In classifying a problem as polynomial-time solvable versus NP-complete, this is usually seen as
a statement about its computational (in)tractability. The distinction between PPAD-completeness
and PPA-completeness is one of expressive power: we believe that PPAD-complete problems are
hard, meanwhile PPA-complete problems are “at least as hard”, but of course are still in NP.
The expressive power of totality principles that underpin TFNP problems is a topic of enduring
interest [6, 33]; note also the related work on Bounded Arithmetic discussed in [33]. Our results
highlight the distinction between computational (in)tractability and expressive power. In analysing
the relationships between these complexity classes, it may be fruitful to focus on expressive power.

Finally, [54] initiates an interesting experimental study of path-following algorithms for 2-thief
Necklace-splitting, obtaining positive results when the number of bead colours is not too large.
However, path-following seems to be inapplicable for, say, 3 thieves. The Necklace-splitting

problem may constitute an interesting class of challenge-instances for SAT-solvers, now that it is
known to be a very hard total search problem.

Acknowledgements We thank Alex Hollender for detailed and insightful proof-reading of earlier
versions of this paper.
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APPENDIX

A Details from [29].

In this section, we include several details from [29] that are being used (or extended) in the present
paper as well.

Bit detection gadgets

First, the ability to detect the position of the cuts in the c-e region and feed this information to
the circuit lies in the presence of gadgets developed in [28] and used in [29], referred to as “bit de-
tection gadgets” in [29]. A bit detection gadget consists typically of two thin and dense valuation
blocks of relatively large height and relatively small length, situated next to each other (e.g., see
the rightmost set of value-blocks in Figure 16 or Figure 20, top). These value-blocks constitute
most of the agent’s valuation over the related interval. The point of these gadgets is that if the
discrepancy between A+ and A− is (significantly) in the favour of one against the other, there will
be a cut intersecting one of the two valuation blocks; which block is intersected will correspond to
a 0/1 value, i.e. a bit that indicates the “direction” of the discrepancy in the two labels.

These gadgets are used in several parts of the reduction, e.g.,

- at the value-blocks of the sensor agents (Definition 13) in the region Ri (see Figure 16) that
assumes the right or left position depending on whether their small value-blocks in the c-e
region are labelled A+or A−,

- in the encoding of the circuit CV T of New variant high-D Tucker using the circuit-
encoding agents Ci (also see Section 5.1),

- at the value-blocks of the blanket-sensor agents (Definition 14) in the region Ri, with the
difference that in that case, a small value-block (of value 9κ/10) lies between the two thin
and dense valuation blocks of the bit detection gadget (see Figure 17).

Sensor and blanket sensor agents

The formal definitions of the sensor agents and the blanket sensor agents were given in the main
text, see Definition 13 and Definition 14 respectively. Here, we explain in more detail how these
agents make use of the bit-detection gadgets (which lie in the region Ri) to detect the positions of
the cuts (for the sensor agents) or to detect large discrepancies on the volumes of the two labels in
the c-e region (for the blanket sensor agents).

Starting from the sensor agents, recall that each such agent of Si ⊂ Ci has a small value-block
(of value 1/10) in the c-e region and its remaining value (9/10) lies in the circuit encoding region
and particularly, in the sub-region Ri (recall that the circuit-encoding region R is partitioned into
sub-regions Ri, one for each circuit encoder Ci, where most of the gadgetry of the encoder lies). In
particular, the sensor agent has two thin blocks of value 9/20 in the c-e region and this is precisely
the bit detection gadget of the agent, as described in the previous subsection - see Figure 20, top,
for an illustration. If the value-block on the left-hand side (in the c-e region) is labelled A−, then
the cut on the right-hand side intersects the rightmost value-block (i.e., “jumps” to the right) and
if it is A+, then it “jumps” to the left. This information is then passed on to the next level of circuit
encoding agents, those that implement the pre-processing unit of the circuit (see Section 5.1.1) and
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c-e region
x1

x2 x3 x4 x5

a1

a2

a3

a4

sensor

A+ A− A+ A− A+ · · · A+ A−

Figure 16: An example of how the input of a sensor agent is processed into a boolean value that will
be used by the encoding of the circuit. On of the two value-blocks on the right-hand side of the picture
(the bit-detection gadget) is interesected by the cut corresponding to the sensor, depending on whether the
value-block on the left-hand side is labelled A+or A−. In the figure, the block is labelled A+and therefore
the cut intersects the rightmost value-block on the right-hand side. The other (unused) option is depicted
by a red dashed ine.

c-e region
x1

x2 x3 x4 x5

a1

a2

a3

a4

blanket
sensor

A+ A− A+ A− A+ · · · A+ A−

Figure 17: An example on how the blanket-sensor agents provide input to the circuit for their monitored
intervals. Depending on the balance in labels for the value-blocks on the left-hand side, the bit-detection
gadget of the blanket-sensor agent on the right-hand side assumes the leftmost, middle, or rightmost positions.
In the particular example, the number of value-blocks on the left-hand side for each label is balanced, and
therefore the cut on the right-hand side (shown in blue) interesects the middle value-block of the bit-detection
gadget. In this case, the blanket-sensor is not active. The other two possible positions for the cut on the
right-hand side, when the blanket sensor is active, are depicted by dashed red lines.
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the subsection following this one. In [29], we referred to this information as “raw data” (although
the cut extraction mechanism there had to be more elaborate, due to the inversely-exponential
precision). The pre-processing unit is responsible for converting the raw data into appropriate
inputs for the circuit CV T , which encode coordinate of points on the Möbius-simplex. These inputs
are then “propagated” through the encoding of the circuit CV T , to produce the appropriate labels
at the output gates gj , j ∈ ±[n], as described in th following subsection.

The blanket sensor agents use very similar bit detection gadgets in their outputs (i.e., in their
value-blocks in region Ri), but between their thin and dense value-blocks, they have an additional
small value-blocks (the block of value 9κ/10 in Definition 14). This is because the blanket sensor
agents needs to be able to assume three states: “excess of A+”, “excess of A−” and “(approximately)
balanced labels”. The latter option corresponds to the cut associated with the blanket sensor agent
intersecting the middle value-block (therefore not “jumping” to either side), whereas the other
two options correspond to the cut “jumping” to either the right or the left side, where the choice
depends on the over-represented label and the parity of the index of the blanket sensor agent.
It is straightforward (as before) to interpret these positions as boolean values. The main idea
in [29] is that if the blanket sensor agents are active, then this information will “over-ride” the
circuit CV T and generate an imbalance of labels in the feedback provided to the c-e agents directly,
essentially bypassing the output gates of CV T . We use the same principle here, but since we now
have many blanket sensor agents, extra care must be taken to make sure that no artificial solutions
are introduced when colouring the domain. The details on how the input from the blanket-sensors
affects the feedback to the c-e agents are presented in Section 5.1.3.

Encoding of the circuit CV T of New variant high-D Tucker.

Before we explain how the circuit of New variant high-D Tucker is encoded using the circuit
encoders Ci, we present the main building blocks for simulating boolean circuits based on bit-
detection gadget, first presented in [28] and later adapted and used in [29].

Consider a boolean gate that is an AND, an OR, or a NOT gate, denoted g∧, g∨ and g¬
respectively. Let in1, in2 and out be intervals such that |in1| = |in2| = |out| = 1. We will encode
these gates using gate gadgets, shown in Figure 18 (from [29]).

Note that the gadget corresponding to the NOT gate only has one input, whereas the gadgets
for the AND and OR gates have two inputs. In the interval out, each gadget has two bit detection
gadgets - in the case of the NOT gate these are even, but in the case of the AND and OR gates,
they are uneven. Also note that for the inputs, as well as the output of the NOT gate, the label on
the left-hand side of the cut is A+ and the label on the right-hand side will be A−, whereas for the
outputs to the OR and AND gate, the label on the left-hand side of the cut is A− and the label on
the right hand side is A+ . This can be achieved with the appropriate use of parity gadgets, i.e.,
simple valuation blocks that force cuts to lie in specific positions, only to change the parity of the
cut sequence (see [29] for more details).

As we mentioned earlier, the bit-detection gagdets allow us to extract boolean values corre-
sponding to the positions of the cuts in the c-e region - this is achieved via the use of the sensor
agents. In the next step, these values (referred earlier as the “raw data”) are supplied into a gadget
that is referred to as the pre-processing circuit in [29]. The role of this circuit is to convert this
information to coordinates of points on the Möbius-simplex, which then will go through a coor-
dinate transformation (see Section 5.2) and will be used as inputs to the encoding of CV T . The
pre-processing circuit can be implemented using the boolean gate gadgets described above. The
same is true for the actual circuit CV T as well, which can be simulated using the same set of gad-
gets, using the principle described in Figure 19 (from [29]). The outputs of the pre-preprocessing
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G¬(in1, out)

in1 out

A+ A+ A+A+

G∨(in1, in2, out)

in1 in2 out

A+

A+

A+A+ A−A−

G∧(in1, in2, out)

in1 in2 out

A+

A+

A+A+

A−

A−

Figure 18: The Boolean Gate Gadgets encoding the NOT, OR and AND gates. For visibility, the valuation
blocks are not according to scale. For the NOT gate, the input has value 0.25 and the output blocks have
volume 0.375 each. For the OR (respectively AND) gate, the input blocks have value 0.125 each and the
output blocks have value 0.3125 and 0.4375 (respectively 0.4375 and 0.3125). The cuts corresponding to
pairs or triples of inputs and outputs have the same colour, and the labels on the left-side of these cuts
are shown and colour-coded in the same way. For the NOT gate, when the input cut sits of the left (the
blue cut), then the output cut must sit on the right (the blue cut), to compensate for the excess of A− and
oppositely for when the input cut sits of the right (the red cut). For the OR and AND gates, again the cuts
corresponding to two inputs and one output have the same colour. For the OR gate, when both inputs cut
sit on the left (the blue cuts), the output cut sits on the left as well, to compensate for the excess of A−

(notice that the left-hand side of the output cut is labelled A−. When one input sits on the left and the
other one on the right, the inputs detect no discrepancy in the balance of labels and the output jumps to the
right, because the output blocks are uneven (the red cuts). The operation of the AND gate is very similar;
here the cases shown are those where the inputs are 0 and 0 and the ouput is 0 (the blue cuts) and where
the inputs are 0 and 1 and the output is still 0 (the red cuts).

circuit are inputed to the input gates of CV T and their outputs, in turn, are inputted to the gates
on the next level and this process carries on until the output gates of CV T .

Unreliable circuits and the stray cut

In the main text, we mentioned that we are guaranteed that at most n cuts will lie in the c-e region
(Observation 4.1) and at least n− 1 cuts will lie in the c-e region, as otherwise some blanket sensor
agent would be active (Proposition 4.4). If n− 1 cuts lie in the c-e region, this means that one of
the n c-e cuts has moved into the circuit encoding region; following [29], we will refer to that cut
as a stray cut. As we highlighted in [29], the presence of a stray cut may have the following two
consequences.

1. It intersects the circuit-encoding region Ri of some circuit encoder Ci, for i ∈ {1, . . . , pC}.

2. It flips the parity of the circuit encoders Ci, with Ri < c, where c is the position of the stray
cut in Ri−1. In other words, if the first cut in Ri was expecting to see A+ on its left-hand
side, it now sees A− and vice-versa.

The first effect is not much of a problem, we will simply assume that the corresponding circuit
is unreliable. As explained in the main text, an unreliable circuit can have an arbitrary (or even
adversarial) effect on the volume of A+and A−supplied as feedback to the c-e agents, but since
there will be at most 1 unreliable circuit, its effect will be “outvoted” by the remaining reliable
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Outputs of sensor agents

An AND input gate gadget

A NOT output gate gadget

Figure 19: The basic idea behind the gate-agents encoding the gates of C1. The picture denotes a simplified
case where two input bits from the bit-encoders are supplied to an enconding of an input AND gate of Ci

and the output bit of this gate is in turn supplied to the encoding of a NOT output gate of Ci. Note that
if for example the sensor agents detect the values 1 and 0 respectively (the blue cuts), then the output of
the AND gate is 0 (i.e. the blue cut sits at the left of the AND gate agent’s bit detector) and the output
of the circuit is 1 (again, see the blue cut that sit on the rightmost valuation block of the NOT gate agent.
Similarly, if the sensor agents detect values 1 and 1 (the red cuts), then the output of the AND gate is 1 and
the output of the circuit is 0.

circuits (circuits that do not receive reliable inputs will also be outvoted by those that do, since
there are at most n of them, see Observation 4.2).

The parity flip that the stray cut induces on other circuit-encoders however seems potentially
more worrisome., since it could flip the output of the sensor agents that detect the positions of
the cuts. This is taken care of by the presence of the reference sensor agent (Definition 21) which
achieves the disorientation of the domain. As explained in Section 5.1.1, the outputs of circuit
Ci are taken with reference to the value s1,1 of the reference senso agent, in the sense that after
simulating CV T we take the exclusive-or with s1,1; this can be implemented in the circuit using
the boolean gate gadgets explained above, in a manner similar to [29] (via the use of the XOR
sub-circuit, see Section 4.4.2 in [29]). This allows us to use a similar “double-negative lemma” as
the one we used in [29] (see Lemma 5.4).
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c-e region
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Figure 20: Example showing gate simulation: n = 4; agents a and a′ have corresponding propositional
variables v and v′ that are two inputs to a circuit. v = false since a’s sensor-value lies in a region labelled
A−, similarly v′ = true since a′’s sensor-value lies in a region labelled A+. Gate-encoding blocks have
cuts (shown in red) at two possible positions corresponding to true and false; a dashed-line shows the
alternative position (not taken) by the cut (itself shown as a solid line). c-e agent a1 receives feedback based
on the conjunction of 2 input bits.
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B Membership in PPA

We show that Discrete Ham Sandwich belongs to PPA, which appears to be folklore that has
not, to out knowledge, been written down. (In fact, in [60] the problem was claimed to belong to
PPAD, which is now seen to be incorrect subject to PPAD 6= PPA, by the result in [1]). Since
Theorem 2.3 reduces from 2-thief Necklace-splitting to Discrete Ham Sandwich, it follows
immediately that 2-thief Necklace-splitting belongs to PPA. In Section B.2 we go a bit further
for Necklace-splitting: we show that Necklace-splitting belongs to PPA whenever the
number of thieves is a power of 2.

B.1 Discrete Ham Sandwich is in PPA

We use Freund and Todd’s [30] construction of an undirected graph with known degree-1 vertex,
based on a “special triangulation” of a high-dimensional L1 ball (i.e. a high-dimensional octahedron,
also known as the crosspolytope [52]). Given an instance I of Discrete Ham Sandwich, we show
how to construct a suitable triangulation. I contains n sets of points {S1, . . . , Sn} in n-dimensional
space; we assume coordinates are represented as fractions whose numerators and denominators
are give via standard binary expansions. (Recall that we leave it as an open problem whether
Discrete Ham Sandwich remains PPA-hard for points presented in unary. Of course, the “in
PPA” result follows immediately for that restricted version.)

Based on I we identify an exponentially-large collection of “candidate hyperplanes” as follows,
which contains a solution to I. A candidate hyperplane H is represented by a gradient vector gH
whose coordinates are assumed to be normalised to 1 (L1 norm; their absolute values sum to 1).
Given gH , H is obtained by using binary search to efficiently find a hyperplane with gradient gH
that bisects the union of the sets Si; it is then easy to check whether H is a solution. Note that
there exists an integer N whose binary expansion has length polynomial in |I| such that entries of
some solution gH can be assumed to be multiples of 1/N .

Fix a point p ∈ IRn such that p is not contained in any candidate solution to I, e.g. p =
(1/2N, 1, . . . , 1). Given any H, the “positive” side of H is the side that contains p. Assume we
chose N large enough so that if two hyperplanes H and H ′ have gradients gH and gH′ whose
coordinates differ by at most 1/N , then for any point x in I where they disagree, x lies in H or H ′

(and does not lie strictly on the positive side of one and the negative side of the other).
For any H, label it as follows. Find the set Si that is most unevenly split by H breaking ties

lexicographically. Label H with i if most of Si lies on the positive side, otherwise label H with
−i. Each hyperplane H has a gH that is a point on the L1-norm sphere Sn−1. By construction,
antipodal points receive opposite labels. We can use these as the vertices of a special triangulation
of the octahedral ball Bn, in which the origin is used as an additional point and is connected to all
the points on Sn−1 that correspond to candidate solutions. The graph defined in [30] is a degree 2
undirected graph with a single known degree-1 vertex (the origin), and for which any other degree-1
vertex represents a pair of hyperplanes that bisect all the Si.

B.2 Necklace-splitting is in PPA, if the number of thieves is a power of 2

The version of the problem with two thieves, 2-thief Necklace-splitting, belongs to PPA since
we reduced it to Discrete Ham Sandwich which is shown in Section B.1 to belong to PPA. We
can extend the membership to PPA for k-Necklace-splitting, when k is a power of 2, by using
the argument of Proposition 3.2 of Alon [2] (here, we take both k and l to be 2). In particular, we
will reduce Necklace-splitting to 4-Necklace-splitting.
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We start from an instance of 4-Necklace-splitting (with 4 thieves) and we regard it as an
instance of Necklace-splitting (with 2 thieves), which we solve using an algorithm for the latter
problem. The solution is a sequence of intervals defined by the endpoints of the necklace and n
cuts, each belonging to one of the two collections (corresponding to the two thieves), such that
each collection contains exactly half of the beads of each colour. Then, we set the beads that lie in
intervals belonging to each collection aside and form two new instances of Necklace-splitting

(essentially by “gluing” the different sub-intervals of the same collection together); note that each
new instance will have an even number of beads of each colour, since we initial number of beads
from each colour was a multiple of 4. Then we run the algorithm again on the resulting instances of
Necklace-splitting to obtain a partition into 4 collections (2 for each individual instance), which
consitutes a partition of the 4-Necklace-splitting into 4 collections according to the definition
of the problem. If n is the number of colours, the total number of cuts is (at most) 3n, and therefore
this partition is a solution to 4-Necklace-splitting.

The above is a Turing reduction, which can be extended straightforwardly to the case of k a
power of 2. We can convert such a reduction into a many-one reduction by applying Theorem 6.1
of Buss and Johnson [11], which shows that PPA and some related complexity classes are closed
under Turing reductions.
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