
ar
X

iv
:1

60
9.

05
13

6v
2

 [
cs

.G
T

]
 8

 A
ug

 2
01

8

Hardness Results for Consensus-Halving

Aris Filos-Ratsikas1, Søren Kristoffer Stiil Frederiksen
2, Paul W. Goldberg3, and Jie Zhang4

1École Polytechnique Fédérale de Lausanne, Switzerland,
aris.filosratsikas@epfl.ch

2Aarhus University, Denmark, sorensf@gmail.com
3University of Oxford, United Kingdom, paul.goldberg@cs.ox.ac.uk

4University of Southampton, United Kingdom, jie.zhang@soton.ac.uk

Abstract

The Consensus-halving problem is the problem of dividing an object into two portions, such that
each of n agents has equal valuation for the two portions. We study the ǫ-approximate version, which
allows each agent to have an ǫ discrepancy on the values of the portions. It was recently proven in
[16] that the problem of computing an ǫ-approximate consensus-halving solution (for n agents and n

cuts) is PPA-complete when ǫ is inverse-exponential. In this paper, we prove that when ǫ is constant,
the problem is PPAD-hard and the problem remains PPAD-hard when we allow a constant number
of additional cuts. Additionally, we prove that deciding whether a solution with n− 1 cuts exists for
the problem is NP-hard.

1 Introduction

Suppose that two families want to split a piece of land into two regions such that every member of each
family believes that the land is equally divided, or suppose that a conference organizer wants to assign
the conference presentations to the morning and the afternoon sessions, so that every participant thinks
that the two sessions are equally interesting. Is it possible to achieve these objectives? If yes, how can
it be done and how efficiently? What if we aim for “almost equal” instead of “equal”?

These real-life problems can be modeled as the Consensus-halving problem [30]. More formally, there
are n agents and an object to be divided; each agent may have a different opinion as to which part of the
object is more valuable. The problem is to divide the object into two portions such that each of the n
agents believes that the two portions have equal value, according to her personal opinion. The division
may need to cut the object into pieces and then label each piece appropriately to include it in one of the
two portions.

The importance of the Consensus-halving problem - or to be precise, of its approximate version, where
there is an associated precision parameter ǫ - other than the fact that it models real-life problems like
the ones described above, lies in in the following fact: It is the first “natural” problem that is complete
for the complexity class PPA, where “natural” here means that its does not contain a circuit explicitly
in its definition; this was proven quite recently by Filos-Ratsikas and Goldberg [16]. PPA is a class of
total search problems [22] defined in [25], and is a superclass of the class PPAD, which precisely captures
the complexity of computing a Nash equilibrium [13, 11]. Therefore, generally speaking, a PPA-hardness
result is stronger than a PPAD-hardness result.

Crucially however, the hardness result in [16] requires the precision parameter to be inverse-exponential
in the number of agents and does not even provably preclude the possibility of efficient algorithms, if we
allow larger discrepancies in the values for the two portions. In this paper, we prove that this is actually
not possible1, by showing that even when the allowed discrepancy is independent of the number of agents,

1Under usual computational complexity assumptions, here that PPAD-hard problems do not admit polynomial-time
algorithms.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/459153599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1609.05136v2

the problem is PPAD-hard. Understanding the problem for increasing values of the discrepancy param-
eter is quite important in terms of capturing precisely its complexity and resembles closely the series of
results establishing hardness of computing a mixed ǫ-Nash equilibrium, from ǫ being inverse-polynomial
in [13, 11] to being constant in [29], as well as several other problems (see [29]). Additionally, one could
imagine that solutions where constant discrepancies are acceptable are the ones arising in several real-life
scenarios, such as splitting land.

1.1 Our results

We are interested in the computational complexity of computing an ǫ-approximate solution to the
Consensus-halving problem where ǫ is a constant function of the number of agents, as well as the com-
plexity of deciding whether given an input instance, n− 1 cuts are sufficient to achieve an ǫ-approximate
solution. We discuss our main results below.

• We prove that the problem of finding an ǫ-approximate solution to the Consensus-halving problem
for n agents using n cuts is PPAD-hard. Moreover, the problem remains PPAD-hard even if we
allow a constant number of additional cuts. The result is established via a reduction from the
approximate Generalized Circuit problem [10, 13, 29].

• We prove that it is NP-hard to decide whether or not an ǫ-approximate solution to the Consensus-
halving problem for n agents using n− 1 cuts exists. We establish the result via a reduction from
3SAT.

• We prove that the problem of finding an ǫ-approximate solution to the Consensus-halving problem
for n agents using n cuts is in the computational class PPA; we obtain the result via a reduction
to the computational version of Tucker’s Lemma [25, 1].

We remark here that an earlier version of this paper actually predated [16] and some of the results in
[16] are established by referencing the results in the present paper. Specifically:

• While the authors of [16] provide a rather elaborate reduction to establish PPA-hardness of the
problem, the containment in the class PPA is established with reference to the present paper. In
turn, the containment result follows from a formalization of the ideas of the algorithms by [30] and
[27] and Fan’s version of Tucker’s Lemma [15, 34].

• In [16], the authors obtain a computational equivalence between the Necklace Splitting problem [2]
and ǫ-Consensus Halving, for ǫ being at least inverse-polynomial. The inverse-polynomial depen-
dence on ǫ implies that PPA-hardness of the former problem does not follow from their hardness
result, but PPAD-hardness does follow from their reduction and our main result here.

1.2 Related work

The Consensus-Halving problem was explicitly formalized and studied firstly by Simmons and Su [30],
who proved that a solution with n cuts always exists and constructed a protocol that finds an approximate
solution, which allows for a small discrepancy on the values of the two portions. Their proofs are based
on one of the most applied theorems in topology, the Borsuk-Ulam Theorem [6] and its combinatorial
analogue, known as Tucker’s Lemma [34]. The existence of solutions to the problem was already known
since [19, 3, 4] but the algorithm in [30] is constructive, in the sense that it actually finds such a
solution and furthermore, it does not require the valuations of the players to be additively separable
over subintervals, like some of the previous papers do. Actually, for the case of valuations which are
probability measures, the existence of a solution with n cuts was known since as early as the 1940s
[23] and can also be obtained as an application of the Hobby-Rice Theorem [21] (also see [2]). Despite
proposing an explicit protocol however, the authors in [30] do not answer the question of “efficiency”,
i.e. how fast can a protocol find an (approximate) solution and the running time of their protocol is
worst-case exponential-time.2

2The protocol exhaustively iterates through all the vertices of triangulated geometric object, which, to achieve a small
discrepancy, has to be exponentially large.

2

To this end, Filos-Ratsikas and Golberg [16] recently proved that the problem is PPA-complete, but as
we explained in the introduction, the hardness holds only when the precision parameter is exponentially-
small and therefore does not subsume our results. The computational classes PPA (Polynomial Parity
Arguments) and PPAD (Polynomial Parity Arguments on Directed graphs) were introduced by Papadim-
itriou [25] in an attempt to capture the precise complexity of several interesting problems of a topological
nature such as computational analogues of Sperner’s Lemma [31] and Brouwer’s and Kakutani’s fixed
point theorems [5], which are all known to be in PPAD [25]. Interestingly, Aisenberg et al. [1] recently
proved that the search problems associated with the Borsuk-Ulam Theorem and Tucker’s Lemma are
PPA-complete; this is the starting point for the reduction in [16], but it will also be used for our “in-PPA”
result, which complements the hardness result of [16].

Our PPAD-hardness reduction goes via the Generalized Circuit problem. Generalized circuits differ
from usual circuits in the sense that they can contain cycles, a fact which basically induces a continuous
function on the gates, and the solution is guaranteed to exist by Brouwer’s fixed point theorem. The ǫ-
approximate Generalized Circuit problem was implicitly proven to be PPAD-complete for exponentially
small ǫ in [13] and explicitly for polynomial small ǫ [10], en route to proving that perhaps the most
interesting problem in PPAD, that of computing a mixed-Nash equilibrium, is also complete for the
class. The same problem was also used in [12] to prove that finding an approximate market equilibrium
for the Arrow-Debreu market with linear and non-monotone utilities is PPAD-complete and in [24] to
prove that finding an approximate solution of the Competitive Equilibrium with Equal Incomes (CEEI)
for indivisible items is PPAD-complete. More recently, Rubinstein [29] showed that computing an ǫ-
approximate solution for the Generalized Circuit problem is PPAD-complete for a constant ǫ, which
implies that finding an ǫ-approximate Nash equilibrium is PPAD-complete for constant ǫ, in the context
of graphical games; we reduce from that version of the problem. This improvement should also lead to
stronger hardness results in [12] and [24], as well as other problems that rely on the Generalized Circuit
problem.

The Consensus-Halving problem is a typical fair division problem that studies how to divide a set of
resources between a set of agents who have valuations on the resources, such that some fairness properties
are fulfilled. The fair division literature, which dates back to the late 1940s [32], has studied a plethora
of such problems, with chore-division [26, 18], rent-partitioning [20, 7, 33] and the perhaps the most
well-known one, cake-cutting [8, 28] being notable examples. Note that Consensus-halving is inherently
different from (envy-free or proportional) cake-cutting, since the objective is that all participants are
(approximately) equally satisfied with the solution, and they do not have “ownership” over the resulting
pieces.

2 Preliminaries

We represent the object O as a line segment [0, 1]. Each agent in the set of agents N = {1, . . . , n} has
its own valuation over any subset of interval [0, 1]. These valuations are:

• non-negative and bounded, i.e. there exists M > 0, such that for any subinterval X ⊆ [0, 1], it
holds that 0 ≤ ui(X) ≤M .

• non-atomic, i.e. agents have no value on any single point on the interval.

For simplicity, the reader may assume that the valuations are represented as step functions (where agents
have constant values over distinct intervals, although this is not necessary for the results to hold.3 A set
of k cuts {t1, . . . , tk}, where 0 ≤ t1 ≤ . . . ≤ tk ≤ 1, means that we cut along the points t1, . . . , tk, such
that the object is cut into k + 1 pieces Xi = [ti−1, ti] for i = 1, . . . , k + 1, where t0 = 0 and tk+1 = 1.
A labelling of an interval Xi means that we assign a label ℓ ∈ {+,−} to Xi, which corresponds to
including Xi in a set of intervals, either O+ or O−. In case some cuts happen to be on the same point,
say tj−1 = tj , then the corresponding subinterval Xj is a single point on which agents have no value.

3The containment result actually holds for more general functions, while our hardness results (PPAD-hardness and
NP-hardness) hold even for well-behaved functions, such as step functions. We note here that while an exact solution
to Consensus-Halving generally requires the valuations to be continuous, this is not necessary for the existence of an
approximate solution; the algorithm of [30] can find such a solution assuming that valuations are bounded and non-atomic.

3

We will consider cuts on the same points to be the same cut, e.g. if there is only one such occurrence,
we will consider the number of cuts to be k − 1.

The Consensus-halving problem is to divide the object O into two portions O+ and O−, such that
every agent derives equal valuation from the two portions, i.e., ui(O+) = ui(O−), ∀i ∈ N . The ǫ-
approximate Consensus-halving problem allows that each agent has a small discrepancy on the values of
the two partitions, i.e., |ui(O+)− ui(O−)| < ǫ. As discussed in the Introduction, such as solution always
exists. [30].

We define the following search problem, called (n, k, ǫ)-ConHalving.

Problem 1. (n, k, ǫ)-ConHalving

Input: The value density functions (valuation functions) vi : O → R+, i = 1, · · · , n.
Output: A partition (O+, O−) with k cuts such that |ui(O+)− ui(O−)| ≤ ǫ.

We will also consider the following decision problem, called (n, n− 1, ǫ)-ConHalving. Note that for
n agents and n − 1 cuts, a solution to ǫ-approximate Consensus-halving problem is not guaranteed to
exist.

Problem 2. (n, n− 1, ǫ)-ConHalving

Input: The value density functions vi : O → R+, i = 1, · · · , n.
Output: Yes, if a partition (O+, O−) with n− 1 cuts such that |ui(O+)− ui(O−)| ≤ ǫ for all agents

i ∈ N exists, and No otherwise.

TFNP, PPA and PPAD: Most of the problems that we will consider in this paper belong to the class
of total search problems, i.e. search problems for which a solution is guaranteed to exist, regardless of
the input. In particular, we will be interested in problems in the class TFNP, i.e. total search problems
for which a solution is verifiable in polynomial time [22]. An important subclass of TFNP is the class
PPAD, defined by Papadimitriou in [25]. PPAD stands for “Polynomial Parity Argument on a Directed
graph” and is defined formally in terms of the problem End-Of-Line [25]. The class PPAD is defined in
terms of an exponentially large digraph G = (V,E) consisting of 2n vertices with indegree and outdegree
at most 1. An edge between vertices v1 and v2 is present in E if and only if the successor S(v1) of
node v1 is v2 and the predecessor P (v2) of node v2 is v1. By construction, the point 0n has indegree 0
and we are looking for a point with outdegree 0, which is guaranteed to exist. Note that the graph is
given implicitly to the input, through a function that given any vertex v, returns its set of neighbours
(predecessor and successor) in polynomial time. PPAD is a subclass of the class PPA (“Polynomial
Parity Argument”) which is defined similarly, but in terms of an undirected graph in which every vertex
has degree at most 2, and given a vertex of degree 1, we are asked to find another vertex of degree 1;
the computational problem associated with the class is called Leaf [25] and a problem is the class PPA
if it is polynomial-time reducible to Leaf.

For clarity of exposition, we postpone the formal definitions of End-Of-Line and Leaf until Section
5, where they are being used for the “in-PPA” result.

2.1 Generalized Circuits

A generalized circuit S = (V, T) consists of a set of nodes V and a set of gates T and let N = |V | and
M = |T |. Every gate T ∈ T is a 5-tuple T = (G, vin1

, vin2
, vout, α) where

• G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∨, G∧, G¬} is the type of the gate,

• vin1
, vin2

∈ V ∪ {nil} are the first and second input nodes of the gate or nil if not applicable,

• vout ∈ V is the output node, and α ∈ [0, 1] ∪ {nil} is a parameter if applicable,

• for any two gates T = (G, vin1
, vin2

, vout, α) and T ′ = (G′, v′in1
, v′in2

, v′out, α
′) in T where T 6= T ′,

they must satisfy vout 6= v′out.

Note that generalized circuits extend the standard boolean or arithmetic circuits in the sense that
generalized circuits allow cycles in the directed graph defined by the nodes and gates. We define the
search problem ǫ-Gcircuit [10, 29]:

4

Problem 3. ǫ-Gcircuit

Input: A generalized circuit S = (V, T).
Output: A vector x ∈ [0, 1]N of values for the nodes, satisfying the conditions from Table 1.

Note that a solution to ǫ-Gcircuit always exists [10] and hence the problem is well-defined. Also,
notice that for the logic gates G∨, G∧ and G¬, if the input conditions are not fulfilled, the output is
unconstrained, and for the multiplication gate, it holds that α ∈ (0, 1]. ǫ-Gcircuit was proven to be
PPAD-complete implicitly or explicitly in [13, 10] for inversely polynomial error ǫ and in [29] for constant
ǫ. We state the latter theorem here as a lemma:

Table 1: Gate constraint T = (G, vin1
, vin2

, vout, α)
Gate Constraint

(Gζ , nil, nil, vout, α) α− ǫ ≤ x[vout] ≤ α+ ǫ
(G×ζ , vin1

, nil, vout, α) α · x[vin1
]− ǫ ≤ x[vout] ≤ α · x[vin1

] + ǫ
(G=, vin1

, nil, vout, nil) x[vin1
]− ǫ ≤ x[vout] ≤ x[vin1

] + ǫ
(G+, vin1

, vin2
, vout, nil) x[vout] ∈ [min(x[vin1

] + x[vin2
], 1)− ǫ,min(x[vin1

] + x[vin2
], 1) + ǫ]

(G−, vin1
, vin2

, vout, nil) x[vout] ∈ [max(x[vin1
]− x[vin2

], 0)− ǫ,max(x[vin1
]− x[vin2

], 0) + ǫ]

(G<, vin1
, vin2

, vout, nil) x[vout] =

{

1± ǫ, if x[vin1
] < x[vin2

]− ǫ;
0± ǫ, if x[vin1

] > x[vin2
] + ǫ.

(G∨, vin1
, vin2

, vout, nil) x[vout] =

{

1± ǫ, if x[vin1
] = 1± ǫ or x[vin2

] = 1± ǫ;
0± ǫ, if x[vin1

] = 0± ǫ and x[vin2
] = 0± ǫ.

(G∧, vin1
, vin2

, vout, nil) x[vout] =

{

1± ǫ, if x[vin1
] = 1± ǫ and x[vin2

] = 1± ǫ;
0± ǫ, if x[vin1

] = 0± ǫ or x[vin2
] = 0± ǫ.

(G¬, vin1
, nil, vout, nil) x[vout] =

{

1± ǫ, if x[vin1
] = 0± ǫ;

0± ǫ, if x[vin1
] = 1± ǫ.

Lemma 1 ([29]). There exists a constant ǫ > 0 such that ǫ-Gcircuit is PPAD-complete.

3 (n, n+ k, ǫ)-ConHalving is PPAD-hard

In this section, we will prove that finding an approximate partition for Consensus-halving using n cuts
is PPAD-hard, even if the allowed discrepancy between the two portions is a constant. We describe
the reduction from ǫ-Gcircuit that we will be using for the PPAD-hardness proof. Given an instance
S = (V, T) of ǫ-Gcircuit, we will construct an instance of (n, n, ǫ′)-ConHalving with n = 2N agents,
in which each node vi ∈ V of the circuit will correspond to two agents vari and copyi and where ǫ′

will be defined later. As a matter of convenience in the reduction, we will assume that for every gate
(G, vin1

, vin2
, vout, α) in T , vin1

, vin2
and vout are distinct. This does not affect the hardness of the

problem as any ǫ-generalized circuit can be converted to this form by use of at most 2N additional
equality-gates and nodes, and also since an (ǫ/2)-approximate solution to the converted problem can
clearly be converted to a solution in the original circuit.

For ease of notation we consider a ConHalving instance on the interval [0, 6N]. Let di := 6(i− 1);
the two agents vari and copyi that we construct for every node vi have valuations

vari =

{

borderi(t) +Gτ (t), if vi is the output of τ

borderi(t), otherwise

copyi =

4, t ∈ [di + 3, di + 4] ∪ [di + 5, di + 6]

1, t ∈ [di + 1, di + 2] ∪ [di + 4, di + 5]

0, otherwise

where borderi =

{

4, if t ∈ [di, di + 1] ∪ [di + 2, di + 3]

0, otherwise

5

Since each node is the output of at most one gate, vari is well-defined. Note that apart from the valuation
defined by the function Gτ , agents vari and copyi only have valuations on the sub-interval [di, di+1], i.e.,
the agents associated with node v1 only have valuations on [0, 6], the agents associated with v2 only on
have valuations on [6, 12] and so on. Let v−i := [di+1, di+2] and the right and left endpoints respectively
be v−i,ℓ and v−i,r, (and analogously for v+i := [di + 3, di + 4], v+i,ℓ and v+i,r). Now, we are ready to define
the functions Gτ according to Table 2. Notice that because of the assumption that the two input nodes
and the output node are distinct, the graphs of the functions are as in Table 2. Figure 1 demonstrates
an example of a Consensus-halving instance corresponding to a small circuit.

Table 2: Agent preferences from gate τ = (G, vin1
, vin2

, vout, α). For the gate G×ζ , the figure depicts the
case when α+ ǫ < 1.

Gτ (t) Picture

Gζ

{

1 if t ∈ [v−

out,ℓ + α −
1
2
, v−

out,ℓ + α + 1
2
]

0 otherwise

v−out

α + 1
2

G×ζ

1 if t ∈ v+

in

1/α if t ∈ [v−

out,ℓ, v
−

out,ℓ + min(α + ǫ, 1)]

0 otherwise

α + ǫ

1/α

v+in v−out

G¬

1 if t ∈ v−

in

1/2ǫ if t ∈ [v−

out,ℓ, v
−

out,ℓ + ǫ]

1/2ǫ if t ∈ [v−

out,r − ǫ, v−

out,r]

0 otherwise
v−in1 v−out

ǫ ǫ

1
2ǫ

G+

1 if t ∈ v+

in1
∪ v+

in2

1 if t ∈ [v−

out,ℓ, v
−

out,r − ǫ]

1/ǫ + 1 if t ∈ [v−

out,r − ǫ, v−

out,r]

0 otherwise v+in1 v+in2 v−out

ǫ

1
ǫ

G−

1 if t ∈ v+

in1
∪ v−

in2

1 if t ∈ [v−

out,ℓ + ǫ, v−

out,r]

1/ǫ + 1 if t ∈ [v−

out,ℓ, v
−

out,ℓ + ǫ]

0 otherwise v+in1 v−in2 v−out

ǫ

1
ǫ

G<

1 if t ∈ v+

in1
∪ v−

in2

1/ǫ if t ∈ [v−

out,ℓ, v
−

out,ℓ + ǫ]

1/ǫ if t ∈ [v−

out,r − ǫ, v−

out,r]

0 otherwise
v+in1 v−in2 v−out

ǫ ǫ

1
ǫ

G∨

1 if t ∈ v+

in1
∪ v+

in2

0.5/ǫ if t ∈ [v−

out,ℓ, v
−

out,ℓ + ǫ]

1.5/ǫ if t ∈ [v−

out,r − ǫ, v−

out,r]

0 otherwise v+in1 v+in2 v−out

ǫ

0.5
ǫ

ǫ

1.5
ǫ

G∧

1 if t ∈ v+

in1
∪ v+

in2

1.5/ǫ if t ∈ [v−

out,ℓ, v
−

out,ℓ + ǫ]

0.5/ǫ if t ∈ [v−

out,r − ǫ, v−

out,r]

0 otherwise
v+in1 v+in2 v−out

ǫ

1.5
ǫ

ǫ

0.5
ǫ

Lemma 2. Given the construction of a (n, n, ǫ′)-ConHalving instance above, for ǫ′ < min{ǫ/11, 1/40},

6

v1 v2 v3

+ ¬

var1

copy1

var2

copy2

var3

copy3

v−1 v+1 v−2 v+2 v−3 v+3

Figure 1: An instance of ǫ-Gcircuit with the corresponding construction for (n, ǫ′)-Chalving.

a partition with n cuts corresponds to a solution to ǫ-Gcircuit.

Proof. First observe that since all of the agents vari and copyi are constructed to have at least 3/4 of
their valuation on [di, di + 3] and [di + 3, di + 6] respectively, there must be at least one cut in each one
of those intervals in any ǫ′-approximate solution to Consensus-halving (with ǫ′ < 1/4) and therefore any
ǫ′-approximate solution to Consensus-halving with 2N cuts must have exactly one cut in each interval.
Furthermore, since the constructed instance consists of 2N agents, by [30], such a partition with 2N cuts
is guaranteed to exist.

Now consider such a solution C to (n, n, ǫ′)-ConHalving with 2N cuts. For each agent vari (and
associated gate Gτ , if any), since her valuation in v−i is at least the same as her valuation outside the
interval [di, di+3], the cut from C in [di, di+3] must be in [di+1− ǫ′, di+2+ ǫ′], since C is a solution to
(n, n, ǫ′)-ConHalving. We will assume without loss of generality that the leftmost piece of the partition
C is in O−. Notice then that for each node vi, the piece on the left-hand side of the cut in v−i is always
in O− and the piece on the left-hand side of the cut in v+i is always in O+. Let the location of the cut
be di + 1 + t−i where t−i ∈ [−ǫ′, 1 + ǫ′]. Analogously, the same argument holds for agent copyi and the
interval [di + 3− ǫ′, di + 4 + ǫ′], and define t+i ∈ [−ǫ′, 1 + ǫ′] similarly.

Now consider the agent copyi and the cut at location di+1+ t−i . If t
−

i ∈ [0, 1], then since agent copyi
has valuation 1 on interval v−i , t

−

i of her valuation will be on a piece in O− and 1− t−i of her valuation
will be on a piece in O+. Then, since C is a solution to (n, n, ǫ′)-ConHalving, the cut in di + 3 + t+i
must be placed so that |t−i − t+i | ≤ ǫ′/2; similarly for the cases where t−i /∈ [0, 1]. In other words, copyi
ensures that the cut at di + 1 + t−i is “copied” ǫ′-approximately.

We will interpret the solution C as a solution to ǫ-Gcircuit in the following way. For each node vi
and each associated cut at di + 1 + t−i let

xi :=

0 , t−i < 0

t−i , t−i ∈ [0, 1]

1 , t−i > 1

(1)

and notice
|t+i − xi| ≤ 2ǫ′ , |t−i − xi| ≤ 2ǫ′ (2)

To complete the proof, we just need to argue that these variables satisfy the constraints of the gates of
the circuit.

Constant gate τ = (Gζ , nil, nil, vout, α): The valuation of agent varout for the intervals [di, di +1+α]
and [di+1+α, di+3] is the same and since the height of the agent’s value density function is at least 1 in
[di, di+3],4 it holds that t−out ∈ [α− ǫ′, α+ ǫ′]. Then, by Equation 2, it holds that xout ∈ [α−3ǫ′, α+3ǫ′],
so for ǫ′ < ǫ/3 the gate constraint is satisfied.

4Notice that the constant gate is the only gate where borderi and Gτ overlap.

7

Multiplication-by-scalar gate τ = (G×ζ , vin, nil, vout, α). Notice that for any given cut t+in and
1 − α ≥ ǫ, it holds that t−out ∈ [αt+in + ǫ/2 − ǫ′, αt+in + ǫ/2 + ǫ′] as the height of Gτ in v−out is at least 1.
Similarly, for the case 1− α < ǫ and any given cut t+in, it holds that t

−

out ∈ [αt+in + (1− α)/2− ǫ′, αt+in +
(1 − α)/2 + ǫ′] as the height of Gτ in v−out is at least 1. In particular, since 1− α < ǫ, it also holds that
t−out ∈ [αt+in + ǫ/2 − ǫ′, αt+in + ǫ/2 + ǫ′] for this case as well. Then, by Equation 2, it holds that xout ∈
[αt+in+ǫ/2−3ǫ′, αt+in+ǫ/2+3ǫ′] and since α ≤ 1 it also holds that xout ∈ [αxin+ǫ/2−5ǫ′, αxin+ǫ/2+5ǫ′],
again by Equation 2. Then the gate constraint is satisfied whenever ǫ′ < ǫ/10.

Addition gate τ = (G+, vin1
, vin2

, vout, nil). If for the cuts t+in1
and t+in2

it holds that t+in1
+ t+in2

<

1 − ǫ + 4ǫ′ then t−out ∈ [t+in1
+ t+in2

− 5ǫ′, t+in1
+ t+in2

+ 5ǫ′] as the height of Gτ in v−out is at least 1. This

then implies that xout ∈ [x+
in1

+ x+
in2
− 11ǫ′, x+

in1
+ x+

in2
+ 11ǫ′], by Inequality 2. On the other hand,

when t+in1
+ t+in2

≥ 1 − ǫ + 4ǫ′, then by Definition 1, it holds that xin1
+ xin2

∈ [1 − ǫ, 1] and clearly

t−out ∈ [1− ǫ, 1+ ǫ′] which by Definition 1 implies that xout ∈ [1− ǫ, 1]. The gate constraints are satisfied
for ǫ′ < ǫ/11 for each of the cases.

Subtraction gate τ = (G−, vin1
, vin2

, vout, nil). Analogously to the addition gate described above, when
for the cuts t+in1

and t+in1
it holds that t+in1

− t+in2
> ǫ− 4ǫ′ then t−out ∈ [t+in1

− t+in2
− 5ǫ′, t+in1

− t−in2
+ 5ǫ′]

as the height of Gτ in v−out is at least 1. This implies that xout ∈ [x+
in1
− x−

in2
− 11ǫ′, x+

in1
− x−

in2
+ 11ǫ′]

by Inequality 2. On the other hand when t+in1
− t−in2

≤ ǫ − ǫ′, which implies that xin1
+ xin2

∈ [0, ǫ] by

Definition 1, it clearly holds that t−out ∈ [−ǫ′, ǫ] and hence by Definition 1, we have xout ∈ [0, ǫ]. The
gate constraints are satisfied for ǫ′ < ǫ/11 for each of the cases.

Less-than-equal gate τ = (G<, vin1
, vin2

, vout, nil). We will consider three cases, depending on the
positions of the cuts t+in1

and t−in2
. First, when |t+in1

− t−in2
| < ǫ − 4ǫ′, by Inequality 2 it holds that

|xin1
− xin2

| < ǫ and the output of the gate is unconstrained. When t+in1
− t−in2

≥ ǫ − 4ǫ′ then by

Inequality 2 it holds that xin1
≥ xin2

+ ǫ. Additionally, since the height of Gτ in [v−out,r − ǫ, v−out,r] is at

least 1, it holds that t−out ∈ [1− ǫ, 1+ ǫ′], which by Definition 1 implies that x−

out ∈ [1− ǫ, 1] and the gate
constraint is satisfied. The argument for the case when t−in2

> t+in1
− 2ǫ′ is completely symmetrical.

Logic OR gate τ = (G∨, vin1
, vin2

, vout, nil). We will consider three cases depending on the position
of the cuts t+in1

and t+in2
. First, when t+in1

+ t+in2
< 0.4 it holds that t−out ∈ [−ǫ′, ǫ] and hence by

Definition 1, it holds that xout ∈ [0, ǫ]. Furthermore, by Inequality 2 it holds that xin1
+ xin2

< 0.4+ 4ǫ′

and for ǫ′ < 1/40, it also holds that xin1
, xin2

< 0.5 and the gate constraint is satisfied. Next, when
t+in1

+ t+in2
∈ [0.4, 0.8] then by Inequality 2, it holds that xin1

, xin2
∈ [0.4− ǫ′, 0.8+ 4ǫ′] and in particular,

when ǫ′ < 1/40 then it also holds that xin1
+xin2

∈ [0.3, 0.9] and the output of the gate in unconstrained.
Finally when t+in1

+ t+in2
> 0.8, it holds that t−out ∈ [1− ǫ, 1+ ǫ′] and hence by Definition 1, we have that

xout ∈ [1− ǫ, 1]. Furthermore, by Inequality 2 we have that xin1
+ xin2

> 0.8+ 4ǫ′ which is greater than
0.9 when ǫ′ < 1/40 which implies that at least one of the two inputs is greater than ǫ. In particular, the
gate’s output lies in [1 − ǫ, ǫ] when the inputs are smaller than ǫ or greater than 1 − ǫ and at least one
of them is greater than 1− ǫ. This shows that the gate constraint is satisfied.

Logic AND gate τ = (G∧, vin1
, vin2

, vout, nil). Analogously to the Logical OR gate, we will consider
three cases, depending on the position of the cuts t+in1

and t+in2
. First, when t+in1

+ t+in2
< 1.4, it holds

that t−out ∈ [−ǫ′, ǫ] and by Inequality 1, we have that xout ∈ [0, ǫ]. On the other hand, by Inequality 2, we
have that xin1

+xin2
< 1.4+4ǫ′ which is at most 1.5 for ǫ′ < 1/40 and the gate constraint is satisfied for

the same reason as in the third case of the Logic OR gate above (using the argument symmetrically, for
values smaller than ǫ instead of at larger than 1− ǫ). Next, when 1.4 ≤ t+in1

+ t+in2
≤ 1.8, by Inequality

2 and for ǫ′ < 1/40, it holds that xin1
+ xin2

∈ [1.3, 1.9] and the output of the gate is unconstrained.
Finally, when t+in1

+ t+in2
> 1.8, by Inequality 2 and for ǫ′ < 1/40, it holds that xin1

+ xin2
> 1.7.

Furthermore, it holds that t−out ∈ [1 − ǫ, 1 + ǫ′] and hence by Definition 1, we have that xout ∈ [1 − ǫ, 1]
and the gate constraint is satisfied.

Logic NOT gate τ = (G¬, vin, vin2
, vout, nil). We will consider three cases, depending on the location

of the cut t−in. First, if t−in < 0.4, it holds that t−out ∈ [−ǫ′, ǫ] and hence by Definition 1, we have
that xout ∈ [0, ǫ]. Furthermore, by Inequality 2, it holds that xin < 0.4 + 4ǫ′ which is at most 0.5 when
ǫ′ < 1/40 and the gate constraint is satisfied because for any value of the input smaller than ǫ, the output
is in [0, ǫ]. Next, when t−in ∈ [0.4, 0.8] and for ǫ < 1/40, by Inequality 2 it holds that xin ∈ [0.3, 0.7] and
the output of the gate in unconstrained. Finally, when t−in > 0.8, it holds that t−out ∈ [1 − ǫ, 1 + ǫ′] and

8

by Definition 1, we have that xout ∈ [1 − ǫ, 1]. Furthermore, by Inequality 2 and for ǫ′ < 1/40, it holds
that xin > 0.9 and the gate constraint is satisfied for a reason analogous to the one described above.

Given the discussion above, by setting ǫ′ < min{ǫ/11, 1/40}5, the gate constraints are satisfied, and the
vector (xi) obtained from C is a solution to ǫ-Gcircuit.

Now from Lemma 2, we obtain the following result.

Theorem 1. There exists a constant ǫ′ > 0 such that (n, n, ǫ′)-ConHalving is PPAD-hard.

Proof. Recall that in the proof of Lemma 2, ǫ′ was constrained to be at most min{1/40, ǫ/11} and in
particular by Lemma 1, there exists a constant ǫ′ that would make the reduction work. Recall however
that we “expanded” the instance of (n, ǫ′)-Chalving from the interval [a, b] to [0, 6N] for convenience,
which implies that after rescaling the instance to a constant interval [a, b], the allowed error ǫ′ goes down
to O(1/n). To get a constant error ǫ′, we simply multiply all valuations by N .

Theorem 1 implies that although a solution with n cuts is generally desirable, it might be hard to
compute, even for a relatively simple class of valuations like those used in the reduction. In fact, we can
extend our results to the more general case of finding a partition with n+ k cuts where k is a constant.

Theorem 2. Let k be any constant. Then there exists a constant ǫ′ such that (n, n + k, ǫ′)-Chalving

is PPAD-hard.

Proof. Let S = (V, T) be an instance of ǫ-Gcircuit with N nodes, consisting of smaller identical sub-
circuits Si = (Vi, Ti), for i = 1, 2, . . . , k+1, with with N/(k+1) nodes each such that for all i, j ∈ [k+1]
such that i 6= j, it holds that Vi ∩ Vj = ∅. and Ti ∩Tj = ∅. In other words, the circuit S consists of k+1
copies of a smaller circuit Si that do not have any common nodes or gates. Furthermore, for convenience,
assume without loss of generality that for two nodes l and m such that ul ∈ Vi and um ∈ Vj , with i < j,
it holds that l < m. In other words, the labeling of the nodes is such that nodes in circuits with smaller
indices have smaller indices.

LetH be the instance of (n, n, ǫ′)-ConHalving corresponding to the circuit S following the reduction
described in the beginning of the section and recall that n = 2N in the construction. Note that according
to the convention adopted above for the labeling of the nodes, for i < j, the agents corresponding to Vi

lie in the interval [ℓi, ri], whereas the agents corresponding to Vj lie in the interval [ℓj, rj] and ri ≤ ℓj .
In other words, agents corresponding to sub-circuits with smaller indices are placed before agents with
higher indices, and there is no overlap between agents corresponding to different sub-circuits.

Now suppose that we have a solution to (n, n+k, ǫ′)-ConHalving. Since there is no overlap between
valuations corresponding to different sub-circuits, an approximate solution with n+k cuts for the instance
H implies that there exists some interval [ℓi, ri] corresponding to the set of nodes Vi of sub-circuit Si,
such that at least n/(k + 1) cuts lie in [ℓi, ri], otherwise the total number of cuts on H would be at
least n+ k + 1. Since there are exactly n/(k + 1) agents with valuations on [ℓi, ri], this would imply an
approximate solution for n′ agents with n′ cuts and the problem reduces to (n, n, ǫ′)-ConHalving.

4 (n, n− 1, ǫ)-Chalving is NP-hard

In the previous section, we proved that the problem of finding an approximate solution with n players
and n cuts is PPAD-complete. Recall that for that case, we know that a solution exists [30]. For n
players and n− 1 cuts however, we don’t have the same guarantee. We prove that deciding whether this
is the case or not is NP-hard.

Theorem 3. There exists a constant ǫ′ > 0 such that (n, n− 1, ǫ′)-ConHalving is NP-hard.

Proof. We will first describe the construction that we will use in the reduction. For consistency with
the previous section, we will denote the error of the Consensus-halving problem by ǫ′ and the error of
the (implict) generalized circuits by functions of ǫ. Let Rǫ(S) be the construction for the reduction of
Section 3 that encodes an ǫ-generalized circuit S into an (n, n − 1, ǫ′)-ConHalving halving instance
when ǫ′ < ǫ/11. We will reduce from 3-SAT, which is known to be NP-complete.

5We can in fact assume some ǫ ≤ 11/40, as the smaller the ǫ, the harder the problem is, since we are interested in
establishing hardness for some constant ǫ.

9

Let φ be any 3-SAT formula with m clauses, k ≤ 3m variables x1, . . . , xk, and let ǫ > 0 be given.
For convenience of notation, let δ = ǫ/11. We will (implicitly) create a generalized circuit S with the
following building blocks:

• k input nodes x1, . . . , xk corresponding to the variables x1, . . . , xk.

• k sub-circuits Bool(xi) for i = 1, 2, . . . , k that input the real value xi ∈ [0, 1] and output a boolean
value xbool

i ∈ [0, 4δ] ∪ [1− 4δ, 1] (see the lower stage of Figure 2). The allowed error for these
circuits will be δ. The implementation of the circuit in terms of the gates of the generalized circuit
can be seen in Algorithm 1. Note that the sub-circuit containing all the Bool(xi) sub-circuits has
at most 4k nodes as each Bool(xi) sub-circuit could be implemented with one constant gate, one
subtraction gate, one addition gate and one equality gate; the latter is to maintain the convention
that all inputs to each gate are distinct.

• A sub-circuit Φ(xbool
1 , . . . , xbool

k) that implements the formula φ, inputing the boolean variables xbool
i

and outputting a value xout corresponding to the value of the assignment plus the error introduced
by the approximate gates. The allowed error for this circuit will be 4δ. A pictorial representation
of such a circuit can be seen in Figure 2; note that the circuits Bool(xi) are also shown in the
picture. This circuit has at most k + 3m nodes. First, there might be k possible negation gates to
negate the input variables. Secondly, for each clause, in order to implement an OR gate of fan-in 3,
we need 2 OR gates of fan-in 2, for a total of 2m gates for all clauses. Finally, in order to simulate
the AND gate with fan-in m, we need m AND gates of fan-in 2. Overall, since k ≤ 3m, we need
at most 6m nodes to implement this sub-circuit, using elements of the generalized circuit.

• A sub-circuit Rebool(x1, . . . , xk, xout) that inputs the variables xi, for i = 1, 2, . . . , k and the
variable xout and computes the function

min(xout,max(x1, 1− x1), . . . ,max(xk, 1− xk)).

The function can be computed using the gates of the generalized circuit as shown in Algorithm 2.
Let xbool

out be the output of that sub-circuit with allowed error 4δ. Note that this circuit has at most
16k nodes. Each min and max operation requires 8 nodes and we need to do 2k such computations
overall; k for the k max operations and k to implement the min operation of fan-in k with min
operations of fan-in 2. Again, since k ≤ 3m, this sub-circuit requires at most 48m nodes in total.

Following the notation introduced above, let Rδ(Bool), R4δ(Φ) and R4δ(Rebool) denote the valuations
of the agents in the instance of Consensus-halving corresponding to those sub-circuits, according to the
reduction described in Section 3. In other words, based on the circuit described above, we create an
instance H of Consensus-halving where we have:

• 2k agents (as each node corresponds to two agents, vari and copyi) that correspond to the input
variables x1, . . . , xk, who are not the output of any gate,

• at most 2(4k + k + 3m+ 16k) nodes corresponding to the internal nodes and the output node of
the circuit,

• an additional agent with valuation

un =

1, if t ∈ [b− 18mǫ′ − 1, b− 18mǫ′]

1, if t ∈ [b, b+ 1]

0, otherwise

where [a, b] is the interval where the value of xbool
out is “read” in the instance of Consensus-halving,

i.e. the interval where the cut tboolout − will be placed in the Consensus-halving solution.

10

Bool Bool Bool

¬
∨

∨ ∨

∧

x1 x2 x3

xout

Figure 2: A generalized circuit corresponding to a 3SAT formula φ, where the first clause is (x1∨x2∨x3).
The nodes of the circuit between different layers are omitted. The layer at the output layer that “restores”
the boolean values is also not shown, therefore xout is the outcome of the emulated formula φ.

Recall Definition 1 from Section 3 and note that as far as agent n is concerned, any cut tboolout − such that
1− 18mǫ ≤ xbool

out ≤ 1 is a Consensus-halving solution.

We will now argue about the correctness of the reduction. Let n be the number of agents and notice
that there are n − 1 agents that correspond to the nodes of the circuit and a single agent constraining
the value of xbool

out . Notice that since the allowed error for the sub-circuit Rebool(x1, . . . , xk, xout) is 4δ,
the total additive error of the agents of R4δ(Rebool) will be at most 4δ · 48m ≤ 18mǫ′.

First, assume that there exists a a solution to ǫ′-approximate Consensus-halving with n− 1 cuts. By
the correctness of the construction of Section 3 and the fact that ǫ′ < ǫ/11 = δ, the solution encodes
a valid assignment to the variables of the generalized circuit S. Due to the valuation of agent n, the
output of C must satisfy

xbool
out ≥ 1− 18mǫ′ − ǫ′,

otherwise the corresponding cut tboolout − could not be a part of a valid solution. Since the total additive
error for the circuit Rebool(x1, . . . , xk, xout) is at most 18mǫ′, if we choose ǫ′ < 1/90m, it holds that

xbool
out ≥ 4/5− ǫ′ which implies that xout ≥ 3/4,

by the function implemented by the circuit Rebool(x1, . . . , xk, xout). For the same reason, for each
i = 1, . . . , k it holds that

xi ∈ [0, 1/4] ∪ [3/4, 1]

and hence the output of Bool(xi) will lie in [0, 4δ]∪ [1−4δ, 1], which means that the inputs xbool
1 , . . . , xbool

k

to the gates of the sub-circuit Φ(xbool
1 , . . . , xbool

k) will be treated correctly as boolean values by the gates of
the circuit (since the allowed error of the sub-circuit is 4δ). Since the circuit Φ(xbool

1 , . . . , xbool
k) computes

the boolean operations correctly and xout ≥ 3/4, the formula φ is satisfiable.
For the other direction, assume that φ is satisfiable and let x̃ = (x̃1, . . . , x̃k) be a satisfying assignment.
First we set the values of the variables x1, . . . , xk to 0 or 1 according to x̃ and then we propagate the
values up the circuit S using the exact operation of the gates, which by our construction can be encoded
to an instance of exact Consensus Halving for the (n−1) agents corresponding to the nodes of S, i.e. the

Algorithm 1 Computing bool(x).

a← x− 1/4
bool ← a+ a

11

Algorithm 2 Computing min(x, y) and max(x, y).

a← x− y ; b← y − x ; c← a+ b
d← c/2 ; ℓ← (x/2) + (y/2)
min← ℓ − d ; max← ℓ+ d

first n− 1 will be exactly satisfied with the partition resulting from the encoded satisfying assignment.
For the n-th agent, again, since the total additive error is bounded by 18mǫ′, agent will be satisfied with
the solution.

Again, we remark here that by using similar arguments as in the proof of Corollary ??, we can prove
that the result holds even when the valuations are probability measures.

5 (n, n, ǫ)-ConHalving is in PPA

In this section, we prove that (n, n, ǫ)-ConHalving is in PPA. As we discussed in the introduction, this
result of ours was referenced in [16] to complement the PPA-hardness reduction of the inverse-exponential
precision version and obtain PPA-completeness. For establishing this result, we construct a reduction
from (n, n, ǫ)-ConHalving to the PPA-complete problem Leaf which goes via (n, T)-Tucker, the
computational version of Tucker’s Lemma.

Theorem 4. (n, n, ǫ)-ConHalving is in PPA.

Proof. The result is a corollary of Lemma 4 and Lemma 5, which will be proved in the remainder of the
section.

Before we proceed, we provide some intuition. In [30], Simmons and Su designed an algorithm for
finding an approximate solution to the Consensus-Halving problem given access to an algorithm that
solves Tucker on a triangulated cross-polytope (the formal definitions are given below). In the proof
of Lemma 4 we use this algorithm directly to reduce the computational version of Consensus Halving,
(n, n, ǫ)-ConHalving, to the computational version of Tucker, (n, T)-Tucker, defined below.

Then, the inclusion of (n, n, ǫ)-ConHalving in PPA will follow from the the fact that (n, T)-Tucker

is in PPA. This was proven in [25] where the computational version of the problem is defined on a
subdivision of the hypercube, rather than the triangulation of the cross-polytope, as required for the
Simmons-Su algorithm [30]. For the latter problem, a proof was sketched in [25], where the idea was to
map a triangulated hemisphere continuously and symmetrically to the hypercube. We provide a formal
proof here, but following a different approach;6 we use an algorithm proposed by Prescott and Su [27] (for
proving a generalization of Tucker’s Lemma due to Fan [15]) and prove that it can be used to recover
a solution to (n, T)-Tucker from a solution to Leaf. The algorithm requires (n, T)-Tucker to be
defined on a specific type of triangulation T , which we also define below.

5.1 The Borsulk-Ulam Theorem and Tucker’s Lemma

Denote the n-dimensional Euclidean space by R
n. The (n+ 1)-dimensional unit ball is

Bn+1 = {x ∈ R
n+1 :

n+1
∑

i=1

|xi|
2 ≤ 1}

and its surface is the n-dimensional sphere

Sn = {x ∈ R
n+1 :

n+1
∑

i=1

|xi|
2 = 1}.

6A map between the two topological spaces or the corresponding solutions seems like the most natural approach,
but formalizing the intuition seems like it could result in significant technical clutter. Our approach “moves” the technical
difficulty to the definition of the “aligned with hemispheres” triangulation, which can rather be easily understood intuitively.
Then, the two lemmas that establish the result are basically adaptations of the known algorithms of [30] (Lemma 4) and
[27] (Lemma 5).

12

The (n+ 1)-dimensional cross-polytope is

Pn+1 = {x ∈ R
n+1 :

n+1
∑

i=1

|xi| ≤ 1},

i.e., unit ball in the l1-norm. Denote the surface of Pn+1 by

Cn = {x ∈ R
n+1 :

n+1
∑

i=1

|xi| = 1}.

The Borsuk-Ulam theorem is the following:

Theorem 5 (Borsuk-Ulam theorem). Any continuous function f : Cn 7→ R
n must have a vertex x ∈ Cn,

such that f(x) = f(−x).

Note that although the theorem is originally stated on domain Sn, it is also true when the domain
of f is the surface of the cross-polytope Cn.

In general, a subdivision or simplicization is a partition of a geometric object into small objects such
that any two such small objects either share a common facet or do not intersect. In particular, we have
the following definitions:

Definition 1 (Triangulation). [30] A triangulation T of a geometric object X is a collection of (distinct)
n-simplices σ1, . . . , σm whose union is X such that for all i and j, σi ∩ σj either contains a common
facet of σi and σj or a lower dimension face, or is empty.

The mesh size τ of a triangulation T is the maximum distance between any two vertices of T .

Definition 2 (Centrally symmetric and d-skeleton). [27] A triangulation T of Sn is centrally symmetric
if given simplex σ ∈ T ∩Sn, then −σ ∈ T ∩Sn, where −σ is the simplex obtained by negating each vertices
of σ. The notion can also be defined on other centrally symmetric objects, e.g., on Cn. The d-skeleton of
a triangulation T is the collection of simplices of T of dimension at most d, i.e. {σ ∈ T : dim(σ) ≤ d}.

Tucker’s Lemma can be formulated in a number of different ways; one is the following.

Lemma 3 (Tucker’s Lemma [30]). Let T be an centrally symmetric triangulation of Cn whose vertices
are assigned labels from {+1,−1,+2,−2, . . . ,+n,−n}. The labels of antipodal vertices sum to zero, i.e.,
the labelling function λ satisfies λ(−x) = λ(x) for any vertex x ∈ Cn. Then there must exist a 1-simplex
(which is referred to as a complementary edge) such that its two vertices have labels that sum to zero.

As pointed out in the literature [30, 27], the lemma is often stated for a triangulation of a ball, but
for it also holds for a triangulation of a sphere (obtained by gluing two n-balls along their boundaries,
see [30] or [27] for more details). We are interested in triangulations that satisfy the following property.

Definition 3 (Aligned with hemispheres Triangulation). [27] A flag of hemispheres in Sn is a sequence
H0 ⊂ · · · ⊂ Hn where each Hd is homeomorphic to a d-ball, and for 1 ≤ d ≤ n, ∂Hd = ∂(−Hd) =
Hd ∩ (−Hd) = Hd−1 ∪ (−Hd−1) ≅ Sd−1, Hn ∩ (−Hn) = Sn, and H0,−H0 are antipodal points. A
symmetric triangulation T of Sn is said to be aligned with hemispheres if we can find a flag of hemispheres
such that Hd is contained in the d-skeleton of the triangulation.

Note that the same definition can be adapted to our context by converting l2-norm to l1-norm. We
can now define the computational version of the Tucker problem.

Problem 4. (n, T)-Tucker. Let T be a fixed centrally symmetric triangulation of mesh size τ (that is
aligned with hemispheres). Given an integer n and a polynomial-size circuit λ that computes for each
vertex x on T a label λ : T → {+1,−1, · · · ,+n,−n} such that λ(−x) + λ(x) = 0, find two adjacent
vertices z, z′ of T , with λ(z) + λ(z′) = 0.

By “fixed” here we mean that the circuit λ knows how the vertices of the triangulation are represented
as inputs and can produce a label for them. Such a triangulation can be constructed, e.g. see [17]. Note
that the triangulation T is not given explicitly as input to the problem, but it is rather accessed via the
labelling circuit, therefore solutions that exhaustively search over the vertices of T for complementary
edges are not efficient.

13

5.2 From Consensus-halving to Tucker

First, we establish the reduction from Consensus-Halving to Tucker.

Lemma 4. (n, n, ǫ)-ConHalving reduces to (n, T)-Tucker in polynomial time, where T is a symmetric
triangulation T of Cn with mesh size at most ǫ/2M and M is the upper bound on the valuation functions
of (n, n, ǫ)-ConHalving.

Proof. Given any instance of (n, n, ǫ)-ConHalving, we construct an instance of (n, T)-Tucker based
on the construction in [30]. We note that the coordinates of any vertex x ∈ Cn naturally correspond to
a partition that uses n cuts on the [0, 1] interval.7 This is because the coordinates of any vertex x ∈ Cn

satisfy
∑n+1

i=1 |xi| = 1, and a partition with n cuts on [0, 1] can be interpreted as partitioning the interval
into n + 1 pieces such that the length of each piece is equal to |xi|, i = 1, . . . , n + 1. Furthermore, if
the sign of the i-th coordinate xi is “+”, piece |xi| is assigned to portion O+; otherwise it is assigned to
portion O−. This interpertation is the basic bulding block of the Simmons-Su algorithm [30].

Let T be a fixed triangulation of Cn, in the sense described above with mesh size τ = ǫ/2M , where
M is the bound of the valuation function on any subinterval. It is not hard to verify that for any two
adjacent vertices x and x′ (denote their associated portions by O+, O−, and O′

+,O
′

−
, respectively), it

holds that
|vi(O+)− vi(O

′

+)| ≤ ǫ/2, for all i ∈ [n].

To see this, note that two adjacent vertices in the triangulation T can only differ by at most τ in distance,
which means that the cuts corresponding to the two points x and x′ will define intervals that are close to
each other; in particular the intervals defining the portions O+ and O′

+ will differ by at most τ in length.
Since the difference in value for the two intervals could be at most M , the total difference in value could
be at most M · τ which is upper bounded by ǫ/2, by the choice of τ . Symmetrically, we also get that

|vi(O−)− vi(O
′

−
)| ≤ ǫ/2, for all i ∈ [n].

We now label all the vertices on T ∩ Cn. For any vertex x ∈ T ∩Cn, denote

l = argmax
i
{|vi(O+)− vi(O−)|},

and then label x by +l if vl(O+) − vl(O−) > 0; label x by −l if vl(O+) − vl(O−) < 0. Note that in
case vl(O+) − vl(O−) = 0 then x corresponds to a solution of (n, n, ǫ)-ConHalving. We claim that
this labeling satisfies the boundary condition of Lemma 3. In summary, given an instance of (n, n, ǫ)-
ConHalving, we have constructed an instance of (n, T)-Tucker.

Now, given a solution to (n, T)-Tucker, i.e., two adjacent vertices z and z′ that are assigned labels
which sum to 0, assume without loss of generality that z (with associated portions O+ and O−) is labelled
by k and z′ (with associated portions O′

+ and O′

−
) is labelled by −k. According to the labelling, it holds

that vk(O+)− vk(O−) > 0 and vk(O
′

+)− vk(O
′

−
) < 0. Therefore, for all i ∈ [n] it holds that

|vi(O+)− vi(O−)| ≤ |vk(O+)− vk(O−)| ≤ |(vk(O+)− vk(O−))− (vk(O
′

+)− vk(O
′

−
))| (3)

= |(vk(O+)− vk(O
′

+))− (vk(O−)− vk(O
′

−
))| (4)

≤ |vk(O+)− vk(O
′

+)|+ |vk(O−)− vk(O
′

−
)| (5)

≤
ǫ

2
+

ǫ

2
= ǫ.

This means that the partition corresponding to the point z is a valid solution to (n, n, ǫ)-ConHalving.

5.3 From Tucker to Leaf

We now proceed to the last step of the proof, establishing the reduction from (n, T)-Tucker to Leaf.
Leaf is the prototypical problem of the class PPA, based on which the class is actually defined [25].

7The use of the [0, 1] interval is for convenience and without loss of generality; for any choice of the interval we could
use a cross-polytope corresponding to a sphere of a different radius.

14

Problem 5. Leaf

Input: A boolean circuit C with n inputs and at most 2n outputs, outputting the set N (y) of (at
most two) neighbours of a vertex y, such that |N (0n)| = 1.

Output: A vertex x such that x 6= 0n and |N (x)| = 1.

Although it is not necessary for the results of the present section, for completeness, we also define
the End-of-Line problem, based on which the class PPAD is defined.

Problem 6. End-of-Line

Input: Two boolean circuits S (for successor) and P (for predecessor) with n inputs and n outputs
such that P (0n) = 0n 6= S(0n).

Output: A vertex x such that P (S(x)) 6= x or S(P (x)) 6= x 6= 0n.

We have the following lemma. Note that the mesh size of the triangulation is not a parameter in
the statement and the reduction holds for any such size. The lemma actually reduces (n, T)-Tucker to
Leaf, for any fixed centrally symmetric triangulation that is aligned with hemispheres, and in particular
any such triangulation of the mesh size needed for Lemma 4 (which clearly holds if T is aligned with
hemispheres).8

Lemma 5. Let T be a fixed centrally symmetric triangulation that is aligned with hemispheres. Then
(n, T)-Tucker is in PPA.

Proof. We reduce (n, T)-Tucker to the PPA problem Leaf, by using the proof by Prescott and Su
[27]. In [27], the authors present a constructive proof of Fan’s combinatorial lemma on labelings of
triangulated spheres. Fan’s lemma says that given a symmetric barycentric subdivision of the octahedral
subdivision of the n-sphere Sn and a labelling from its vertices to {±1, . . . ,±m}, where m ≥ n+1, such
that labels at antipodal vertices sum to 0 and labels at adjacent vertices do not sum to 0, then there are
an odd number of n-simplices whose labels are of the form

{k0,−k1, k2, . . . , (−1)
nkn}, where 1 ≤ k0 < k1 < . . . < kn ≤ m.

Their proof generalizes Fan’s lemma in the sense that the result holds for a larger class of triangulations
of Sn, that is, the lemma holds for any symmetric triangulation of Sn that is aligned with hemispheres.
Following their proof, we can start from any place on the sphere and construct a path whose endpoint is a
simplex of the highest dimension of the form {k0,−k1, k2, . . . , (−1)nkn}. Fan’s lemma is a generalization
of Tucker’s lemma in the sense that if fewer labels are allowed, i.e., m = n, then inevitably there will
be adjacent vertices labeled by opposite colors. We sketch the proof of [27] and show how it can be
converted into a reduction from (n, T)-Tucker to Leaf.

Given a triangulation aligned with hemispheres, we label the vertices of the triangulation as stated in
Fan’s lemma. The carrier hemisphere of a simplex σ in T is the minimal Hd or −Hd that contains σ. A
simplex is alternating if its vertex labels are distinct in magnitude and alternate in sign when arranged
in monotone order of magnitude, i.e., the labels have the form

{k0,−k1, k2, . . . , (−1)
nkn} or {−k0, k1,−k2, . . . , (−1)

n+1kn}.

The sign of an alternating simplex is the sign of its smallest label. A simplex is almost-alternating if
it is not alternating, but by deleting one of the vertices, the resulting simplex (a facet) is alternating.
The sign of an almost-alternating simplex is defined to be the sign of any of its alternating facets. Thus
any almost-alternating simplex must have exactly two facets that are alternating. Call an alternating or
almost-alternating simplex agreeable if the sign of that simplex matches the sign of its carrier hemisphere.

Now we define a graph G. A simplex σ carried by Hd is a node of G if it is one of the following:
(1) an agreeable alternating (d − 1)-simplex; (2) an agreeable almost-alternating d-simplex; or (3) an
alternating d-simplex. Two nodes σ and η are adjacent in G if all of the following hold: (a) one is the
facet of the other, (b) σ ∩ η is alternating, and (c) the sign of the carrier hemisphere of σ ∪ η matches
the sign of σ ∩ η. Prescott and Su show that G is a graph in which every vertex has degree 1 or 2.
Furthermore, a vertex has degree 1 if and only if its simplex is carried by ±Hd or is an n-dimensional
alternating simplex.

8Strictly speaking, Lemma 5 states that all computational problems (n, T)-Tucker, parametrized by a fixed triangula-
tion T are in PPA, as long as T is centrally symmetric and aligned with hemispheres.

15

To see how Fan’s lemma implies Tucker’s lemma and how Prescott and Su’s proof can be converted to
a reduction to Leaf, we now restrict our attention to the case when m = n. Since there are not enough
labels for the existence of alternating n-simplices, there must exist some agreeable almost-alternating
simplices with a complementary edge. We add those simplices as nodes to the graph G; it is easy to see
that these nodes will be of degree 1. Since the path considered in [27] can start from any vertex, we
can choose any vertex H0 as the given degree 1 node in graph G. Following the path, the other degree
1 node in G corresponds to the almost-alternating simplex with a complementary edge. The graph G
clearly only contains degree nodes of degree 1 or 2.

6 Conclusion and Future Work

Our work takes an extra step in the direction of capturing the exact complexity of the Consensus-halving
problem for all precision parameters. While we believe that the techniques used in [16] can prospectively
be used to obtain PPA-hardness of the problem for an inverse-polynomial precision parameter, it seems
unlikely that they could applicable when the precision is constant. In that sense, our main result is not
implied by [16], neither can it be subsumed by modifications to their reduction, even those involving
highly non-trivial alterations. At the same time, our results are useful as the hardness for constant
precision established here allowed the authors of [16] to prove PPAD-hardness of the Necklace Splitting
problem, for which any hardness results were not previously known.

Going beyond the Consensus-Halving problem in its original definition, it looks interesting to consider
further the effects of allowing additional cuts, and the computation of exact or approximate solutions.
Concretely, one might wonder how good an approximate Consensus-Halving solution can be computed
in polynomial time, given, say, two cuts for each agent or how many cuts are required to produce an
approximate solution for a given precision parameter. Finally, we could consider a query model, where
the agents interact with the protocol by answering value or demand queries and the goal is to find bounds
on the number of queries needed to compute approximate solutions. A very similar approach has been
taken recently for the related fair-division problem of envy-free cake cutting [9] or earlier [14] under
different assumptions on the agents’ valuations.

References

[1] James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-D Tucker is PPA complete. ECCC TR15,
163, 2015.

[2] Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.

[3] Noga Alon and Douglas B West. The Borsuk-Ulam theorem and bisection of necklaces. Proceedings
of the American Mathematical Society, 98(4):623–628, 1986.

[4] Julius B Barbanel. Super envy-free cake division and independence of measures. Journal of Math-
ematical Analysis and Applications, 197(1):54–60, 1996.

[5] Kim C Border. Fixed point theorems with applications to economics and game theory. Cambridge
University Press, 1989.

[6] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundamenta Mathematicae,
1(20):177–190, 1933.

[7] Steven J Brams and D Marc Kilgour. Competitive fair division. Journal of Political Economy,
109(2):418–443, 2001.

[8] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution. Cam-
bridge University Press, 1996.

[9] Simina Brânzei and Noam Nisan. The query complexity of cake cutting. arXiv preprint
arXiv:1705.02946, 2017.

16

[10] Xi Chen and Xiaotie Deng. Settling the Complexity of Two-Player Nash Equilibrium. In IEEE
Annual Symposium on Foundations of Computer Science (FOCS), page 47th, 2006.

[11] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
Nash equilibria. Journal of the ACM (JACM), 56(3):14, 2009.

[12] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone markets.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 181–190.
ACM, 2013.

[13] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

[14] Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting. Operations
Research, 60(6):1461–1476, 2012.

[15] Ky Fan. Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral trian-
gulation. Journal of Combinatorial Theory, 2(4):588–602, 1967.

[16] Aris Filos-Ratsikas and Paul W. Goldberg. Consensus Halving is PPA-Complete. In Proceedings of
the 50th Annual ACM Symposium on the Theory of Computing (STOC). ACM, 2018, to appear.

[17] Robert M Freund and Michael J Todd. A constructive proof of Tucker’s combinatorial lemma.
Journal of Combinatorial Theory, Series A, 30(3):321–325, 1981.

[18] Martin Gardner. Aha! Aha! insight, volume 1. Scientific American, 1978.

[19] Charles H Goldberg and Douglas B West. Bisection of circle colorings. SIAM Journal on Algebraic
Discrete Methods, 6(1):93–106, 1985.

[20] Claus-Jochen Haake, Matthias G Raith, and Francis Edward Su. Bidding for envy-freeness: A
procedural approach to n-player fair-division problems. Social Choice and Welfare, 19(4):723–749,
2002.

[21] Charles R Hobby and John R Rice. A moment problem in L1 approximation. Proceedings of the
American Mathematical Society, 16(4):665–670, 1965.

[22] Nimrod Megiddo and Christos H Papadimitriou. On total functions, existence theorems and com-
putational complexity. Theoretical Computer Science, 81(2):317–324, 1991.

[23] Jerzy Neyman. Un theoreme d’existence. C. R. Acad. Sci. Paris Ser. A-B 222, pages 843–845, 1946.

[24] Abraham Othman, Christos Papadimitriou, and Aviad Rubinstein. The complexity of fairness
through equilibrium. In Proceedings of the 15th ACM conference on Economics and computation,
pages 209–226. ACM, 2014.

[25] Christos H Papadimitriou. On the complexity of the parity argument and other inefficient proofs of
existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

[26] Elisha Peterson and Francis Edward Su. Four-person envy-free chore division. Mathematics Maga-
zine, 75(2):117–122, 2002.

[27] Timothy Prescott and Francis Edward Su. A constructive proof of Ky Fan’s generalization of
Tucker’s lemma. Journal of Combinatorial Theory, Series A, 111(2):257–265, 2005.

[28] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. 1998.

[29] Aviad Rubinstein. Inapproximability of Nash equilibrium. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pages 409–418. ACM, 2015.

[30] Forest W Simmons and Francis Edward Su. Consensus-halving via theorems of Borsuk-Ulam and
Tucker. Mathematical social sciences, 45(1):15–25, 2003.

17

[31] Emanuel Sperner. Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. In Ab-
handlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 6, pages 265–272.
Springer, 1928.

[32] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1), 1948.

[33] Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. The American mathematical
monthly, 106(10):930–942, 1999.

[34] Albert William Tucker. Some Topological Properties of Disk and Sphere. Proc. First Canadian
Math. Congress, Montreal, pages 285–309, 1945.

18

	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	2.1 Generalized Circuits

	3 (n,n+k,)-ConHalving is PPAD-hard
	4 (n,n-1,)-Chalving is NP-hard
	5 (n,n,)-ConHalving is in PPA
	5.1 The Borsulk-Ulam Theorem and Tucker's Lemma
	5.2 From Consensus-halving to Tucker
	5.3 From Tucker to Leaf

	6 Conclusion and Future Work

