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Microbunching and Coherent Synchrotron Radiation in Linear Free

Electron Lasers

Abstract

The optimal performance of short-wavelength free-electron lasers (FELs), driven
by high-energy bunches of electrons, is limited by collective interactions that oc-
cur due to the self-fields of particles within the bunch. An understanding of these
collective effects is therefore crucial for current and future machines. In partic-
ular, it is important when designing and operating such a machine that these
effects are understood, and mitigated as much as possible. In order to achieve
such an understanding, a correspondence between the theory of the impact of
these collective effects, their calculation using computer-based simulation codes,
and experimental measurements of the effects, is essential. This thesis presents
a study of two such collective effects: coherent synchrotron radiation (CSR) and
the microbunching instability. An extension to the 1D theory of CSR is de-
rived, which correctly takes account of effects arising due to the electron bunch
entering and exiting a bending magnet. Theoretical predictions of these CSR
transient effects are then compared with results from simulation codes. The
CSR-induced emittance growth is then studied experimentally in the FERMI
FEL across a range of electron bunch parameters, showing good agreement be-
tween theory, simulation and experiment in most cases, and some divergence
during more extreme bunch compression scenarios. In addition, the microbunch-
ing instability in the FERMI FEL has been studied extensively. A new method
of characterising the instability using 2D Fourier analysis has been developed,
which uncovers previously unseen parameters, and demonstrates the necessity of
performing a thorough analysis in order to understand fully this effect. The mi-
crobunching instability has also been induced, by imposing periodic modulations
on electron bunches across a number of accelerator lattice configurations. Com-
parisons between theory, simulation and experiment are also shown in this case,
demonstrating an improved understanding of the development of these collective
effects.
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Chapter 1

Introduction

Particle accelerators have long been used both as tools for developing an un-

derstanding of fundamental physical processes, and as machines for facilitating

scientific discovery in a wide range of fields, including the life sciences, chemistry

and technology development. The emission of synchrotron radiation [1, 2, 3] by

high-energy electron accelerators led to the development of accelerators which

generate some of the brightest man-made sources of light, and have provided

the opportunity for the investigation of matter at an unprecedented spatial and

temporal scale [4]. These accelerators are able to provide a narrow spectral band-

width of light and tunability of photon wavelength and brilliance, giving rise to

a flexibility and wavelength range that is unavailable to other light sources, such

as conventional lasers.

Free-electron lasers (FELs) [5] are able to produce light with better coher-

ence properties than those which can be achieved by circular synchrotrons, and

modern FEL user facilities provide beams to users in wavelengths ranging from

the infra-red to the hard x-ray. A number of these machines are not based on

a recirculating accelerator (as in a more conventional synchrotron light source),

but on a single-pass linear accelerator (linac). This type of machine allows for

the brightness of the light produced to increase by orders of magnitude, in ad-

dition to decreasing the spectral and temporal bandwidth close to the Fourier

limit [6]. An FEL-based light source can allow for the probing of structures on

a smaller scale than conventional synchrotron-based light sources, and the short

pulse lengths produced provide the opportunity to study the dynamics of pro-
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cesses within complex materials and molecules on an unprecedented temporal

scale [7]. FELs can therefore not only complement the investigations that can

be made by synchrotrons; a wide range of other processes can be studied only by

using the photon wavelength, bandwidth, pulse length and intensity that FELs

are able to produce, such as chemical processes, plasma physics, matter under

extreme conditions and astrophysics.

All accelerator-based light sources are dependent on the interaction between

charged particles and magnetic fields. This is achieved in an FEL by propagating

a bunch of electrons along the axis of an array of alternating magnetic dipole

fields, in an arrangement known as an undulator, or a wiggler (depending on the

strength and periodicity of the magnetic fields). These fields cause the transverse

position of particles in the bunch to oscillate. This then results in the emission

of radiation with a wavelength proportional to the period of the magnet and

the inverse of the particle energy squared [8, 9]. If the electrons within a bunch

are considered as isolated sources of radiation, then the synchrotron emission

is incoherent, and the power of the radiation scales linearly with the number of

emitting particles. If, however, the ensemble of particles is considered as a whole,

and if the wavelength of the light emitted is longer than the overall longitudi-

nal density distribution (or length) of the bunch, then coherent emission takes

place, with an intensity proportional to the square of the number of particles in

the bunch. It has also been demonstrated that the radiation emitted can act

back on the emitting electrons, causing them to bunch together into so-called

‘microbunches’ with a length proportional to the wavelength of the radiation.

This causes a process to take place which further amplifies the emission of ra-

diation, giving rise to a greater intensity of synchrotron emission. This process,

which initially begins with noisy emission from individual particles, can then can

then lead to an exponential growth in the radiation intensity by many orders of

magnitude until the process eventually saturates [10, 11, 12].

The quality of the photon beams produced by FELs (i.e. their spectral

and temporal properties) is highly dependent on the properties of the electron

bunches driving the FEL process. Therefore, a deep understanding of the phys-

ical processes which can affect these bunches of electrons is necessary in order

2



Chapter 1. Introduction

to optimise the performance of these machines. A number of these processes are

driven by the interactions between the electrons within a bunch, known broadly

under the umbrella term ‘collective effects’. Charged particles produce electro-

magnetic fields which interact with their surrounding environment, including

other particles within an ensemble. In a typical short wavelength FEL, the num-

ber of electrons within a bunch can exceed 109, and so providing analytic or

computational calculations of these effects for this number of particles can be

very difficult. Developing an understanding of these processes, and how they

translate to effects on a real machine, however, is of fundamental importance

to improving the beam quality of an FEL. As with all scientific endeavour, the

goal in studying collective effects is to bring together theory and experiment,

and in accelerator physics this is generally possible only with the additional use

of simulation codes which approximate the physical processes in a real machine.

This thesis will present an analysis of two such collective effects in an FEL:

coherent synchrotron radiation (CSR) and the microbunching instability. The

thesis is laid out as follows. Chapter 2 will give a brief overview of beam dynam-

ics in accelerator physics, discussing the aspects pertinent to the study of CSR

and microbunching, such as the concept of emittance and longitudinal bunch

compression. The theory of CSR emission is presented, and expressions are de-

rived which show the impact of CSR when a bunch of electrons enters and exits

a bending magnet – the so-called ‘transient’ regimes. A discussion of the theory

surrounding the development, propagation and amplification of the microbunch-

ing instability is also presented. The mitigation of the microbunching instability

through a device known as a laser heater is discussed, as is the possibility of stim-

ulating and controlling the instability through the use of a temporally modulated

laser pulse.

Chapter 3 gives an introduction to the computation of collective effects using

simulation codes. The methods used for three of these codes are discussed, along

with their limitations. Some benchmarking studies are undertaken in order to

compare the accuracy of the simulation codes with theoretical predictions of the

impact of these collective effects. In particular, the extended theory of CSR

transients mentioned above is compared with results from a simulation code for
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a simple test case, showing good agreement between the two.

In Chapter 4 the influence of CSR on the transverse emittance of electron

bunches in the FERMI FEL [13] is studied. CSR causes the emittance of a bunch

to increase as it travels on a curved trajectory, such as that required for magnetic

bunch compression. The emittance of bunches in FERMI was measured as a

function of bunch compression factor and transverse beam size, and compared

with simulated and theoretical predictions. It is shown that simulation codes

which take the transverse extent of the bunch into account, rather than taking a

simpler 1D approximation of the CSR effect, can produce better agreement with

the experimental measurements.

Chapter 5 details extensive measurements of the microbunching instability,

also in the FERMI FEL, for three different bunch compression schemes. The lon-

gitudinal phase space of a microbunched beam exhibits fragmentation in energy

and time, rather than the smooth distribution that is required for the nominal

application of a short wavelength FEL. In order to improve the understanding

of this instability, a technique based on 2D Fourier analysis has been developed

that can characterise accurately the modulation amplitude in time and energy,

and also the frequency of these modulations. It is also demonstrated that, by

increasing the uncorrelated energy spread of the bunch in the low-energy section

of the machine, through the use of a so-called ‘laser heater’, the modulations

at higher energy can be suppressed. Finally, the laser heater is used in a non-

standard configuration; by modifying the longitudinal intensity profile of the

pulse in the laser heater, modulations in energy can be imposed onto the bunch,

thereby stimulating the microbunching instability at a known frequency. This

flexible technique allows for the probing of the microbunching instability in un-

precedented detail by imposing a range of amplitude and frequency modulations

onto the bunch. In addition to providing the means to compare the development

of the microbunching instability experimentally with theoretical predictions and

estimates from simulation, this technique could prove to be useful for a wider

range of accelerator applcations, such as the generation of THz radiation or for

future plasma-based accelerators.
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Chapter 2

Theory of CSR and

Microbunching

This chapter will give a theoretical outline of two important collective effects in

high-energy particle accelerators: coherent synchrotron radiation (CSR) and the

microbunching instability. First, in Sec. 2.1 some general concepts in accelerator

physics, including the theory of beam dynamics, transport matrices, and bunch

compression, will be introduced.

Much of the published theory concerning the emission of CSR on curved tra-

jectories is based on a 1D approximation, in which the electron beam distribution

is projected onto the longitudinal dimension. Experimental and computational

studies [14, 15, 16, 17] have demonstrated good agreement between the 1D CSR

theory and its impact on the beam, particularly in terms of its projected and

slice emittance. However, the theory based on Ref. [18] fails to take full account

of the CSR radiation emitted as the bunch enters and exits a bending magnet,

as will be demonstrated in Sec. 2.2. An extension of the 1D CSR field will be

derived for these so-called ‘entrance’ and ‘exit transient’ regimes.

The conditions which give rise to the microbunching instability [19, 20, 21, 22]

will also be investigated in this chapter. This phenomenon, observed at a number

of high-energy FELs [23, 24, 25], causes modulations in energy and/or density

to develop within an electron bunch, which can result in a reduction in FEL

performance. Three main sources which can cause the instability to develop and

increase in severity – shot noise, longitudinal space charge (LSC) and CSR – are
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recognised. The theory behind these effects will be outlined in Sec. 2.3, along

with some methods for mitigating the instability, such as the so-called ‘laser

heater’ [20], the most common device employed at the majority of X-ray FELs

for this purpose [26, 27, 28, 29, 30]. A number of proposed alternatives to the

laser heater are also discussed.

Recent interest in the ability to manipulate the longitudinal phase space of

an electron beam for the generation of THz radiation [31, 32, 33, 34] has resulted

in the application of temporally modulated laser beams to induce microbunch-

ing. Results from theory and simulation will provide an insight into how lasers

and undulator magnets can interact with an electron beam to manipulate its

properties – this is discussed in Sec. 2.4.

2.1 Accelerator Physics

This section will provide a brief overview of beam dynamics in particle acceler-

ators, including some of the theoretical descriptions pertinent to developing an

understanding of the collective effects explored in this thesis. Comprehensive

derivations of the physics of beam dynamics in particle accelerators will not be

given here, as they can be found elsewhere [35, 36, 37]. The electron bunches

studied in this thesis are generally in the ultra-relativistic regime, where the

particle energies are sufficiently high that the approximation can be made that

velocity v = βc ≈ c, where c is the speed of light and β is the relativistic velocity

of the particle – this will simplify some of these preliminary discussions. The

motion of an electron in the presence of electric and magnetic fields ~E and ~B,

and with charge q = −e ≈ −1.6× 10−19 C is described by the Lorentz force [1]:

~F = q
(
~E + ~v × ~B

)
. (2.1)

2.1.1 Beam Dynamics and Transfer Matrices

In conventional accelerators, electric fields are typically used to accelerate particle

bunches, and magnetic fields focus and steer them. Since the majority of high-

energy particle accelerators do not follow a completely straight trajectory, the
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motion of particles in an accelerator is generally described using a Frenet-Serret

co-ordinate system with a non-zero curvature, and with zero torsion [36]. In this

system, three spatial co-ordinates represent the position of a particle – x, y and s,

where s is the direction of motion, and x and y are orthogonal to this trajectory

in the horizontal and vertical directions, respectively. Complementary to these

positional co-ordinates are the momenta of each co-ordinate, for example px, py

for the transverse momenta. These six co-ordinates specify both the location of a

given particle, and its trajectory. We will use the notation X = (x, px, y, py, z, δ)

for the full 6D phase space, where δ = ∆p/p is the normalised deviation from

the design momentum p, and z is the longitudinal position of the particle. This

6D vector is generally sufficient to describe the motion of any particle through

accelerator components by using so-called ‘transfer matrices’ which transform

the beam position in a step-wise fashion. The full arrangement of accelerator

components which describe the layout of the machine is often referred to as a

‘lattice’. These transfer matrices are based on the Lorentz force applied to a

particle as it propagates through an electric or magnetic field.

In order to compute the evolution of the 6D vector describing the position and

motion of a particle travelling through a given accelerator element with transfer

matrix R, the following notation is used:

X1 = RX0, (2.2)

where the subscripts 0,1 denote the initial and final particle vectors, respectively.

Multiple accelerator elements can be combined within this formalism such that

successive elements in the accelerator lattice are multiplied together to give an

overall transfer matrix Rtot:

X1 = RtotX0 = RnRn−1 · · ·R2R1X0 (2.3)

with n the total number of elements in the lattice. The explicit form of the

evolution of particle motion through a given accelerator element, beginning at
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position s0 and ending at position s1 is as follows:

X1 =



x

px

y

py

z

δ


s1

= RX0 = R



x

px

y

py

z

δ


s0

. (2.4)

It should also be noted that, in cases where a linear approximation is not

sufficient to model the effects of an electromagnetic field, second-, third-, and

higher-order expansions of the fields can also be incorporated into the transfer

matrix computations [37]. For the purposes of this thesis, only a small number of

different types of accelerator element need to be considered: drift spaces, sector

dipole magnets, quadrupole magnets, and radiofrequency (RF) cavities. The

motion of particles travelling in a lattice without coupling between the horizontal

and vertical planes, and with bending in the horizontal plane, can be described

using Hill’s equation [36]:

d2x

ds2
+

(
1

ρ(s)2
+ k(s)

)
x(s) =

δ

ρ(s)
, (2.5a)

d2y

ds2
+ k(s)y(s) = 0. (2.5b)

Here, k(s) describes the focusing in the beamline, and ρ(s) gives the bending

radius of a dipole magnet. Omitting the derivations for standard accelerator

beamline components (which can be found in most standard accelerator physics

textbooks [35, 36]), the transfer matrices for a drift space, dipole magnet and

quadrupole magnet are given below.

For a drift space – that is, a straight beamline section with no electric or
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magnetic fields and a length ld – the transfer matrix is:

Rdrift =



1 ld 0 0 0 0

0 1 0 0 0 0

0 0 1 ld 0 0

0 0 0 1 0 0

0 0 0 0 1 ld
β2γ2

0 0 0 0 0 1


, (2.6)

where γ = [1− β2]
− 1

2 is the relativistic Lorentz factor of the particle.

The FERMI accelerator, which is studied in this thesis, uses sector dipole

magnets for bending the beam, in which the design trajectory of the particles

enters and exits normal to the edge of the magnetic field (assuming that the field

stops abruptly at the edge of the magnet pole face – the ‘hard-edge’ model). For

a sector dipole magnet with length ld and bending angle for the reference particle

(i.e. a particle with the intended design momentum for that magnet) θ = ld/ρ,

with ρ the radius of the bend, the linear transfer matrix is as follows:

Rdip =



cos θ ρ sin θ 0 0 0 ρ(1− cos θ)

−1
ρ

sin θ cos θ 0 0 0 sin θ

0 0 1 0 0 0

0 0 0 1 0 0

sin θ ρ(1− cos θ) 0 0 1 ρ(θ − sin θ)

0 0 0 0 0 1


. (2.7)

Quadrupole magnets are used to focus the beam transversely. Due to the

nature of quadrupole magnetic fields for a magnet with field strength k, focusing

occurs in one plane while the beam is defocused in the transverse plane orthog-

onal to it. For a horizontally focusing quadrupole, with k > 0 and length lq, the
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transfer matrix is:

Rfquad =



cos θ 1√
k

sin θ 0 0 0 0

−
√
k sin θ cos θ 0 0 0 0

0 0 cosh θ 1√
k

sinh θ 0 0

0 0
√
k sinh θ cosh θ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (2.8)

with θ =
√
klq. This type of quadrupole, with focusing in the horizontal plane,

will from here on be called a focusing quadrupole. A defocusing quadrupole,

which focuses in the vertical plane, has k < 0, and its transfer matrix is as

follows:

Rdquad =



cosh θ 1√
|k|

sinh θ 0 0 0 0√
|k| sinh θ cosh θ 0 0 0 0

0 0 cos θ 1√
|k|

sin θ 0 0

0 0 −
√
|k| sin θ cos θ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (2.9)

with θ =
√
|k|lq. It should also be noted that the transfer matrices given above

for dipoles and quadrupoles do not take fringe fields into account [38] – that

is, they assume that the fields exist only inside the magnet, and that the field

strength within the magnet is constant throughout its length. In reality, this

is an oversimplification; the strength of a magnet reaches its maximum value

in its central point, and decays smoothly to a point outside of the physical

magnet. Dipole fringe fields will be included in most of the simulation work that

follows (see Chapter 3), but for higher-order multipole magnets, these will not

be included.
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2.1.2 Phase Spaces and Transverse Emittance

The transfer matrices given in the section above determine how a single parti-

cle is transported through an accelerator lattice. Most problems in accelerator

physics require an understanding of the transport of a large number of particles

in a beam, in which case it would be impractical to calculate the single-particle

transport of each particle individually. In order to gain an understanding of such

bunches of particles, it is instructive to consider the bulk properties of a beam.

As above (Sec. 2.1.1), the statistical properties of an ensemble of particles can

be represented in a six-dimensional phase space, using three orthogonal elements

each for position and momentum.

The particle motion in x− px space (where px is the horizontal momentum)

can be expressed in terms of the Courant-Snyder (or Twiss) parameters [39] and

the action variable Jx [35]:

Jx =
1

2

(
γxx

2 + 2αxxpx + βxp
2
x

)
, (2.10)

where Jx is invariant for linear motion. The motion in the horizontal phase space

can be described in terms of x and px, or in terms of the action-angle variables

Jx and φx, where tan (φx) = −βx pxx −αx. The horizontal emittance εx is defined

as the statistical average of the action for an ensemble of particles:

εx = 〈Jx〉. (2.11)

The Courant-Synder parameters βx, αx and γx, also known as Twiss parameters,

are defined as follows:

〈x2〉 = βxεx, (2.12a)

〈xpx〉 = −αxεx, (2.12b)

〈p2
x〉 = γxεx, (2.12c)

and the condition βxγx−α2
x = 1 is also imposed. These definitions are valid in the
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absence of energy deviations in the particles in the bunch – for a discussion of how

such deviations can affect the transverse distribution, see Sec. 2.1.3 below. The

Courant-Snyder parameters vary in such a way that the action Jx is a constant

of the motion in the absence of radiation and collective effects. It then follows

that the emittance can be written as:

εx =
√
〈x2〉〈p2

x〉 − 〈xpx〉2. (2.13)

A similar set of expressions can be derived for vertical and longitudinal mo-

tion. Given that, as a particle is accelerated, the transverse momenta px and py

(which are inversely proportional to the particle momentum) becomes propor-

tionally smaller, most single-pass FEL machines utilise the concept of normalised

emittance εN = γε, with γ the relativistic (or ‘Lorentz’) factor, defined as:

γ =
1√

1− β2
, (2.14)

where β = v/c, with v the velocity of the particle and c the speed of light. The

energy of a particle with mass m has an energy E = γmc2. Under the condi-

tion of linear, symplectic transport, the normalised emittance remains constant

irrespective of changes in beam energy. As mentioned above, the motion of par-

ticles under the influence of electric and magnetic fields is given by the Lorentz

force (Eq. 2.1), and this motion through standard accelerator elements can be

described using a Hamiltonian [35]. As such, according to Liouville’s theorem,

the area occupied by the beam in 6D phase space is conserved in the absence of

external forces. One such force that can cause a dilution in the beam transverse

phase space is the coherent synchrotron radiation (CSR) that arises due to the

collective interactions of particles, as described below (Sec. 2.2).

2.1.3 Dispersion

The dispersion η(s) of a beamline relates the momentum of a particle to its tra-

jectory in a given direction. After passing through a horizontal bending magnet,

a particle i with momentum deviation δi from the nominal momentum has the
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following horizontal position (to first order) [35]:

xi(s) = ηi(s)δi(s). (2.15)

The dispersion function determines the offset of a particle from the reference

trajectory for a given momentum deviation, and it is typically corrected using

quadrupole magnets after a beam passes through a bending magnet. If uncor-

rected, then the dispersion function can contribute to an increase in beam size

and transverse momentum.

2.1.4 Bunch Compression

RF photoinjectors (also known as ‘guns’) used for single-pass FELs tend to

produce electron bunches with a peak current on the order of 100 A or less

[40, 41, 42, 43, 44]. The peak current is defined as the local charge density in

the core of the bunch, projected along the longitudinal axis, multiplied by the

bunch velocity. In order to achieve the required peak currents for FEL operation,

which tends to be on the order of up to 1 kA or more, the electron bunch must be

compressed longitudinally. In most FELs, this is achieved through a chicane-like

bunch compressor system consisting of four dipole magnets. Bunch compression

is typically done at a relatively high energy (greater than 100 MeV), in order

to mitigate the respulsive Coulomb force (also known as ‘space charge’) which

scales with a factor 1/γ2 [45], and which increases with increasing charge density.

Longitudinal compression is often achieved using a four-dipole magnetic chi-

cane, by forcing the time of flight of the tail of the bunch to be shorter than that

of the head – this can be done by giving particles at the back of the bunch a

larger energy than those at the front. The linear component of the variation in

particle energy along the longitudinal axis of a particle bunch is known as the

‘energy chirp’, and in the case of particles at the back of the bunch having larger

energy than particles at the head, this is referred to as a negative energy chirp.

Since the electric field of an RF cavity – used for accelerating particles – varies

sinusoidally, the timing of electrons within the bunch with respect to the phase

of the cavity has an influence on the amplitude of the field that they experience.
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The phase of the cavity can be tuned such that particles at the back of the bunch

experience a larger field than those at the front, thus imparting a negative energy

chirp. As the bunch propagates through the chicane, the tail of the bunch then

follows a trajectory that has a smaller deflection from the dipoles, and is able to

catch up with the head. The overall compression of the bunch in a compressor

chicane, then, is related to both the longitudinal energy chirp of the bunch and

the longitudinal dispersion (known as the R56 parameter – see Eq. 2.7) of the

chicane. See Fig. 2.1 for a schematic of an example four-dipole bunch compres-

sor chicane, and the longitudinal compression undergone by a bunch travelling

through it.

Low energy trajectory

Nominal trajectory

High energy trajectory

δ

z

x

s

Figure 2.1: A schematic of a typical four-dipole bunch compressor chicane
(with dipoles as blue squares) bending in the horizontal (x) direction, with the

z − δ phase space of a bunch (red) propagating through it.

The total path length of a particle travelling through a four-dipole chicane

with distance between the centres of the first and second, and the third and

fourth dipoles defined as L1, and the distance between the centres of the second

and third dipoles defined as L2, is:

Ltot =
2L1

cos θ0

+ L2, (2.16)

where θ0 are the bend angles of the dipoles. A particle with relative momentum

deviation from the reference particle δ will experience a different bending angle
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θ:

θ =
θ0

1 + δ
. (2.17)

Under the small-angle approximation (θ � 1), which is generally true for bunch

compressor chicanes in FELs, we find:

cos θ ≈ 1− θ2

2
, (2.18)

and therefore the path length difference is now:

Ltot ≈ 2L1 + L1

(
θ0

1 + δ

)2

+ L2. (2.19)

Now, given that the R56 of the chicane transfer matrix describes the path-length

difference with respect to the energy deviation:

R56 =
dLtot
dδ

= −2L1θ
2
0, (2.20)

the total path-length difference is now found to be:

∆z = Ltot(δ)− Ltot(0) = L1

(
θ0

1 + δ

)2

− L1θ
2
0 =

1

2
R56

(
1− 1

(1 + δ)2

)
. (2.21)

Finally, performing a Taylor expansion around δ = 0, the expression for ∆z is

as follows:

∆z ≈ 1

2
R56

(
1− 1 + 2δ − 3δ2 + 4δ3 + ...

)
= R56δ − T566δ

2 + U5666δ
3, (2.22)

where T566 = −3
2
R56 and U5666 = 2R56 are, respectively, the second- and third-

order terms describing the path-length difference with respect to the energy

deviation [37].

In order for a bunch to be compressed in a chicane, a time-energy correlation

(i.e. a negative linear chirp) must be imposed on the bunch before it enters

the compressor. This can be achieved with an accelerating cavity. A particle
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travelling through an RF cavity with initial and final position s0,1, and an initial

energy deviation δ(s0) will experience an energy deviation at the exit of the

cavity δ(s1), defined as:

δ(s1) = δ(s0) +
qVRF
E0

cos

(
ωRF z(s0)

c
+ φRF

)
, (2.23)

with q the electron charge, VRF , ωRF and φRF the RF cavity voltage, frequency

and phase, respectively, and E0 the energy of the reference particle. Depending

on the RF phase setting, a time-energy correlation, otherwise known as an energy

chirp, can be imposed on a bunch in the cavity. In the limit of small δ, Eq. 2.23

can be expanded as:

δ(s1) ≈ δ

(
1 + E ′ · s1 +

E ′

2
· s2

1 +
E ′′

6
· s3

1 + ...

)
, (2.24)

where a prime denotes the derivative with respect to s. The linear energy chirp

factor h is defined as:

h = E ′ = −qVRF
E0

ωRF
c

sin (φRF ) , (2.25)

and in the limit | (ωRF s1) /c| � 1, the relative energy deviation of a particle

at position z in an energy-chirped bunch is ∆E/E ≈ hz [46]. Once the bunch

passes through the chicane and reaches position s2, the relationship between

longitudinal co-ordinate and relative energy deviation is given as follows:

z(s2) = z(s1) +R56δ(s1) + T566δ(s1)2 + U5666δ(s1) + .... (2.26a)

δ(s2) = δ(s1). (2.26b)

Now, the combined transfer map for the longitudinal phase space of the linac

and bunch compressor is given by [35]:

z
δ


s2

=

1 R56

0 1

 1 0

R65 1

z
δ


s0

=

1 +R65R56 R56

R65 1

z
δ


s0

. (2.27)
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For a fully compressed bunch, i.e. with no final energy chirp, the rms bunch

length at the exit of the chicane can be calculated as:

σz(s2) =
〈
z(s2)2 − 〈z(s2)〉

〉2
=

√
(1 +R56R65)2 σz(s1)2 +R2

56σδ(s1)2

≈ (1 + hR56)σz(s1),
(2.28)

and the overall compression factor is the ratio between the initial and final bunch

length, or (in the linear approximation):

CF =
σz(s1)

σz(s2)
≈ 1

1 + hR56

. (2.29)

One of the major factors limiting the overall compression achievable in a

single bunch compressor chicane is the emittance degradation of the bunch due

to coherent synchrotron radiation (CSR); as the bunch becomes shorter, and the

compression in a given dipole magnet becomes larger, the CSR power emitted

becomes higher. This means that, in short-wavelength FELs, bunch compression

is generally done in two or three stages, thus mitigating, to a certain extent, the

degradation of the beam emittance due to CSR and nonlinearities (see Sec. 2.2.4).

These nonlinearities in the compressed longitudinal phase space can arise due

to the higher-order terms in the energy deviation (Eq. 2.24). The higher-order

terms can then result in a curvature in the longitudinal phase space, and the

final bunch length will be larger than the value predicted using only the linear

terms [35]. By using multiple compression stages, the required energy chirp at

each chicane will be reduced, and the nonlinear effects can be mitigated to some

extent [47, 48].

2.1.5 Free-Electron Lasers

The principle of the generation of FEL radiation is based on the extraction of

electromagnetic radiation from relativistic electron beams travelling through a

periodic magnetic lattice, using a sequence of short dipoles with alternating field

polarity (known as an undulator). Full theoretical treatments of the principles

behind the generation of FEL radiation can be found in Refs. [8, 9, 49]. The
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radiation emitted by an ultrarelativistic electron is highly concentrated in its

direction of travel, into an opening angle approximately equal to 1/γ2, with γ

the relativistic Lorentz factor (see Eq. 2.14). The fundamental wavelength λf

emitted by a particle travelling through an FEL is proportional to λu/γ
2, with

λu the period of the undulator – that is, twice the length of each undulator pole

in the lattice.

The brilliance of a photon pulse produced by an accelerator is defined as the

number of photons np with a spectral bandwidth BW emitted by the particles in

the accelerator per unit phase space area of the source (for a non-diffraction lim-

ited source – see below). The units of brilliance (otherwise known as brightness)

are usually given as np/s/mm2/mrad2/0.1%BW. For many users of light sources,

a larger brightness leads to the possibility of studying processes at shorter time

and length scales, and with greater accuracy. For a beam of radiation that has

a Gaussian distribution in both the spatial and angular planes with a width of

σr and σr′ respectively, the photon beam emittance is defined as follows:

εph,x,y =
1

2
σrσr′ =

λf
4π
, (2.30)

where λf is the wavelength of the radiation. This is known as the diffraction-

limited photon emittance, and this diffraction limit can be reached when the

electron beam emittance is smaller than εph,x,y [36].

One requirement for optimising the brightness of an FEL is a small relative

momentum spread of the electrons travelling through the undulator lattice. A

single electron with momentum p can have a deviation δ from the nominal design

momentum p0 for producing light at a wavelength λf . The relative momentum

spread of the electron bunch can be defined as the rms width of the distribution

of δ for all electrons in the bunch. Since the wavelength of an emitted photon λf

is dependent on γ, it is desirable, in order to reduce the spectral bandwidth of the

radiation pulse produced, to aim towards minimising the momentum spread of

the beam on entrance to the undulator. An additional requirement for optimis-

ing the transfer of energy from electrons in the bunch to the radiation that they

produce is the spatial overlap of photons and electrons. This overlap is main-

tained using quadrupole magnets in between undulator sections, which control

18



Chapter 2. Theory of CSR and Microbunching

the beam divergence in the transverse plane. The energy transfer between pho-

tons and electrons improves when the beams overlap spatially, as this enhances

the probability of their interaction, and this optimal spatial overlap between the

electron and photon beams is achieved when the transverse emittance of the

electron beam is smaller than the diffraction limit of the photon beam [50, 51].

All accelerator-based light sources are based on the transfer of energy from

particles to radiation, but the brightness of an FEL can be ten orders of mag-

nitude larger (or more) than synchrotron-based light sources. This remarkable

increase in performance has partly been made possible by improvements in RF

photoinjectors and emittance preservation for linear machines. Therefore, pre-

serving the electron beam emittance during the acceleration process, and through

the undulator, is highly desirable for optimising the performance of FELs.

2.1.6 Self-Fields

This thesis will investigate collective interactions among particles within an elec-

tron bunch used as a driver for a free-electron laser. These collective effects arise

due to the electric and magnetic fields (or ‘self-fields’) of charged particles inter-

acting with either each other or their environment. Particles in an accelerator

driving an FEL often reach ultrarelativistic energies in a short distance after the

source (the electron gun). In this regime, in a straight section of beamline, a

particle in the beam will only experience the fields of particles that are ahead of

it, or of its close neighbours. As such, these fields are generally known as ‘wake

fields’ [45]. In the case of coherent synchrotron radiation (CSR) – discussed be-

low in Sec. 2.2 – the curved trajectory of the beam in a dipole magnet allows the

field of particles in the beam to affect particles ahead of it, but this is often still

referred to as a wake field.

The wake field of an ensemble of particles within an accelerator vacuum

chamber depends on the geometry and materials of the system (thorough treat-

ments of these wake fields can be found in Refs. [45, 52]). For example, in the

case of a perfectly conducting accelerator vacuum chamber with a geometry that

varies longitudinally, the calculation of the wake field involves solving Maxwell’s

equations with the boundary conditions provided by the cavity geometry [53]
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– such a wake field is known as a ‘geometric’ wake field. The resulting ‘wake

function’ describes the field experienced by a single particle at a specified dis-

tance from an emitting particle, giving rise to a delta-function distribution. A

wake field refers to the electromagnetic field produced by a particle bunch, and

it depends on the properties of both the bunch and the vacuum chamber sur-

rounding it. The impedance of the resulting wake function can be solved in

the frequency domain by calculating its Fourier transform. As will be shown

later (Sec. 2.3), this approach proves useful when describing the propagation and

amplification of small-scale modulations on a particle bunch. Geometric wake

fields, and those arising due to accelerator elements with some electrical resis-

tance (‘resistive’ wake fields) will not be considered in detail in this thesis; rather,

only those which arise due to the direct collective interaction of particles will be

considered.

2.2 Theory of CSR

Short electron bunches, such as those used to drive ultraviolet and X-ray FELs,

can be susceptible to emittance degradation due to coherent synchrotron radi-

ation (CSR) [18, 14, 16, 54]. This phenomenon occurs when the bunch travels

through a bending magnet, and the radiation emitted by the bunch has a wave-

length comparable to, or larger than, the bunch length. Since the bunch is

travelling on a curved trajectory, and given that the radiation is emitted in a

cone following the particle motion [1], the radiation from the back of the bunch

is able to catch up with the head of the bunch, thus giving the particles at the

head a kick in energy. When the force is applied to all particles in a bunch that

receive such a kick, the relative energy spread of the bunch increases. It should

also be noted that the characteristic wavelength of CSR, which is related to the

total bunch length, may become shorter if there is some substructure within the

longitudinal bunch distribution.

Magnetic bunch compressors, which are often used to reduce the electron

bunch length used for driving an FEL, usually comprise a four-dipole chicane

(see Sec. 2.1.4), which is designed to produce zero dispersion at the exit. The
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kick in energy received by a particle travelling on a curved trajectory can cause

it to travel along a different path through the bunch compressor, which then

changes the transverse co-ordinate of the electron at the exit of the chicane.

When this effect is taken into account for all particles in the bunch that have

received a kick in energy due to CSR, this results in an overall emittance growth.

This section will outline some of the theory concerning the impact of an

energy kick induced by CSR on curved trajectories, providing some new insights

into the CSR field in the entrance and exit transient regimes, which apply when

the bunch is traversing the magnetic field boundary. These results will become

useful when addressing the accuracy of models used in simulation (Sec. 3.2), and

for comparison with experimental measurements of emittance growth in a bunch

compressor (Sec. 4.5).

2.2.1 1D Theory

We first consider the case of a bunch of electrons on a curved trajectory at time

t through a bending magnet of bending radius R and bending angle φm. The

electromagnetic field acting upon any particular electron in the bunch comprises

the fields emitted by electrons at earlier times t′ < t on this curved path. In

the following derivation, the subscripts 0 and 1 will refer to the emitting and

receiving particle, respectively, and a prime indicates retarded time or position;

that is, the point at which the field was emitted. To calculate the total field,

we first consider the field emitted by a single electron at position ~r0
′ inside the

magnet at time t′ and observed by another electron at position ~r1 at time t. For

simplicity, in this section we neglect the transverse extent and energy spread of

the electron bunch, and thereby assume that all electrons travel exactly along

the reference trajectory. The electromagnetic field at ~r1 due to the electron at

~r0
′ is given by the Liénard-Wiechert field [1] at time t:

~E(~r, t) =
e

4πε0

 ~n− ~β′

γ2(1− ~n · ~β′)3ρ2
+
~n×

((
~n− ~β′

)
× ~̇β′

)
c
(

1− ~n · ~β′
)3

ρ

 , (2.31)
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where e is the electron charge, ε0 is the vacuum permittivity, c is the speed of

light, γ is the relativistic Lorentz factor, ~β′ is the velocity of the emitting electron

(normalised to c), ~̇β′ is the normalised acceleration of the emitting electron,

ρ = |~r1 − ~r0
′| is the distance between the emission site and point of observation,

and ~n = (~r1 − ~r0
′)/ρ. From now on, the first term on the right hand side of

Eq. 2.31, which does not depend on ~̇β′, will be referred to as the ‘Coulomb’ field,

and the second term will be designated the ‘acceleration’ field. Conventionally,

several regimes of CSR forces are identified according to the positions of the

emitting and observing particles [18]. Initially, the particle in front is inside the

magnetic field of the dipole and the particle behind has not yet entered it, in

which case ~̇β = 0 and only the first term of Eq. 2.31 contributes. This is the

‘entrance transient’ regime. When both particles are inside the magnet, both

terms in Eq. 2.31 contribute to the CSR field, and this is known as the ‘steady-

state’ regime. Finally, when the emitter is still in the magnet and the receiver

has exited it, this is known as the ‘exit transient’ regime. Eq. 2.31 describes the

electric field due to a single point particle, and so to calculate the entire CSR

field requires a convolution of this expression with the charge density of the entire

bunch. To simplify further analysis, the longitudinal field component E|| can be

expressed in terms of a wake function w(z − z′):

E||(z) =

∫
w(z − z′)λ(z′)dz′, (2.32)

where λ(z) is the longitudinal charge distribution, with the normalisation condi-

tion
∫
λ(s)ds = Q (with Q the total bunch charge), and w(z− z′) is the parallel

component of the field in Eq. 2.31 at position z in the bunch due to a particle

at position z′ in the bunch. In the following derivation of the CSR field in these

three regimes, we will project the charge density onto the reference trajectory,

neglecting the effects of the transverse bunch size.
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2.2.1.1 Steady-State Regime

As shown in [18, 55], the electric field observed at position z for a line charge

λ(z) due to the motion on a circular arc of radius R is given by:

ESS
|| (z) =

Neβ2

8πε0R

∫ φ

0

β − cos(u/2)

(1− β cos(u/2))2λ(z −∆z(u))du, (2.33)

where φ is the angle from the entrance of the magnet to the observation point,

∆z(u) = R (u − 2β sin(u/2)), N is the number of particles in the bunch and u

is the retarded angle between the emitter at time of emission and the observer

at time of observation. A schematic of this scenario is shown in Fig. 2.2. Note

that both the position of the emitting electron at time of emission ~r0
′ and at

time of observing ~r0 have been drawn, reflecting the fact that the bunch travels

a considerable distance during the time required for the electromagnetic field to

travel from emitter to observer. This formula is valid for a rigid line charge,

using the ultrarelativistic approximation (β ≈ 1). This model also does not take

account of any effects due to dipole fringe fields. The transition to the steady-

state regime takes place at a distance DSS from the entrance to the magnet

[18]:

DSS ≈
(
24R2σz

)1/3
, (2.34)

with σz the rms bunch length.

2.2.2 Entrance and Exit Transients (1D Model)

2.2.2.1 Derivation of CSR Entrance Transient

In this regime, the condition DSS has not been reached, and a significant portion

of the emitting particles have not yet entered the magnetic field. This means

that their contribution comes entirely from the Coulomb field (the first term) of

Eq. 2.31. We begin by calculating a number of distances shown in Fig. 2.3. For

the full derivation of the total CSR field in this regime, see Appendix A.1. The
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Figure 2.2: Schematic of the CSR interaction in the 1D model in the
steady-state regime. The positions of the emitter and receiver at the time of

interaction are shown as A and B, the the position of the emitter at the time of
emission is A′. The acceleration and velocity vectors of the particles are shown
as blue and red lines, respectively; the distances used in the derivation of the

CSR field are shown as green dashed lines.

resulting expression for this field is:

Eent
|| (z) = ESS

|| (z) +
Ne

4πε0γ2

∫ d

0

(y − βρ(y)) cos(φ) +R sin(φ)

(ρ(y)− β(y + r sin(φ)))2ρ(y)
λ(z −∆(y))dy,

(2.35)

where ρ(y) =
√
y2 + 2Ry sin(φ) + 4R2 sin2(φ/2) and ∆(y) = y+Rφ−βρ(y), with

y the distance between the emitting particle and the entrance of the magnet, and

d the length of the drift before the magnet taken into account for the calculation

of the CSR field. A representation of this regime is shown in Fig. 2.3. The

contributions to the field from ESS
|| arise from the radiative emission of particles

on the curved trajectory, while the other term comes from particles which have

not yet reached the magnet at the time of emission. Both terms of Eq.2.35
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partially cancel, and the net CSR field has a lower amplitude than either term.

In the limit d→∞, in the small-angle and ultrarelativistic approximations [18],

this field reduces to:

Eent
|| =

Ne

241/3πε0R2/3

((
24

Rφ3

)1/3 [
λ

(
z − Rφ3

24

)
− λ

(
z − Rφ3

6

)]

+

∫ z

z−Rφ3/24

dλ(z′)

dz′
dz′

(z − z′)1/3

)
. (2.36)

However, without taking this limit, that is, by taking only a short drift length

before the entrance of the dipole, the Coulomb term can dominate up until the

steady-state regime has been reached, invalidating the usual 1D approximation.
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β

β'

β'

r'

ξ

ψ

ρ

y
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B n

0

1

r0

LR

D

h

w

η

Figure 2.3: Geometry of CSR interaction between an emitting electron at ~r′0
before the magnet and a receiving electron at ~r1 within the magnet. ψ is the
angle between the emitter at time t′ and the receiver at time t, and ξ is the

angle between ~β and ~n. The colour scheme is the same as Fig. 2.2.

This result – that the Coulomb component of the Liénard-Wiechert field can

provide a non-negligible contribution to the CSR field in the entrance transient
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regime, even in the ultrarelativistic limit – can be understood in the following

way, as illustrated by Fig. 2.4. The Coulomb field of a particle on a straight

trajectory is confined to a narrow disk, and it appears to be produced instan-

taneously by the electron at position r0, at time t0 to an observer, whereas in

fact the field was produced at a retarded time t′0 (Fig. 2.4a). Even if the elec-

tron subsequently moves onto a different trajectory between t′0 and t0, this will

not change the field at the observation point r1, and the Coulomb field is still

travelling along the straight path (Fig. 2.4b). For a bunch of electrons beginning

to enter a curved path, the electrons at the head will observe this Coulomb field

generated by the tail of the bunch, as the field has been able to ‘catch up’ with

the head. This is because electrons at the head of the bunch have taken a longer

time to travel a longitudinal distance z than the field (Fig. 2.4c). This model

suggests that, for a given angle φ into the magnet, there exists a characteristic

drift length dc needed to generate Coulomb fields at that position – that is, to

have an entrance transient effect. This distance can be estimated by calculating

the required distance in front of the magnet that the field would need in order

to be observed by the observing electron, giving:

dc ≈
γRφ2

√
2
. (2.37)

The effect of the entrance transient will depend on the length of the drift section

preceding the bend, so it is necessary to take dc into account in order to correctly

account for this. In a circular machine, bending magnets will not necessarily

have drift lengths of tens of metres in front of them, as is often the case for a

linear accelerator. This means that errors can be made if the formula Eq. 2.36

is applied in these scenarios, or if a sufficient drift is not taken into account

before the entrance to a dispersive region. In Sec. 3.2, this will be demonstrated

by simulating two test cases with different values of the drift length before a

bending magnet.

2.2.2.2 Derivation of CSR Exit Transient

Consider the situation at time t, when an electron bunch has traveled through

a bending magnet of bending radius R and bending angle φm and is currently a
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(a) Although Coulomb field lines align with
the current position, the field actually
originates from the retarded position.
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(b) Consequently, if the emitting electron A′

electron enters the curved trajectory between
the retarded time t′0 and the current time t0,

the field at the observation point is not
affected.
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(c) This allows electrons (B) in front of the
source electron (A′) to end up inside the

high-field region due to A′.

A' t

t' t
A

B
P

1

0 0

(d) Whether the high-field region exists at
time t1 depends on the length of the drift on
which the source electron has been moving.

Figure 2.4: Schematic representation of the CSR entrance transient field. The
observation point P due to the Liénard-Wiechert field of the emitter A′ at a

retarded time t′0 is shown as the dashed circle.

distance xc past the exit edge of the magnet. The electromagnetic field acting

upon any particular electron in the bunch is comprised of the fields emitted by

electrons at earlier times t′ < t when they were still inside the magnet. To

calculate the total field, we first consider the field emitted by a single electron
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at position ~r0
′ inside the magnet at time t′ and observed by another electron at

position ~r1 past the magnet at time t. The geometry of this case is sketched in

Fig. 2.5.
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Figure 2.5: Geometry of CSR interaction between an emitting electron at ~r0
′

inside the magnet and a receiving electron at ~r1 past the magnet. The
distances and angles shown are derived in Appendix A.2. The colour scheme is

the same as Fig. 2.2.

For the full derivation of the total CSR field after the exit of the bending

magnet, see Appendix A.2. Defining the following quantities:

ζ = x+R sin(ψ)− βρ cos(ψ), (2.38)

28



Chapter 2. Theory of CSR and Microbunching

χ = R sin(ψ/2) + x cos(ψ/2), (2.39)

with ψ the angle between the emitting electron at retarded position ~r0
′ and the

exit of the magnet, we obtain the following expression for the radiation field:

Eexit
||,rad(z, x) =

Neβ2

4πε0

∫ φm

0

(
2 sin(ψ/2)ζχ

(ρ− β (R sin(ψ) + x cos(ψ)))2 ρ
−

sin(ψ)

ρ− β (R sin(ψ) + x cos(ψ))

)
λ (z′(ψ)) dψ.

(2.40)

In this expression, x = xc + z is the position of the evaluation point with

respect to the exit edge of the magnet, with xc the distance from exit edge to

bunch centroid and z the position relative to the bunch centroid. In the integral,

the charge density should be evaluated at z′, which from Eq. A.18 is given by

z′(ψ) = −xc −Rψ + βρ. The corresponding expression for the Coulomb field is:

Eexit
||,C (z, x) =

NeβR

4πε0γ2

∫ φm

0

x− βρ cos(ψ) +R sin(ψ)

(ρ− β (R sin(ψ) + x cos(ψ)))2 ρ
×λ(z′(ψ))dψ. (2.41)

Eq. 2.40 gives the longitudinal radiation field as observed along a bunch that just

passed a single bending magnet. The expression for the radiation field (Eq. 2.40)

can be integrated using the ultrarelativistic and small-angle approximations (see

Appendix A.2) to yield the full field:

Eexit
||,rad(z, x) ≈ Ne

πε0

(
λ(z −∆zmax)

φmR + 2x
− λ(z)

2x
+

∫ z

z−∆zmax

∂λ(z′)

∂z′
dz′

ψ(z′)R + 2x

)
.

(2.42)

In the integrand of Eq. 2.42, ψ(z) is defined implicitly by the relation:

z − z′ = f(ψ) =
Rψ3

24

Rψ + 4x

Rψ + x
. (2.43)

and ∆zmax = f(φm). Here, it has been taken into account that source points

positioned after the exit of the magnet do not contribute to the CSR radiation,

and the first two terms arise because Eq. 2.42 is the result of an integration
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by parts. We can now follow a similar procedure to calculate the Coulomb

component of the field given by Eq. 2.41. The kernel is strongly peaked around

ψ = 0, and so we can assume that λ(z) is constant over the relevant range, and

apply a small-angle Taylor expansion, resulting in:

Eexit
||,C (z, x) ≈ Neλ(z)

4πε0γ2

∫ φm

0

2γ2

(x+Rψ)2dψ =
Ne

2πε0

λ(z)

x
. (2.44)

This term cancels with one of the boundary terms in Eq. 2.42, resulting in the

following expression for the total CSR exit transient field:

Eexit
|| (z, x) = Eexit

||,C (z, x) + Eexit
||,rad(z, x) ≈ Ne

πε0

(
λ(z − zmax)
φmR + 2x

+∫ z−∆zmin

z−∆zmax

∂λ(z′)

∂z′
dz′

ψ(z′)R + 2x

)
.

(2.45)

This is equivalent to the expression for the exit transient field given in [56].

However, we have provided a full explanation of how both the Coulomb and

radiation components of the Liénard-Wiechert fields complement each other to

produce this result. A comparison between Eqs. 2.40, 2.42 and the full formula

2.45 is given for a benchmark case in the following Section. For a schematic

representation of the Coulomb field during rectilinear motion, motion on an

arc, and the transition regime upon exiting a curved trajectory, see Fig. 2.6. A

physical description for the underlying mechanism behind the interaction of both

the Coulomb and radiation fields can be understood as follows. The contribution

from the Coulomb field is significant only within a very small range ψ . γ−1 � 1.

The field lines corresponding to the Coulomb field of a relativistic particle are

confined to a very flat region perpendicular to the direction of motion. An

important property of the Coulomb field is that the field lines point away from a

virtual source point that moves with velocity ~βc in the direction that the emitter

had at the time of emission. In the figure, the retarded position of the emitter

is shown, and the apparent, instantaneous source of the Coulomb field is also

indicated. For a bunch moving in rectilinear motion (Fig. 2.6a), this apparent

source point remains coincident with the instantaneous position of the emitter.

Two particles that are at the same longitudinal position to each other barely
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feel each other’s field due to the pancake effect. The field lines of the upstream

particle are always behind the downstream particle.

In the case of an arc (Fig. 2.6b), the path of the observer curves away from

the direction that the emitter had at time of emission (denoted the ‘z direction’).

Therefore the z component of the velocity of the observer becomes lower than

βc during the transit time in which the field travels from emitter to observer.

Therefore, at time of observation, the ‘pancake region’ of dense field lines is

in front of the observer. In either the rectilinear or arc case, the upstream

particle observes a very small field. However, at the end of the arc (Fig. 2.6c),

the geometry must pass from a situation with field lines in front of the observer

to a situation with field lines behind the observer. Hence there must be a point

where this field passes over the observer, giving a spike of CSR force. This effect

is the exact analogue of the entrance effect sketched in Fig. 2.4, in which the

geometry transits from a case with the Coulomb field behind the observer to a

situation with the field in front of it.

The above mechanism may also explain why the contribution of the Coulomb

field is only significant in the very final angular range 0 < ψ < γ−1 of the arc,

as detailed in the previous section. This is simply the angular extent of the

pancake field that needs to pass over the observing particle. It should also

be noted that the field line patterns sketched in the figures are not entirely

realistic, because there will only be a thin radiation shell of thickness ∆s/β

generated from the path element ∆s, and only in this thin shell the drawn

pancake field line pattern exists. The subsequent path element will generate

another radiation shell, and the corresponding ‘pancake field’ inside that shell

will be slightly differently oriented due to the different orientation of the path

element. The total field line pattern will be the sum of all such infinitesimal

shells-with-pancake-fields, in which the concept of a pancake field will be hard to

recognize at all. The main point is, however, that with any path element there

is an associated region of dense field lines. Near the end of the arc, there is a

point where this region will pass over the upstream particles, creating a brief but

intense spike of CSR force.
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A' A

Virtual source

of Coulomb �ield

(a) The field lines due to the Coulomb field of
the emitting particle (A′) are behind the
observing particle (A) during rectilinear

motion

A'
A

Virtual source

of Coulomb �ield

Coulomb �ield lines

corresponding to Δs

(b) On an arc trajectory, the Coulomb field
lines of the emitter are in front of the

observing particle.

A'
A

Virtual source

of Coulomb �ield

Coulomb �ield lines

corresponding to Δs

(c) In the transition regime, there is a small range
over which the observing particle experiences a sharp

spike in the CSR force due to the emitter.

Figure 2.6: Schematic representation of the CSR exit transient field on three
different trajectories.

2.2.3 Deficiencies in the 1D Model

One of the assumptions which underlies the theory outlined above is that the

bunch has no transverse extent – that is, the bunch distribution is projected

onto the nominal axis through a dipole magnet (see Fig. 2.7a for a simplified

schematic of this model). Under this condition, all particles in front of an emitter

of synchrotron radiation can be influenced by it. The validity of this expression

is contingent on the length of the bunch greatly exceeding its transverse size (see

Sec. 4.5 and Ref. [55]).

However, this may not be practically applicable for a bunch inside a bending

magnet. The bunch will have some finite energy spread, causing the bunch to

disperse within the magnet, potentially resulting in a bunch that – inside the

dipole – is much wider transversely than it is longitudinally, therefore violating

the approximation on which the 1D theory is based (see Fig. 2.7b). In order to
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illustrate a potential issue with the 1D projection of the bunch, two particles, A

and B, are shown in Fig. 2.7b: the former is lower in energy than the reference

particle, and therefore takes a longer trajectory through the magnet, whereas

the path of the latter particle, with a higher energy, is reduced. In the 1D

approximation, particle A is behind particle B, and therefore the lower-energy

particle will give a CSR kick to the higher-energy particle. However, due to the

directionality of the CSR field, it may not even be causally possible that these two

particles can influence each other if the transverse extent of the bunch is taken

into account. In addition, if the beam has some microbunching structure (see

Sec. 2.3), the length of each microbunch (the microbunching period) may be much

less than the transverse beam size, which is another potential limitation to the 1D

model. It could therefore be expected that there exist certain conditions under

which the strength of CSR field will be overestimated in the 1D approximation.

σz
(a) Schematic representation of the CSR interaction

in the 1D model.

σz

A

B

B

A

(b) Schematic representation of the CSR
interaction for a bunch with transverse

extent.

Figure 2.7: Schematic representation of the CSR interaction in the 1D
approximation (left), and with a more realistic picture of a dispersed bunch

with a transverse extent (right).
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2.2.4 Emittance Growth

The emittance growth caused by CSR can be calculated by considering the vari-

ation in transverse motion that is induced by the change in energy of a particle

receiving radiation. Under dispersive conditions, the transverse motion of a par-

ticle is defined as the combination of its betatron and dispersive contributions:

x(s) = xβ(s) +R16(s0 → s1)δ(s) = xβ + ∆x, (2.46a)

x′(s) = x′β(s) +R26(s0 → s1)δ(s) = x′β + ∆x′, (2.46b)

with the subscript β denoting the betatron component, δ the relative change in

momentum due to CSR, and R16, R26 the matrix components between positions

s0 and s1, described above (see Sec. 2.1).

For dispersion functions ηx and η′x for horizontal spatial and angular motion,

respectively, and with the CSR-induced relative rms energy increase as σδ,CSR,

it follows that 〈∆x2〉 = (ηxσδ,CSR)2 and 〈∆x′2〉 = (η′xσδ,CSR)2 [57, 58]. For a

Gaussian line-charge distribution, the mean energy change of a particle due to

the CSR steady-state field (right-hand side of Eq. 2.36) is [59]:

〈δCSR〉 ≈ −0.35 re
N

γ

θR1/3

σ
4/3
z

, (2.47)

where σδ,CSR = 0.7 × |〈δCSR〉|, N is the number of particles, σz is the electron

bunch length, and θ, R are the bending angle and bending radius of the dipole,

respectively. The horizontal emittance increase as a result of the energy change

due to CSR εx,d is then [57]:

εx,d = εx,0
[
βx〈∆x′2〉+ 2αx〈∆x∆x′〉+ γx〈∆x2〉

]
= εx,0Hxσ

2
δ,CSR, (2.48)

with the optics function Hx defined as:

Hx =
η2
x + (βxη

′
n + αxηx)

2

βx
. (2.49)
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If, then, the Twiss parameters and σδ,CSR are known, it is possible to compute

the steady-state CSR-induced emittance growth in a bunch compressor. The en-

ergy variation due to the entrance and exit transient electric fields (Eqs. 2.35

and 2.45) cannot be easily solved analytically, and so their contribution to the

emittance can only be accounted for in simulation, or semi-analytically, by cal-

culating the transient contribution to the horizontal deflection using simulated

beam parameters.

Comparisons between these analytic formulae and some test cases are given

in Chapter 3 (Sec. 3.2). The largest contribution to the CSR-induced emittance

growth in a four-dipole bunch compressor, however, does come from steady-

state CSR, and this analytical treatment also allows for the minimisation of this

emittance growth using a careful optics balance through the bunch compressor

[58]. The energy kick σδ,CSR is inversely proportional to the electron bunch

length, which is reduced to a minimum in the fourth dipole magnet. Therefore,

by minimising Hx in the vicinity of this magnet, it is possible to reduce the

contribution of CSR to the final emittance of the electron beam. A similar

approach is taken to lattice design for a low-emittance electron storage ring

[35]: the mechanism for emittance growth from CSR is very similar to that for

emittance growth from synchrotron radiation, and in both cases the emittance

growth is minimised by minimising the integral of Hx in the bending magnets.

2.3 Theory of Microbunching

Microbunching in particle accelerators is defined as small-scale modulations within

the longitudinal phase space of a particle bunch. Density fluctuations due to shot

noise can develop in the low-energy section of an accelerator, which can then un-

dergo amplification due to impedance effects and dispersion in magnetic chicanes,

leading to a modulation in energy and/or density that can degrade the emittance

and energy spread of an electron beam. This instability, first observed in numer-

ical simulations of FELs [60], and later measured experimentally in x-ray FEL

facilities [23, 61], can have a dramatic impact on the performance of an FEL.

As mentioned above (Sec. 2.1.5), the slice energy spread of the bunch must be
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reduced as far as possible in order to for the bunch to emit coherently in an un-

dulator. Microbunching can increase this slice energy spread, at scales equal to

or longer than the (shortest) modulation wavelength. As such, the mechanisms

driving the instability have been intensely studied in recent years.

This section will outline three important collective effects known to have an

impact on the production and evolution of small-scale structures within electron

beams: shot noise, longitudinal space-charge and CSR. Geometric impedances

due to discontinuities in the accelerator vacuum chamber in accelerating cavities

are also known to have an effect on microbunching [62, 63], but these effects are

small compared with those that arise due to the effects discussed in detail, and

so will not be considered. A recent study [64] has highlighted the importance of

small-angle Coulomb scattering, or intrabeam scattering (IBS), as a mechanism

for damping the microbunching instability, and so this effect is also introduced.

The amplification of modulations in the longitudinal phase space density will be

discussed, and an analytic model will be introduced that illustrates the relation-

ship between the microbunching in the bunch longitudinal phase space and its

associated Fourier transform.

2.3.1 Shot Noise Model

The source of electrons used in high-brightness linear accelerators ultimately de-

termines the quality of the final bunch. In the case of FELs, an RF photoinjector

– in which a laser pulse impinges on a photocathode inside an RF cavity – is a

common method for generating these bunches. The properties of the laser pulse

therefore has a direct impact on the properties of the electron bunch it produces.

In the simplest case, a laser with a Gaussian or flat-top profile in the transverse

and longitudinal planes is assumed, but in reality this approximation does not

generally hold; small perturbations in the laser intensity profile are often present

due to shot noise. These perturbations are generally too small to observe exper-

imentally for low-energy bunches, but simulations have shown that such a bunch

with shot noise in its longitudinal density can experience amplified bunching fur-

ther down the accelerator [65, 66]. These perturbations can then give rise to a

nonlinear longitudinal density profile in the electron bunch.
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2.3.2 Longitudinal Space-Charge Model

Since the space-charge field experienced by an electron in the bunch is dependent

on its neighbouring electrons, these small deviations in the density profile can

cause a change in energy for a given electron. This longitudinal space-charge

(LSC) force can accelerate electrons towards the head of the bunch, and decel-

erate those behind, causing a localised clustering of the bunch in time [67]. This

can give rise to a periodic density perturbation for short bunches, causing the fol-

lowing longitudinal electric field to be generated by summing over contributions

from N point charges with coordinates (xj, yj, zj) [68]:

Ez (X) = − e

4πε0

N∑
j

γ (z − zj)[
(x− xj)2 + (y − yj)2 + γ2 (z − zj)2]3/2 , (2.50)

with X = (x, y, z) and γ the relativistic Lorentz factor. The longitudinal Fourier

transform of Ez is:

Ẽz(k) = − eik

2πγ2
0ε0

N∑
j

e−ikzjK0

(
k|r− rj|

γ

)
, (2.51)

where k = 2π/λ is the wavenumber of the modulation, r = (x, y) describes the

transverse coordinates, and K0 is the modified Bessel function of the second kind,

of order zero. The exponential term describes the phase of the microbunching,

and the Bessel function term gives its amplitude. The longitudinal space-charge

impedance per unit length can be calculated – assuming a bunch with uniform

transverse density – as follows [68]:

ZLSC(k) = −Ẽz(k)

Ĩ(k)
, (2.52)

where Ĩ(k) is the Fourier transform of the current density. For a beam with

uniform transverse size rb ≈ 1.747 (σx + σy) /2, the 1D LSC impedance is given

as [26]:

Z̄LSC (k, rb, γ) =
iZ0

πkr2
b

[
1− krb

γ
K1

(
krb
γ

)]
, (2.53)
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where K1 is the modified Bessel function of the second kind, of order one, and

Z0 ≈ 377 Ω is the impedance of free space. Due to the mutual repulsion of

electrons in a high-density region, a longitudinal space-charge force can accelerate

the particles towards the front of the region and decelerate those towards the back

of the region. This variation in energy then causes slippage in the longitudinal

dimension. Given the initial bunching, there may be a number of such high-

density regions, and with a number of particles being accelerated and decelerated

from regions of high longitudinal density, this longitudinal slippage in energy can

then again cause bunching in longitudinal density. This process can then repeat,

giving rise to an oscillation between energy and density modulations. In the

case of a relativistic beam in a drift space, this oscillation has a characteristic

frequency given by [26]:

ωLSC (k0, rb, γ) = c

[
I0

γ3IA
k0

4π|ZLSC(k0, rb, γ)|
Z0

]1/2

.
2c

rb

(
I0

γ3IA

)1/2

, (2.54)

for an initial peak current I0 = Nec for N electrons, an initial modulation

wavenumber k0 and IA ≈ 17 kA the Alfvèn current. Since this oscillation fre-

quency is inversely proportional to the beam energy, the period of the oscillation

between energy and density modulations can become large (on the order of 10s or

100s of metres) for ultrarelativistic beams. Nevertheless, due to the long acceler-

ating sections required to drive a short wavelength FEL, this oscillation cannot

be neglected when considering the evolution of the microbunching instability in

such a machine.

In order to evaluate the impact of this LSC impedance on the final bunch

profile, the bunching factor b(k) is introduced. In the simplest case, this is given

by the Fourier transform of the current profile of the bunch:

b(k) =
1

Nec

∫
I(z) exp (−ikz) dz. (2.55)

The average longitudinal bunching factor for a broad-band spectral distribution
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of modulations ∆k is given by:

|b0(k)|2 =
2ec

I0

∆k

k2
. (2.56)

Later on, this 1D analysis will be extended to cover the full longitudinal phase

space, taking the microbunching in energy into account. The value of b(k) is pro-

portional to the amplitude of the modulations in density (at a given wavenumber)

relative to the average current of the bunch. The final amplitude of the energy

modulation at a distance L from the point of initial modulation can then be

described in terms of the LSC impedance and the bunching factor [21]:

∆γ(k, rb, γ) = −4πI0

IA
b(k)

∫ L

0

ZLSC(k, rb, γ; s)

Z0

ds, (2.57)

where ZLSC is now considered as a function of s throughout the accelerator. The

LSC field is strongest at low energies, since the impedance is inversely propor-

tional to the energy of the bunch cubed. As the beam energy increases beyond a

few tens of MeV, the effect of LSC becomes significant only at short wavelengths,

typically on the order of a small fraction of the bunch length.

2.3.3 CSR Model

As described above in Sec. 2.2, CSR emitted by a short bunch in a magnetic

compressor can interact with the bunch itself, causing an increase in both the

projected emittance and correlated energy spread. In the case of a bunch with

density perturbations in the longitudinal phase space, CSR can also be emitted at

the wavelength of the density modulations in the bunch, inducing a modulation

in energy. The linear dispersion R56 of the bunch compressor – which relates the

path length of a particle over a beamline section to the energy of the particle (see

Sec. 2.1.4) – can then convert these energy modulations into density modulations,

thereby enhancing the microbunching in longitudinal density.

Omitting the shielding effect from the conducting walls of the beam pipe, the

steady-state wake produced by an ultrarelativistic particle travelling through a
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bending magnet (with bending radius R) has the following form [55, 69, 70]:

W (s) =
2

(3R(s)2)1/3

1

s1/3
. (2.58)

This equation is valid in the regime s > 0 (with s the relative longitudinal

position within the bunch), as the CSR wake always propagates in front of the

particle. The CSR impedance can then be calculated as the Fourier transform

of this wake:

ZCSR(k, s) =

∫ ∞
0

W (s− s′) exp (−iks′) ds′ = − ik1/3A

R(s)2/3
, (2.59)

where A = 3−1/3Γ
(

2
3

) (√
3i− 1

)
≈ 1.63i − 0.94, and Γ is the Gamma function.

These expressions are valid under the assumption that the retardation time for

the coherent radiation is small compared to the length of the magnet, and consid-

ering only steady-state CSR (meaning that transient effects due to the entrance

and exit fields of the dipole are neglected). In a bunch compression chicane, the

longitudinal density modulation is no longer fixed, as the longitudinal motion

in a dipole is coupled to the horizontal motion, and the modulation wavelength

reduces with the bunch length. The final bunching factor bf (k(s), s) can be eval-

uated as a function of the initial bunching factor at position s0 at the compressor

entrance b0(k(s0), s0), and the bunch compressor transfer matrix parameters R51,

R52 and R56 [22]:

bf (k(s), s) = b0(k(0), s0) +

∫ s

0

K(τ, s)b(k(τ), τ) dτ, (2.60)

with the kernel K(τ, s) defined as:

K(τ, s) = ik(s)R56
I(τ)ZCSR(k(τ), τ)

γIA
exp

[(
−k(s0)U2(s, τ)σ2

δ

2

)
×

(
−k(s0)ε0β0

2

(
V (s, τ)− α0

β0

W (s, τ)

)2

− k(s0)ε0
2β0

W 2(s, τ)

)]
, (2.61)

for a bunch with initial emittance ε0, energy spread σδ, α0 and β0 the initial

Twiss parameters, and the parameters U, V,W for a compression factor C(s)
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defined as follows:

U(s, τ) = C(s)R56(s)− C(τ)R56(τ), (2.62a)

V (s, τ) = C(s)R51(s)− C(τ)R51(τ), (2.62b)

W (s, τ) = C(s)R52(s)− C(τ)R52(τ). (2.62c)

Given the bunch compressor configuration, the equation 2.60 can be solved

iteratively to calculate the microbunching gain.

2.3.4 Intrabeam Scattering

Coulomb scattering between particles can occur when a bunch travels through an

accelerator, causing a redistribution of momentum among the particles [71, 72,

73], which results in an increase in the uncorrelated energy spread of the bunch

σδ. This effect, known as intrabeam scattering, or IBS, can place limits on

the luminosity lifetime and beam emittance of a circular accelerator, or ‘storage

ring’, in particular those with low emittance. IBS has been studied primarily in

storage rings, since the effect requires a long time to develop, meaning that the

momentum spread induced by IBS is not generally expected to be observable in

a linear FEL [74, 75]. However, the push towards more intense pulses of light

produced by FELs, which requires a higher charge density, has now led to a study

of experimental evidence for IBS in a linear FEL [64].

The growth rate of σδ can be calculated for a round beam with εx = εy,

σx = σy and σx′ = σy′ using the approximation of Ref. [76]. This growth rate as

a function of longitudinal position s is given as [76]:

1

σδ

dσδ
ds

=
r2
eNe [log]

8γ2εnσxσzσ2
δ

=
A

σ2
δ

, (2.63)

with Ne the number of electrons in the bunch, σz the longitudinal bunch length,

γ the bunch Lorentz factor, and εn the normalised transverse emittance. The so-

called ‘log’ factor [log] is defined in terms of the maximum and minimum impact

parameters of IBS scattering events (bmax and bmin respectively) [73, 77], and is
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given as:

[log] = ln

(
bmax
bmin

)
≈ ln

[
γ2σyεx
reβx

]
, (2.64)

with βx the horizontal beta function. As discussed in Ref. [64], there is some

ambiguity in the literature regarding the choice of bmax, which then leads to

uncertainty in the log factor. bmax is influenced by the particle density and beam

size, and so calculations of the IBS effect must be evaluated appropriately with

regard to these beam parameters. It should also be borne in mind that there is

some uncertainty in the IBS effect on the beam as a result of this uncertainty.

In dispersive sections of the beam line, the growth rate must be modified [76]:

1

σδ

dσδ
ds

=
r2
eNe [log]σH

8γ2εnσxσzσ3
δ

=
B

σ3
δ

. (2.65)

The horizontal and vertical dispersion H-functions Hx and Hy are used to define

σH :

1

σH
=

1

σδ
+
Hx

εx
+
Hy

εy
. (2.66)

The equations for the growth rate given above assume that the transverse po-

sition and angular co-ordinates follow a Gaussian distribution. This assumption

generally holds for storage rings in equilibrium. However, this may not be the

case for ultra-relativistic electron beams generated in photo-injectors and succes-

sively accelerated in linacs, and the feasibility of using this model may depend on

how closely the transverse beam parameters follow a Gaussian distribution [78].

The charge distribution can be optically matched to predetermined Twiss param-

eters using dedicated and consecutive diagnostic regions located along the linac,

as is done at FERMI [79]. This guarantees that matching is preserved all along

the accelerator. The matching process itself is based on a model that relates

the second order moments of the measured charge distribution in the transverse

phase space (x, x′) to the standard deviations (σx, σx′) of a two-dimensional

Gaussian distribution [80].

The exact derivation for the IBS-induced uncorrelated energy spread growth

rate dσδ
ds

along the beamline will not be given here; see Ref. [64] for more details.
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Given a known set of beam parameters, from simulation and/or experimental

measurements, this parameter can be calculated iteratively along the beamline

to solve for the increase in energy spread due to IBS. This effect is relevant to

the microbunching instability in that it modifies the microbunching in energy

that occurs due to LSC and CSR (see Secs. 2.3.2 and 2.3.3), causing a damping

of the instability.

2.3.5 Spectral Gain

This section will provide an explanation for the amplification of microbunches as

a result of the collective effects discussed above, and will show the impact that

this amplification has on the energy spread of the bunch as a whole.

The amplification (or ‘gain’, G) of modulations in a bunch due to CSR and

LSC can be quantified as the ratio between the final and initial bunching factors

(bf and b0 respectively) as a function of wavenumber k:

G(k) =
bf (k)

b0(k)
. (2.67)

In the case of modulations that are much shorter than the electron bunch length,

and for modulation amplitudes that are much smaller than the average current

– in the ‘linear regime’ of the instability – there is no mixing of modulation

amplitudes of different wavenumber.

For a beam with an initial density modulation b0(k0) which then induces an

energy modulation given by ∆γi, the longitudinal distribution function at the

longitudinal position z0 is given by:

X(z0, δ) = X0(z0, δ − hz0δm(z0)), (2.68)

where δ = ∆γ/γ, δm = ∆γi/γ are the relative energy and energy modulation

parameters, respectively, and h is the linear energy chirp. After the bunch travels

through the bunch compressor with a momentum compaction factor R56, the

longitudinal position of an electron with a relative energy deviation δ becomes:

z = z0 +R56δ = z0 +R56 (δ0 + hz0 + δm(z0)) . (2.69)
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The bunch compression process then results in a modulated bunching factor at

the compressed wavenumber kf at the exit of the bunch compressor:

bf (kf ) =

∫
dz dδ exp [−ikfz] X(z, δ)

=

∫
dzdδ0 exp [−ikf (z0 +R56 (δ0 + hz0 + δm(z0)))] X0(z0, δ0). (2.70)

In the limit of a small initial induced energy modulation (|kfR56δm| � 1),

then a first-order approximation for bf (kf ) is given by:

bf (kf ) = [b0(k0)− ikfR56δm(k0)]

∫
dδ0V (δ0) exp (−ikfR56δ0) , (2.71)

where kf = k0C and V (δ0) is the initial beam energy distribution. In the high-

gain limit, where bf � b0, and inserting Eq. 2.57, the microbunching gain for an

arbitrary energy distribution is given by:

G =

∣∣∣∣bfb0

∣∣∣∣ ≈ I0

γIA

∣∣∣∣kfR56

∫ L

0

ds
4πZLSC(k0, s)

Z0

∣∣∣∣ ∫ dδ0V (δ0) exp (−ikfR56δ0) .

(2.72)

For a Gaussian energy distribution with an RMS relative energy spread of

σδ, the gain can be approximated further as:

G ≈ I0

γIA

∣∣∣∣kfR56

∫ L

0

ds
4πZLSC(k0, s)

Z0

∣∣∣∣ exp

[
−1

2
(kfR56σδ)

2

]
. (2.73)

As a result of a small uncorrelated energy spread, particles within the same

longitudinal slice of the bunch travel along different path lengths. The lon-

gitudinal slippage that occurs in the bunch compressor slightly suppresses the

microbunching gain. Since this motion occurs because of uncorrelated energy

differences, this process is known as energy damping, or longitudinal Landau

damping, and it causes energy and density modulations to ‘smear’ at short wave-

lengths. Coupled with the IBS effect mentioned above (see Sec. 2.3.4), the gain
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factor G can be calculated iteratively as a function of beam and lattice parame-

ters.

If ZLSC(k, s) is approximately constant in amplitude over a wide range of

wavenumbers – which is generally true, since LSC is a broadband impedance –

then the LSC gain peaks at the wavelength Ck0R56σδ, where C is the compression

factor. There is also a natural cutoff of the microbunching gain in the limit

Ck0R56σδ > 1, since the gain is exponentially suppressed at short wavelengths

due to the uncorrelated energy spread.

The expression Eq. 2.73 is independent of the initial modulation amplitude,

and is valid in the ‘high-gain’ approximation. In this case, the final bunching fac-

tor is dominated by the transformation between energy and density that occurs

during the bunch compression process.

The LSC-induced energy modulation amplitude is defined as:

|∆γ(λ)|2 = |G(λ)b0(λ)ZLSC(λ)|2. (2.74)

In order to estimate the total rms energy spread induced by LSC, ∆γ(λ) must

be integrated across the entire accelerator lattice, over a range of modulation

wavelengths λ. Using Eq. 2.56, this value is found to be:

σ2
γ =

∫
|∆γ(λ)|2dλ =

2ec

I0

∫
|G(λ)ZLSC(λ)|2

λ2
dλ. (2.75)

By choosing a suitable range of modulation wavelengths, the value of σγ

can be computed using numerical methods, with the spectral gain and LSC

impedance calculated from the accelerator lattice parameters and calculated

beam properties. Since the drivers for short-wavelength FELs are typically based

on long, straight accelerating sections, the microbunching gain due to LSC is of-

ten more significant than that due to CSR or other impedances. Nevertheless,

the effect of magnetic bunch compression on the microbunching structure in the

beam can be twofold. First, there is some amplification of structures in the bunch

as a result of CSR impedance, which modulates the energy of particles inside the

dipole magnets. Second, the dispersion function couples the energy of a particle

to its longitudinal motion, and therefore translates a variation in energy into a
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variation in density.

2.3.6 Analytic Model of a Microbunched Beam

The Fourier representation of a simple analytic model of an electron beam with

density modulations in the longitudinal phase space can be useful for under-

standing the microbunching features observed in a real beam. This model uses

a 2D Gaussian phase space, modulated by a sinusoidal density variation. In our

analytic model, four parameters can be varied independently to recreate phase

space distributions similar to those in a real image:

� Modulation frequency ω.

� Linear energy chirp of the bunch h.

� Skew of the microbunches with respect to the bulk rotation θ.

� Intensity profile of the microbunches, represented by the bunching factor

b.

For a chirp term h, a skew term θ, a modulation frequency ω, a bunching

factor b, and defining the following quantities:

xn(x, y, θ) = x cos(2πθ) + y sin(2πθ), (2.76a)

yn(x, y, φ) = −x sin(2πφ) + y cos(2πφ), (2.76b)

we arrive at the following definition of a sinusoidally modulated two-dimensional

Gaussian function for a bunch with size σx and σy in the horizontal and vertical

planes, respectively:

X(x, y, θ, φ, σx, σy, b, ω) = exp

[
−
(
xn(x, y, θ)2

2σ2
x

+
yn(x, y, φ)2

2σ2
y

)]
×(

1 + b cos[2πωxn(x, y, θ)]2
)
.

(2.77)

This function represents a simple model of the longitudinal phase space of an

electron bunch with density modulations. The top rows of plots below (Figs. 2.8 –
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2.11) show longitudinal phase spaces evaluted using Eq. 2.77, with each parame-

ter being varied independently of the others. The associated Fourier transform of

each simulated longitudinal phase space is shown in the bottom rows of Figs 2.8

– 2.11. The bunch compression schemes used in the microbunching experiments

detailed below (see Chapter 5) resulted in longitudinal phase spaces with differ-

ent microbunching parameters, and this model can help in understanding the

Fourier representation of these bunches.

(a) (b) (c)

(d) (e) (f)

Figure 2.8: Variation of modulation frequency ω. The phase space is in the row
above, and the Fourier transforms are in the row below. From left to right,

ω = 1, 2, 3.

It can be seen from the bottom rows of these four sets of plots (Figs. 2.8 –

2.11) that it is possible to characterise different properties of the bunch using

the Fourier transform of the phase space density. In every image, the DC term

is given by a bright spot in the centre of the Fourier space. This would be

present even in the Fourier transform of a purely random distribution of pixels.

The microbunching structure is evident in the sidebands visible in the Fourier

spectrum.
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: Variation of the bunching factor b. The phase space is in the row
above, and the Fourier transforms are in the row below. From left to right,

b = 0.5, 1.0, 2.0.

As seen in Fig. 2.8, as the modulation frequency ω increases, there are a

greater number of microbunches present along the bunch in real space, and in

the Fourier representation, the sidebands become increasingly separated from

the central spot. Increasing the modulation amplitude (which is analogous to

the bunching factor) causes the microbunches to become more distinct from one

another, as shown in Fig. 2.9. In Fourier space, the sidebands become more

intense. A bulk rotation of the bunch (corresponding to a linear energy chirp

h), without changing the ‘skew’ term θ which controls the orientation of the

microbunches, as in Fig. 2.10, causes the sidebands in the Fourier transform to

rotate. If the microbunches themselves are rotated while the chirp term h is kept

constant, as in Fig. 2.11, the Fourier sidebands themselves move around the DC

term while their orientation remains constant.

This simple model has demonstrated that the Fourier representation of the

phase space of an electron bunch should be able to reveal the properties of the
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Variation of the chirp term h. The phase space is in the row
above, and the Fourier transforms are in the row below. From left to right,

h = π/3, π/4, π/6.

microbunching structure, allowing for a comparison with simulations and theory.

The results presented in this section demonstrate the effect that CSR, LSC

and IBS can have on the longitudinal phase space of an electron beam in a linear

accelerator. In Chapter 5, results from simulations and experiments will show

the impact of these forces on electron bunches in the FERMI linac. In this

machine, the main parameters that can be measured are the bunching factor

and modulation period, and these parameters can be extracted by studing the

Fourier transform of the longitudinal phase space. Various bunch compression

schemes are used in order to investigate the impact of different beam parameters

on these parameters, with the goal of understanding the development of the

theory outlined above.
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Variation of the microbunch rotation angle θ. The phase space is
in the row above, and the Fourier transforms are in the row below. From left to

right, θ = π/3, π/4, π/5.

2.4 Mitigation and Generation of Microbunch-

ing

Since the microbunching instability was first recognised to be an issue for short-

wavelength FELs, a number of methods have been proposed to counteract its

effects on the electron bunch. Most of these techniques impose a small uncor-

related energy spread on the bunch, which prevents amplification of the mod-

ulations from taking place. The simplest, and most widely used, method for

mitigating the microbunching instability is the laser heater (Sec. 2.4.1); although

other potential methods have been formulated (Sec. 2.4.2), they are not routinely

implemented at FEL facilities. In this section, these techniques will be reviewed

in terms of their feasibility and usefulness. A discussion will follow on a method

for imposing modulations on a relatively low-energy bunch through the use of

a modulated laser pulse in the laser heater, thereby seeding the microbunching

50



Chapter 2. Theory of CSR and Microbunching

instability (Sec. 2.4.3). In addition to providing the opportunity to study mi-

crobunching in detail, this technique also could lead to future applications of

high-brightness electron bunches, for example in the generation of multi-colour

FEL light, or for drive-witness plasma-based acceleration.

2.4.1 Laser Heater

The standard method for counteracting the gain in microbunching is the laser

heater: LCLS [27], SwissFEL [30], PAL-XFEL [29], EU-XFEL [81] and FERMI

[28] all have laser heaters installed. However, as this scheme irreversibly increases

the slice energy spread of the bunch, this can cause issues, particularly for seeded

FEL schemes that are more sensitive to this parameter.

The basic elements of the system comprise a laser, an undulator and a mag-

netic chicane. The undulator period and gap are set to provide the conditions

for a resonant interaction between the laser and the electron beam which ‘heats

the beam’, i.e. increases the uncorrelated energy spread, by imposing an energy

spread modulation. The chicane provides a physical offset allowing the laser to

be introduced along the electron trajectory. Upon leaving the second half of the

laser heater chicane, any longitudinal structure in the beam is suppressed be-

cause of the variation in path length with the energy of individual particles. The

interaction between the laser and the electron beam in the laser heater undulator

is optimal when the electron and laser radial rms sizes are similar.

The energy spread imposed on an electron bunch in a laser heater can be

calculated in the following way [26]: consider a Gaussian mode laser with rms

spot size σr wavelength λL which satisfies the resonant condition for an electron

bunch with relativistic factor γ0 travelling through an undulator with period

λu and undulator parameter K. For a laser pulse with peak power PL, and

neglecting variations in the laser and electron beam sizes during their interaction

in the laser heater undulator, the amplitude of the energy modulation of an

electron at radial position r is given by [26, 82]:

∆γL(r) =

√
PL
P0

KLu
γ0σr

[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
exp

(
− r2

4σ2
r

)
, (2.78)
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with P0 = IAmc
2/e ≈ 8.7 GW, IA the Alfvén current and J0,1 are Bessel functions

of the first kind.

Indirect methods of observing the damping of microbunching are informative

when commissioning a laser heater system. Monitoring the FEL performance

is a useful metric, and it demonstrates the importance of this device for these

machines. The FEL gain length at LCLS was observed to increase by a factor

of around 2.5 with an additional 100 keV energy spread added to the electron

beam by the laser heater, and the FEL pulse energy could be doubled with an

appropriate laser pulse energy [27]. Similar increases in FEL power across all

lasing wavelengths were recorded at FERMI [28], along with an improvement in

the stability, spectrum and bandwidth of the FEL pulses.

Accelerator facilities which have incorporated a laser heater system have also

observed a suppression of the microbunching instability, using both direct and in-

direct diagnostic methods. Coherent optical transition radiation, or COTR, can

cause issues when attempting to image a microbunched electron beam. Both the

LCLS [23] and APS [83] have observed large increases in coherent OTR after

bunch compression, making the imaging of bunches more difficult. One explana-

tion for these strong signals at optical wavelengths is the gain in microbunching

due to bunch compression. By careful tuning of the laser heater, a small energy

spread imposed on the beam before compression can reduce COTR by an order

of magnitude [27, 28].

2.4.2 Alternative Methods for Suppressing the Microbunch-

ing Instability

The standard laser heater system described above irreversibly increases the slice

energy spread of the bunch. This can cause issues, particularly for seeded FEL

schemes. Various alternatives to the laser heater have been proposed for sup-

pressing microbunching gain in FELs. Some of these schemes have been imple-

mented in experiments, and some have been studied only in theory and simu-

lation. This section will provide an outline of some of these alternatives to the

laser heater.
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2.4.2.1 Reversible Beam Heating using TDCs

The slice energy spread requirements for a seeded FEL are more stringent than

those for self-amplified spontaneous emission (SASE), and so the irreversible

heating provided by a laser heater could have a detrimental effect on the FEL

performance. For example, in a high-harmonic gain FEL, the energy modulation

generated in the modulators must be greater than the RMS energy spread of

the bunch (see, e.g., [84]), and this can become more difficult to achieve as the

energy spread increases. A scheme was proposed to increase temporarily the

energy spread of the electron bunch using a transverse deflecting cavity (TDC)

[85] before compression with a magnetic chicane, and subsequently to remove the

energy spread in a downstream TDC as a way of suppressing the microbunching

instability [86].

Many accelerator facilities use an RF field with an electric component or-

thogonal to the direction of motion to impose a time-dependent transverse force

on an electron bunch for longitudinal phase space investigations [24, 87]. This

results in the temporal profile of the bunch being transformed into a transverse

profile downstream. An electron in a bunch travelling through a TDC near the

zero-crossing phase – that is, the point at which the sign of the electric field

changes – will experience a transverse kick. The magnitude of this kick is de-

pendent on the position of the electron within the bunch, relative to the TDC

phase. Additionally, particles in the bunch will experience a change in energy

based on the strength of the field in the cavity, and their position relative to

the zero-crossing phase, resulting in an increase in the total energy spread. This

increase, along with the compression factor in a magnetic chicane, can remove

small-scale structure in the bunch. This process is reversible as the induced en-

ergy spread is uncorrelated only in the longitudinal plane, and not in the plane

which experiences the transverse kick.

A TDC imposes a spatial chirp on the electron bunch, which must be removed

with the second cavity. This can be achieved with careful tuning of the strength

of the deflecting fields, and the betatron phase advance in the kick plane, such

that the phase advance between them is an integer multiple of π. In addition,

the energy spread increase imposed by the first TDC must be cancelled by the
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second. As the energy spread increase depends on the mean bunch offset in the

kick plane (see [86]), the offset in the second cavity can be tuned such that the

overall energy spread increase due to both TDCs is zero. One potential downside

of this scheme, however, is that couplings in the y′−δ0 and y−z0 planes, where the

y plane is that in which the transverse kick is imposed, cause a slight increase in

the emittance in these planes. Simulations have shown that this scheme is almost

reversible, with an overall increase in slice energy spread for a 350 MeV beam

on the scale of a few keV, even when taking CSR into account. An increase

in projected emittance can occur, but the slice emittance, which is of greater

significance for an FEL, was mostly preserved. This removable, effective energy

spread increase, which has been confirmed in simulation, also serves to mitigate

the microbunching gain which would be experienced in the bunch compressor.

2.4.2.2 Reversible Beam Heating using Magnets

An alternative scheme has been proposed which could achieve a similar reversible

energy spread increase without including additional TDCs into the accelerator

lattice, using a combination of dipole and quadrupole magnets, and an appro-

priate energy chirp [88, 89]. This method is attractive as it provides a cheaper

solution to that proposed in [86], without the stringent requirements on TDC

tuning and timing.

The transport of a beam with an energy chirp h passing through a thin bend-

ing magnet with angle θ can be determined by combining the transfer matrices:

Rb(θ).Rc(h), where Rb(θ), Rc(h) are the transformations for the thin bending

magnet and the acceleration that generated the energy chirp, respectively. After

passing through the magnet, the longitudinal position of an electron in the bunch

with horizontal position x is shifted by −θx. A magnet of opposite polarity after

the bunch compressor can then reverse this shift. With the additional inclusion

of a quadrupole magnet after the second bending magnet, the transfer matrix for

a TDC can be replicated, thus creating the same effect described in Sec. 2.4.2.1.

An undesirable corollary of this configuration is that it requires the beamline

to be rotated after the dipoles, and so the kicks induced by the bends must be

carefully tuned.
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2.4.2.3 Electron-Magnetic Phase Mixing

For an accelerator lattice with multiple bunch compressors, with correctly tuned

momentum compaction factors, it is possible to manipulate the longitudinal

phase space of an electron bunch to control the bunching factor which drives

the microbunching instability [25]. It has been shown [22] that, for a beam with

an initial uncorrelated energy spread σγ, the change in the bunching factor after

a compression chicane can be expressed as follows:

b1(k1) =

(
b0(k0)− ik1R56

∆γ(k0)

γ

)
exp

[
−1

2

(
k1R56

σγ
γ

)2
]
, (2.79)

where R56 is the usual overall transfer matrix element for the chicane. In order

to compress a bunch, the overall R56 parameter must be negative – however,

the two-chicane scheme outlined in Ref. [25] shows that a second chicane with a

positive R56, and a sufficiently large uncorrelated energy spread, can contribute

to the suppression of the increase in bunching factor. The overall compression

of this scheme can be maintained provided that the momentum compaction in

the first bunch compressor is increased to compensate for the positive R56 in the

second chicane.

Bunch compression in a magnetic chicane requires a beam with a positive en-

ergy chirp, meaning that electrons at the head of the bunch have comparatively

less energy than those at the tail of the bunch, and so the length of their tra-

jectory through the chicane is greater, causing a reduction in the overall bunch

length. This can be thought of as a ‘rotation’ in the longitudinal phase space of

the bunch. After passing through the first bunch compressor, the bunch will con-

tain spikes of current in its longitudinal profile, due to the gain in microbunching.

If the energy chirp is removed by, for example, correctly tuning the accelerating

cavities between the chicanes, this rotation in longitudinal phase space, coupled

with the positive R56 in the second chicane, causes the current spikes to be re-

moved. Experimental studies have shown [90] that this scheme can reduce the

intensity on a downstream OTR screen by a two orders of magnitude, and an-

alytical models for the microbunching gain show a reduction of three orders of
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magnitude. One of the issues with this machine configuration, however, is that

the CSR emitted in the second chicane, due to a very short bunch length, can

cause an increase in the slice energy spread of the bunch.

2.4.2.4 Transverse Gradient Undulators

Transverse gradient undulators (TGUs) can provide a coupling between the

transverse and longitudinal phase space of a beam. The path length of an elec-

tron travelling through a TGU is dependent on its transverse position at the

entrance to the undulator, meaning that the effective undulator strength im-

posed on an electron will vary with its position. The R51 and R26 elements in

the TGU transfer matrix (to first order) have the same value, but opposite sign.

This causes a coupling in the transverse-longitudinal plane. For a bunch with a

linear energy chirp, the path length of an electron in the TGU is dependent on

x, x′ and δ.

Simulations of a Gaussian bunch with a longitudinal energy chirp passing

through a TGU show that a horizontally correlated energy spread is converted

into a longitudinally uncorrelated energy spread, increasing the bunch slice en-

ergy spread [91]. This effect helps to reduce the overall gain in microbunching

which a bunch experiences in a compression chicane. In addition to this, the

coupling in the horizontal and longitudinal planes helps to reduce the bunching

factor, thus further suppressing the microbunching gain.

A potential downside of this scheme, with a TGU before the bunch com-

pressor, is that the horizontal emittance growth is considerable, and a second

TGU is required to recover the emittance after the chicane. In order to prevent

this growth, a small energy spread is required, and the bunch must not have

an energy chirp upon entering the TGU. This means that the TGU must be

placed upstream of the linac which then feeds into the chicane. As with some

of the other alternative schemes outlined above, this method does not increase

the slice energy spread of the bunch. An emittance growth of around 9 % has

been observed in simulations [91], but this was with ideal conditions, such as a

minimal energy spread.
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2.4.3 Chirped-Pulse Beating as a Technique for Imposing

Modulations on an Electron Beam

Laser heater systems have proven to be crucial in improving the performance of

x-ray FELs [27, 28, 29]. Recent results have also shown that, through modulat-

ing the temporal profile of the laser pulse used in the laser heater, it is possible

to achieve a greater degree of control over the longitudinal profile of the electron

bunch, opening the possibility of novel applications in the production of multi-

colour FEL beams, or the production of THz radiation via a bunch with induced

microbunching [92]. This technique is similar to the echo-enabled harmonic gen-

eration scheme [93], which is used to generate high harmonics of the fundamental

wavelength in an FEL undulator. This technique can achieve similar results in a

shorter space, as it does not require multiple modulators before the FEL radiator

section.

A schematic of the laser heater system designed for the CLARA FEL test

facility [94] is shown in Fig. 2.12, and the laser heater system parameters are

given in Table 2.1; further details can be found in [95]. Simulations have shown

that the microbunching instability is not expected to have a large impact on

the nominal CLARA modes of operation. However, it would still be useful to

install a laser heater in order to investigate potential methods of utilising the

laser heater in novel configurations in order to achieve flexible control of the

electron bunch properties. Current profiles and longitudinal distributions up to

the exit of the CLARA accelerating section, at 240 MeV, have been simulated

using the elegant code [96] (with CSR and longitudinal space charge included).

These current profiles for the nominal laser heater operating mode, and with the

laser heater off are shown in Fig. 2.13. In the nominal laser heating operating

mode, sufficient power will be available to damp any small-scale structure in

the electron bunch. Simulations have shown that a small increase in the RMS

energy spread of 25 keV, or 0.1 % of the final beam energy, should be sufficient

to suppress any microbunching without greatly degrading the quality of the FEL

– for this nominal operating mode of the laser heater, a pulse energy of around

48 µJ is required.

There are various ways of using modified laser pulses to modulate the longi-
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Figure 2.12: Schematic of the CLARA laser heater system. Dipoles are shown
in blue.

tudinal profile of an electron bunch. One method for achieving this is through

chirped-pulse beating [97] of the laser heater pulse. The pulse is stretched in

both the temporal and spectral domains (or chirped), then split in a Michelson

interferometer, one arm of which has a variable length. The two laser pulses are

recombined, and they overlap in the temporal domain. By varying the length of

the interferometer arm, a delay between the two pulses can be created, giving

rise to a laser pulse with a beat frequency that is directly related to the delay τ .

The intensity profile of such a laser pulse is given by [33]:

Itot(t, τ) = E0
2

(
∆t0
∆t1

)[
e

(
−2 2 ln 2

∆t21
(t+τ/2)2

)
+ e

(
−2 2 ln 2

∆t21
(t−τ/2)2

)

+

(
e

(
−2 2 ln 2

∆t21
(t+τ/2)2

)
cos

(
ω0τ + 2

2 ln 2

∆t0∆t1
tτ

))]
,

(2.80)

with E0 the field strength of the initial pulse, ∆t0 the Gaussian half-width of the

initial pulse, ∆t1 the stretched pulse half-width, and ω0 the centre of the optical

pulse spectrum.

For a frequency chirp rate of µ, the beat frequency of the modulated laser

is given by f(τ, µ) ≈ µτ/2π [97]. We can take the parameters for the CLARA

photoinjector laser pulse stretcher as an example: the initial laser pulse, with
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Figure 2.13: Current profiles and longitudinal phase space at full energy for:
Left: laser heater off; Right: laser heater at nominal settings (25 keV added

energy spread).

an rms duration of 76 fs will be stretched to a length of 1 − 8 ps. The longer

laser pulse should provide consistent overlap with the electron bunch, which has

a FWHM duration of 4 ps in the laser heater section.

The interaction of such a modulated laser pulse with an electron bunch under-

going periodic motion can cause the bunch to develop longitudinal structure, thus

inducing the microbunching instability. Taking the parameters for the CLARA

laser heater and applying the chirped-pulse beating technique, we can obtain

a range of longitudinal intensity profiles, as shown in Fig. 2.14. The flexibil-

ity of laser intensity modulations provided by this technique could lead to the

generation of a range of customisable longitudinal electron beam profiles.
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Table 2.1: Laser heater system parameters

BEAM TRANSPORT
Chicane magnet length 10 cm
Chicane magnet bend angle 0− 5 °

Beam energy 100− 200 MeV
Normalised emittance 0.5 mm mrad

UNDULATOR
Period 60 mm
Number of full periods 8
Total length including end terminations 585 mm
Minimum undulator gap 24 mm
Undulator parameter 0.8− 3.0
Undulator field strength 0.14− 0.53 T

LASER
Wavelength 1040 nm
Spot size σrad at undulator centre ≤ 500µm
Maximum pulse energy 80 µJ
Stretched pulse length (FWHM) 8 ps
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Figure 2.14: Calculated intensity profiles of modulated laser pulses for: Top
left: 2.5 ps; top right: 4ps delay; bottom left: 6ps delay; bottom right: 10ps

delay. These values of the delay in the laser heater interferometer correspond to
modulated laser wavelengths of 383 µm, 240µm, 160µm and 96 µm, respectively.
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2.4.3.1 Laser Heater Simulations

The interaction of a modulated laser pulse with the electron bunch in the CLARA

laser heater chicane has been modelled using the elegant simulation code [96],

which allows the user to implement custom laser fields in a laser-electron inter-

action (see Sec. 3.1.1 for more details on the code). Scans of a number of laser

heater parameters have been performed in order to determine the optimal set-

tings for inducing the largest density/energy variations in the bunch. After the

laser heater interaction, which occurs at around 130 MeV, the bunch is shortened

in a magnetic compression chicane and accelerated to its full energy of 240 MeV.

As shown in [22] and Sec. 2.3.3, any perturbations in the bunch density or energy

can be amplified in a bunch compressor, and so we should expect to observe a

more pronounced microbunching effect after compression.

Parameter scans over modulation wavelength and bunch compressor angle

have been performed in simulations in order to determine the effects of vary-

ing these parameters on the energy and longitudinal profile of the bunch. The

laser intensity profiles shown in Fig. 2.14 correspond to modulation wavelengths

of 383 µm, 240µm, 160 µm and 96 µm. The bunch compressor angle was set to

104 mrad, 104.5 mrad and 105 mrad (the nominal setting for the short bunch op-

erating mode), corresponding to compression factors of 16.3, 7.6, and 4.9, respec-

tively. Current profiles for various bunch compression factors and modulation

wavelengths are shown in Fig. 2.15.

It can be seen that, as the modulation wavelength decreases, the electrons

become more tightly (micro-)bunched. As the compression factor increases, we

see much larger peaks in the current profile as the bunch becomes maximally

compressed. As the delay in the laser interferometer increases (thereby decreas-

ing the modulation wavelength), the spikes in current are less discernible for the

blue curve (which represents a larger compression factor) than for the others.

In the upper row of plots in Fig. 2.15, all of the microbunches imposed on the

bunch are preserved, whereas for the bottom row of plots, the microbunches

overlap with each other in the longitudinal coordinate as the compression fac-

tor increases. This suggests that there is an optimal range of laser heater and

bunch compression parameters that can be used for stimulating and propagating
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Figure 2.15: Current profiles for scans of bunch compression factor for the laser
intensity profiles given in Fig. 2.14 (in the same order): Orange: 4.9; Red: 7.6;

Blue: 16.3.

microbunches using this scheme.

In Fig. 2.16 we show the bunch longitudinal phase spaces only for the max-

imally compressed bunch at the modulation wavelengths given above. Here, it

can clearly be seen that the number of microbunches present in the bunch in-

creases as the modulation wavelength of the laser pulse decreases. These figures

further illustrate the overlap of the microbunches along the longitudinal axis of

the bunch, particularly at shorter modulation wavelengths. This effect will be

discussed further in Sec. 5.5, where this technique is applied experimentally.

From these simulations we can see that, by varying the modulation wave-

length of the laser heater, we can induce a variation in the current profile of the

62



Chapter 2. Theory of CSR and Microbunching

Figure 2.16: Energy profiles for the laser intensity profiles given in Fig. 2.14
near maximal bunch compression factor. The order of the figures is the same as

that in Fig. 2.14.

electron bunch. The flexibility that the chirped-pulse beating technique affords

in terms of the laser pulse beating frequency, in addition to the variable bunch

compression factor, could increase the range of FEL pulse characteristics that

CLARA can provide.

2.5 Summary

This chapter has reviewed some basic principles of accelerator physics and beam

transport (Sec. 2.1). This review will be necessary in helping to understand the

results from experiment and simulation presented in Chapters 4 and 5. The
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two main collective effects which are investigated in this thesis, CSR and the

microbunching instability, have been described theoretically in this chapter. The

first of these effects – CSR – occurs when charged particles within a short bunch

travel on a curved trajectory, emitting coherent radiation that can interact with

other particles in the bunch and cause a change in energy. When CSR changes

the energy of particles in a bunch while it is travelling through a magnetic bunch

compressor, this can cause an increase in the beam emittance at the exit of the

bunch compressor, which can have a negative effect on the beam quality at the

entrance to an FEL undulator, for example.

The theory of CSR (Sec. 2.2) which is most widely used in the design and

simulation of accelerators is based on 1D projection of the charge density of the

bunch onto the longitudinal dimension. It has been shown to agree well with

measurements in some cases, but the theory is expected to break down under

certain conditions, such as a large bunch compression factor, or with an electron

bunch with a large transverse dimension. These conditions are investigated ex-

perimentally in Chapter 4. In the current chapter, an extension to the 1D theory

of CSR has been presented, which correctly takes account of the full Liénard-

Wiechert field of emitting particles (Eq. 2.31). This field has both an electrostatic

component and an accelerating component. It has been shown that, due to the

transition regimes between a curved and straight trajectory at the entrance and

exit of a bending magnet, the electrostatic component can play an important

role in the CSR field in these regions. These theoretical results are compared

with those from simulation in Chapter 3.

The theory of the microbunching instability, the second collective effect stud-

ied in this thesis, is also presented in this chapter (Sec. 2.3). It is characterised by

a small variation in the bunch longitudinal phase space density in the injector of

an accelerator, which undergoes amplification due to CSR and LSC as the bunch

propagates through the machine. This instability has important implications

for the operation of a machine such as an FEL, as it can reduce the FEL pulse

intensity and cause shot-to-shot variation in the pulse energy. The mechanisms

behind this amplification have been presented, and the instability is investigated

experimentally in Chapter 5, using the 2D Fourier analysis technique described
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in Sec. 2.3.6.

Methods for mitigating the microbunching instability have been summarised

in this chapter (Sec. 2.4). Along with the standard method employed at a number

of X-ray FEL facilities – the laser heater – alternative techniques have also been

proposed and simulated. Some of these techniques, in particular those which

do not increase the slice energy spread of the bunch, are favourable for an FEL

when compared with the laser heater, but the majority have not been demon-

strated experimentally in the context of microbunching instability suppression.

The final subsection of this chapter (Sec. 2.4.3) describes a method for using the

laser heater to impose modulations on an electron bunch, using a temporally

modulated laser pulse. This method has been used in light sources for manipu-

lating the bunch longitudinal phase space to produce intense pulses of radiation;

in Chapter 5 it will be used to stimulate modulations in the bunch longitudinal

phase space in order to investigate the microbunching instability with a known

initial modulation frequency. The goal of these investigations is twofold: to pro-

vide a robust comparison between experimental measurements and simulation

results in order to assess the feasibility of the latter in reproducing the physics

of microbunching; and as a propadeutic to providing the first measurement of

the microbunching gain curve.
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Chapter 3

Simulation of CSR and

Microbunching

Numerical particle tracking is an important aspect in the design of particle accel-

erators, and for understanding the underlying beam dynamics of such machines,

particularly in experimental studies. Simulation codes are crucial in the design

stage of accelerators, as they provide an insight into the feasibility of the require-

ments of the machine. Additionally, the simulation codes used for such studies

can provide a useful supplement to the limited diagnostics in an operational ac-

celerator. There are a wide number of such codes, ranging from codes such as

MAD [98] which perform single-particle tracking through transfer matrices for

the optimisation of the optics of an accelerator, through to large-scale multi-

particle codes such as IMPACT [99], which include collective effects, and are

capable of simulating the same number of particles as those in a real accelerator

[66] (although this requires a great deal of computational power).

Self-fields which arise due to the collective interactions of many particles,

such as space charge or CSR, in systems of around 109 particles or more, can be

computationally intensive to simulate in practice, requiring hours or days to sim-

ulate on a single machine, or the use of multi-core parallel processors. Therefore,

the majority of simulation codes approximate this number of particles using a

smaller number of ‘macroparticles’, each which has a user-defined charge related

to the overall charge of a real bunch, thus reducing the computational effort re-

quired to simulate the collective effects and beam dynamics within such a system.
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Most codes track the temporal evolution of a bunch as it propagates through the

accelerator, applying either an analytic approximation to these self-fields, or a

(usually simplified) calculation of the forces between the macroparticles them-

selves. The choice for the number of macroparticles in a simulation, therefore,

requires a balance between the computational time available, and the need to

simulate collective effects with a high degree of accuracy. In order to assess the

accuracy of such simulations, the computational results must be compared with

other results, from either theory, experiment or other codes. Users of simulation

codes often have access to computational parameters that specify the method for

simulating collective interactions. A balance of these computational parameters

can often be found which can lead to good agreement between the simulations

and and results obtained by other methods while keeping the time required for

the simulations within reasonable limits. An investigation of the parameter space

of a simulation code which aims to find such a balance is often referred to as a

‘convergence study’.

Three simulation codes have been used in this thesis to investigate CSR and

the microbunching instability – elegant [96], CSRTrack [100] and GPT [101].

A brief outline of these three codes will be given in Sec. 3.1. A new module of the

GPT code for the simulation of CSR has been developed for the study of extreme

bunch compression scenarios, and in order to test out our new insights into the

CSR entrance and exit transients derived in Sec. 2.2, benchmarking results from

this code will be given (Sec. 3.2). Simulations of the microbunching instability

experiments described in Chapter 5 are conducted using the elegant code, for

the reasons outlined in Sec. 3.3.

3.1 Accelerator Simulation Codes

The codes used in this thesis to simulate CSR and microbunching have been

chosen for a number of reasons. They are all able to simulate collective effects,

yet they all accomplish this using slightly different methods. This provides the

opportunity to study their relative merits and shortcomings, with the aim of

determining which codes are more suitable given a certain bunch and accelerator
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parameter regime. They have also all been under development for a number of

years, and have been benchmarked against both experiment and theory (see, for

example, Refs. [14, 16, 102, 103, 104, 105]). In this section, the methods employed

by these three codes will be discussed, particularly with a view to explaining

how they simulate CSR and LSC. Some benchmarking studies against simple

test cases are also performed.

3.1.1 elegant

elegant [96] is a multi-particle 6D tracking code that utilises the standard beam

transport theory, through the application of transfer matrices and multipole kicks

(see, e.g. Ref. [35]), including linear and higher-order interactions. This method

allows for fast simulation as compared with time-domain codes such as GPT.

The code can also perform calculations of 1D LSC and CSR models [59], the

latter of which is based on Ref. [18] and subsequent developments in Ref. [56];

in the cases of both LSC and CSR, it is assumed that the bunch velocity is

ultrarelativistic, which is often the case for the parameter regimes studied in

this thesis. As the bunch travels through an element of the lattice (a drift space,

magnet or RF cavity, for example), the LSC/CSR impedance (Eqs. 2.53 and 2.59

respectively) is convolved with a histogram of the longitudinal bunch distribution

a (user-specified) number of times for each element. In addition to assuming that

the bunch is ultrarelativistic, a number of other approximations are made in this

calculation. It is assumed, for the LSC computation, that the transverse bunch

distribution is symmetric and Gaussian. In the case of CSR, some of the other

approximations made include:

� Neglecting the transverse offsets of bunch particles from the reference orbit

(i.e. x, y = 0 for particles that emit and receive CSR).

� Neglecting the electrostatic (or ‘Coulomb’) term of the Liénard-Wiechert

field Eq. 2.31.

� Neglecting stochastic effects due to the long-range interaction between a

discrete number of radiation cones [106]. Although the radiation produced
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by a number of electrons can interfere constructively, there will be statisti-

cal noise in the CSR field produced as a result of the fact that every emitter

is a point particle.

� Assuming that the charge density distribution moves rigidly along the nom-

inal trajectory.

� Not taking account of shielding of CSR from the accelerator chamber [107].

The importance of these approximations can only be made clear through

rigorous benchmarking with other simulation codes and with experimental mea-

surements. Depending on the configuration of the accelerator lattice, and the

bunch parameters, some of these effects may cause a more significant deviation

from the above approximations than others; indeed, it may not be possible to

de-convolve fully each of them separately. In addition to this, the code offers

a number of computational parameters that can influence the simulated effect

of LSC and CSR. Those which have the most significant impact on the bunch

distribution are:

� The number of macroparticles used in the simulation.

� The number of bins used to compute the histogram of the longitudinal

density distribution, which is then convolved with the LSC/CSR wake.

� High-pass filter parameters used to reduce the impact of numerical noise.

Since these parameters are computational and not determined by the physical

properties of the system, there is no unique solution to inform exactly how these

parameters should be set such that the code will accurately simulate the relevant

effects. Given that every simulation code must make trade-offs between speed

and accuracy, it is up to the user to determine the best solution that matches

with theory, experiment, and other simulation codes. Nevertheless, despite all of

these caveats, elegant has proven useful in the design of a number of accelerator

facilities. In terms of CSR simulation, it has been shown to agree well with exper-

imental measurements over a certain parameter range [14]. These measurements

did show, however, an overestimation of the overall energy loss due to CSR as
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the bunch compression factor approached its maximal value – this may be due to

one of the above approximations not being valid. In order to reduce the noise in

simulations including self-fields, large macroparticle numbers (greater than 106)

are required, and it is expected that larger numbers are required for simulations

of the microbunching instability [108].

3.1.2 CSRTrack

This code is primarily used for calculating the CSR fields generated by a bunch on

a curved trajectory [100], and will be used in this thesis only for tracking through

dispersive regions. CSRTrack provides a number of calculation methods for

the CSR force: the 1D ‘projected’ method, which projects the bunch onto the

longitudinal dimension and applies a fast Fourier transform (FFT) convolution

of this projection with the CSR field; a full-field calculation of the Liénard-

Wiechert potential onto a 3D spatial mesh; or a Green’s function method. Since

the latter two calculations provide the self-fields of the bunch, space charge is also

included in these methods; however, they also require a much greater computa-

tional effort than the 1D method. In these two cases, the 3D bunch distribution

of macroparticles is divided into Gaussian time-independent ‘sub-bunches’ as op-

posed to point-like macroparticles. The CSR process (for both emitters and

receivers) is then a function of the 3D distribution of these sub-bunches.

It should also be noted that none of the simulation methods employed by

CSRTrack employ the 1D approximation of Ref. [18]. Given that the nature

of the 3D simulation methods require direct computation of the collective in-

teraction, as opposed to the relatively simple method of elegant, simulations

using CSRTrack are much more computationally intensive, but in principle

they should be more accurate in calculating the effect of CSR for a real electron

bunch. CSRTrack has been shown to produce good agreement with measure-

ments of the slice emittance after bunch compression at SwissFEL [17].

3.1.3 General Particle Tracer (GPT)

GPT [101] is a time-domain particle tracking code that integrates the equations

of motion of a large number of charged particles in the presence of electromag-
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netic fields. Full 3D space charge calculations are included, and the transport of

particles through standard accelerator components is available to users. There

is also an additional option for users to write their own modules, or ‘custom

elements’, to compile into the program, in order to model more exotic interac-

tions. Since the CSR module in GPT was developed specifically for this study,

more detail on the method of modelling CSR using this code is given below.

This code is also able to simulate electron emission from photocathodes in RF

photoinjectors, and so it is used in this thesis for simulating the FERMI injector

(see Sec. 4.2)

3.2 CSR Calculations in GPT

In order to validate the analytical results of Sec. 2.2.2.1 and 2.2.2.2, we have

numerically calculated the electromagnetic field distribution in an electron bunch

in both the entrance and exit transient regimes for the simple test case of a single

dipole magnet using the GPT code [101]. The code has the option to include

the computation of the retarded Liénard-Wiechert fields of the tracked particles

(see Eq. 2.31). Because this involves the storage of the trajectory of the particles

and solution of retardation conditions, calculation of Liénard-Wiechert fields is

computationally expensive. To reduce the computational cost, the GPT code

does not evaluate the field of each tracked particle, but instead represents the

particle bunch by a number of bunch slices (see Fig. 3.1). Each bunch slice is

represented by either four or sixteen off-axis particles that are spaced according

to the RMS transverse size of the slice in order to capture the impact of the

transverse extent of the bunch. While integrating the equation of motion of a

tracked particle, GPT evaluates the Liénard-Wiechert field resulting from the

past trajectory of each of the representative particles at the longitudinal position

of the tracked particle.

It is important to note that GPT uses the exact expression for the Liénard-

Wiechert fields based on the numerically obtained coordinates of particles in the

bunch, and does not apply any analytic approximation or presumed trajectory

of the bunch. The parameters used for the test case are listed in Table 3.1.
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We deliberately chose artificially small energy spread, transverse bunch size and

emittance, and used hard-edged magnet fringes in the exit transient simulations

to match the analytic case as closely as possible. Similarly, a small bunch charge

was used in order to prevent the effects of space-charge contributing to the evo-

lution of the beam. The dipole bend radius and magnetic length, and the beam

energy, were chosen to match the design parameters of a proposed FEL facility

[109].

Since this chapter will often refer back to expressions derived and discussed

in Sec. 2.2.2, these equations will be given again in this section for convenience.

The meanings of the terms used in the expressions are given in full in Sec. 2.2.2

and the Appendix.

Eq. 2.33 is the steady-state CSR field for a bunch that is entirely within a

bending magnet:

ESS
|| (z) =

Neβ2

8πε0R

∫ φ

0

β − cos(u/2)

(1− β cos(u/2))2λ(z −∆z(u))du, (3.1)

Eq. 2.36 represents the combined expressions for the steady-state CSR field

and the contribution from the entrance transient field [18], assuming an infinitely

long straight beamline section before the entrance to the magnet:

Eent
|| =

Ne

241/3πε0R2/3

((
24

Rφ3

)1/3 [
λ

(
z − Rφ3

24

)
− λ

(
z − Rφ3

6

)]

+

∫ z

z−Rφ3/24

dλ(z′)

dz′
dz′

(z − z′)1/3

)
. (3.2)

Eq. 2.35 is a modified expression for the above expression Eq. 3.2, without

the assumption of an infinitely long straight beamline section before the magnet

entrance:

Eent
|| (z) = ESS

|| (z) +
Ne

4πε0γ2

∫ d

0

(y − βρ(y)) cos(φ) +R sin(φ)

(ρ(y)− β(y + r sin(φ)))2ρ(y)
λ(z −∆(y))dy,

(3.3)

Eq. 2.40 is the expression for the CSR radiation field in the exit transient
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regime, where the receiving particle has exited the bending magnet:

Eexit
||,rad(z, x) =

Neβ2

4πε0

∫ φm

0

(
2 sin(ψ/2)ζχ

(ρ− β (R sin(ψ) + x cos(ψ)))2 ρ
−

sin(ψ)

ρ− β (R sin(ψ) + x cos(ψ))

)
λ (z′(ψ)) dψ,

(3.4)

where ζ and χ are defined in the Appendix.

Eq. 2.42 is the CSR radiation field in the exit transient regime under the

ultrarelativistic and small-angle approximations:

Eexit
||,rad(z, x) ≈ Ne

πε0

(
λ(z −∆zmax)

φmR + 2x
− λ(z)

2x
+

∫ z

z−∆zmax

∂λ(z′)

∂z′
dz′

ψ(z′)R + 2x

)
.

(3.5)

Eq. 2.45 is the total exit transient field (the sum of 3.5 and 2.44), again under

the small-angle and ultrarelativistic approximations:

Eexit
|| (z, x) ≈ 8Ne

3πε0

∫ φm

0

N1(ψ)

D1(ψ)2
λ (z′(ψ)) dψ +

Ne

πε0

∫ φm

0

N4(ψ)

D2(ψ)2
λ (z′(ψ)) dψ.

(3.6)

3.2.1 Entrance Transient Effect

The CSR field was calculated initially by GPT at a point 24 cm into the magnet

in order to simulate the entrance transient field. This distance is only half that of

the steady-state condition DSS (Eq. 2.34), and so it is expected that the general

expression of the steady-state field with the entrance transient included (Eq. 3.3)

will be required to calculate the fields.

In this simulation, the drift before the magnet was set to 50 m. The results

from the simulation are in good agreement with Eq. 3.2, as seen in the left-hand

plot of Fig. 3.2. However, if the simulation is run again, but with the drift before

the bend set to 10 cm, the GPT result effectively reduces to the steady-state

CSR field only (Eq. 3.2), and thereby differs from the usual approximation of
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Table 3.1: Lattice and electron bunch parameters used in the GPT simulation
– used for validation of the numerical study. Two different values of the drift
length before the bending magnet are simulated, in order to demonstrate the
impact of the Coulomb component of the Liénard-Wiechert field (Eq. 2.31).

Lattice Value Unit

Magnet length Rφm 1.14 m
Radius of curvature R 2.29 m

Drift length before bend 0.1, 50 m
Entrance / exit edge angle 0 rad

Fringe width (entrance) 1.7 mm
Fringe width (exit) 0 mm

Initial bunch
Number of macroparticles 106

Bunch charge 70 fC
Mean energy 380 MeV

Twiss βx 1.34 m
Twiss βy 3 m
Twiss αx 0.185 rad
Twiss αy 0 rad
εN,x,y 5× 10−3 µm rad

RMS bunch length 0.6 mm
Uncorrelated energy spread 0 –

Energy chirp (dE/dz) 0 %/mm
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Particles at t=0

Discretisation

Per segment i we calculate E, B by vertical integration

4-point representationt=－2

t=－1

Δz=c Δt

t=－3

t=...

E, B

Projection

Center coordinates

E(ri), B(ri)

ri

Figure 3.1: Representation of particle bunch adopted by GPT to calculate
CSR forces. The particle bunch is discretised and represented by slices. The

CSR force is then calculated and projected onto the bunch. [Credit: B. van der
Geer, Pulsar Physics]

Ref. [18]. The second term on the right-hand side of the full entrance transient

field (Eq. 3.3) is suppressed by lowering the integration boundary, showing that

the approximation of an infinitely long drift before the entrance to a bending

magnet may not be valid for some cases. As shown in the right-hand plot of
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Fig. 3.2, the GPT simulation reflects this behaviour. Finally, it should be noted

that although the term ‘drift’ has been used, in reality any straight section of

beamline would be appropriate for the comparison of these two scenarios.

GPT

Eq. (3.2)

Radiation term

Coulomb term

Total
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(a)
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/m
)

Drift length = 10cm

(b)

Figure 3.2: Longitudinal component of CSR electric field as a function of
longitudinal position in the bunch for the parameters in Table 3.1 and a drift
before the magnet of: Left: 50 m; and Right: 10 cm, as simulated by GPT,
against both the approximated entrance transient field (Eq.3.2) and the full
entrance transient field (Eq. 3.3) – both the Coulomb and radiation terms

individually, and combined. Positive values of z refer to the head of the bunch.

3.2.2 Exit Transient Effect

We now consider the simulation of the CSR exit transient field, following on from

the model introduced in Sec. 2.2.2.2. The transition from the steady-state regime

to the exit transient regime will also be studied. The expression for the total CSR

field in the exit transient regime (Eq. 3.4) assumes that all particles follow the

same reference trajectory. However, the impact of a transverse displacement of

the emitting electrons on the observed electric field may be studied by including

a vertical offset (out of paper) of the emitting electron shown in Fig. 2.5. Fig. 3.3

gives a side view of the resulting configuration. Due to the offset, the distance σ

from emitter to observer becomes:

σ =
√
ρ2 + y2 =

√
4R2 sin (ψ/2)2 + 2Rx sinψ + x2 + y2 (3.7)

In addition, the angles θ, η and ξ are stretched somewhat, such that their cosines

become smaller by a factor cos δ = ρ/σ. Re-evaluating the Liénard-Wiechert field
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(Eq. A.23) with these modifications shows that the electric field is still given by

Eq. 3.4 in the limit δ → 0 (so that ρ→ σ).

δ

β'

σ

r'

ρ

emitter

observer

β
y

Figure 3.3: Side view of the configuration of Fig. 2.5 in the case of a vertical
offset y of the emitting particle.

In Fig. 3.4 the longitudinal component of the radiation field is plotted for

small values of x, the distance after the exit of the magnet. The solid blue lines

again show the numerically calculated field found by GPT simulation, and the

steady-state field of a bending magnet (Eq. 3.1) has been plotted as a black solid

line. In the left plot, the bunch centroid is at the magnet edge, which is clearly

seen by the kink in the electric field. The field in the left part of the bunch is

still accurately given by the black line, while the field in the right part starts to

transition to that described by the exit transient field Eexit
|| .

The middle and right plots show the situation at 5 mm and 10 mm after the

bend, which is around where the field reaches its maximum (negative) value

before starting to decay. The corresponding results according to Eq. 3.4 are

also plotted. For such small distances after the magnet edge, Eq. 3.4 does not

reproduce the smooth transition shown by GPT, but rather predicts a sharp

transition to a negative field with large amplitude as a result of the sign of the

exit transient field – at the exit, all of the Coulomb fields emitted from particles

within the magnet are able to interact with particles that have left it. Fig. 3.4

shows the resulting modified electric field as dashed lines. The vertical offset of

the emitting charges was taken to be equal to the rms vertical bunch size at the

magnet exit edge, which was only 5.8 µm.

Clearly, the match between the analytic electric field and the GPT result

is much better, showing that the sudden peak in the electric field right after
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the magnet edge is indeed effectively damped by a small transverse offset of the

emitting charge. This explains the smooth transition observed in the simulation.

Note that a transverse offset of the emitting charge, and hence the observed

smooth behaviour of the field right after the magnet edge should not be dismissed

as merely an artificial construct of the GPT simulation. Arguably, it should

be rather seen as an effective representation of reality in which none of the

particles will be exactly on-axis either. It is worth noting the significant difference

between results from a model in which all emitters are all in the same horizontal

plane, and the results from a model in which the emitters have some distribution

in transverse position. This difference indicates that analytic 1D models are

inadequate for capturing fully the physics of the CSR exit transient.
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Figure 3.4: Longitudinal component of radiation field as a function of
longitudinal position in the bunch, at three different distances after the exit of
the bend. Solid blue: GPT simulation; Circles: Eq. 3.4; Dashed blue: Eq. 3.4,
including a vertical offset y = 5.8 µm of the emitting particles by substituting
ρ→ σ. The solid black line indicates the steady-state electric field inside the

bending magnet (Eq. 3.1).

Fig. 3.5 shows the longitudinal component of the electric field as a function of

longitudinal position in the bunch evaluated at 5 mm past the bending magnet.

The results for the GPT simulation of both the full CSR field, and the radiation

component, are compared with Eqs. 3.6 and 3.5, and Eq. 3.4 with an offset in

the y plane according to Eq. 3.7. The simulation results agree well with the

expression Eq. 3.4, with the inclusion of a small transverse offset. The fact that

the approximation for the radiation term Eq. 3.5 differs greatly from both the

exact formula for the radiation field and the simulation results demonstrate the

importance of including the Coulomb term when computing CSR fields at the
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exit of a bending magnet. Fig. 3.5 shows that Eq. 3.4 fully captures the actual

behaviour of the field that we found both analytically and numerically.

GPT, full field, ϵx=0.5μmrad

GPT, rad. field, ϵx=5nmrad

Eq. (3.4) with y offset

Eq. (3.6)

Eq. (3.5)
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Figure 3.5: Longitudinal component of electric field as a function of longitudinal
position in the bunch, at 5 mm from the exit of the dipole. Blue: GPT

simulation of the full field; Black: GPT simulation of the radiation field only;
Red: Eq. 3.4 with an offset in the y plane; Brown: Eq. 3.6; Orange: Eq. 3.5.

3.2.3 Convergence Study

As mentioned in the introduction to this chapter, when simulating collective

effects such as CSR with codes which make some approximations with regard

to the full collective interaction of the real number of particles, be it in the use

of macroparticles, or in simplifying the interaction between particles – both of

which apply to GPT – it is important to perform convergence studies in order to

find the correct balance between accurately simulating the forces and minimising

the computational cost. Before attempting to compare results from GPT and

other codes with experimental data from the FERMI FEL (in Chapter 4), such a

study has been undertaken. In Fig. 3.6, results are shown from GPT simulations

of the CSR-induced emittance growth at the exit of the first bunch compressor

of FERMI for a range of linac phases. The number of macroparticles used in

the simulation was varied, from 105 to 107. In order to compare these results

with another code which has undergone similar benchmarking studies [59] –
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elegant – we also provide two sets of data for the same linac phase scans using

this code. Complementing these results are simulated electron bunch lengths,

in order to indicate the point of maximal bunch compression. As shown in

the discussion of CSR-induced emittance growth above (Sec. 2.2.4, particularly

Eqs. 2.47 and 2.48), the bunch length is inversely proportional to the energy

change of a particle due to CSR, which has an impact on its emittance. The

compression factor, therefore, should be proportional to the emittance growth in

a bunch compressor.

As the plot shows, there is a discrepancy between the results from elegant

and GPT, but this will be investigated in greater detail in Sec. 4.5. More inter-

esting in the context of the convergence study are the three results from GPT

for different numbers of macroparticles. There is a much better agreement for

all linac phase settings for the runs with 106 and 107 macroparticles than for

the runs with 105 macroparticles, suggesting that at least 106 macroparticles are

required for the CSR interaction to be accurately modelled. It should also be

recognised, however, that a further study would have to be conducted over a

wider parameter range in order to evaluate fully the validity of this algorithm.

Although a range of bunch compression factors were considered here, it may be

illuminating to study a variation in emittance growth as a function of bunch

charge, for example.

3.2.4 Limitations of the CSR Model

One more potential limitation of the CSR calculation in GPT is that shielding of

the radiation by the vacuum chamber [107, 110] is not taken into account. Since

our experimental study of CSR is concerned with the FERMI accelerator, the

parameters of its bunch compressor can be taken into account. As demonstrated

in [58], CSR suppression by the vacuum chamber occurs for wavelengths λ ≥

2h(h/R)1/2, with h the minimum half-gap of the beam pipe, and R the bending

radius. Using the parameters for the FERMI FEL, with the values R = 3.7 m,

h = 10 mm, we find that the cutoff wavelength λ ≈ 1 mm, which is longer than

the uncompressed bunch length of 0.6 mm, and so the effect of CSR shielding is

negligible for this parameter range.
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Figure 3.6: Example convergence study in elegant and GPT for normalised
emittance after the first bunch compressor of FERMI as a function of preceding
linac phase. The energy at this position is 300MeV, the bunch charge is 100 pC

and the R56 of the bunch compressor is fixed at 57 mm.

3.3 Microbunching Simulations

As described below in Chapter 4, the GPT code is used for simulating the FERMI

injector. From this GPT injector simulation, the electron bunch can be tracked

through the remainder of the accelerator lattice using the elegant code. Among

the three codes employed for simulating collective effects in this thesis, elegant

is possibly the best-suited to simulations of the microbunching instability. The

reasons for this are twofold.

1. The laser heater interaction can be simulated fully and seamlessly using an

integrated beamline element: the user can specify the undulator and laser

parameters, and the code tracks the electron bunch through the magnets

with a co-propagating laser through numerical integration. An additional

feature also allows the user to provide a file that specifies the intensity

profile of the laser heater, meaning that a laser pulse that has undergone

chirped-pulse beating (described by Eq. 2.80) can be simulated directly.

CSRTrack is not well-benchmarked outside of bunch compressor struc-

tures, nor was it designed to simulate the interaction between laser and

electron beams. While it would be possible to simulate this interaction
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in GPT, the implementation would be much more complicated than in

elegant, as the user would have to write custom elements to define the

undulator and laser pulse, and the spatial and temporal overlap between

the beams would require fine-tuning.

2. Since microbunching is a phenomenon that arises due to the collective

interaction of large numbers of particles, the code that is used to simulate

it must be able to tackle these large numbers. Again, this time thanks to

the approximations that it makes by neglecting transverse collective effects,

elegant is well-suited to the task. Once the electron bunch has become

relativistic (with an energy larger than 100 MeV, or γ ≈ 200), transverse

space-charge forces have a smaller impact, with the longitudinal forces

dominating the structure in the bunch longitudinal phase space. For this

reason, GPT will be used to produce the injector simulation (as discussed

in Sec. 4.2), and elegant will be used thereafter to simulate the various

machine configurations. Despite the large parameter range investigated for

the microbunching studies (discussed in full in Sec. 5.1), full simulations

of the experiment can be conducted. A convergence study (described in

Sec. 5.6) was run in elegant in order to determine the optimal settings for

the LSC and CSR interactions, based on results from the experiments.

3.4 Summary

This chapter has presented a brief introduction to simulation codes used in the

design of particle accelerators. A wide variety of codes exist, with some being

more applicable to the simulation of collective effects than others. Three sim-

ulation codes have been used in this thesis for simulating CSR, and elegant

is used to simulate the microbunching instability. All codes must make some

approximations when simulating a large number of charged particles, and one

goal of this thesis is to determine the range of applicability of these three codes

by comparing experimental measurements with simulation results. In order to

understand the difference in results produced by these three codes when simu-

lating the CSR-induced emittance growth (Sec. 4.5), their methods are described
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in Secs. 3.1 and 3.2.

Since the CSR module for GPT was developed specifically for this study,

and because this code does not use the simplified 1D theory of CSR, but rather

takes account of the full Liénard-Wiechert field (Eq. 2.31), it has been used to

validate the modified theory concerning entrance and exit transient fields that

occur when a bunch enters and exits a bending magnet (Sec. 2.2.2). Good agree-

ment was found between the theoretical results and those from simulation, and

a divergence between these results and the simplified 1D theory, which does not

take full account of the electrostatic component of Eq. 2.31, was found. Since the

divergence between these approaches occurs when there is only a short beamline

section at the entrance or exit of the bending magnet, these results could have

implications for machines in which there are a number of dipole magnets that

are close to one another, such as in the arc of an energy recovery linac (ERL).
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CSR Measurements

As discussed in Section 2.2, the region of applicability of the 1D theory of CSR

is limited. By projecting the electron bunch distribution onto the longitudinal

dimension, the shape of the radiation cone from the emitting particles focuses

the total power of CSR radiation onto a smaller area. If this 1D projection is

not made, the CSR radiation will become more spread out transversely. Since

the radiation cone resulting from the coherent emission of a bunch with a finite

transverse extent is larger (and therefore more spread out) than that predicted

by the 1D approximation, this could result in a beam emittance growth that is

smaller than the theory predicts.

In order to investigate the regime of applicability of this theory, and the codes

which utilise it, experimental results from the FERMI FEL facility will be com-

pared with results from 1D CSR theory and simulation, and from codes which

do not utilise the 1D approximation of Refs. [18, 55, 56]. This experiment was

done over a range of electron bunch lengths and transverse beam sizes (scans

of which are outlined in Sec. 4.1). The methods for simulating the initial beam

distribution and these parameter scans are discussed in Sec. 4.2. The emittance

measurement technique via quadrupole scan, and the analysis program written

to measure this parameter, are outlined in Sec. 4.3 and Sec. 4.4 respectively. In

Sec. 4.5, results from the 1D CSR theory, experimental measurements and three

simulation codes are compared across a range of bunch compression parame-

ters. Better agreement is found between experimental data and the codes which

account for the transverse extent of the bunch, particularly in more extreme

85



Chapter 4. CSR Measurements

compression scenarios.

4.1 CSR Parameter Scans

A schematic of the FERMI linac is shown in Fig. 4.1, and the main beam parame-

ters during the experiment are shown in Table 4.1. The horizontal emittance was

measured at the exit of the first bunch compressor, BC1, as a function of Linac 1

RF phase (i.e. energy chirp, that is, a longitudinal energy-to-position correlation

along the bunch; see Sec 2.1.4), chicane bending angle, and the strength of the

last quadrupole before the entrance to the bunch compressor.

The first two scans resulted in scans of the bunch length compression factor

in the range 20 − 64 and 8 − 60 for the Linac 1 phase and chicane bending

angle scans, respectively. The scan of quadrupole strength was done at a fixed

compression factor of 36. The energy chirp at the entrance of the chicane was

linearised using an X-band RF cavity, which approximately preserves the shape

of the bunch current distribution through the chicane, as shown later in Figs. 4.8a

and 4.8b [111, 112]. During the phase scan, the accelerating gradient of Linac 1

was scaled in order to keep the mean bunch energy constant at the entrance to

BC1.

Measurements were taken using the single quad-scan technique [80], by vary-

ing the strength of one quadrupole magnet (Q BC01.07), located in the straight

section directly after BC1. The machine was operated with a constant bunch

charge of 100 pC, and a mean energy of approximately 300 MeV at BC1. Ad-

ditionally, the laser heater was configured to add around 20 keV uncorrelated

energy spread to the beam, in order to suppress the microbunching instability.

For each set of scans, the two other scanning parameters were kept constant.

During the experimental run, the following scans were performed:

� Linac 1 phase – vary between 70.5 ° and 73.3 ° (nominal is 73 °).

� BC1 angle – vary between 100 mrad and 109 mrad (nominal is 105 mrad).

� Q L01.04 K1 (this is the final quadrupole before the entrance to BC1) –

vary between −2.0 m−2 and 5.0 m−2 (nominal is 1.6 m−2).
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Figure 4.1: Sketch, not to scale, of the FERMI linac to FEL beam line. This
study applies to the Gun (G) through the first accelerating sections (L0 and

L1) and the laser heater (LH) to the exit of the first bunch compressor (BC1).

Table 4.1: Main beam and lattice parameters of the FERMI accelerator at the
entrance to BC1 in the nominal configuration. The distances between the

dipoles correspond to the end-to-end drift length.

Bunch and lattice parameters Value Unit
Bunch charge 100 pC
Mean energy 300 MeV

εN,x,y 0.62 µm rad
RMS bunch length 0.61 mm

Relative energy spread 0.95 %
Magnet length 0.366 m

Distance between 1st - 2nd, and 3rd - 4th bend 2.5 m
Distance between 2nd and 3rd bend 1.0 m

Momentum compaction R56 0.057 m
s-E correlation 1

E0

dE
ds

−17.0 m-1

At the diagnostic stations, both Yttrium Aluminum Garnet (YAG) and Opti-

cal Transition Radiation (OTR) screens are available. Estimates of the resolution

for these screens are, respectively, 45µm for a pixel width of 31.2 µm and 25 µm

for a pixel width of 19.6 µm [113]. The majority of the measurements were ini-

tially taken with OTR screens, but coherent effects were suspected to be having

an effect on the measured emittance as the bunch approached maximum com-

pression, and so some measurements were repeated with YAG screens, whose

performance is expected to suffer much less from coherent emission. The typical

emittance measurement procedure consists of taking at least 5 images for be-

tween 10 and 30 settings of Q BC01.07, and the single quad-scan technique (see,

for example, [80]) is applied to calculate the transverse emittances and Twiss

parameters.
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4.2 Simulation Setup

Simulations of the FERMI injector (up to the exit of the first linac, see Fig. 4.1)

have been produced using the GPT code. In order to match accurately the

simulation to experimental conditions, the measured transverse and longitudinal

profiles of the photoinjector laser were used as input parameters to the simulation

(shown in Figs. 4.2 and 4.3), along with geometric wakefields from the injector

linac. Full 3D space-charge effects were also included. The injector linac phase

was optimised for minimal energy spread – as is done in the routine procedure

of linac tuning – and good agreement was found between the simulated and

experimentally measured bunch properties at the exit of the injector.

Figure 4.2: Measured transverse photo-injector laser profile used as input for
GPT simulation.

Figure 4.3: Measured longitudinal photo-injector laser profile used as input for
GPT simulation.

From this injector simulation, the bunch was then tracked using the elegant

code [96] up to the entrance of BC1, including the effects of linac wakefields,
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the laser heater, CSR and space charge models. From this point, three particle

tracking codes have been used to compare the emittance measurement results

with simulation: elegant, CSRTrack and GPT – see Chapter 3 for more

details on all of these codes. Briefly: in the 1D CSR simulations, elegant applies

the calculation of Saldin et al [18] to calculate the energy change due to coherent

radiation in a bend, and the transient effects which arise at the entrance and exit

of the dipole magnet, based on [56]. In the elegant calculation, the dipole is split

up into pieces, and the bunch is tracked sequentially through each piece. At each

point, the bunch is projected onto the reference trajectory and the electric field

of the bunch is computed. The projected (1D) method of CSRTrack divides

the bunch up into Gaussian ‘sub-bunches’, smooths the longitudinal distribution,

and calculates the CSR field from a convolution of the distribution with a kernel

function describing the Liénard-Wiechert fields across the bunch trajectory [114].

At the exit of the bunch compressor (including a drift to account for transient

CSR effects), the output from GPT or CSRTrack is then converted back into

elegant, and tracked up to Q BC01.07, the measurement point.

As described above in Sec. 3.2, the CSR routine in GPT does not employ

the 1D approximation, but calculates the retarded Liénard-Wiechert potentials

directly by slicing up the bunch longitudinally, and it does not directly project the

radiating particles onto a line. Each slice contains a number of radiation emission

points (typically four), and the full history of both the fields and the particle

coordinates are stored for each time step. The 3D routines in CSRTrack also

calculate the radiation fields directly, but in a slightly different manner. For our

simulations, we have utilised the csr g to p method, in which the particles are

first replaced by Gaussian ‘sub-bunches’, and the radiation field is calculated via

a pseudo-Green’s function approach [114], with each sub-bunch having an effect

on each sub-bunch in front of it.

It should be mentioned that the number of bins used for the density histogram

in the CSR and longitudinal space-charge (LSC) models of elegant, in addition

to the smoothing applied on the bunch, can have an impact on the final results

[59]. Following a convergence study, by varying the number of CSR bins between

100 and 5000, and performing the parameter scans for 106, 5 × 106 and 107
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macroparticles, we have determined that 500 LSC and CSR bins for an elegant

simulation of 106 macroparticles is sufficient. Following previous studies [115],

we set the sub-bunch size for the CSRTrack calculations to be 10 % of the rms

bunch length. A similar set of simulations was run in GPT in order to achieve

convergent results, for input distributions of 105, 106 and 107 macroparticles

(see Sec. 3.2.3). To determine the significance of the Coulomb term outlined in

Sec. 2.2.2.1, GPT simulations were also run with this term deactivated. Since

dipole fringe fields are included in CSRTrack by default, the parameter scans

were also simulated with dipole fringes in the other two codes. This should also

provide the most realistic benchmark with the experimental case.

4.3 Quad Scan Technique

Quadrupole scans are a widely used technique for measuring the projected emit-

tance and Twiss parameters of electron bunches [36]. By measuring the trans-

verse profile of a bunch on a screen, preceded by a quadrupole and a drift, the

emittance can be reconstructed by calculating the transfer matrix, R, of these

elements. To first order, between two locations in the lattice, s0 and s1, the

covariance matrix (of second-order moments of the beam distribution) can be

calculated as:

Σx(s1) = RxΣx(s0)RT
x , (4.1)

with Rx the horizontal transfer matrix, and Σx given as:

Σx =

 〈x2〉 〈xpx〉

〈xpx〉 〈p2
x〉

 = εx

 βx −αx
−αx γx

 . (4.2)

The rms emittance is given by (see Sec. 2.1.2):

εx =
√

det(Σx) =
√
〈x2〉〈p2

x〉 − 〈xpx〉2. (4.3)

Here, it is assumed that 〈x〉 = 〈px〉 = 0 – that is, the mean values are subtracted

before taking the second-order moments. Note that this approximation is not
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sufficient to describe the transport of space-charge dominated beams. For these

measurements, which were taken at 300 MeV, the space-charge is expected to

be sufficiently suppressed such that this effect can be neglected. The Twiss

parameters relate the second-order moments of the bunch distribution to the

emittance through the formulae:

〈x2〉 = βxεx, (4.4a)

〈xpx〉 = −αxεx, (4.4b)

〈p2
x〉 = γxεx. (4.4c)

For now, we will use the thin-lens approximation for the quadrupole matrix,

giving us the following horizontal transfer matrix elements for a quadrupole, Q

with length l and integrated strength Kl and a drift, S with length d:

Q =

 1 0

Kl 1

 ,S =

1 d

0 1

 . (4.5)

The transfer matrix R of the quadrupole followed by a drift is then given as

follows:

R = S ·Q =

1 +Kld d

Kl 1

 . (4.6)

Given that x1 = R11x0 + R12px,0, the square of the horizontal beam size at

the screen 〈x2
1〉 can be calculated as follows [36]:

〈x2
1〉 = R2

11〈x2
0〉+ (2R11R12〈x0px,0〉) +R2

12〈p2
x,0〉. (4.7)

Measuring 〈x2
1〉 as a function of K and applying a parabolic fitting function yields

three coefficients:

〈x2
1〉 = A(Kl)2 +B(Kl) + C. (4.8)

with the fit parameters obtained by substituting the elements of the transfer
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matrix R and rearranging Eq. 4.7:

A = d2〈x2
0〉 (4.9a)

B = 2
(
d〈x2

0〉+ d2〈x0px,0〉
)

(4.9b)

C = 〈x2
0〉+ 2d〈x0px〉+ d2〈p2

x,0〉. (4.9c)

Given the results of the fit, and the transfer matrix parameters, the values of

〈x2
0〉, 〈x0px,0〉 and 〈p2

x,0〉 can be calculated. These values can then be used to

calculate the emittance at the location of the quadrupole s0 using Eq. 4.3.

4.4 Image Analysis for Emittance Measurement

The FERMI online emittance procedure produces files consisting of the images

taken during the quad scan, and the quad strengths, along with metadata con-

taining various machine settings. This metadata includes:

� Quadrupole current and K values.

� Region of interest (pixel array size in x and y).

� Quad length and drift space in between quad and screen.

� Beam energy.

� Screen image calibration factor (pixels per mm).

A Python application has been written to iterate through each image, to fit

a 1D Gaussian projection of each image onto the horizontal and vertical axes,

and to calculate the emittance and Twiss parameters as described above – a

screenshot of the graphical user interface (GUI) is given in Fig. 4.4. The experi-

mental data is recorded using a Matlab application, and a conversion procedure

is necessary to make this readable by Python. The algorithm executed by the

Python application then runs as follows:

1. Select a quad scan file.
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2. Load data into the image viewer. Each group of images for a given quad

setting are keyed by an index; this index can also be used to determine the

quadrupole settings for this group.

3. The set of images for one quadrupole setting consists of a 1D array; based

on the pixel array sizes in the metadata and the length of this array, the

number of shots for each group of images can be calculated and transposed

into a set of 2D images. The user can also crop these images to select a

particular region of interest.

4. Get projections in the horizontal and vertical axes. For each image, each

row/column is iterated through, and the sum of the pixel intensity in each

slice is calculated. A Gaussian fit is then applied to these intensity arrays

in the horizontal and vertical directions, discarding any values below 1

standard deviation of the total slice array, in order to minimise the noise

level. This may cause some issues when fitting with low-intensity bunches

(i.e. not correctly focused). To counteract this, the user can choose to crop

a region of the image to focus only on the area where a beam is visible.

5. The fits can then be used to determine the rms beam size (in terms of

pixels); by using the screen image calibration factor (pixels per mm) the

beam distribution can be calculated.

6. The parabola generated by processing the mean beam size of each group

of images for all quad settings can then be used to determine the fit pa-

rameters given in Eq. 4.9. The emittance and Twiss parameters in x and

y are then displayed and saved.

4.5 Discussion of Results

During the experimental run, the parameter scans detailed in Sec. 4.1 were per-

formed, and the emittance was measured by the quad scan technique using the

FERMI online emittance tool. Measurements were also processed using the

Python script outlined above. Plots comparing the emittance measurements
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Figure 4.4: Screenshot of the Python emittance GUI.

with simulation results from the three codes are given in Figs. 4.5a,4.6a and

4.7a. There was good agreement between the two measurement methods, and so

only the results from the Python script are given in the plots. The CSR-induced

emittance growth in these regimes has also been calculated, based on the analytic

theory given in [116], and updated in [117]. The emittance growth corresponding

to the longitudinal and transverse CSR wake with the entire bunch travelling on

a circular orbit are given as:

∆εlongN = 7.5× 10−3βx
γ

(
reNLb

2

R5/3σ
4/3
z

)2

(4.10a)

∆εtransN ≈ 2.5× 10−2βx
γ

(
reNLb
Rσz

)2

, (4.10b)

with βx the horizontal beta function, γ the relativistic Lorentz factor, re the

classical electron radius, N the number of particles in the bunch, Lb and R the

length and radius of the dipole magnet, respectively, and σz the electron bunch

length. The total emittance growth is the sum of these two expressions. These

formulae are the result of considering the longitudinal and transverse forces that
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arise due to the steady-state CSR wake field for a bunch with a transverse radius

that is finite, but small compared with the bunch length. The emittance increase

occurs due to the CSR wake causing a change in the energy of the bunch, and

therefore its horizontal deflection angle as it travels through the compressor. It

is shown in Ref. [117] that the transverse force depends on the bunch radius,

although the contribution from ∆εtransN is smaller than that from ∆εlongN . For

Figs. 4.5a and 4.6a the emittance increase was calculated using simulation results

for the beam parameters at each dipole as an input for Eqs. 4.10 and adding these

values to the simulated beam emittance without CSR included.

We also provide calculations of the Derbenev parameterDpar [55] in Figs. 4.5b,

4.6b and 4.7b, in order to illustrate that the validity range of the CSR theory

outlined in Chapter 2 [18] is violated when approaching maximal compression, or

in cases where the transverse beam size is large. According to the theory, for the

analytical calculations to be valid, the condition Dpar � 1 should be fulfilled.

This parameter is given by:

Dpar = σ⊥σ
−2/3
z R1/3. (4.11)

The values for the transverse beam size σ⊥ and bunch length are taken from

elegant simulations with CSR switched off.
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Figure 4.5: Horizontal emittance as a function of BC01 bending angle, with the
corresponding bunch length as simulated by elegant. The analytic results are

calculated using Eq. 4.10.

95



Chapter 4. CSR Measurements

70.5 71.0 71.5 72.0 72.5 73.0
0.0

0.5

1.0

1.5

2.0

L01 phase (deg)

ϵ n
,x
(m
m
-
m
ra
d
)

Elegant CSRTrack 3-d

Analytic GPT Measurement

0

20

40

60

80

100

rm
s
b
u
n
ch
le
n
g
th

(f
s)

(a) Results from the L01 phase scan.

● ● ● ● ● ● ● ● ● ● ●

■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

70.5 71.0 71.5 72.0 72.5 73.0
0

1

2

3

L01 Phase (deg)

D
p
a
r

DIP01

DIP02

DIP03

DIP04

(b) Dpar at the exit of each bunch
compressor dipole for the linac phase scan.
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corresponding bunch length as simulated by elegant. The analytic results are

calculated using Eq. 4.10.
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Figure 4.7: Horizontal emittance as a function of Q L01.04 strength

As seen from the plots, there is a general agreement between the measurement

procedure, simulation results and analytic calculations, at least in terms of the

trends. For the scans of Q L01.04 strength (Fig. 4.7a) in particular, some post-

processing was necessary in order to crop some of the images – for a strongly

mismatched bunch, some of the bunches were barely visible above the noise. The

discrepancy between simulation and experiment in the peak around 71.6− 72.1°

in Fig. 4.6a can possibly be attributed to coherent OTR emission (COTR). It has

been demonstrated that intense COTR emission can lead to an underestimation

of the transverse beam size [23, 118], and thereby to lower measured emittance

values. In both sets of experimental data for varying compression factor, there
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is a slight dip around the point where a peak in emittance is seen in simulation,

which may be evidence for COTR affecting the emittance measurement.

This interpretation is supported by the observation that the largest mismatch

between the elegant simulation and the two sets of experimental results for this

data set occur where the bunch length is around 40 fs or less – this is the point

where coherent emission is expected to be maximised. This was corroborated

with measurements taken using the YAG screen (not shown in the plots), which

followed a similar trend to the measurements taking using the OTR screen. Al-

though the absolute value of the emittance was larger across the range of bunch

compression factors (as a result of the YAG screen having lower resolution com-

pared to the OTR screen), the largest emittance growth measured using the YAG

screen was found at the point where the compression factor was largest.

A similar apparent overestimation of emittance growth can be observed for

the bunch compressor angle scan in Fig. 4.5a for the elegant simulation. The dif-

ference between the analytical calculations made using Eq. 4.10 and the elegant

simulations is due to the fact that the simulation neglects the transverse size of

the bunch, whereas the theory takes this parameter into account. The transverse

extent of the bunch results in a wider radiation cone than that which would result

from an infinitely thin bunch, and so the CSR force experienced by a particle will

be reduced. GPT and CSRTrack 3D are able to capture both the emittance

trend and its absolute value more accurately than elegant over the entire range

of bunch lengths. It is also possible, however, that shielding of CSR by the vac-

uum pipes in the bunch compressor could contribute to the mismatch between

the simulated and experimental results – this was not a factor included in any

of the simulations (although see Sec. 3.2.4 for an explanation of why shielding of

CSR is not expected to be significant for this experiment).

One further notable aspect of Figs. 4.5a and 4.6a is the trend of the simulated

emittances on either side of maximum compression (the point of minimum bunch

length). This point is located at a bunch compressor angle of 106 mrad and

around 71.6 ° for the linac phase scan. For larger bending angles, or lower values

of the linac phase, the bunch is over-compressed. This means that the bunch

has undergone maximum compression in the final dipole magnet, and it exits
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the bunch compressor with a bunch length longer than the minimum. Since the

minimum bunch length is reached in the magnet, the CSR emission will reach a

maximum in the final magnet. Since the elegant code appears to overestimate

the effect of CSR on the beam emittance, this overestimation will be larger for

bunches that have undergone a minimum in bunch length, when compared with

under-compressed bunches.

The simulated current profiles for the bunch compressor and linac phase

scans are shown in Fig. 4.8. For the linac phase scan, the largest discrepancies

between the experimental data and the CSRTrack and GPT simulations occur

between linac phase settings of 71.6−72.1 ° – in this range, the maximum current

is greater than 1.3 kA. Comparing the results from simulation and experiment

with Dpar, we observe the most appreciable overestimation of the effect of CSR in

the 1D simulation when Dpar is greater than 2.5 at any point across the chicane.

When the value Dpar is smaller than this value, as during configurations with

more moderate compression as in Fig. 4.5a, the agreement between all of the

simulations and experimental results is good.
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Figure 4.8: elegant simulation of the current profiles for compression factor
scans.

The differences between the elegant results and those from CSRTrack

and GPT simulations are also noteworthy. It appears that, when the bunch

undergoes maximum compression (as seen from the minimal bunch length in
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Figs. 4.5a and 4.6a), the discrepancy between the 1D and 3D codes is largest,

with elegant returning an emittance value around 40 % larger than CSRTrack

at the peak. GPT does return a slightly higher value for the emittance than

CSRTrack and the experimental data around maximal compression. In order

to rule out LSC in elegant accounting for this difference, the parameter scans

were simulated with LSC switched on and off in elegant, with only a maximum

reduction of 5 % in the projected emittance without LSC. Little variation was

seen in the GPT results with space-charge switched off. Comparisons between

CSR simulations and experimental data have been studied previously [14, 16, 17],

but only for moderate compression factors (up to around 15 at a given bunch

compressor).

Indeed, at moderate compression factors – up to around 15 − 20, at which

point the bunch length approaches 100 fs, we see relatively good agreement be-

tween the codes and experimental data to within 10 %. It can also be seen that

the analytic calculations of Eq. 4.10 reflect the experimental measurements and

the GPT and CSRTrack simulations quite well, despite the Derbenev crite-

rion being violated for large bunch compression factors. The fact that the codes

which calculate the CSR fields directly from the retarded potentials give a closer

agreement with experimental data further suggests that there are limits to the

applicability of 1D simulations of CSR.

As the compression factor is increased – up to a maximum value of 64 –

more significant discrepancies between the simulation results appear. It appears

that there is an overestimation of the effects of CSR in elegant. By comparing

the simulated slice properties for various compression factors, we can try to

observe where the discrepancies arise. In order to isolate the effects of CSR, the

parameter scans were run in elegant and CSRTrack 1D with CSR switched

off (see Figs. 4.9a and 4.10a). The agreement between the codes in this case is

good, and from this we can conclude that CSR is the dominant process causing

the projected emittance growth.

Now, if the same set of parameter scans are run again with CSR switched on,

(see Figs. 4.9b and 4.10b), it can be seen that, towards maximal compression, the

elegant simulation returns a higher value for the horizontal slice emittance in the
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(a) (b)

Figure 4.9: Slice emittance for maximum compression in the bunch compressor
angle scan as simulated by elegant (Red) and CSRTrack 1D (Blue),

without, and with, CSR.

(a) (b)

Figure 4.10: Slice emittance for maximum compression in the linac phase scan
as simulated by elegant (Red) and CSRTrack 1D (Blue), without, and with,

CSR.

central portions of the bunch as compared with the results from the CSRTrack

1D simulation. This is the region where, for a bunch with a Gaussian longitudinal

distribution, the steady-state CSR wake is largest, due to the greater density of

particles in this region. Slice emittance values at lower compression values (on

either side of the maximum) show good agreement between the codes. The

vertical emittance and current profiles are almost identical in all compression
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scenarios.
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Figure 4.11: GPT simulation of emittance growth in the three scans with and
without the Coulomb term of the Liénard-Wiechert field.

Another noteworthy effect of the Liénard-Wiechert potentials in strong com-

pression scenarios is revealed by the GPT simulation. Plots comparing the final

projected emittance as simulated by GPT for the three parameter scans are

shown in Figs. 4.11a, 4.11b and 4.11c, with the Coulomb term switched on and

off. It can be seen that, approaching maximal compression, or largest transverse

bunch size, the Coulomb term can have a considerable impact (up to 10 %) on

the final CSR-induced emittance growth. In the case of a larger bending angle

in the chicane, this can be understood as the catch-up distance for the Coulomb

term being shorter, and similarly for a bunch with minimal chirp around the

linac phase for maximal compression. When the bunch has a larger transverse

size due to the focusing into the chicane, the radiating cone is also larger, and

so the Coulomb interaction between the tail and head of the bunch will also

make a larger contribution. It is also likely that this neglected term will have

a more significant impact for accelerator configurations with a higher density of
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bends, such as in arcs in energy recovery linacs (ERLs). These results give fur-

ther evidence of the importance of correctly simulating CSR effects in dispersive

regions.

4.6 Summary

This chapter has presented a study of CSR-induced emittance growth in the

first bunch compressor of the FERMI linac across a range of beam parameters.

As described in Chapters 2 and 3, finding an agreement between measurement,

theory and simulation in the field of collective effects in this field has been a

long-standing issue. The measurements presented in this chapter, and the cor-

responding simulations and analytic calculations, show good agreement for a

range of bunch compression factors (a factor of almost an order of magnitude).

The experimental measurements show that, as the bunch length decreased to

the minimum value across the scans of bunch compression factor, the projected

emittance after compression reached a maximum. This is in good agreement with

the theory of CSR (see Sec. 2.2), which states that the radiated CSR power is in-

versely proportional to the bunch length. Three simulation codes have been used

to simulate these experimental measurements – two of which (GPT and CSR-

Track) calculate the CSR interaction between emitting and receiving particles

directly using the Liénard-Wiechert potentials (Eq. 2.31), with some simplifica-

tions to reduce the computational load, and one which uses the 1D CSR theory

(elegant), neglecting the transverse extent of the bunch. As expected, the codes

which are not limited by the 1D approximation provide better agreement with

the experimental measurements.

One further aspect of this study aimed to investigate the limits of the theory

of CSR, whose validity is limited by the ratio between the transverse and longi-

tudinal bunch size, and the bending radius of the dipole magnets in the bunch

compressor. The theory should be invalidated if the transverse size of the bunch

becomes considerable when compared with the bunch length (i.e. if Dpar is not

much less than 1, see Eq. 4.11). This invalidation condition was met during the

experiment for the largest values of the bunch compression factor, reaching a
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maximum value of Dpar ≈ 3. The predicted emittance growth for the beam and

lattice parameters of this experiment has been calculated and compared with the

results from simulation and experiment, and good agreement was found between

all of these (except for the results from the elegant code), suggesting that the

theory described in Sec. 2.2 may be more robust than expected, at least in terms

of describing the projected growth in beam emittance due to CSR.
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Chapter 5

Microbunching Measurements

Laser heaters have proven to be invaluable components of high-energy free-

electron lasers (FELs) [27, 28, 29], utilised in order to suppress the microbunch-

ing instability [22, 25, 61], a collective effect that can develop due to shot noise

[66] in the injector of such a machine, and undergo amplification due to space-

charge [68] and coherent synchrotron radiation effects [22] (see Sec. 2.3). Any

small-scale structure in an electron bunch can develop and amplify during ac-

celeration, leading to deleterious effects in the FEL process at the high-energy

end of the machine. The laser heater in its nominal configuration consists of a

small dispersive chicane, in the centre of which is an undulator (see Sec. 2.4.1).

Propagating simultaneously with the electron beam in the undulator is a laser

pulse which imposes an energy modulation on the beam. Since the wavelength

of the laser is much shorter than the electron bunch length, the paths travelled

by particles with different energies through the second half of this chicane will

then overlap in longitudinal phase space. This process therefore removes the

modulation, also causing a slice energy spread increase across the bunch, which

prevents the development of the microbunching instability in the remainder of

the accelerator lattice.

Recent experiments at the FERMI FEL [13] have investigated the possibil-

ity of using a non-uniform laser pulse to impose modulations on the bunch,

thereby seeding the microbunching instability (see Sec. 2.4.3 and Ref. [92]). This

is achieved through chirped-pulse beating of the laser heater pulse, in which the

pulse is chirped and separated, then recombined with a variable delay [97]. The
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beating frequency of this chirped pulse is then proportional to the delay between

the two pulses, and the wavelength of the pulse can approach the same order as

the electron bunch length. The imposition of such a laser pulse onto the electron

bunch leads initially to an energy modulation, which is then converted into a

density modulation at the exit of the laser heater chicane. Due to longitudinal

space-charge forces, there is a plasma oscillation between energy and density

modulations that develops along the machine (see Sec. 2.3.2 and Ref. [19]), and

so the final orientation of the microbunches in the bunch longitudinal phase

space will be a function of this plasma oscillation frequency. (See Sec. 2.3.6 for

an analytic model of a microbunched beam with varying microbunch orientation

angles.)

The ability of computational codes to simulate microbunching is an active

area of research, and this chapter will also present simulations of the experiments

outlined above. By using the elegant simulation code (see Sec. 3.1.1), it is

possible to simulate the large numbers of particles required to reproduce the

effects of microbunching. As mentioned in Sec. 2.4.3, the code can also simulate

the electron-laser interaction within the laser heater, and the user can define a

custom laser pulse corresponding to the intensity profile produced by chirped-

pulse beating.

In this chapter, results will be presented from an experiment which aimed

to develop an understanding of the development, mitigation, and stimulation of,

the microbunching instability. The machine and experimental parameter range,

and the method for analysing the beam longitudinal phase space, are outlined in

Sec. 5.1. The image analysis techniques, and measurements of the bulk longitu-

dinal phase space, are given in Sec. 5.2. These techniques are applied in Sec. 5.3

to analyse the measured slice energy spread increase on the bunch due to the

use of the laser heater. Studies of the ‘natural’ microbunching, which develops

without the intervention of a laser heater, and of the laser heater in its nominal

configuration, are given in Sec. 5.4. In order to study the microbunching pa-

rameters of interest, in particlar the modulation frequency and bunching factor,

we have developed a novel method of analysing the longitudinal phase space of

such beams using two-dimensional Fourier analysis. This method has the added
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benefit of providing two more parameters of interest: the energy chirp of the

bunch (that is, a measure of the correlation between the position of an electron

in the bunch and its energy – see Sec. 2.1.4), and the angle of orientation of the

microbunches with respect to the total bunch. This latter parameter is of in-

terest for understanding the plasma oscillations undergone by the bunch due to

longitudinal space-charge forces (see Sec. 2.3.2). In Sec. 5.5, this analysis tech-

nique will be applied to study induced microbunching, in which the chirped-pulse

beating technique (see Sec. 2.4.3) was used on the laser heater pulse to seed mi-

crobunching in the electron beam, over a range of laser and lattice parameters.

Example measurements of the longitudinal phase space of these experiments are

shown, and in Sec. 5.6, along with analysis and discussion of the microbunching

parameters of these beams. Simulations of these experiments have also been

conducted. The bunching factor, modulation period in energy and time, and

plasma oscillation phase produced by these simulations are the main parameters

of interest to provide a benchmark between simulation and experiment.

5.1 Introduction to Microbunching Studies

Electron bunch compression in the accelerating section of the FERMI FEL can

be achieved using two four-dipole chicanes. The bending angles of these chi-

canes can be varied, meaning that three possible bunch compression scenarios

are available: using the first or second chicanes only (BC1 or BC2, respectively:

the ‘single compression’ schemes), or using both in tandem (BC1+BC2: ‘double

compression’). The evolution of small-scale structure in a bunch is highly depen-

dent on the LSC and CSR interactions during transport through the accelerator

(see Sec. 2.3), and so the point(s) at which the bunch is compressed can influence

the microbunching gain, frequency and plasma oscillation phase. These parame-

ters can be investigated experimentally by studying the longitudinal phase space

of electron beams at the exit of the accelerating section of the FERMI linac.

The longitudinal phase space can be measured through the use of a transverse

deflecting cavity (TDC) and a dipole magnet [85, 119].

A TDC, or vertical RF deflector (VRFD), acts to streak the beam along the
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desired plane. In the case of the FERMI vertical deflector, the deflecting phase

is set such that the voltage is zero in the centre of the bunch (its ‘centroid’) and

gives a vertical deflection that varies (approximately) linearly from the head to

the tail of the bunch. Since the vertical trajectory of an electron in the bunch

then depends on its longitudinal position, the temporal profile of the bunch

can be observed on a screen at a downstream location. When coupled with a

dipole magnet, which deflects particles horizontally according to their energy,

it is possible to obtain an image representing the distribution of particles in

longitudinal phase space.

The vertical position of a particle on the observation screen depends on its

deflection in the TDC through the element R34 of the transfer matrix from the

cavity to the screen. This can be controlled through the optics of the beamline,

to optimise the temporal resolution of the longitudinal phase space measurement.

In order to calculate this accurately, errors due to the screen pixel size, to the

beam non-zero vertical emittance εy, and to the TDC-induced energy spread

(defined below) must be taken into account when calculating the slice energy

spread (SES). The spread of longitudinal momentum σδ,TDC is dependent on the

vertical position of particles within the cavity, and so it can therefore provide a

measurement of the bunch length. Given the beam mean energy E ≈ p̄zc, where

p̄z is the beam central longitudinal momentum, evaluated at a distance of σz

from the bunch centroid, the rms value of σδ,TDC is [120]:

σδ,TDC ≈
eVrfkrf

2p̄zc

√(
eVrfkrf

2p̄zc

)
L

3

2

σ2
z + εyβy,TDC, (5.1)

with Vrf ≈ 19 MV, krf = 62.8 m-1 the voltage and wavenumber of the TDC with

length L = 3.5 m, and βy,TDC ≈ 25 m the average vertical betatron function

in the TDC. Measurements of the beam optics parameters, of the SES vs. the

deflector RF power attenuation factor, and the evaluation of the effective peak

deflecting voltage, led to estimated temporal and energy resolutions of ≈ 10 fs

and 70 keV, respectively.

The FERMI energy spread measurements produce files consisting of the im-

ages taken during the measurements, along with metadata containing various

machine settings. This metadata includes:
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� Pixels per mm.

� Laser heater actuator (intensity).

� Magnet / RF settings and measured parameters.

� Measurements from diagnostic devices.

The final goal for this measurement procedure is to be able to correlate the

machine parameters with the measured microbunching parameters. The details

of this post-processing of images will be presented throughout the remainder of

this chapter. The algorithm for analysing images and extracting microbunching

parameters executes the following operations:

1. Image Fitting:

(a) Calculate, based on the TDC parameters, the dipole current and the

pixel size, the calibration factors in the longitudinal and energy axes.

(b) Select a rectangular portion of the full image based on a Gaussian fit

in the horizontal and vertical directions.

(c) Extract from these fits the current and energy profile, and the bunch

length and total energy spread.

2. Fourier transform and Region of Interest selection:

(a) Calculate the Fourier transform of the bunch image.

(b) From the calibration factors measured in real space, calculate the pixel

resolution in Fourier space.

(c) Normalise the intensity of this image such that the maximum value

(in the centre) is equal to 1.

(d) Select a portion of this image that contains the region of interest; in

this case, the satellites around the central (DC) term that represent

the modulations on the bunch.

3. Microbunching parameter extraction
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(a) From this portion of the image, the bunching factor (Fourier transform

image intensity) as a function of frequency (in either the energy or

longitudinal dimension) is measured, along with the plasma oscillation

angle (the arctangent of the ratio between these two frequencies at a

given point). See Sec. 5.4 below for more details.

This procedure is then repeated for a number of shots, and statistical analysis

is performed. Save for step 2.(d), which requires some user intervention to de-

termine the region of interest, this routine is automated. The details concerning

a number of the steps in this procedure are given throughout the remainder of

this chapter.

Nine different accelerator lattice and laser heater configurations were used

during this experiment for the purposes of investigating the longitudinal phase

space microbunching at the exit of the FERMI linac – see Table 5.1 for a summary

of the beam parameters for each lattice configuration. The point at which the

compression occurs, and the relative strength of the compression, has an influ-

ence on both the final predicted bunching factor and the microbunching gain as a

function of initial modulation, and so it is instructive to compare the microbunch-

ing across these three lattice configurations. The theory of microbunching (see

Sec. 2.3) predicts the largest amplification of bunch modulations for a double

compression scheme over the single compression cases, and so the three lattice

configurations investigated in this chapter will aim to validate this prediction

(see Secs. 5.4 and 5.6 below). The chirped-pulse beating method applied to the

laser heater (see Sec. 2.4.3) can also be used to investigate the microbunching

gain in more detail (see Sec. 5.5 below): by applying a modulation with a known

frequency on the bunch, and observing the final bunching factor, it is possible in

principle to experimentally reconstruct the microbunching gain curve.

For each of these bunch compression scenarios, three different laser heater

configurations were employed. Firstly, in order to study the ‘natural’ microbunch-

ing, the laser was switched off. Secondly, the laser heater was used in its nominal

configuration: the laser pulse – Gaussian in both transverse and longitudinal di-

mensions – co-propagated with the beam travelling through the laser heater

undulator, adding an uncorrelated energy spread to the entire beam. This was
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Table 5.1: Main measured beam parameters of the FERMI accelerator for the
three compression schemes. Except where stated, the values correspond to the

bunch parameters at the end of Linac 4.

Bunch parameters Unit BC1 only BC2 only BC1+BC2
Bunch charge pC 100 100 100
Final beam energy MeV 787 713 754
Beam energy at bunch compressor MeV 297 427 307, 707
Bunch length (rms) fs 54 37 62
Chicane bending angle mrad 105 90 105 + 85
R56 mm −62.5 −40.9 −62.5,−40.9
Peak current A 550 800 480
Relative σδ (rms) % 0.1 0.15 0.3
Energy chirp at BC m-1 ≈ −15.5 ≈ −23.8 ≈ −11.9,−21.5
Energy chirp at DBD m-1 ≈ −20 ≈ −85 ≈ −110

done for a range of laser pulse energies. Thirdly, the chirped-pulse beating tech-

nique (see Sec. 2.4.3) was applied to the laser heater pulse, in order to impose

modulations on the bunch longitudinal phase space. This was done for all three

lattice configurations, over a range of laser pulse energies and chirped-pulse beat-

ing delays, which varied the intensity profile and beating wavelength of the laser

pulse.

5.2 Image Analysis

This section gives a description of the methods used to analyse the longitudinal

phase space images. A system consisting of a vertical RF deflector together with

a horizontally bending dipole can provide a measurement of the distribution of

particles in longitudinal phase space, showing the particle density as a function

of longitudinal position (with respect to the centroid of the bunch) and particle

energy. The microbunching instability is known to affect the beam distribution

in terms of both the longitudinal profile and the energy profile (see Sec. 2.3), and

so a measurement of these beam properties proves to be useful in quantifying

the modulations in the bunch. Such measurements are also useful for filtering

out images whose longitudinal phase space properties diverge largely from the

average, due primarily to jitter in the RF linacs in the machine. In this section,

the methods used for measuring the bulk properties of the longitudinal phase

space (bunch length and slice energy spread) are described and applied.
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5.2.1 Current Profile Measurements

The bunch compression process is strongly dependent on the relative RF phase

that the bunch experiences before compression, as this has an influence on the

chirp of the bunch (see Eq. 2.29). In particular, during the experiment it was

observed that the phase jitter of the X-band linearising cavity was causing bunch-

to-bunch variation in the bunch length. As a result of the larger electric field

gradient in this cavity (11.9 GHz as compared with the 2.9 GHz S-band cavities

in the accelerating linacs), phase jitter in the X-band cavity leads to a larger

change in the RF field, which then results in a larger bunch length variation.

Fig. 5.1a shows the correlation between a number of RF phase parameters at

each of the FERMI klystrons and the final bunch length for bunches compressed

using BC1-only. It can be seen clearly that klystron number 4 (K04) is most

strongly correlated with the bunch length – this klystron is the driver for the

X-band lineariser. In Fig. 5.1b the bunch length is plotted as a function of

the measured phase. A correlation can be seen here, with the bunch length

varying by up to a factor of two from shot to shot. There is not a one-to-one

correlation here between bunch length and X-band cavity phase, as a number of

other parameters also contribute to a variation in the compression, but this RF

phase provided by far the most significant contribution to bunch length jitter

during the experiment.

The final microbunching modulation wavelength depends on the ratio be-

tween an initial (i.e. pre-compressed) modulation in the bunch and the com-

pression factor. For this reason, the experimental data was filtered based on the

current profile of the measured bunches. Given a total bunch charge Q of 100 pC

– which did not vary greatly during the experiment – the current profile I(t) can

be determined using the following formula:

I(t) =
Q · ΣX(t)

∆t · ΣX
, (5.2)

where X represents the intensity of a pixel in the bunch, ΣX(t) represents the

total intensity of a slice along the temporal axis, ΣX gives the total pixel intensity

of the image, and ∆t is the temporal resolution of the image (around 10 fs, as
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(a) Correlation between a number of phase
parameters at all klystrons used to drive the

FERMI RF structures and the measured final
bunch length. The parameters in the legend

refer to the parameters labelled in the
metadata associated with the measurement set.
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(b) Final measured bunch length as a function
of K04 phase – this is the klystron used to

drive the X-band linearising cavity.

Figure 5.1: Correlation between RF phase parameters and final measured
bunch length for the BC1-only lattice configuration.

described above in Sec. 5.1). The bunch length is calculated as the FWHM of

the current profile I(t).

During the experiment, the goal was to maintain the bunch compression

factor such that the final bunch length was the same across all three bunch com-

pressor configurations. The current in the centre of the bunch was in the range

500–700 A. Fig. 5.2a shows a histogram of the measured FWHM bunch length

over 200 shots. In order to analyse only those bunches with a similar compression

factor (assuming the same initial bunch length), therefore maintaining the same

final bunching period, the microbunching analysis performed below (Sec. 5.4)

was performed only on those bunches whose bunch length fell within 10 % of the

mean value. Fig. 5.2b shows the distribution of bunch lengths in this range.

The reason for choosing only the images corresponding to bunches within

this range is to ensure a flat-top current profile in the bunch core, in addition to

attempting to preserve the microbunching period across a number of images, as

this period is dependent on the compression factor. As shown in Fig. 5.2a, there

was a significant variation in the bunch length, with a considerable number of

bunches that were compressed 1.5–2 times as much as others. Fig. 5.3 shows the

averaged current profiles for both the full set of measurements and the reduced

subset; it can be seen that the latter set of measurements better preserves the
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(b) Subset of shots with the desired current
profile (70 images).

Figure 5.2: Histogram of measured bunch length (FWHM) for bunches
compressed using BC1-only.

flat-top current profile desired for this experiment.
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Figure 5.3: Current profile (measured) for bunches compressed using BC1-only.
The curve in red shows the mean current profile across all 200 shots, whereas

the blue curve gives the mean over the selected subset of bunches with the
desired current profile. The error bars represent the standard error across the

measurement sets.

For sets of measurements corresponding to the two other bunch compressor

configurations, the jitter was not as pronounced, as the compression process is

not as strongly dependent on the phase of the linearising cavity, which is slightly
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upstream of the entrance to BC1. In order to ensure that the microbunching

and energy spread analysis gave consistent results – that is, for cases where the

bulk longitudinal phase spaces did not largely diverge from one another – only

bunches whose current profile fell within the specified range were analysed. This

shot selection procedure is more complicated in the case of strong microbunching,

as the current profile is not smooth. In this case, a Gaussian fit was applied

to the measured bunch length, and shots were analysed if the width of this

Gaussian fit fell within one standard deviation of the mean bunch length across

all measurements.

5.2.2 Slice Energy Spread Measurements

A similar process to that described above in Sec. 5.2.1 can be used to deter-

mine the slice energy spread of the bunch. Since the transverse deflecting cavity

provides a full single-shot measurement of the bunch longitudinal phase space,

the energy spread of the bunch as a function of longitudinal position can be

determined.

The slice energy spread σE(t) at some position in time along the bunch t

can be measured by fitting a Gaussian to a 1D projection of the bunch along the

slice. The measured slice energy spread along the bunch for the case of BC1-only

compression without the laser heater is shown in Fig. 5.4. The bunch images used

to produce this figure were in the same subset as those shown above in Fig. 5.3.

It can be seen that, throughout the core of the bunch – within the region

≈ ±0.05 ps from the centre – the mean slice energy spread is 0.187± 0.004 MeV.

As shown in Fig. 5.3, outside of this range, the current profile drops sharply.

This means that the fitting of the slice energy spread is no longer reliable, and

so the measured slice energy spread at the head and tail of the bunch increases.

Within the region of interest (the core of the bunch), there is little variation in

slice energy spread across the bunch core.
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Figure 5.4: Slice energy spread (measured) for bunches compressed using
BC1-only. The images analysed for this plot are the same as those used to

produce the blue curve in Fig. 5.3. The error bars represent the standard error
across the measurement set.

5.3 Energy Spread Induced by the Laser Heater

The energy spread and the temporal resolution of the diagnostic system, con-

sidering limitations from beam optics, calibration error of the beam stretching

and screen spatial resolution, was estimated respectively to be 70 keV and 10 fs

(rms values). According to particle tracking runs using GPT [101] (see Sec. 4.2),

the uncorrelated (slice) beam energy spread out of the injector – once the space

charge forces internal to the bunch are mostly suppressed by the ultra-relativistic

motion – is predicted to be approximately 2 keV rms in the bunch core (see

Fig. 5.5).

The laser heater parameters are given in Table 5.2. For more details on the

system, see Ref. [28]. The slice energy spread (SES) measured at the DBD screen

as a function of the laser heater energy added is shown in Fig. 5.6 for all three

compression scenarios. In this case, only the mean SES of the bunch core has

been calculated. This is for two reasons: strong nonlinear compression in the

head and tail of the bunch can sometimes lead to the generation of current
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Figure 5.5: Slice energy spread at the exit of the FERMI injector as simulated
by GPT.

Table 5.2: FERMI laser heater system parameters

BEAM TRANSPORT
Chicane magnet bend angle 3.5 °

Transverse offset in chicane 30 mm
Dispersion 60 cm
Beam energy 96 MeV
Emittance 0.35 mm−mrad
Transverse beam size 70 µm

UNDULATOR
Period 40 mm
Number of full periods 12
Undulator parameter K 0.88

LASER
Wavelength 783 nm
Spot size 120µm
Pulse length (FWHM) 16.5 ps
Pulse length (stretched) 7.02 ps
Pulse energy (maxmimum) 16.7 µJ
Spectral bandwidth 5 nm
Linear chirp coefficient −1.5× 1023 s−2

Delay between pulses 4–30 ps
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spikes, which distorts the measurement; and, as mentioned above (Sec. 5.2.1), if

the current profile drops off at the head and tail of the bunch, then the fitting

of the SES is not as reliable.

BC1 only

BC2 only

BC1 + BC2
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Figure 5.6: Slice energy spread at the bunch core, measured at the end of the
linac, as a function of the energy spread added by the laser heater for all three
compression scenarios. Circles show the measured values, and the triangles use

Eq. 2.78, taking into account the decompression by the spectrometer dipole.

First, we notice that the SES associated with null or weak LH action (up to

10 keV of added energy spread) is comparable in the BC1 and BC2 schemes, and

much larger in the BC1+BC2 scenario, in spite of the lower total compression

factor compared to the single stage compressions. This is consistent with theo-

retical predictions of the microbunching gain, according to which, once the peak

current is partially increased by the first compressor, the second compressor then

causes the energy modulation cumulated upstream to be converted into ampli-

fied bunching [121, 22]. This in turn drives larger energy modulations, resulting

in a larger SES at the linac end. In that sense, the larger SES of the double

compression is a clear signature of stronger instability gain.

At the same time, in spite of a higher final peak current in the BC2-only

scheme with respect to BC1-only, the SES is comparable in these two cases.
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This is explained by the fact that, in the former scheme, a much lower peak

current (around 18 A) propagates through the injector-to-BC2 linac section than

in the latter. Therefore, the naturally low bunching factor of the initial beam

generates much lower energy modulation at the entrance of BC2 than the already

compressed beam in BC1 does. This way, the degrading effect of a higher peak

current at the exit of BC2 is counterbalanced by the lower amount of energy

modulation cumulated up to that point. This allows one to conclude that a

high final peak current is not the only factor leading to a higher instability gain.

Instead, the evolution of the beam properties along the entire beam line should

be considered.

Second, we note that at very strong heating (from 20 keV and higher added

energy spread) the instability is expected to be partly or fully suppressed, and

therefore the SES should follow a linear dependence from the LH-induced energy

spread, where the proportionality should be just the linear compression factor

[46]. Though a linear dependence of the SES on the LH-induced energy spread

is apparent in the figure, the slope is not as high as expected. The reason for

this is that the bunch length increases as the beam passes through the DBD

spectrometer magnet, in the presence of a relatively large linear energy chirp

(see Table 5.1). In this case, the bunch length can be reconstructed from the

beam image at the screen as it was at the deflector location (i.e. at the nominal

compression factor).

The SES, instead, is decreased by the same amount the bunch is lengthened in

the dipole magnet. The analysis of the images for the three compression schemes

confirms that the energy chirp at the dipole is approximately 20 m-1, 85 m-1 and

110 m-1 for the BC1, BC2 and BC1+BC2 scheme, respectively. Once coupled to

the dipole longitudinal dispersion, R56 = 0.12 m, that chirp reduces the nomi-

nal compression factor, and therefore the SES cumulated up to that point, by

factors of approximately 3, 13 and 16 respectively. This scaling only holds in

the region of strong beam heating, which allows the longitudinal emittance to

be approximately preserved during magnetic (de-)compression. For heating level

lower than 20 keV, the microbunching instability is still playing a role. In fact,

a minimum of the SES is barely visible for the single compression schemes, for
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the LH set at around 5–8 keV. Also plotted in Fig. 5.6 is a theoretical evalua-

tion of the slice energy spread added by the laser heater, using Eq. 2.78, taking

this decompression effect into account. It can be seen that the predicted values

match up well with the measured SES. Eq. 2.78 does not take microbunching into

account, and so the fact that there is a linear trend in the SES for increasing

laser heater pulse energy above 10 keV suggests that the microbunching has been

removed beyond this point.

Theoretical evaluations of the gain curve associated with the CSR impedance

only as introduced in [121, 22] (Sec. 2.3.3), indicate that, for all the three com-

pression schemes, the CSR-induced microbunching is negligible compared to the

effect of the LSC impedance [26]: the peak CSR gain is typically around unity,

and is one or two orders of magnitude lower than that associated with LSC. Con-

sequently, the impact of CSR on the final SES is also very small (for an estimate

of the SES and its dependence on the total gain, see e.g., Eq. 17 in [61]). The

gain in microbunching as a function of initial modulation wavelength is plotted

for the three compression schemes in Fig. 5.7, taking into account the beam and

lattice parameters through the machine. The calculation takes into account CSR

and LSC effects, and additionally the effect of intrabeam scattering (IBS) [64]

(Sec. 2.3). It can be seen that maximum gain for the single compression schemes

are around half that of the double compression scheme, in which case the IBS

effect substantially damps the microbunching upon entrance to BC2.

Particle tracking runs for the FERMI injector have been conducted with the

GPT code [101] (for more details on these simulations, see Sec. 4.2). These simu-

lations have provided an estimate for the uncorrelated (slice) beam energy spread

out of the injector, once the space charge forces internal to the bunch are mostly

suppressed by the ultra-relativistic motion, predicted to be approximately 2 keV

rms in the bunch core. In the presence of a total compression factor of 35 as in

the BC1-only case, for example, and in the absence of the instability, the preser-

vation of the beam longitudinal emittance predicts a final value around 70 keV.

The measured minimum SES is larger than this, as a signature of residual insta-

bility action in the longitudinal phase space at low heating levels. It is only once

the microbunching has been removed (above approximately 10 keV of heating)
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(a) BC1 only. (b) BC2 only.

(c) BC1 + BC2.

Figure 5.7: Calculated microbunching gain as a function of initial modulation
wavelength λ0, including the effects of LSC, CSR and IBS.

that good agreement between the measured SES and Eq. 2.78 can be seen clearly.

The slice energy spread added by the deflector (see Eq. 5.1) is a systematic con-

tribution which adds in quadrature to the actual beam energy spread, and so it

was subtracted from the measured quantity as shown in Fig. 5.6. The error bars

are dominated by the uncertainty on the measurement reproducibility.

5.4 Fourier Analysis of Longitudinal Phase Space

Two-dimensional Fourier analysis of the longitudinal phase space of a beam can

reveal, in addition to the microbunching frequency and amplitude, the phase

of the plasma oscillation between bunching in energy and in time. By compar-

ing these three parameters for measured bunches, it is possible to demonstrate

experimentally the interplay between collective effects in electron beams, and
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to address the accuracy of the models used in simulation. In this section, the

procedure for measuring the modulations on the bunch will be described, some

representative examples of these measurements for BC1-only compression will

be shown, and the suppression of the microbunching with the laser heater will

be discussed. The measured modulation period and bunching factor for all three

bunch compression schemes is also presented and discussed; finally, the plasma

oscillation phase at the end of the linac is measured and compared with semi-

analytical predictions.

5.4.1 Measurement Procedure

A procedure has been developed and implemented in order to extract the afore-

mentioned microbunching parameters. The algorithm, implemented in Mathe-

matica [122], runs as follows:

1. Select an area of the bunch image to remove low-frequency components on

the order of the bulk scale of the bunch, and apply an intensity threshold

to suppress noise.

2. Apply a 2D Fourier transform to this image and convert from frequency/inverse

energy space (in units of THz/MeV−1) to wavelength/energy modulation

space (in units of µm/keV).

3. Select, by eye, a region of interest based on the position of the satellites

around the DC term in frequency space.

4. Remove wavelength/energy modulation values corresponding to frequencies

smaller than half the Fourier transform of the bunch length and energy

spread.

5. Find the maximum bunching factor as a function of wavelength/energy

modulation.

The fourth step in this procedure is necessary to ensure that only truly pe-

riodic features contribute to the microbunching analysis. Artefacts associated

with noise in the imaging system cannot be removed completely without artifi-

cially manipulating the longitudinal phase space image of the bunch itself, but a
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low-intensity threshold is sufficient to remove some of the persistent noise in the

Fourier transform. One other possible method for reducing noise would be the

application of smoothing algorithms. Mathematica [122] includes in-built func-

tions for Gaussian [123], Wiener [124], mean [125] and band-pass [126] filters, all

of which were applied to the longitudinal phase space images. However, a great

deal of fine-tuning was found to be necessary in order to arrive at similar results

to a simple low-intensity threshold. Since this method should be applicable to a

range of modulation periods in 2D space, and a range of depths of modulation,

fine-tuning of smoothing filters were not found to be useful in this case.

(a) Longitudinal phase space. (b) Fourier spectrum of Fig. 5.8a in
frequency space.

(c) Selected region of the Fourier
spectrum of Fig. 5.8a in wavelength

space – mean of 20 images of the Fourier
spectrum.

Figure 5.8: Example of 2D microbunching analysis for a bunch compressed
using BC1 only, with the laser heater off. The two satellites located around

[±25–30 THz,∓3.5 MeV−1] in Fig. 5.8b represent the modulations in intensity
in Fig. 5.8a.
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The normalised amplitude of a satellite in Fourier space yields the bunching

factor and the distance from the central term gives the microbunching period

along both axes. The arctangent of the ratio between these values represents the

plasma oscillation phase – we normalise the units in this case such that the phase

is dimensionless (see Sec. 5.4.4). The physical origin of this parameter is a com-

bination of a periodic oscillation between energy and density modulations and

the shearing of microbunches due to the magnetic bunch compression process,

as mentioned above (Sec. 2.3). Therefore, the term ‘phase’ may not be strictly

applicable. Nevertheless, since these two effects combine to produce a periodic

variation in the longitudinal phase space, we reserve the term ‘phase’ to refer to

the direction of orientation of the microbunching in longitudinal phase space.

An analytic model of a modulated Gaussian bunch has been constructed for

the purposes of demonstrating the influence of these beam parameters on the

Fourier transform – see Sec. 2.3.6 for examples. Both low- and high-frequency

peaks in intensity are of less interest than peaks at intermediate frequencies,

since the former relate to structure on the scale of the bunch (including current

spikes at the head and tail of the bunch), and the latter arise primarily due to

the resolution of the imaging system.

5.4.2 Example Case: BC1 only

An example of how the 2D microbunching analysis procedure is applied to a

single set of images is shown in Fig. 5.8. From the original image of the longitu-

dinal phase space of the bunch – in this case, compressed using BC1 only, and

with the laser heater switched off – the Fourier transform in frequency space is

then calculated. In this case, the modulation on the bunch is represented by

the points at ≈ [±25 THz,∓3.5 MeV−1] in Fig. 5.8b – this can be confirmed by

applying a low-intensity threshold to Fig. 5.8b and performing an inverse Fourier

transform, in which case only the DC term in the Fourier transform remains, and

the modulations on the bunch disappear. The symmetric properties of Fourier

analysis mean that it is arbitrary which of the two satellites in Fourier space we

choose to analyse.

By inverting the dimensions Fig. 5.8b into wavelength/energy space, averag-
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ing over 20 shots, and selecting the region of interest, the microbunching features

in both dimensions can be clearly seen – see Fig. 5.8c. Since the dimensions of

Fig. 5.8c are the inverted dimensions of the initial Fourier transform, the pixels in

this plane become larger as the wavelength and energy modulation increase. The

region between 10 and 15µm and −250 and −350 keV represent the strongest

modulations on the longitudinal phase space of these bunches.

As the laser heater is activated, the modulations on the bunch become smeared

out due to a larger uncorrelated energy spread along the bunch. This results in a

suppression of the satellites in the Fourier space that represent the modulations

on the bunch, meaning that the bunching has been effectively suppressed. Ex-

amples of images of bunches that have interacted with the laser heater are shown

in Fig. 5.9. It can be seen that, even with a small added energy spread, the mi-

crobunching has been suppressed by around a factor of 2, while for a much larger

laser heater power, the slice energy spread of the bunch has blown up, although

the microbunching level has essentially been suppressed to the noise level. The

colour scale on Figs. 5.8c, 5.9c and 5.9f is the same, to enhance the visibility of

the suppression of modulations. Due to noise in the imaging system, the mea-

sured bunching of a background image still exhibits a maximum value of around

0.01 – 0.02 (see colour scale on Fig. 5.9f), and so this can be said to demonstrate

cases where there is no measurable microbunching in a real beam image. The

value of the bunching factor represents the variation in depth of modulations

along the bunch at some given frequency, and so the minimum value observed

for larger laser heater energies represent a value of around 1 – 2 %.

5.4.3 Analysis of All Compression Schemes

In order to provide a comparison between the longitudinal phase space of a beam

that has not been heated and beams which have, we can project the 2D bunching

onto the wavelength axis or the energy axis for increasing values of the laser

heater energy. Such a projection onto the wavelength axis is shown in Fig. 5.10a

for the BC1-only case, both for a beam that has not been heated, and for beams

heated with various laser heater energy settings. Due to the inherent noise

associated with microbunching, this plot represents the mean microbunching
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Examples of 2D microbunching analysis for a bunch compressed
using BC1 only, with the laser heater on, adding: Top row: 5 keV; Bottom row:
26 keV. The order of the plots from left to right is the same as that of Fig. 5.8.

over a subset of 20 shots whose current profile fell within the correct range. Each

point along the horizontal axis represents the maximum bunching of the Fourier

spectrum, averaged over 20 shots. The trend towards decreasing bunching as

the laser heater energy increases is clear, and it approaches the noise floor of the

measurement for a relatively small added energy spread.

Similar effects can be observed in the analysis of the longitudinal phase space

in other compression scenarios; see Fig. 5.10b for the reduction in bunching in the

wavelength axis for a bunch compressed using BC2 only. As with the case for BC1

only, the bunching is strongest for low laser heater energy settings, eventually

decreasing to the noise level as the laser heater-induced energy spread increases.

In this case, however, the maximum bunching with the laser heater off is slightly

smaller than that observed in the BC1-only configuration. Additionally, a slightly

larger energy spread must be added by the laser heater in order to reduce the

bunching down to the noise floor of the measurement.

An analogous set of measurements corresponding the double compression
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(b) BC2 only.
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(c) BC1 + BC2.

Figure 5.10: Maximum measured bunching factor in the wavelength axis for
bunches compressed using all three machine configurations, for a number of

laser heater energy settings (average of 20 shots).

scheme is shown in Fig. 5.10c. In this case, the strongest bunching is seen in

the wavelength axis at around 17 µm, and the influence of the laser heater can

be observed as with the other machine configurations. The peak occurs at a

longer wavelength than that predicted by the theory in this case (see Fig. 5.7),
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which suggests that the final maximum bunching period should be of a similar

order to the other two cases. The reason for this is that the plasma oscillation

causes a stronger mixing between energy and density modulations than in the

single-compression cases, and so a simple 1D projection of the bunching onto

the frequency axis presents a distorted picture of the actual case in the full

longitudinal phase space. In the cases of BC1-only compression and the double

compression scheme, there is some short-wavelength (high-frequency) bunching

measured at around 1µm. This is not observed for the BC2-only compression

case. This was measured for portions of the image in which there was not any

beam, and so it can most likely be attributed to noise in the imaging system. The

phase space imaging setup was slightly different for each compression scheme,

and so the value of the bunching factor for this high-frequency component is

different in each of the plots.

The absolute value of the maxmium bunching factor with the laser heater off

is largest for the double compression scheme, in agreement with the theoretical

predictions (see Fig. 5.7). The modified theory of microbunching gain, with the

effect of IBS included (see Secs. 2.3.4 and 2.3.5), predicts a microbunching gain

for the double compression scheme of less than a factor of 2 larger than the

single compression schemes; this result is more consistent with experimental

measurements than the theory without IBS, which predicts a gain of around a

factor of 5 larger.

If the maximum bunching factor is then calculated as a function of the energy

spread added (as shown in Fig. 5.11), it can clearly be seen that the microbunch-

ing level has been suppressed completely for a relatively low added energy spread

for all three compression scenarios. On comparing this increase in energy spread

with the results given in Fig. 5.6, it can be seen that the microbunching can be

suppressed by operating the laser heater at low power, leading to only a small

increase in the energy spread. For a compression factor of 35, an added energy

spread of 10 keV means increasing the overall energy spread of the bunch by

around 0.5 %. As shown in Ref. [127], an added energy spread of approximately

this magnitude (albeit with a smaller compression factor) was able to increase

the photon intensity of FERMI FEL-2 by two orders of magnitude.
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Figure 5.11: Maximum bunching factor as a function of laser-heater induced
energy spread for all three compression scenarios.

5.4.4 Plasma Oscillation Phase

Since the modulation period in energy is on the order of 100s of keV, while the

modulation period along the length of the bunch is on the order of 10s of µm at

the peak bunching factor, we have measured the ‘normalised’ plasma oscillation

phase as θP,N = arctan
(
Ēi
mod/f̄mod

)
, where Ēi

mod, f̄mod denote the normalised

modulation period along the energy-inverse and frequency axes in Fourier space,

respectively. This normalised phase for the maximum bunching factor across

the three compression schemes is shown in Fig. 5.12a. It can be seen that the

mixing between energy and density modulations is most significant in the case of

double compression, since the peak bunching factor is at a phase of π/4 between

a pure energy modulation and a pure density modulation. This explains why

the projected modulation wavelength in Fig. 5.10c is longer than in the single

compression cases: the distance of the satellite in Fourier space from the DC

term is fixed for a given modulation period, and it rotates in a circle around

the centre as the plasma oscillation evolves. Taking a 1D projection along the
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frequency axis, for example, will present a distorted picture of the modulation

period if there is not a pure density modulation in the bunch.
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(a) Normalised plasma oscillation phase –
average of 20 shots.
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(b) Measured and theoretical plasma oscillation

phase at the DBD location.

Figure 5.12: Bunching factor as a function of plasma oscillation phase
(normalised, left) and a comparison between measured and predicted final

plasma oscillation phase for all three compression scenarios.

In order to compare the measured plasma oscillation phase at the DBD lo-

cation with theoretical predictions, a semi-analytic model has been developed

to track the evolution of the plasma oscillation through the machine. Particle

tracking runs of the post-injector lattices for the three compression schemes have

been conducted using the elegant code [96] to compute the beam size, peak cur-

rent and beam energy throughout the lattice. These parameters can be fed into

Eq. 2.54 to calculate, piece-wise, the evolution of the plasma oscillation frequency

ωP throughout the machine as a function of initial modulation wavelength λ0,

also taking into account the shearing of the microbunches due to the bunch com-

pression process as described above. The change in the plasma oscillation phase

θP through a beamline component or drift space of length L is calculated as

ωPL (mod π).

Since any initial modulations on the bunch arising due to shot noise in the

injector will be broad-band, we suppose that θP at the injector exit is zero for all

λ0. A comparison between the predicted and measured values for θP is shown in

Fig. 5.12b. Here, the error bars on the measured values represent the FWHM of

the curves in Fig. 5.12a, and the errors in the predictions represent the variation

in ωP across a range of λ0 given by the theoretical curves in Fig. 5.7. It can be
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seen that the predictions match up well with the measured values in both single

compression schemes, whereas there is a larger discrepancy in the case of double

compression. It is also noted here that little variation in the plasma phase was

observed when increasing the energy spread imposed by the laser heater.

A plot of the semi-analytical calculations of the evolution of θp,N across the

three bunch compression schemes is shown in Fig. 5.13. A range of values for λ0

were considered in each case, showing the range of expected final values for θp,N

in each case. The smaller values of λ0 correspond to a larger θp,N , since shorter-

wavelength modulations correspond to a higher plasma oscillation frequency ωP .

The spread of values in each case can be interpreted physically as the angular

spread of the microbunches in Fourier space, given that the initial modulation

on the bunch has a broad-band shot noise profile. Each element in the elegant

lattice has a finite length, with some elements (such as the linacs) being quite

long, hence the step changes in θp,N . The model does not consider impedance

due to CSR or geometric wakefields from the linac structures, but these effects

are expected to be relatively small compared with the LSC impedance.
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Figure 5.13: Evolution of plasma oscillation phase θp,N through the FERMI
linac (from the exit of the injector) up to the DBD location for the three

compression schemes. The range of values for each scheme denote a range of
initial modulation wavelengths λ0 around the peak of the gain curves in Fig. 5.7.
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5.5 Inducing Microbunching with the Laser Heater

The electron beam longitudinal phase space was measured for a number of ma-

chine configurations: in addition to varying the bunch compression process us-

ing combinations of the two variable bunch compressors, the microbunching was

seeded in the laser heater for a range of initial modulation wavelengths and laser

pulse energies. This seeding was achieved using chirped-pulse beating of the

laser pulse in the laser heater (see Sec. 2.4.3). The timing between the electron

beam and the laser in the laser heater chicane can also be varied, allowing for

timing scans that provided the largest amplification of the microbunches. For

a fixed laser pulse energy, the largest final bunching factor as a function of ini-

tial seed wavelength in the laser heater is related to the largest microbunching

gain. In this section, some examples of longitudinal phase space distributions for

the three compression schemes will be given, and the influence of different laser

heater beating wavelengths on the electron bunch will be shown. The following

section will present quantitative analysis of the microbunching and simulations

of the experiment.

In order to cross-check the measured electron bunch modulation period with

the beating wavelength of the laser pulse, measurements of the variation in energy

spread along the bunch were taken at the low-energy RF deflecting cavity, located

at the exit of BC1. In this case, the bunch was uncompressed. The modulation

period along the length of the bunch was extracted for a range of values of the

laser beating delay τ . Fig. 5.14 shows the variation of delay between pulses and

the corresponding modulation period on these bunches, along with values for the

beating wavelength of the laser pulse from the theory. It can be seen that the

measurements agree well with the predictions.

With a variation of the delay τ between 4 ps and 30 ps – corresponding to

initial modulations imposed on the bunch in the range 0.6–4.5 THz – a wide range

of modulated longitudinal phase spaces can be probed. Some example intensity

profiles of these modulated laser pulses are shown in Fig. 5.15.
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Figure 5.14: Measured (blue) and predicted (red) modulation period on the
electron bunch as a function of interferometer delay τ , with an uncompressed

bunch.

5.5.1 Double Compression

We begin by analysing the features in the longitudinal phase space for a bunch

compressed with the BC1 angle set to 105 mrad – the ‘nominal’ configuration

– and with a variable, though modest, compression in BC2 – the angle of the

second compressor was set in the range 17.1–35.2 mrad. This was done in order

to accentuate the microbunching features in the beam. The results given below

are for a fixed BC2 angle of 28.5 mrad.

A range of longitudinal phase space measurements the double compression

scheme are shown in Fig. 5.16. In this case, the delay between the two laser

pulses in the laser heater was set to 12 ps (final beating wavelength λf = 8.3 µm

for compression factor C = 23), and the initial laser pulse energy (before split-

ting and recombination) was varied between 0.1 µJ and 10 µJ, corresponding to

an added energy spread (in the single pulse mode) between 5 and 50 keV. Quali-

tatively, it can be seen that, as the laser pulse energy increases, the longitudinal

density modulations in the bunch become increasingly pronounced, and for the

largest laser pulse energy shown (Fig. 5.16d), the uncorrelated energy spread in
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Figure 5.15: Calculated intensity profiles (blue) of modulated laser pulses (from
Eq. 2.80) for delays between pulses of: above: 4 ps (0.6 THz frequency); middle:

8ps (1.2 THz frequency); bottom: 16ps (2.4 THz frequency). The intensity
profiles for the two separated laser pulses before recombination are shown in

green.

the bunch core becomes more prominent. These images are representative of the

majority of measurements taken over 20 shots, although there was some vari-

ation in the bunch length due to jitter in the RF structures. As a result, the

statistical analysis done below (Sec. 5.6) was performed only for those bunches

whose current profile was close to the nominal value of around 600–650 A in the
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(a) (b)

(c) (d)

Figure 5.16: Single-shot measured longitudinal phase space for BC1 and BC2
bending angles set to 105 and 28.5 mrad, respectively, for a laser heater beating
frequency of 1.8 THz. The initial laser pulse energy from was set to: 0.08 (top

left), 0.6 (top right), 2.9 (bottom left) and 6.8 µJ (bottom right).

bunch centroid.

The bunching factor has been measured along both axes of the longitudi-

nal phase space simultaneously using the 2D Fourier analysis method described

above (Sec. 5.4). The variation in modulation frequency and bunching factor

as a function of laser heater energy can be quantified by measuring the Fourier

transform of these images (shown in Fig. 5.17, each of which represents the mean

of a number of shots for each setting). There is some small variation in the

plasma oscillation phase for different settings of the laser heater pulse energy,

although this is small, and is difficult to distinguish from the angular spread of

the satellites in Fourier space.
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(a) (b)

(c) (d)

Figure 5.17: Measured Fourier transform (averaged over 20 shots) for the same
machine settings as in Fig. 5.16.

In the case of a 12 ps initial beating delay, corresponding to an initial modu-

lation frequency of 1.8 THz, the final measured bunching period is in the range

40–45 THz. This matches up well with the compression factor C ≈ 23. By nor-

malising the pixel intensity in Fourier space to the maximal value (at the centre),

a measurement of the bunching factor as a function of frequency in both planes

can be obtained (see below, Sec. 5.6.2).

The relationship between the initial bunching frequency imposed by the mod-

ulated laser in the laser heater, the compression factor, and the final bunching

frequency has been measured for one laser heater setup; we can now begin to

analyse the development of microbunching for a range of different cases. The

beating delay τ was varied between 8 and 20 ps for this compression scheme.
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Some example longitudinal phase space measurements for two settings of the

initial beating frequency νi = 1.2 and 2.4 THz – are shown in the top row of

plots in Fig. 5.18. In this case, the initial laser pulse energy was set to 3.5 µJ. In

the longitudinal phase spaces, it can be seen that the number of microbunches

present in the bunch increases with the beating frequency.

(a) (b)

(c) (d)

Figure 5.18: Single-shot measured longitudinal phase space (above) and Fourier
transform (averaged over 20 shots, below) for the same lattice settings as in

Fig. 5.16, but with initial beating frequencies of 1.2 (left) and 2.4 (right) THz,
and an initial laser pulse energy of 3.5 µJ.

For a compression factor of 23, these delays correspond to a predicted final

bunching frequency of 30 and 55 THz, respectively. In the longitudinal phase

space, it can be seen that the number of microbunches present in the bunch

longitudinal phase space increases with the beating delay. This relationship

can also be demonstrated by measuring the position of the satellites relative
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to Fourier space from the DC term, as shown in the bottom row of plots in

Fig. 5.18, where the separation varies as a function of the initial modulation. This

relationship is characterised for all three compression schemes below (Sec. 5.6.3).

5.5.2 Single Compression

A similar set of measurements to those detailed above were taken for bunches

compressed using only BC2, the second bunch compressor. This resulted in

the electron beam propagating with uncompressed imposed modulations across

a longer distance, meaning that short-range collective effects between the mi-

crobunches were relatively suppressed as compared with a scheme in which the

bunch is compressed at an earlier point in the lattice. In this machine configura-

tion, a beam scraper was applied in the bunch compressor in order to suppress

a large current spike at the head of the bunch (due to strong nonlinear compres-

sion), without having a measurable effect on the modulations in the rest of the

bunch. The beam scraper in the FERMI bunch compressor [15] consists of two

moveable copper rods that can be inserted into the path of the beam in the cen-

tre of the bunch compressor chicane. Due to the dispersive path in this region,

which transforms the longitudinal phase space coordinates ([E, z]) into spatial

co-ordinates ([z, x]), portions of the beam can be selected in order to remove

current spikes.

In the case of bunches compressed using BC1 only, the longitudinal charge

density of the bunch was high during the remainder of the acceleration process.

This higher charge density enhances collective effects, suppressing the induced

microbunching, and so the range of viable settings of the laser heater power was

smaller than in the other two compression schemes: for 1 µJ laser pulse energy

and above, no significant modulation was observed on the bunch at the end of

the linac. Example images of the measured longitudinal phase spaces for these

two configurations – with an initial beating frequency of 1.8 THz – are shown

in Fig. 5.19. Across all three compression schemes, the final bunching periods

observed agree very well with the wavelength of the modulated laser heater pulse

(see Sec. 5.6.3 for further analysis), demonstrating the flexibility of this technique

for producing strongly modulated bunches over a range of bunching periods.
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(a) (b)

Figure 5.19: Single-shot measured longitudinal phase space for bunches
compressed using BC1-only (left) and BC2-only (right), with an initial beating

frequency of 1.8THz.

On comparing the longitudinal phase spaces from the double compression

scheme (Fig. 5.16) with those from the single compression schemes (Fig. 5.19), it

can be seen that the linear energy chirp is more prominent in the latter cases than

in the former. Due to the requirements on both the bunch compression factor

and the final beam energy, it was not possible to remove fully this chirp for

the single compression schemes, since the parameter range for these experiments

were quite different to the nominal operation mode of FERMI [13]. Nevertheless,

as discussed in Sec. 2.3.6, the energy chirp on the bunch does not affect the

microbunching parameters of interest in the Fourier transform of the longitudinal

phase space images.

5.6 Comparison Between Measurements and Sim-

ulations

As explained above (Sec. 5.4), there are a number of parameters that can be ex-

tracted from both the measurements and simulations of the longitudinal phase

space of modulated beams. In addition to the longitudinal phase space itself, mi-

crobunching parameters such as the modulation period on the bunch, the bunch-

ing factor, and the plasma oscillation phase can be measured using 2D Fourier
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analysis. In this section, these parameters will be characterised and compared

between measurement and simulation for the laser heating beating experiment

outlined above (Sec. 5.5). A wide range of initial modulation frequencies are

imposed across multiple bunch compression schemes, and so we can study the

development of the microbunching instability in detail.

5.6.1 Simulated Longitudinal Phase Space Measurements

Having measured the effect of the modulated laser heater pulse on the electron

beam for a range of pulse energies, it is instructive to compare these measure-

ments with those from simulation. elegant simulations were performed using

the same parameters as were used in the measurements shown in Fig. 5.16. Col-

lective effects and the modulated laser pulse in the laser heater were included

(using the analytical expression for the laser pulse modulation Eq. 2.80). By in-

cluding the effect of the deflecting cavity at the end of the linac, and using the

same calibration factors as the measurement (mm to ps and MeV), the complete

measurement can be simulated. In order to determine the accuracy of the sim-

ulated measurement, the bunch length, energy spread and linear energy chirp

of the simulated screen image can be cross-checked with the simulated longitu-

dinal phase space before the bunch is streaked by the deflecting cavity. Good

agreement was found for these parameters. The longitudinal phase space images

produced by the simulation are shown in Fig. 5.20.

Due to the large number of machine configurations, laser heater pulse ener-

gies and modulation wavelengths, the majority of simulations were run for only

105 macroparticles – a relatively small number compared with the real number

of particles in the bunch. A convergence study was conducted for a subset of the

experimental parameters using up to 107 macroparticles, and varying the number

of longitudinal density bins used for the CSR and LSC calculations. More details

on this convergence study are given in the discussion of the measurements of the

bunching factor below (Sec. 5.6.2). It was found that even this lower number of

particles was able to reproduce the measured bunching factor. In cases where the

modulation frequency on the bunch is smaller than that used in this experiment,

it is expected that it would be necessary to run a simulation with a greater num-
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(a) (b)

(c) (d)

Figure 5.20: Simulated longitudinal phase spaces for the same machine settings
as Fig. 5.16.

ber of macroparticles. Nevertheless, it can be seen that the simulation is able

to reproduce the microbunching effects observed in the measured data: the final

longitudinal phase space with a low-energy laser pulse exhibits similar macro-

scopic properties (in terms of total bunch length and energy spread); and the

microbunching in the phase space becomes more prominent as the laser pulse

energy increases. There is not an exact match between the simulated and exper-

imentally measured distributions, in particular at the head and tail of the bunch,

but there is some agreement between the bulk bunch parameters (slice energy

spread, bunch length and energy chirp in the bunch core), and the periodicity

of the modulations on the bunch (discussed below, Sec. 5.6.3). A quantitative

comparison of the measured and simulated microbunching parameters is given
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in the sections below.

(a) (b)

Figure 5.21: Single-shot simulated longitudinal phase space for bunches
compressed using BC1-only (left) and BC2-only (right), with an initial beating

frequency of 1.8THz. These simulations correspond to the measurements in
Fig. 5.19.

Examples of the simulated longitudinal phase space for the two single-compression

configurations – with an initial beating frequency of 1.8 THz – are shown in

Fig. 5.21. It can be seen in both of these cases that the simulation is able

to reproduce the experimentally measured macroscopic bunch properties (see

Fig. 5.19), in terms of bunch length and energy spread, and that the modula-

tions imposed have a similar periodicity. The bunching period and bunching

factor are characterised in the subsections below.

5.6.2 Bunching Factor

Firstly, the maximum bunching factor as a function of laser pulse energy is mea-

sured for each of the initial beating wavelength settings – see Fig. 5.22. This

plot shows the bunching factor for the double compression scheme. It can be

seen that, in most cases, as the initial laser pulse energy increases, the maximum

bunching measured reaches a peak for each setting of the initial beating, even-

tually falling to a lower level as the energy spread induced in the laser heater

undulator reduces the amplitude of the modulations in the bunch. We also note

that the results from simulation are able to capture the trends observed across
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the full range of modulation wavelengths, although there are discrepancies in

terms of the absolute values of the bunching factor in some cases. This is due

to a combination of factors: the statistical variation in the experimental results

arise both from the fact that microbunching is inherently a noisy phenomenon,

which may not be completely overridden by imposing a modulation using the

laser, and from jitter in the RF system causing bunch length variation from shot

to shot; additionally, the simulations do not account for the full 3D collective

effects for the actual number of particles in the bunch.
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Figure 5.22: Maximum bunching factor as a function of initial laser pulse
energy for a range of initial beating wavelengths. The lattice settings are the
same as in Fig. 5.16. Measured bunching factor is shown by solid lines, and

dashed lines show the simulated values. The error bars represent the standard
deviation in maximum bunching factor over 20 shots.

A comparison between the simulated and measured maximum bunching fac-

tor across all three bunch compression schemes is shown in Fig. 5.23. The results

shown cover the ranges of initial laser beating frequencies used for each configu-

ration. A general trend of higher levels of bunching at shorter beating frequencies

is observed (resulting in a longer bunching period on the bunch at the end of

the linac). This is a result of the fact that the maximum intensity of the laser

pulse for a given initial pulse energy decreases as the beating frequency increases
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Figure 5.23: Maximum bunching factor – measured (circles) and simulated
(triangles) as a function of initial modulation frequency νi for the three

compression schemes (given in the legend)..

(see Fig. 5.15). There is some discrepancy between measurement and simula-

tion in terms of the absolute value of the maximum bunching factor in some

cases, but our results show that the code is able to reproduce the trend observed

experimentally.

As mentioned above (Sec. 3.1.1), microbunching is simulated by the elegant

code based on a histogram of the bunch current density, with a user-specifed

number of bins for both LSC and CSR interactions. There is no exact method

to determine a priori the number of bins to simulate microbunching accurately

(although some hints are given in Refs. [108, 128]), and the optimal solution

will vary depending on the bunch and lattice properties, and the wavelength of

the interaction that is to be simulated.

Therefore, a convergence test was run to produce simulated bunching factors

were consistent for a range of simulation parameters. For a test case, the scan

of bunching factor as a function of initial laser pulse energy for the double com-

pression scheme, with an initial beating frequency of 1.8 THz, was run over a

range of macroparticle numbers and longitudinal binning histogram values. The

number of macroparticles simulated ranged from 105 to 5× 107, and the number
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of LSC/CSR bins were varied together, from 20 bins to 500 bins.
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(a) Variation of the number of LSC/CSR bins
(see the legend). The number of macroparticles

is fixed at 105.
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Figure 5.24: Simulations of the blue curve in Fig. 5.22 (double compression
scheme, initial beating frequency 1.8 THz) for a range of simulation parameters.

The curves produced for varying numbers of bins and macroparticles are

shown in Fig. 5.24. The peak in the bunching is observed in the scan over the

number of bins for 105 macroparticles (Fig. 5.24a) for a similar initial laser pulse

energy (≈ 1.5–2µJ) in all cases. The peak value of the bunching, however,

varies with the number of bins. When the number of bins is lower than 100,

the amplification of the modulation depth of microbunches is relatively small,

whereas for a bin number higher than this value, the effect of CSR increases the

bunch energy spread to the point where the modulations become less prominent,

and so the peak bunching value decreases. This value for the binning histogram

was consistent with that used for the simulations of CSR-induced emittance

growth for the elegant simulations presented in Chapter 4.

Therefore, a following set of scans were performed for this fixed number of

bins, with varying numbers of macroparticles (Fig. 5.24b). In this case, there

is little variation in either the shape of the curve, or the maximum bunching

factor, and so it can be concluded that this is the optimal number of bins for this

range of bunch, lattice and simulation parameters. This was the value used for

the simulations of the other bunch compression schemes and laser heater beating

frequencies.
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5.6.3 Modulation Period

The periodicity of microbunching in the electron bunch can be quantified as a

function of either the longitudinal or energy density modulations. This can be

achieved by projecting the 2D Fourier representation of the bunch images shown,

for example, in Fig. 5.25 onto the energy or time axis. By doing this, we lose

information concerning the correlative relationship between the microbunching

along both axes, but this 1D information can provide a useful benchmark for

simulation and theory – additionally, one quantity may be more pertinent than

another, for example when multi-colour FEL pulses are desired (in which case the

bunching in energy is more significant), or for cases in which multiple bunches

separated by time are required (and so longitudinal density modulations are

important).
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Figure 5.25: Measured final modulation period of the bunch longitudinal profile
for a range of laser heater pulse energies, for the same machine settings as

Fig. 5.16.

Bunching factors obtained by projecting the 2D Fourier space distribution

onto the time axis are shown as functions of bunching period and for different

laser heater pulse energies in Fig. 5.25. The data shown are for the case out-

lined in Sec. 5.5.1 (1.8 THz initial beating frequency, BC1 and BC2 angles 105
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and 28.5 mrad respectively). In this case, we analyse on one of the satellites in

Fourier space, and focus only on modulations above a specified frequency, so as

not to include the DC term in our analysis, as this only provides information

about the bulk structure of the bunch. We also measure the maximum projected

bunching as a function of frequency, and transform this quantity into wavelength,

or bunching period (through the relationship λ = c/f , with f the frequency, c

the speed of light, and λ the resulting period). It can be seen that, while the

initial bunching for a low laser pulse energy (0.1 µJ) is relatively small, it grows

to a peak of around 0.14 for a laser pulse energy of around 1.8 µJ, eventually

decreasing in amplitude as the bunch slice energy spread becomes larger. The

peak in the bunching observed at a period of λf ≈ 15 µm for the lowest setting

of the laser heater energy is most likely due to the ‘natural’ microbunching that

occurs purely as a function of the collective effects in the machine, rather than

being induced in the laser heater.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

20

40

60

80

100

νinitial (THz)

ν
fin
al
(T
H
z)

CF = 20 CF = 25

BC1 BC2 BC1+BC2

Figure 5.26: Final measured modulation frequency νf as a function of initial
laser heater beating frequency νi for all three compression schemes. The dashed

lines show a simple correlation between the initial and compressed laser
frequency at two different compression factors (CF ≈ 20 for BC2-only;

CF ≈ 23–25 for BC1-only and BC1+BC2); solid circles show measured values
and solid triangles show simulated values.
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A full summary of the relationship between the initial beating frequency and

the final measured modulation period for all three compression schemes is shown

in Fig. 5.26. By calculating the compressed frequency of the laser pulse in the

laser heater, and comparing this with the measured frequency of the modulation

on the bunch, it can be seen that, across all three compression schemes, the

agreement is good. Each point on this plot represents the mean modulation

frequency across a range of laser heater pulse energies – this parameter varied

little over a wide range of values. A measurement of the compression factor that

is independent of the modulation wavelength is the peak current of the bunch,

which can be obtained by calculating the charge density in the bunch core (see

Sec. 5.2.1). We found excellent agreement between these two measurements of

the bunch compression factor.

Two different lines are presented for the compressed laser wavelength in

Fig. 5.26. This is due to the fact that the bunch compression was not exactly the

same for all three lattice configurations; namely, the bunch was slightly longer in

the BC2-only configuration (see Table 5.1). This presents a simple linear correla-

tion between the initial laser beating frequency and its compressed value. There

is some divergence between this simple model and the measured/simulated fi-

nal modulation frequency on the bunch itself for larger initial beating frequency.

This might be due to nonlinear effects impacting the modulation on the bunch,

or the fact that the laser pulse energy was not sufficiently strong to imprint

significant modulations on the bunch at these values of νi.

We also compare the measured values with those produced by simulation,

and it can be seen that the agreement here is good in most cases. By varying

either the initial beating frequency or the compression factor, this technique

could easily produce modulations on the bunch over an even wider range.

Due to the limitations of the pixel resolution of the measurement system,

it was not possible to resolve microbunching at periods shorter than around

2 µm, as this approaches the Nyquist limit of the system. In addition to this

limitation, the pulse energy of the modulated laser decreases in amplitude as the

beating frequency increases (see Fig. 5.15), and therefore a larger initial pulse

energy would be required to reproduce exactly the energy spread modulation
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achieved for a shorter beating frequency. For smaller values of the initial beating

frequency, only a small initial laser pulse energy (< 2 µJ) was required to override

the ‘natural’ microbunching such that the period at which the peak bunching

factor is measured corresponds to the modulation imposed in the laser heater.

It can also be seen that the simulated values of the bunching period generally

agree well with the measurements. Future work in this direction could involve

running the same sets of measurements and simulations with different values of

the bunch charge – this could help in deducing the extent to which the initial

seed modulation is actually amplified by the collective effects.

5.6.4 Energy Modulation

As in the previous case of bunching in longitudinal density, the bunching in

energy can also be studied (as shown in Fig. 5.27). We restrict this analysis

only to the single-compression schemes, which exhibited significant bunching in

both energy and time, since in the case of double compression, the bunches were

separated only in time, with the mean slice energy remaining constant. As such,

we can project our 2D Fourier transform of the longitudinal phase space onto the

energy axis, revealing the point of maximal bunching in energy. It can clearly be

seen that, as the initial LH beating frequency is increased, the measured energy

modulation period is reduced. This bunching in energy is of interest for FELs,

in particular schemes which aim to produce multi-colour pulses of light [32].

We also show, in Fig. 5.28, a plot of energy modulation period as a function

of laser pulse energy. In this case, the measurements were performed for bunches

compressed using BC1-only, with an initial beating frequency of 1.8 THz. As with

the analogous case for a projection onto the longitudinal axis shown above for the

double compression scheme (Fig. 5.25), the modulation in energy is prominent for

low settings of the laser heater energy, and eventually decays as Landau damping

reduces the depth of the modulations in the bunch. Having demonstrated this

analysis extended from the initial 2D Fourier transform into either plane, this

technique has shown to be flexible in analysing a range of longitudinal phase

spaces.
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Figure 5.27: Measured energy modulation at the peak bunching factor as a
function of initial beating frequencies for a fixed laser heater power. Results for
BC1-only and BC2-only compression schemes are shown, since for the case of
BC1+BC2 the bunches exhibited modulations purely in longitudinal density.
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Figure 5.28: Measured bunching factor as a function of final modulation in
energy for a range of laser heater pulse energies, for bunches compressed using

BC1-only, with an initial laser beating frequency of 1.8 THz.
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5.6.5 Microbunching Phase

One feature of a microbunched beam that can only be parameterised by analysing

the full longitudinal phase space is the angle of rotation of the microbunches.

As mentioned above (Sec. 2.3), the LSC forces within the bunch can cause a

plasma oscillation between microbunching in energy and longitudinal density over

a sufficiently long distance. This manifests itself as a rotation of the microbunches

in longitudinal phase space [129]. This process of rotation is further enhanced by

bunch compression, which causes a rotation and a shearing in the phase space.

In the context of light source operation, the plasma oscillation phase can be

of vital importance for optimising the quality of the electron beam, and so its

characterisation can provide useful information. For example, if the electron

beam has some finite energy spread that follows a Gaussian distribution, then

(ignoring shot noise effects) the FEL pulse will have a similar distribution; if the

beam is bunched in energy, there will be spikes in FEL intensity that correlate

with the distribution of microbunches along the energy axis.

The plasma oscillation phase (θp) of a microbunched beam can be measured

using the 2D Fourier transform of the bunch image, using the method shown in

Sec. 5.4.4. Measurements of the bunching factor as a function of (normalised)

plasma oscillation phase are shown in Fig. 5.29 for all three compression schemes.

The simulated values for this parameter are also shown, with quite good agree-

ment for all three compression schemes, in particular the case of BC1-only com-

pression. In the other two cases, there is a difference in the location of the peak

bunching factor of approximately 100 mrad, although the distributions are sim-

ilar. This discrepancy could perhaps be a result of an oversimplification in the

code that does not take full account of the LSC forces in the bunch. In each case,

the initial beating frequency was set to 1.8 THz, but θp,N at the location of max-

imum bunching remained similar regardless of the initial modulation wavelength

imposed on the bunch. This is because the plasma frequency depends only on

the beam energy and current, and both of these parameters are fixed only by the

compression scheme.

It can be seen from the figure that, in the case of the double compression

scheme, the bunch exhibited a modulation almost entirely in longitudinal den-
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Figure 5.29: Bunching factor as a function of plasma oscillation angle θp,N for
all three bunch compression schemes, each with an initial laser heater beating
frequency of 1.8 THz. Each curve represents the mean bunching factor over 20

shots; solid lines show the measured bunching factor, and dashed lines show the
corresponding simulations.

sity (given that the maximum bunching factor is located around θp,N ≈ 0). This

can be seen in the longitudinal phase space plots (Fig. 5.16), in which the ori-

entation of the microbunches results in a density modulation. In the case of

single compression with BC1-only and BC2-only, there is a clear mixing between

energy and density modulations, given that θp,N at the location of maximum

bunching factor has a non-zero value. In such a case, the Fourier transforms of

these bunches exhibit clear modulations in both energy and longitudinal density,

demonstrating that a purely 1D analysis would be insufficient to describe the

microbunching for these more complex structures.

5.7 Summary

This chapter has presented measurements and simulations of microbunching

across a range of bunch compression schemes and laser heater configurations.

A method based on 2D Fourier analysis was used to study structure within the
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bunch longitudinal phase space, with the goal of measuring bunching in both

time and energy simultaneously. This technique was applied to study natural

microbunching, its suppression with the laser heater, and also the stimulation of

microbunching with modulations of a known frequency. One goal of this study

was to determine the bunch compression scheme which is most appropriate for

producing bunches with a lower level of microbunching at the end of the FERMI

linac. The theory of microbunching (Sec. 2.3) suggests that – at least in the case

of FERMI – the amplification of modulations is lower if the bunch is compressed

only once, rather than twice (Fig. 5.7). This was indeed found to be the case (see

Fig. 5.11 and Sec. 5.4.3), as the measured bunching factor for the double com-

pression scheme with the laser heater switched off was found to be approximately

twice that measured for the single compression schemes.

The suppression of microbunching through the use of the laser heater in

single-pulse operation mode has also been demonstrated. It was found that, even

with a small increase in energy spread added by the laser heater (< 10 keV), the

measured bunching factor decreased to the noise level for BC1-only compression.

The required energy spread added was slightly larger for the other compression

schemes. These results further corroborate the applicability of the 2D Fourier

analysis technique to measure microbunching.

One further feature of microbunched beams that can be revealed by this anal-

ysis is the plasma oscillation phase of the microbunches. The ability to measure

this feature is useful because it can provide a benchmark of theory and simu-

lation, in order to determine their accuracy when compared with experimental

measurements. The validity of microbunching theory and plasma oscillations

has been a long-standing issue [19, 130], with implications for the generation

of light via the FEL interaction [131]. The technique described in this chap-

ter has been used to measure the plasma oscillation phase of a microbunched

beam directly for the first time, and good agreement between measurements and

semi-analytical calculations of this phase was shown for the single-compression

schemes (Fig. 5.12b). These results imply that the theory of plasma oscillations

can be relied upon for the development of further experimental schemes which

seek to exploit this plasma oscillation.
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Two other long-standing issues in the field are the validity of the theoretical

microbunching gain curve, and the ability of simulation codes to reproduce accu-

rately the microbunching that is measured experimentally, since simulation codes

are vitally important when designing and commissioning an accelerator. The re-

sults presented in Secs. 5.5 and 5.6 provide a step towards an experimental mea-

surement of the microbunching gain curve for the first time, and a corresponding

set of simulations of these experiments. By stimulating modulations on the beam

in the laser heater, through the use of a temporally modulated laser pulse, and

measuring the bunching factor at the end of the FERMI linac (Sec. 5.5), we can

begin to investigate the theoretical microbunching gain. Although the range of

wavelength modulations imposed in this experiment do not cover a sufficiently

wide range to provide a full measurement of the gain curve, these results, and

the technique used to investigate them, can be used to pave the way towards

this measurement. The pulse energy of the modulated laser becomes relatively

weak when approaching frequencies near the peak of the theoretical microbunch-

ing gain curve. A future investigation of a similar nature to that described in

Sec. 5.5 which could probe these short frequencies with sufficient laser intensity

could provide measurements of the microbunch amplification around the peak of

this curve.

Finally, these measurements of beams with imposed modulations have been

simulated, and the microbunching features have been compared, along with sam-

ple images of the beam longitudinal phase space. Although some differences

between measurement and simulation could be seen, good agreement was found

between the microbunching features, in terms of bunching factor, modulation

period, and plasma oscillation phase. The range of bunch compression schemes

and use of imposed modulations extend previous studies making comparisons be-

tween simulation and experiment [66]. The results of the comparisons presented

here, in addition to the previous studies, indicate that the simulation codes used

in this chapter (elegant and GPT) can simulate accurately the microbunching

that is observed experimentally, although some discrepancies remain. Therefore,

it is expected that these codes can be used reliably for the design of experiments

and machines in which microbunching is expected to play a significant role. How-
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ever, fine-tuning of the simulation models was required in order to converge on

the results which most consistently reproduced the experimental measurements,

and even then the agreement was not perfect, and so these codes should be used

carefully when simulating microbunching.
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Chapter 6

Conclusions

6.1 CSR Investigations

By extending the 1D CSR theory, it has been found that the longitudinal electric

field as observed in the CSR interaction before the entrance to, and after the exit

of, a bending magnet has a qualitatively different behaviour than is commonly

assumed. In particular, the contribution to the CSR field from the Coulomb

field of the Liénard-Wiechert potential cannot be neglected when calculating

entrance transient effects, and in order to model this interaction correctly, these

fields must be taken into account. The importance of the transient effects of

CSR are significant in terms of minimising the projected emittance growth in

bunch compressor systems, and therefore in optimising the accuracy of beam

optics matching to the undulator line for high-gain UV and X-ray FELs [132,

133]. These observations are interesting technologically because they suggest

that it may be possible to design an optimized magnet (or system of magnets)

in which the CSR impact of the magnet itself is partially cancelled by that of

the drift directly after it, thereby reducing adverse effects like emittance growth

and microbunching gain, particularly in more complex transport systems such

as compressive arcs in energy recovery linacs (ERLs). It may also be possible to

extend the analytical treatment in the case of two bending magnets limiting a

straight drift, providing an extension of the validity range of the formulae.

A comparison between experimental measurements and simulation results to

determine the effect of CSR on projected emittance growth has been demon-
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strated. The simulation codes elegant, GPT and CSRTrack have been

employed for this comparison. Good agreement between the simulations and

FERMI measurements is seen when the bunch compression, RF parameters,

and matching are closest to their nominal settings. As the compression ratio

increases, the differences between the simulation methods become more clear.

As expected, the 1D simulation results diverge more significantly both from the

experimental data, and from simulations results with codes which take the trans-

verse extent of the bunch into account in situations where the condition (in terms

of the Derbenev parameter) given in Eq. 4.11 is strongly violated, and the 1D

CSR approximation breaks down. The breakdown of this condition has been

studied experimentally; the theory suggested that the condition is valid only in

the parameter regime Dpar � 1, whereas it has been demonstrated that up to

Dpar ≈ 3.5, the commonly used CSR theory remains valid – at least in terms of

predicted emittance growth, and under the parameters of the FERMI experiment

– and so this condition can potentially be relaxed.

High-brightness FELs benefit from tight control of beam emittance through-

out the machine. A more accurate and realistic prediction of beam brightness

degradation/preservation, also in proximity of points of full compression, would

allow an optimized design from the very first stages. A recent study has been

conducted to investigate the CSR interaction across two dipole magnets in an

ERL, in which the CSR interaction between two particles can be carried from one

magnet to another, as a result of their close proximity [134]. An investigation of

the impact of transient CSR fields in a case such as this would be an interesting

point of study for future work.

6.2 Microbunching Investigations

An in-depth analysis of the microbunching instability in the longitudinal phase

space of high-brightness electron beams has been undertaken. This instability, re-

sulting from a combination of collective effects, can have a strong adverse impact

on the electron bunch properties, and must be understood in order to improve

the quality of future accelerators. As such, the work completed in this thesis has
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focused on developing new analysis methods for diagnosing the instability by

measuring the frequency of modulation in the full 2D longitudinal phase space.

By measuring the amplitude of the density modulations in these bunches, and

their frequency in time and in energy, the development of the instability has been

quantified, providing a useful benchmark for theoretical predictions and simu-

lations. The instability was parametrised through studying various properties

of the longitudinal phase space and its associated Fourier transform in 2D. The

amplitude of the density modulations provide a measurement of the bunching

factor, demonstrating the strength of the instability. The period of these modu-

lations can be compared with theoretical calculations of the microbunching gain,

which predict the amplification in density modulation as a function of initial

modulation wavelength. Finally, the 2D Fourier analysis reveals the orientation

of the microbunching in phase space, giving a deeper insight into the effect than

that which can be provided by measurement of the microbunching just in energy

or in longitudinal density. The measured tilt angle, which is exhibited in the

Fourier transform of the beam image as the position of the microbunching satel-

lite with respect to the central term, gives the phase of the plasma oscillation

between microbunching in energy and longitudinal density.

The instability is mitigated at FERMI and a number of similar machines

through the use of a laser heater, which adds a small uncorrelated energy spread

to the electron bunch in the low-energy section of the machine. The technique

of 2D Fourier analysis developed in this thesis was applied to both unheated and

heated bunches, and the damping of the instability was clearly shown, even when

the energy spread added by the laser heater was relatively small, thus preserving

the low slice energy spread necessary for optimal FEL operation.

In addition to this study, a novel technique was applied to stimulate the

microbunching instability. This was achieved through the use of chirped-pulse

beating of the laser heater pulse – a technique that chirps the initial laser pulse,

separates it into two pulses, then recombines them with a variable delay be-

tween the pulses in an interferometer. This method produced laser pulses with

a controllable wavelength which could approach the same order of magnitude

as the electron bunch length. Therefore, modulations in energy spread could
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be imposed onto the electron bunch, which was then transformed into a density

modulation through the use of a dispersive magnetic chicane. The amplitude

of the modulation could be controlled through varying the intensity of the laser

pulse, and the wavelength of the final pulse could be varied by changing the

length of the interferometer arm for one of the separated laser pulses.

The flexibility of this technique provided a range of modulated electron

bunches which were then characterised using the analysis technique described

above. By measuring the bunching factor for a range of modulated laser pulse

energies and wavelengths, the microbunching instability could be studied in un-

precedented detail, and compared with simulation and theory. In addition to

allowing detailed tests of the theory and simulation codes, this technique could

have wide-ranging applications in the production of multi-colour FEL light, the

production of light in the THz range – an area which has previously been diffi-

cult to reach with conventional accelerator techniques – or as the basis for future

plasma-based accelerators which rely on multiple bunches separated in time.

Future avenues of research for this technique could include producing bunches

with a longitudinal density or energy modulation with a view to their application

in light-source generation. Additionally, under the right conditions, the ability

to quantify the bunching factor as a function of imposed modulation frequency

could result in an experimental study of the microbunching gain for the first time.

In the case of the experiments analysed for this thesis, the initial modulation

wavelengths imposed by the laser pulse did not cover a sufficiently wide range

for the microbunching gain to be studied in this way; nevertheless, the results

presented here suggest the possibility of measuring this parameter in future.
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Appendix A

A.1 Derivation of CSR Entrance Transient

We begin by calculating a number of distances shown in Fig. 2.3. The angle φ is

the angle between the receiving particle at position ~r1 and the entrance of the arc.

The two orthogonal directions of this arc (h,D) are given by h = 2R sin(φ/2) and

D = R sin(φ), and therefore the distance ρ between the emitter at the retarded

position ~r0
′, at a distance y before the entrance to the magnet, and the receiver

at ~r1 is:

ρ =
√
h2 + (y +D)2 =

√
4R2 sin2(φ/2) + 2Ry sin(φ) + y2. (A.1)

The time taken by electromagnetic signals to travel from emitter to observer

is t− t′ = ρ/c. During this same time, the bunch must have traveled a distance

Rφ+y−∆z along the path in order to have the observing electron at the position

sketched in Fig. 2.3 at time t, where ∆z = z − z′ is the instantaneous distance

between both electrons. Therefore t − t′ = (Rφ + y − ∆z)/(βc), from which

follows the retardation condition:

∆z = y +Rφ− βρ. (A.2)

Two more useful lengths sketched in Fig. 2.3 are:

w =
y

y +D
h =

2yR sin2(φ/2)

y +R sin(φ)
(A.3)
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and

L =
D

y +D
ρ =

R sin(φ)

y +R sin(φ)
ρ, (A.4)

where L is the distance between the entrance to the magnet and the observation

point ~r1. These lengths can be used to derive the cosine and sine of the angles ξ

and θ between the vectors ~n, ~β and ~β′ which are required to evaluate Eq. 2.31.

The triangle defined by the emitter and the endpoints of h gives:

cos(θ) =
y +D

ρ
=
y +R sin(φ)

ρ
(A.5)

and

sin(θ) =
h

ρ
=

2R sin2(φ/2)

ρ
. (A.6)

In order to calculate ξ we need to use its complementary angle η. Using the

cosine and sine rules on the triangle defined by η and φ gives:

cos(ξ) = sin(η) =
R− w
L

sin(φ) =
R sin(φ) + y cos(φ)

ρ
(A.7)

and

sin ξ = cos η =
R2 + L2 − (R− w)2

2RL
=

2 sin(φ/2)(R sin(φ/2) + y cos(φ/2))

ρ
.

(A.8)

Having these angles available, we can now calculate the point-to-point Liénard-

Wiechert field of the emitter ~EPP at the position of the receiver. Since we require

only the parallel component, we can take the inner product ~β · ~EPP . Addition-

ally, because the emitter is in uniform motion, its retarded electric field is given

only by the Coulomb term of the Liénard-Wiechert field, yielding:

EPP,ent
|| =

e

4πε0γ2

~n · ~β − ~β′ · ~β
(1− ~n · ~β)3ρ2

. (A.9)
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These inner products can be expressed in terms of the angle φ as follows:

~n · ~β = β cos(ξ) = β
R sin(φ) + y cos(φ)

ρ
, (A.10)

~n · ~β′ = β cos θ = β
y +R sin(φ)

ρ
(A.11)

and

~β · ~β′ = β2 cos(φ). (A.12)

Substituting into Eq. A.9 gives:

EPP,ent
|| (y) =

e

4πε0γ2

(y − βρ) cos(φ) +R sin(φ)

(ρ− β(y +R sin(φ)))3 . (A.13)

This is the field observed by a single point particle at an angle φ into the arc,

produced by another single point particle at a distance y before the entrance of

the arc. In order to obtain the field due to a bunch of particles, the bunch with

a charge density Neλ(z) should be thought of as a number of point particles at

positions s = sc+z, each with charge Neλ(z)dz, where s is the absolute position

along the path, z is the position within the bunch relative to the bunch centroid

and sc the position of the centroid. Summing up the contributions from all the

fields of these point particles gives:

Eent
|| (z, y) = Ne

∫ zmax

−∞
EPP,ent
|| (y(z′))λ(z′)dz′ + ESS

|| , (A.14)

where the first term represents the field contribution at the position of the receiver

due to the part of the bunch that is still before the magnet entrance at the time of

emission, ESS
|| is the contribution to the field due to the part of the bunch that is

inside the magnet at the same time, and zmax is the position in the bunch giving

the boundary between these two parts. In order to evaluate Eq. A.14 directly, an

explicit relation between the current position of the emitter z′ and its position at

the time of emission y is required. This can be done by changing the integration
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variable from z′ to y, and so we can use Eq. A.2 to calculate dz′/dy:

dz′

dy
= −ρ− β(y +R sin(φ))

ρ
. (A.15)

Given this relation and that from Eq. 2.33, we have an equation for ESS
|| , and the

total CSR entrance field thus becomes:

Eent
|| (z, y) = Ne

∫ zmax

−∞
EPP,ent
|| (y)λ(z′(y))

dz′

dy
dy + ESS

||

= ESS
|| +

Ne

4πε0γ2

∫ d

0

(y − βρ(y)) cos(φ) +R sin(φ)

(ρ(y)− β(y +R sin(φ)))2ρ(y)
λ(z −∆(y))dy, (A.16)

where ∆(y) = y + Rφ − βρ(y), and d the length of the drift before the magnet

taken into account for the calculation of the CSR field. The upper integration

boundary of this expression arises due to the finite length of the straight section

before the entrance to the magnet.

A.2 Derivation of CSR Exit Transient

This derivation will parallel that given above in A.1 for the entrance transients.

To evaluate Eq. 2.31, we first calculate a number of lengths indicated in Fig. 2.5.

The angle ψ is the angle between the emitter and the end of the arc. The

lengths (h,D) along two orthogonal directions associated with this arc are given

by h = 2R sin(ψ/2) and D = R sin(ψ). Therefore ρ is equal to:

ρ =
√
h2 + (x+D)2 =

√
4R2 sin2(ψ/2) + 2Rx sin(ψ) + x2, (A.17)

where x is the distance from the exit edge of the magnet to the observing electron.

The time taken by electromagnetic signals to travel from emitter to observer is

t − t′ = ρ/c. During this same time, the bunch must have traveled a distance

Rψ+x−∆z along the path in order to have the observing electron at the position

sketched in Fig. 2.5 at time t, where ∆z = z − z′ is the instantaneous distance

between both electrons. Therefore t − t′ = (Rψ + x − ∆z)/(βc), from which
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follows the retardation condition:

∆z = x+Rψ − βρ. (A.18)

Two more useful lengths sketched in Fig. 2.5 are:

w =
2xR sin2(ψ/2)

(x+R sin(ψ))
(A.19)

and

L =
Rρ sin(ψ)

(x+R sinψ)
, (A.20)

where L is the distance between the emitting electron at ~r′ and the exit of the

magnet. These lengths can be used to derive the angles ξ and θ between the

three vectors ~n, ~β and ~β′ indicated in Fig. 2.5. The triangle defined by ~r and the

endpoints of h gives cos(ξ) = (x + R sin(ψ))/ρ and sin(ξ) = (2R/ρ) sin2(ψ/2).

Using the cosine and sine rules on the triangle defined by η and ψ gives:

cos θ = (R sin(ψ) + x cos(ψ))/ρ (A.21)

and

sin θ = 2 sin(ψ/2)(R sin(ψ/2) + x cos(ψ/2))/ρ. (A.22)

Since we are interested only in the component of the field parallel to the

direction of ~β, we take the inner product ~β · ~E. As it turns out, both the

radiation term and the Coulomb term of the Liénard-Wiechert field make a

significant contribution, even in the ultrarelativistic limit. Expanding the triple

vector product in the radiation term of the field (Eq. 2.31) and taking the inner
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product of the full Liénard-Wiechert field with ~β gives:

EPP
|| =

~β · ~E
β

=
e

4πε0β


(
~n.~β − ~β · ~β′

)
γ2
(

1− ~n · ~β′
)3

ρ2

×

(
~n · ~β − ~β · ~β′

)(
~n · ~̇β′

)
−
(

1− ~n · ~β′
)(

~β · ~̇β′
)

c
(

1− ~n · ~β′
)3

ρ

 .

(A.23)

The superscript PP indicates that Eq. A.23 gives the field of a point particle.

We can calculate the inner products in this expression as follows:

~n · ~β = β cos(ξ) = β
x+R sin(ψ)

ρ
, (A.24)

~n · ~β′ = β cos(θ) = β
R sin(ψ) + x cos(ψ)

ρ
, (A.25)

~n · ~̇β′ = β2c

R
sin(θ) =

β2c

R

2 sin (ψ/2) (R sin (ψ/2) + x cos (ψ/2))

ρ
, (A.26)

~β · ~β′ = β2 cos(ψ), (A.27)

~β · ~̇β′ = β3c

R
sin(ψ). (A.28)

Substituting these expressions into Eq. A.23 and separating the first and second

terms into the Coulomb and radiation components, respectively, results in the

single-particle longitudinal components of the CSR field:

EPP,exit
||,C (z, x) =

eβ

4πε0γ2

x+R sin(ψ)− βρ cos(ψ)

(ρ− β (R sin(ψ) + x cos(ψ)))3 , (A.29)

166



Appendix A.

EPP,exit
||,rad (z, x) =

eβ2

4πε0R
×(

2 sin(ψ/2) (x+R sin(ψ)− βρ cos(ψ)) (R sin(ψ/2) + x cos(ψ/2))

(ρ− β (R sin(ψ) + x cos(ψ)))3

− ρ sin(ψ)

(ρ− β (R sin(ψ) + x cos(ψ)))2

)
. (A.30)

These are the contributions of the Coulomb and radiation terms to the field

observed by a single electron at distance x after the exit of the arc, produced by

another single electron at angle ψ before the exit of the arc. Which particular

electron of the bunch distribution actually is at angle ψ at the required time of

emission is governed by the retardation condition Eq. A.18. One may be tempted

to neglect the Coulomb term EPP
||,C in the ultrarelativistic limit on account of the

factor γ−2. However, the radiation term contains an additional small factor

sin (ψ/2) in the numerator, and so in the end both terms are comparable in size.

The combined field E due to all electrons between the tail of the bunch and

the observing electron is obtained by adding the fields EPP of the individual

particles. This results in:

Eexit
|| (z, x) = Ne

∫ z

−∞
EPP,exit
|| (ψ(z′))λ(z′)dz′, (A.31)

where N is the number of particles in the bunch and λ(z′) is the charge distribu-

tion normalised such that
∫ +∞
−∞ λ(z′)dz′ = 1. To evaluate this integral directly,

an explicit relation ψ(z′) between the current position of the emitter z′ and the

position at time of emission given by ψ is necessary. To avoid this complication,

we change the integration variable from z′ to ψ. This requires the derivative

dz′/dψ, which from Eq. A.18 is −R (1− β (R sin(ψ) + x cos(ψ)) /ρ). Eq. A.31

thus becomes:

Eexit
|| (z, x) = Ne

∫ φm

0

EPP,exit
|| (ψ)λ (z′(ψ))

dz′

dψ
dψ = Eexit

||,C (z, x) + Eexit
||,rad(z, x),

(A.32)
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and the Coulomb and radiation terms are defined as:

Eexit
||,C (z, x) =

NeβR

4πε0γ2

∫ φm

0

x+R sin(ψ)− βρ cos(ψ)

(ρ− β (R sin(ψ) + x cos(ψ)))2 ρ
λ (z′(ψ)) dψ, (A.33)

and

Eexit
||,rad(z, x) =

Neβ2

4πε0
×∫ φm

0

(
2 sin(ψ/2) (x+R sin(ψ)− βρ cos(ψ)) (R sin(ψ/2) + x cos(ψ/2))

(ρ− β (R sin(ψ) + x cos(ψ)))2 ρ

− sin(ψ)

ρ− β (R sin(ψ) + x cos(ψ))

)
λ (z′(ψ)) dψ. (A.34)

In this expression, x = xc + z is the position of the evaluation point s with

respect to the exit edge of the magnet, with xc the distance from exit edge to

bunch centroid and z the position in the bunch where the field is evaluated

relative to the bunch centroid. In the integral, the charge density should be

evaluated at z′, which from Eq. A.2 is given by z′(ψ) = xc + z − xc − z′ =

−xc −Rψ + βρ.

The expressions for Eexit
||,C and Eexit

||,rad give the Liénard-Wiechert field of a bunch

exiting a circular arc, without any ultrarelativistic or small-angle approximations.

However, through applying these approximations we can arrive at a simpler

form for these fields. Given that the integrands in these expressions are strongly

peaked around a small range of ψ � 1, approximations can be made using Taylor

expansions – although it should be noted that the approximation ψ � x/R

cannot be used, as the post-bend distance x may also be small. First, we re-

evaluate the distance ρ (Eq. A.17) between the emitter at the retarded time and
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the receiver at the current time:

ρ ≈

√
4R2

(
1

4
ψ2 − 1

48
ψ4

)
+ 2Rx

(
ψ − 1

6
ψ3

)
+ x2

= R(ψ + xn)

√
1−

1
12
ψ4 + 1

3
xnψ3

(ψ + xn)2

≈ R

(
ψ + xn −

ψ2

24

ψ2 + 4ψxn
ψ + xn

)
,

(A.35)

where xn = x/R. This approximation can now be applied to Eqs. A.33 and A.34.

Expanding all the trigonometric functions results in:

Eexit
||,C (z, x) ≈ 8Ne

3πε0

∫ φm

0

γ−2N1(ψ) + ψ2N2(ψ) + ...

(γ−2D1(ψ) + ψ2D2(ψ))2 γ−2λ (z′(ψ)) dψ, (A.36)

Eexit
||,rad(z, x) ≈ Ne

πε0

∫ φm

0

γ−2N3(ψ) + ψ2N4(ψ) + ...

(γ−2D1(ψ) + ψ2D2(ψ))2 ψ2λ (z′(ψ)) dψ, (A.37)

where (to quadratic order in ψ and xn):

N1(ψ) = 3 (ψ + xn)2 + ... (A.38a)

N2(ψ) = (ψ + xn) (2ψ + 3xn) + ... (A.38b)

N3(ψ) = 4 (ψ + xn)2 + ... (A.38c)

N4(ψ) = (ψ + 2xn)2 + ... (A.38d)

D1(ψ) = 4 (ψ + xn)2 + ... (A.38e)

D2(ψ) = (ψ + 2xn)2 + ... (A.38f)

There are two important results in Eqs. A.36 and A.37. Firstly, the velocity

field is suppressed by a factor γ−2, so in many cases this field is negligible with

respect to the radiation field. However, the integrand of the radiation field also

contains the factor ψ2, which suppresses this field at small angles. Therefore,
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there is a small part of the integration interval ψ . γ−1 in which the Coulomb

field dominates, rather than the radiation field, and vice versa for the regime

ψ & γ−1. Secondly, in both the Coulomb field and the radiation field individually,

the same two regimes can be distinguished when considering the importance of

the terms proportional to γ−2 against those proportional to ψ2. Therefore, in

the regime where the Coulomb field dominates, the significant terms are N1 and

D1, and in the regime with the dominant radiation field, the significant terms

are N4 and D2. Combining these results, we can make a further approximation:

Eexit
|| (z, x) ≈ 8Ne

3πε0

∫ φm

0

N1(ψ)

D1(ψ)2
λ (z′(ψ)) dψ +

Ne

πε0

∫ φm

0

N4(ψ)

D2(ψ)2
λ (z′(ψ)) dψ.

(A.39)

An approximation to dz/dψ (from Eq. A.2) can be made in the ultrarelativistic

limit, as γ →∞:

dz′

dψ
= −R

ρ
(ρ− β (R sin(ψ) + x cos(ψ))) ≈ −Rψ

2 (ψ + 2xn)2

8 (ψ + xn)2 . (A.40)

Given that the Coulomb term is only significant in a small range ψ . γ−1 � 1

for sufficiently high beam energy, and that over this range the charge density will

not vary significantly, we can approximate the field as follows:

Eexit
||,C (z, x) ≈ 8Ne

3πε0

∫ φm

0

N1(ψ)

D1(ψ)2
λ(z′(ψ))dψ

≈ Ne

2πε0
λ(z′(0))

∫ φm

0

dψ

(ψ + xn)2 =
Ne

2πε0

λ(z′(0))

xn
.

(A.41)

Integrating the second term on the right-hand side of Eq. A.39 (the radiation

component) by parts gives:

Eexit
||,rad(z, x) ≈ Ne

πε0

(
λ(z −∆zmax)

φmR + 2xn
− λ(z)

2xn
+

∫ z−∆zmin

z−∆zmax

∂λ(z′)

∂z′
dz′

ψ(z′)R + 2xn

)
.

(A.42)
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In the integrand of this expression, ψ(z) is defined implicitly by the relation:

z − z′ = f(ψ) =
Rψ3

24

Rψ + 4x

Rψ + x
. (A.43)

and ∆zmax = f(φm). Now, it can be seen that there is an exact cancellation

between the second term of Eexit
||,rad and Eexit

||,C , leading to a final approximation for

the exit transient field:

Eexit
|| (z, x) ≈ Ne

πε0

(
λ(z −∆zmax)

φmR + 2xn
+

∫ z

z−∆zmax

∂λ(z′)

∂z′
dz′

ψ(z′)R + 2xn

)
, (A.44)

This is an equivalent result to that derived in [56], but for a qualitatively

different reason: the cancellation of terms between the Coulomb and radiation

fields in the exit transient regime.
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