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Probing Structure and Dynamics in Advanced Molecular Materials by 

Solid State Nuclear Magnetic Resonance 

Ashlea Hughes 

Abstract  

Probing and determining the structure and dynamics of advanced molecular 

materials is crucial to aid our understanding of their properties.  Solid state NMR is 

capabale of probing short-range order and dynamics. Therefore this analytical 

technique (often used in conjunction with computational studies) is able to provide 

structural characterisation at the atomic level as well as probing local order and 

therefore has great potential to study these motions. In this thesis, advanced solid 

state NMR approaches have been used to access the temperature dependence site-

selective dynamics of guest-free and -adsorbed tubular covalent cages and 

pillar[n]arenes, accessing understanding of their flexibility behaviours, and 

determine the structures of a new class of amorphous paramagnetic hybrid 

perovskites glasses. Firstly, 2H static NMR spectra has identified tubular covalent 

cages as ultra-fast molecular rotors and smart materials capable of adsorbing iodine 

and its release upon the application of an external stimuli. Secondly, correlation times 

and proton detected local field NMR experiments found that the extruding ethoxy 

group of perethylated pillar[n]arenes has significant dynamics when compared to the 

dynamics associated within the core. Using these techniques we also show the strong 

dipolar coupling present between para-xylene and the EtP6 host, providing insights 

into the guest’s location inside the host. Finally, spectral analysis of paramagnetic 

hybrid perovskites was completed and NMR methods were able to confirm that the 

materials studied melt at low temperatures and can be quenched into a glass form.  

It is the dynamics and flexibility of these structures that controls the selectivity of 

molecules in the voids located in the frameworks and hence enable them to be used 

for molecular separation. 
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Thesis Overview 

Chapter 1 covers some of the basic principles of NMR along with an introduction the 

the solid state NMR methods used within this thesis. 

Chapter 2 provides a general introduction to host-guest chemistry and some selected 

NMR techniques often used within this field. 

Chapter 3 comprises of a published paper concerning “Ultra-Fast Molecular Rotors 

within Porous Organic Cages” with 2H NMR being the predominant technique utilised 

to study the dynamics of the supramolecular tubular covalent cages. 

Chapter 4 is a based on a manuscript which has recently been sent for publication 

entitled “Dynamics in flexible pillar[n]arenes probed by solid-state NMR” as well as 

having inserts of work published in a collaborative paper on pillar[n]arenes; ”Near-

Ideal Xylene Selectivity in Adaptive Molecular Pillar[n]arene Crystals” . This section 

focuses on both structural characterisation as well as asessing dyanmics of the 

assemblies exploiting the dipolar interaction and correlation times.  

Chapter 5 encompasses the NMR work completed by A. Hughes which went towards 

the manuscript entitled “Melting of Hybrid Organic-Inorganic Perovskites” 

encompassing the detailied structural analysis of these paramagnetic materials. 

Chapter 6 gives an overall conclusion and outlook for the project. 

Note: All chapters which have been based on publication have been amended to 

include the supporting information into the main text. 
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Chapter 1: Introduction to Nuclear Magnetic Resonance Spectroscopy 

 

 

1.1 Overview 

Chapter 1 is a condensed introduction to general nuclear magnetic resonance (NMR), 

the interactions which occur in solid state NMR, some general NMR techniques and 

pulse sequences which are used along with the materials studied throughout the 

results chapters of this thesis. 
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1.2 NMR spectroscopy  

1.2.1 NMR introduction  

Most nuclei possess a nuclear spin quantum number I (or a spin) that gives rise to 

angular momentum. Nuclear Magnetic Resonance (NMR) spectroscopy is a very 

powerful and versatile technique which can probe the chemical environment of 

nuclei that have a spin greater or equal to a half. The majority of elements in the 

periodic table have at least one NMR active isotope that satisfies this rule; hence, 

NMR is a widely used technique for a range of applications including the study of 

materials. A nucleus with a spin of I, has 2I + 1 energy levels within the range of +I 

and –I in increments of ± 1. In the absence of a magnetic field, these energy levels are 

all degenerate, however in the presence of an external magnetic field, this 

degeneracy is lifted and the spin of a nucleus generates a nuclear magnetic moment, 

, and in turn creates a Boltzmann distribution of populations between the various 

energy levels. It is the transitions between these non-degenerate nuclear spin states 

that we observe in NMR spectroscopy. The magnetic moment produced is 

proportional to both the spin, I, and the gyromagnetic ratio, , as can be seen in 

equation 1.1. 

μ= γI (1.1) 
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Figure 1.1. The splitting of spin states in an external magnetic field, B0, with a corresponding 

energy level diagram, where Iz is parallel to B0, to show the transition of electrons between 

the nuclear spin states for (a) spin, I = ½ nucleus and (b) I = 1 nucleus. E is the energy 

difference between the states, B0 is the external magnetic field, and  is the gyromagnetic 

ratio for the relevant nucleus. 

It is demonstrated within Figure 1.1(a) that the nuclear spins also precess within a 

magnetic field. The rate (frequency) of precession is known as the Larmor frequency, 

0, (expressed in equation 1.2) and is dependent on B0, and . The gyromagnetic ratio, 

, is a constant which differs only with the nucleus observed, resulting in a Larmor 

frequency, which is also nucleus specific.  
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ν0= γB0/2π (1.2) 

Signal intensity is dependent on the population difference between the energy levels. 

This can be expressed using the Boltzmann equation (equation 1.3), where kB is the 

Boltzmann constant, E is the energy difference between the energy levels and T is 

temperature. This population difference is inherently small (for a 1H nucleus, at room 

temperature and 9.4 T, the population difference is 1/20000) and so, larger external 

magnetic field strengths and/or lower temperatures are often used to maximise the 

energy difference, E, resulting in a larger ratio of nupper/nlower. 

nupper

nlower
= e-E/kBT 

(1.3) 

NMR spectroscopy can provide insights into both structure and a nuclei’s 

surroundings because it is very sensitive to the local electronic environment of 

particular sites. The electron density surrounding the nucleus induces its own 

magnetic field when subjected to the external magnetic field. This induced field 

opposes the external magnetic field. It is proportional to the external magnetic field 

and dependent on the chemical shielding, 𝛔 which gives information regarding the 

surrounding electron density and electronic structure. Therefore, this localised 

magnetic field, Bloc, in turn alters the frequency at which a nucleus will appear on an 

NMR spectrum and is defined as: 

Bloc = B0(1-σ) (1.4) 

This causes a change to the energy level splitting causing nuclei within different 

environments (i.e. different electronic structures) to resonate at different 

frequencies, . 
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ν=
γBloc

2π
 

(1.5) 

As frequencies are dependent on field strength, values are converted into chemical 

shift in parts per million due to the difference in frequency being very small, using 

equation 1.6 below, eliminating the field strength dependency. Chemical shifts, , 

are calculated using equation 1.6, where sample is the resonance frequency of the 

observed signal, and reference is the resonance frequency of the reference compound: 

Resonance frequencies are most often referenced to a known compound, for 

example, trimethylsilane for 1H.  

δ=106 
sample- reference

reference
 (1.6) 
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1.2.2 Solid State NMR 

NMR signals are a sum of multiple interactions, given in Table 1.1 below. These 

interactions are responsible for the lineshape and positioning of the NMR signals.  

Table 1.1. NMR interactions, their corresponding magnitudes and brief equations. 1 

Hamiltonian Interaction Magnitude Equation 

Ĥz 
Zeeman 

Splitting 
MHz Ĥ𝐙 = −B0Î𝒛 

ĤCS 
Chemical 

Shift 
kHz Ĥ𝐂𝐒 = −Î𝒛B0 

ĤD 
Dipolar 

Coupling 
kHz 

ĤDHetero = 𝑑𝑖𝑗(3cos2 − 1)Î𝒛Ŝ𝒛 

ĤDHomo = 

𝑑𝑖𝑖(3cos2 − 1)3Î𝟏𝐳Î𝟐𝐳 − Î𝟏𝐳Î𝟐𝐳 

ĤJ J Coupling Hz ĤJ =  −J12Î1zÎ2z 

ĤQ 
Quadrupolar 

Coupling 
MHz 

ĤQ = Î𝒛Ŝ𝒛[
𝑔(𝑖𝑠𝑜)

0
+ ℎ(𝑎𝑛𝑖𝑠𝑜)3cos2 − 1

+ i(𝑎𝑛𝑖𝑠𝑜)35cos4 − 30cos2

+ 3] 

Ĥpara 
Paramagnetic 

Coupling 
MHz Ĥpara = Ĥ0 + Ĥ𝑍 + (Ĥcontact + Ĥ𝐷) 

Where Îz/ Ŝz is the angular momentum operator which represents the z component 

of magnetisation for the respective spins,  is a second rank shielding tensor which 

describes the electronic distribution surrounding the nucleus and dij is the dipolar 

coupling constant defined in equation 1.9. 
 

In brief, the Zeeman interaction refers to the energy level difference between the 

two spin states determined by how the spins align in relation to the magnetic field. 

The remaining Hamiltonians typically perturb the Zeeman interaction. The chemical 

shift Hamiltonian relates to the nuclear spin interaction with the surrounding 

electrons. Without rapid molecular tumbling, this interaction differs depending on 

the orientation of the sample, see section 1.2.2.1. The dipolar interaction relates to 

the interaction of two dipoles with each other, either of the same nuclei 
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(homonuclear) or differing nuclei (heteronuclear). Distance and geometry between 

the two nuclei affect the dipolar coupling Hamiltonian. J Coupling is similar to the 

dipolar Hamiltonian as it occurs between two spins, however it is a through-bond 

interaction. Quadrupolar coupling, ĤQ, is only relevant to nuclei with I > 1/2 due to 

the electronic charge distribution not being spherically symmetrical, which allows the 

electric field gradient to interact with the nucleus perturbing the energy levels as 

shown in Figure 1.3. Finally, the paramagnetic Hamiltonian describes the effect 

caused by paramagnetic metal ions to the NMR spectrum and further detail can be 

found in section 1.2.2.4. 

Many of these interactions contain an orientation dependent term (3cos2-1). Such 

terms are averaged to zero in the liquid state, due to rapid molecular tumbling, which 

is absent in the solid state. Without this rapid tumbling, the Hamiltonians for 

anisotropic chemical shift, dipolar coupling and quadrupolar interactions are not 

averaged out, resulting in broad lines within the solid state spectrum.  
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1.2.2.1 Chemical Shift Anisotropy (CSA) 

Chemical Shift Anisotropy (CSA) is derived from the fact that the sample can have 

different orientations (Figure 1.2(a)) with respect to the external magnetic field, 

hence a broad powder pattern made of multiple lines all at slightly different chemical 

shifts is observed (Figure 1.2(b)). This arises due to the charge distribution around 

the nuclei not being spherical, this will give a range of chemical shifts for different 

nuclear orientations with respect to the external magnetic field is described by the 

principle components, 11, 22 and 33, shown in Figure 1.2. The most likely orientation 

of the chemical shift tensor is perpendicular to the external magnetic field, therefore 

this signal is seen as the most intense, 22, with the edges of the powder pattern, 11 

and 33, representing less likely orientations, resulting in a similar example powder 

pattern to that shown for a typical carbonyl in Figure 1.2(c). Using these three values, 

the isotropic chemical shift can be calculated using equation 1.7 

δiso=
δ11+δ22+δ33

3
 (1.7) 

If any of these principle components are equal to each other the line shape is uniaxial. 

The deviation from this line shape is given by the asymmetry parameter, η 

η=
δ22-δ11

δ33-δiso
 (1.8) 
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Figure 1.2. (a) Three possible arrangements of a carbonyl group with respect to B0 and a 

depiction of their corresponding chemical shift tensor. (b) The signal produced at varying 

chemical shift for this compound. (c) Typical powder pattern created from an infinite number 

of lines due to every orientation of the sample with respect to B0 being possible. 
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1.2.2.2 Dipolar coupling 

As mentioned previously in this chapter, each nuclear spin possesses a magnetic or 

dipole moment. These dipoles can interact with each other through space, termed 

dipolar coupling. This interaction is orientation dependent, and hence is not observed 

in traditional solution state NMR, however, it is observed in the solid state. The 

magnitude of dipolar coupling follows equation 1.9.1 

𝑑𝑖𝑗 = −
µ0

4𝜋
 
ħ𝛾𝑖𝛾𝑗

𝑟𝑖𝑗
3  

(1.9) 

Where dij is the dipolar coupling constant between an i and j nuclei in rad s-1, 0 is the 

vacuum permittivity, ħ is the reduced Planck’s constant, i and j are the gyromagnetic 

ratios for i and j respectively and rij is the distance between the i and j nuclei. Due to 

its dependence on both orientation (see Table 1.1) and internuclear distance 

(equation 1.9), dipolar couplings are often a rich source of structural information.   
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1.2.2.3 Quadrupolar interaction 

This thesis only deals with Spin ½ and Spin 1 nuclei. Since spin 1 nuclei are 

quadrupolar the quadrupolar interactions are present. In liquid state NMR, a singlet 

is expected due to molecular tumbling as the first order quadrupolar interaction has 

been averaged to zero, leaving only the Zeeman interaction and chemical shift 

interaction to be visible in the NMR spectrum. However, in solid state NMR under 

static conditions it is expected to look like the classical Pake doublet (shown in Figure 

1.3(a) below) due to the Zeeman interactions (+1 - 0 and 0 - -1) as well as the 

quadrupolar interactions in the sample which are not averaged out without rapid 

tumbling or spinning of the sample. 

The energy level diagram must take into consideration ĤQ, causing the two 

transitions, between the +1 and 0 and the 0 and -1 energy levels, to have slightly 

different energies as shown in Figure 1.3(b). Therefore, these transitions appear at 

slightly different chemical shifts in the NMR spectrum with each peak being a mirror 

image, as illustrated in Figure 1.3 below. From the equation for the quadrupolar 

Hamiltonian in Table 1.1 we can see that the first order term has angular dependence 

(contains the geometric term 3cos2-1) and hence the powder pattern appears as 

shown in Figure 1.3(a). Powder patterns are often sensitive to motions which occur 

at rates comparable to their linewidth, and such motions will cause a change in the 

shape of the Pake doublet when monitored under static conditions.2 This line shape 

change can be simulated by a number of programs and a rate of rotation can be 

extracted.3,4 
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Figure 1.3. (a) Pake doublet. Red spectrum is this typical spectrum observed for an NMR 

transition. Blue spectrum is a reflection of the red spectrum, owing to the other transition from 

+1 - 0 seen due to 2H being spin I = 1. (b) Energy level diagram from I = 1 with contribution of 

quadrupolar Hamiltonian, causing a larger energy gap (due to addition of quadrupolar 

interaction) for the blue transition and smaller for the red transition (due to subtraction of 

quadrupolar interaction).  
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1.2.2.4 Paramagnetic NMR 

Paramagnetic materials are ones which have an unpaired electron (often from a 

transition metal). This unpaired electron interacts with surrounding nuclei, producing 

a range of interactions summed up in the Hamiltonian, Ĥpara as shown in equation 

1.10.5 

Ĥ𝑝𝑎𝑟𝑎 = Ĥ0 + Ĥ𝑍 + (Ĥcontact + Ĥ𝐷) (1.10) 

Where, Ĥ0 is the field- and nuclear spin-free electronic part which contains 

interactions that arise from kinetic energy and electrostatic interactions involving 

electrons and fixed nuclei, ĤZ refers to the Zeeman effect of the nuclear spins, and 

Ĥcontact + ĤD (Fermi contact and dipolar effects) together describe a very strong 

interaction called the electron-nucleus hyperfine coupling interaction, which 

dominates solid state NMR spectra. Ĥcontact causes partial transfer of unpaired 

electrons by direct delocalisation and spin polarisation, resulting in a shift in the 

“usual” peak position, whereas, ĤD couples the average dipole moment of the 

electronic distribution to the surrounding nuclear spins resulting in a large increase 

in the CSA. 

These two factors can cause a 1H spectrum which usually spans from 0 - 10 ppm for 

small organic molecules in a diamagnetic spectrum to span 1000s of ppm in 

paramagnetic materials. The use of fast magic angle spinning (rates exceeding 50 kHz 

– see section 1.2.2.5) has become widely accepted as part of the solution to 

overcome the difficulties of NMR of paramagnetic compounds and is routinely used 

because of its availability and relative ease to set up. Short high-powered adiabatic 

pulses (SHAPs)6 have been developed as described in section 1.2.3.8 below to 

overcome the broadband pulses required to excite the entire chemical shift range/ 

required. 
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1.2.2.5 Magic angle spinning 

CSA and dipolar coupling are major contributors to the broad lines observed in solid 

state spectra. Often the broadness of the spectra is undesirable due to lack of 

resolution, and multiple techniques have been developed which can be utilised to 

provide resolution enhancement. The most common technique is magic angle 

spinning (MAS). The Hamiltonians for ĤQ, ĤD and ĤCSaniso all contain both a spin part 

as well as a geometric part which contains the term 3cos2-1 as seen in Table 1.1. By 

spinning the sample angled at  = 54.74o (well known as the ‘magic angle’ as 

illustrated in Figure 1.4(c)) the geometric term 3cos2-1 averages to zero, and the 1st 

order quadrupolar interactions, dipolar interactions and CSA can be eliminated from 

the spectrum. At high spinning speeds the anisotropic interactions in the sample start 

to be averaged and the spectrum starts to resemble the high resolution spectrum of 

solution state NMR, shown in Figure 1.4(d). Without sufficient spinning speed the 

modulation of the interaction frequencies at the rotor frequency results in the CSA 

being manifested within spinning side bands, at a distance relating to the spinning 

speed of either side of the isotropic peak. 
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Figure 1.4. (a) Image of 4 mm probe with and without cover beside a 4 mm rotor. (b) Image 

of selection of rotors of differing sizes, from left to right 1.3, 1.9, 3.2, 4 and 7 mm rotor. (c) A 

close up image of the stator where the rotor sits in the probe and a schematic of MAS 

rotation. (d) NMR spectra vs MAS frequencies showing how CSA can be averaged out by MAS 

with increasing spinning speed increasing resolution. 
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1.2.3 NMR experiments 

The following NMR experiments are used throughout this thesis and their 

understanding is crucial to ensure these are performed correctly in order to obtain 

results and translate them into meaningful data. 
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1.2.3.1 Observing NMR Signal 

To observe signal in an NMR spectrum, the nuclei first need to become magnetized, 

by arranging themselves parallel with the magnetic field, this is a process known as 

relaxation. This alignment is referred to as the bulk magnetization vector. In the 

simplest NMR experiment, a “one pulse” also known as “pulse-acquire”, a single radio 

frequency (RF) pulse is applied to tilt this magnetisation factor away from the z axis 

into the transverse plane as shown in Figure 1.5 below. A  pulse rotates the 

magnetisation factor 180°, whereas a /2 pulse rotates it 90°. 

 

Figure 1.5. (a) Schematic representation of a one pulse experiment. (b) Vector model (red) 

representation of what happens to the bulk magnetization vector during the pulse sequence. 

(c) Schematic of nuclei precessing within magnetic field. 

As noted earlier, nuclei precess within the magnetic field (Figure 1.5(c)). When in the 

transverse plane, the precession of the nuclei induces a current at the resonating 

frequency of the nucleus. As the magnetization vector relaxes, less signal is detected 

on the x axis. This current is recorded over time and forms the free induction decay 

(FID). The FID can be Fourier transformed converting it into a frequency domain NMR 

spectrum. 
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1.2.3.2 Spin-lattice relaxation7 

To observe signal, RF pulses perturb magnetization away from the z axis into the 

transverse plane, where signal is acquired, then the nuclei relax back to the z axis (to 

the standard Boltzmann distribution of states) over time. In order to do this, they 

must lose energy, and the route by which they lose that energy defines the relaxation 

pathway. Losing energy to the “lattice”, i.e. the nuclei’s surroundings, is known as 

spin-lattice relaxation and results in a growth of the z component of magnetization, 

as the Boltzmann equilibrium is restored. This is in contrast to Spin-Spin relaxation 

which corresponds to decoherence of magnetization in the transverse plane. 

Relaxation is due molecular motion and results in the fluctuation of local magnetic 

fields in the sample and in solids typically the dipolar mechanism dominates. The 

correlation time, c, is the time taken for the molecule to rotate by a radian and can 

be estimated when T1 reaches a minimum using the following equation: 

ω0,Hτc≈0.62 (1.11) 

Correlation times can be used to in conjunction with the Arrhenius theory to extract 

activation energies to provide further details about the motion of molecules. 

Awareness of spin lattice relaxation is also required for NMR measurements. Prior to 

performing multiple scans in an experiment, we need to ensure that all nuclei are 

fully relaxed in order to obtain maximum signal in any NMR experiment. Therefore, 

their spin-lattice relaxation time, T1, is often measured using the inversion recovery 

experiment.  

The inversion recovery experiment follows the pulse sequence shown in Figure 1.6(a) 

below, which can be visualised using the vector model shown in Figure 1.6(b). Briefly, 

this sequence works by a  pulse inverting the magnetisation to the –z axis. This 

magnetisation is then allowed recover during the delay period, , followed by a final 

read-out pulse prior to detection. The array of  delay results in a range of various 

signal intensities. If  = 0, a maximum negative intensity is observed, whereas if  is 
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long, a maximum positive intensity is seen. Using this sequence multiple times with 

increasing delay values results in increasing signal intensities which can be plotted, 

and eventually shows a plateau seen in Figure 1.6(c) which signifies 5*T1. 5*T1 is used 

as the recycle delay time to ensure full relaxation has occurred to attempt to get 

quantitative spectra.1 

 

Figure 1.6. (a) Pulse sequence for inversion recovery experiment where  is the polarisation 
build-up time. (b) Vector representation of what is happening throughout pulse sequences, 

length of  increasing from 1 – 4 (c) Plot of intensity vs time to find value for T1. 

Relaxation rates differ depending on many factors including the paramagnetic 

mechanism, quadrupolar relaxation mechanism, dipolar mechanism, and CSA, with 

the two latter relaxation mechanisms being the most dominant.8 Analysis of T1 values 

can give information regarding the correlation times of motion in the order of the 

Larmor frequency. These correlation times can give insights into the motional 
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processes, the overall size of molecules as well as provide information on dynamics 

occurring in the systems. 

If a paramagnetic centre is present, dipolar interactions between the unpaired 

electrons and the paramagnetic centre causes the spin-lattice (longitudinal) 

relaxation times and spin-spin (transverse) relaxation times (T2) of surrounding NMR-

active nuclei to reduce, shortening the time for excitation to decay. This phenomenon 

is known as paramagnetic relaxation enhancement (PRE) and accounts for the major 

relaxation mechanism within paramagnetic solids. These extremely short relaxation 

times experienced can lead to difficulties in obtaining signal for paramagnetic 

compounds. 
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1.2.3.3 Saturation recovery 

Saturation recovery is another experiment which enables the measurement of T1. It 

is often the technique of choice over the inversion recovery method due to being less 

time consuming as well as only requiring 
𝝅

𝟐
 degree pulses, which allows quadrupolar 

nuclei which cannot invert their magnetisation to also be observed. A saturation train 

causes saturation of the bulk magnetization to zero, the time delay,  permits 

relaxation on the z axis, followed by the 
𝝅

𝟐
 pulse back into the transverse plane and 

signal acquisition (Figure 1.7). This method results in a build-up curve of 

magnetization, eventually recovering all magnetization resulting in a plateau at 5*T1. 

From this a T1 time can be determined and it is this T1 method that has been used for 

all 1H T1 determinations of diamagnetic materials throughout this thesis.  

 

Figure 1.7. Pulse sequence for Saturation recovery experiment. tsd is the saturation delay 

between /2 pulses. The saturation block is repeated 100 times in this instance to ensure 

full saturation of the magnetisation.  is the polarisation build-up time. 
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1.2.3.4 Echo 

The decay of the NMR signal over time due to both relaxation and inhomogeneous 

effects which result in each nuclei present in the samples to precess at varying rates. 

By applying an inversion (π) pulse after a time , any dephasing experienced is 

“refocused” back to the opposite axis resulting in all signals being refocused at the 

end of the second  period and signal is typically obtained after  as shown in Figure 

1.8 below. The additional benefit to this effect is that the dead time required after 

the π pulse-acquire will no longer result in a lack of signal as there is sufficient time 

between the π pulse and the top of the echo where the signal should be recorded 

from. This pulse sequence can be used to measure T2 relaxation by increasing the  

interval. 

 

Figure 1.8. Echo pulse sequence with delay of time  between the excitation and inversion 

pulse.  is the delay time between the two pulses Grey ‘FID’ represents the build-up of signal 

which is often not acquired. 
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Due to the quadrupolar nature of the Spin 1 nucleus, the FID signal decays rapidly, 

resulting in some signal loss before acquisition is possible leading to distortions of the 

signal. To eliminate this effect and maximise signal, a solid echo, similar to the echo 

described above, is used following the pulse sequence shown in Figure 1.9.9 Due to 

the quadrupolar frequency being larger than the applied pulse power, it is often not 

possible to fully invert the magnetization for these systems, therefore only 90° pulses 

are used to refocus as much magnetization as has been lost from T2 dephasing and 

produce a symmetrical FID. The FID can then be processed to obtain maximum signal 

with minimum noise. 

 

Figure 1.9. Schematic representation of a solid echo pulse sequence used for quadrupolar 

nuclei e.g., 2H.   is the delay time between the two pulses Grey ‘FID’ represents the build-

up of signal which is often not acquired. 
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1.2.3.5 Heteronuclear decoupling 

Heteronuclear decoupling is a valuable technique in solid state NMR. By applying 

heteronuclear decoupling, the heteronuclear dipolar coupling, which significantly 

contributes to the broadening in solid state NMR spectra, is reduced/eliminated, 

resulting in sharper signals which often simplify the spectrum. This technique is often 

used during 13C acquisition and is known as the high-power decoupling (HPDec) 

experiment, enabling ‘quantitative’ 13C spectra to be acquired. There are various 

pulse programs that apply heteronuclear decoupling, of which continuous wave is 

the simplest and irradiates the samples with RF of a single frequency throughout 

acquisition. However, many other techniques have been proposed which apply 

shorter pulses of RF irradiation including TPPM,10 SPINAL-6411 and XiX12. SPINAL-64 is 

the method of decoupling used throughout this thesis as it requires less optimisation 

than the TPPM techniques and is efficient at the MAS frequencies (typically 12.5 kHz) 

used. 
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1.2.3.6 13C NMR 

13C is the only NMR active nucleus of carbon. The sensitivity of 13C NMR is hindered 

by its low natural abundance of 1.1%, and further by its relatively low gyromagnetic 

ratio (with E. being dependent on . as shown in Figure 1.1), being only ¼ that of 1H. 

An additional benefit is that the delay time used in these experiments relates to the 

1H relaxation time which is often considerably shorter than that of 13C. This results in 

direct excitation spectra being time consuming to obtain in comparison to 1H spectra. 

1.2.3.6.1 Cross Polarisation  

To enhance the signal obtained, we utilise the polarisation of 1H and transfer this to 

13C, improving the signal theoretically by four times. The most common technique 

which employs this is called cross polarisation (CP).13 Additionally T1 values for 

carbons are typically significantly longer than that of 1H, often being in the range of 

tens of seconds and minutes, however, due to the direct pulse being on 1H in the CP 

sequence it is the 1H T1 with which the recycle delay is determined. This is often much 

shorter and enables more scans within the same timeframe, resulting in a further 

enhancement of the signal-to-noise ratio. However, it should be noted that this 

technique is not quantitative as it depends on dipolar coupling strength and the 

dynamics of the system. 

The pulse sequence in Figure 1.10 shows that the initial pulse on the 1H channel 

rotates the magnetization to the transverse plane, then a simultaneous pulse applies 

a spin lock to both the 1H and the 13C channels (following the conditions stated in the 

Hartmann- Hahn match - equation 1.12) which transfers polarisation from 1H to the 

13C nuclei, transferring the 13C nuclei into the transverse plane and then a FID is 

acquired on the 13C channel, while decoupling occurs on the 1H channel. 
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Figure 1.10. CP pulse sequence. Where the contact pulse is ramped on the 1H channel and 

acquisition is obtained under SPINAL-64 decoupling. 

To achieve maximum signal, the 1H and 13C signals are matched under the Hartmann-

Hahn conditions stated in equation 1.12.14,15 

ν( H)1 -ν( C)13 =n*νrot (1.12) 

Where ( H1 ) and ( C13 ) are nutation frequencies; the frequency of the applied RF 

field on the respective nuclei. By matching the nutation frequencies (or matching 

them to a spinning sideband if n ≥ 1) the two nuclei are put “into contact” and 

magnetisation can be transferred between the two nuclei via dipolar coupling. The 

efficiency of this transfer of magnetisation is proportional to the strength of the 

dipolar coupling and is therefore different depending on the nuclei’s surroundings.  
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1.2.3.6.2 Phase shifted recoupling effect a smooth transfer of order (PRESTO) 

An alternative polarisation transfer technique to CP is PRESTO.16 PRESTO is often 

desirable when the Hartmann-Hahn match cannot be found or spin locking of the X 

channel proves difficult e.g. in quadrupolar nuclei. This technique uses symmetry-

based recoupling blocks to reintroduce heteronuclear recoupling, which is averaged 

out under MAS, whilst implementing homonuclear decoupling on the 1H channel. The 

PRESTO pulse sequence16 used within this thesis uses 𝐑𝟏𝟖𝟏
𝟕 blocks to reintroduce 

heteronuclear dipolar coupling, enabling polarisation transfer to occur incorporating 

18 pulses into two rotor periods resulting in a power of 9 x MAS rate required for 

optimum signal. These recoupling blocks can however require very high power, and 

are often adapted to “windowed” blocks if necessary, to reduce the load on the 

hardware. Additionally, windowed blocks can provide a larger scaling factor, which is 

beneficial when interactions are small.  

  



41 
 

1.2.3.6.3 13C T1 

Dynamics of nuclei are often probed by plotting the change of spin-lattice relaxation 

time T1 vs. temperature enabling T1 minima to be found and therefore correlation 

times to be extracted. The inherently long 13C T1 relaxation times and low sensitivity, 

cause traditional inversion recovery methods, which require 13C to be observed 

directly, to be extremely long experiments for this nucleus. To maximise efficiency 

and reduce the time taken to measure these values, relaxation measurements are 

done using the CPXT1 pulse program17 shown in Figure 1.11. The CPXT1 pulse program 

takes advantage of the CP signal enhancement and short T1 times of the 1H to achieve 

maximum signal intensity. 

The contact pulse brings the 13C signal into the transverse plane, which is then pulsed 

in either the y or -y axis resulting in z or -z magnetization respectively. This 

magnetization relaxes over a period, , enabling relaxation down to the unenhanced 

13C Boltzmann value. This is followed by the 
𝝅

𝟐
 read out pulse. Then the intensities 

obtained on the y and –y axis are summed together and plotted for varying time 

delays an exponential curve results, giving the 5*T1 at its decay. 

 

 

Figure 1.11. CPXT1 pulse sequence, with 1H decoupling, which provides the resulting intensity 

plots on the y and –y axis dependent on the phase, which then sum together to obtain the 

final overall plot of intensity vs time to find value for T1. 
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1.2.3.7 Short high powered adiabatic pulses (SHAPs) 

With paramagnetic samples spanning very large chemical shift ranges, the RF pulse 

strength required to excite the whole spectrum requires very large powers which 

could cause hardware damage. Adiabatic frequency swept pulses sweep the effective 

magnetic field slowly as to allow for a multitude of spins with significant differing 

resonance frequencies to be perturbed at the same time. Hence this class of pules 

have been developed further in recent years in order to overcome the problem of 

the large power required to excite a large range as they are able to provide large 

ratios between the RF power required and the achieved spectral bandwidth 

excitation.  

These pulses work by locking magnetisation along a specific vector, quite often a 

hyperbolic tangent shape is used for frequency modulation, to direct it toward its 

required destination. It has been shown that these SHAPs with tangential frequency 

sweeps could be optimised to accomplish 13C and 1H broadband inversion. Further 

work presents a framework allowing one to define criteria for designing an adiabatic 

pulse that works for a specified MAS rate – a process known as ‘rotor-synchronising’ 

the pulse length18 and has recently been used to study paramagnetic compounds. 

The double echo has the addition of a second  pulse in comparison to the spin echo 

described in Section 1.2.3.4 and Figure 1.7 above. This second echo removes baseline 

distortion and aids in phase correction of the spectrum, ideal for large spectral 

widths. To further apply this to paramagnetic compounds, rotor synchronised SHAPs 

can be applied (Figure 1.12(b)) rather than the hard pulses shown in Figure 1.12(a). 

These SHAPs replace the conventional  pulse giving more tolerance to enable the 

large frequency range to be refocused. 
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Figure 1.12. (a) Double echo pulse sequence where  is the delay time between the first two 

pulses. Grey ‘FID’ represents the build-up of signal which is often not acquired. (b) Double 

echo (adiabatic) pulse sequence with SHAPs replacing the hard  pulses. 
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1.2.3.8 Transferred echo double rotation 

The one-dimensional Transferred echo double rotation (TEDOR) experiment enables 

identification of the heteronuclear dipolar coupled nuclei present within the 

sample.19 Nuclei which are not coupled are filtered out of the spectrum making this 

a useful technique to identify protonated carbons. 

The pulse sequence is shown in Figure 1.13 below. Initial excitation is applied to the 

unobserved nuclei (1H), followed by rotor synchronised 13C-spin  pulses are 

introduced at ¼ and ¾ of the rotor period, reintroducing the heteronuclear dipolar 

coupling otherwise averaged out by MAS, whilst 1H CSA is refocused. A simultaneous 

𝝅

𝟐
 pulse is performed on both channels upon the completion of a rotor cycle to 

transfer the magnetisation from 1H spins to dipolar coupled nearby carbon nuclei. 1H-

 pulses are then introduced at ¼ and ¾ of the rotor period and signal is acquired 

after a total of 2 rotor periods. 

 

Figure 1.13. TEDOR pulse sequence. Rotor synchronised  pulses at ¼ and ¾ of the rotor 

period, r, are applied to reintroduce heteronuclear dipolar coupling. 
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1.2.3.9 Two-dimensional NMR 

Two-dimensional (2D) NMR techniques can be used to probe selective NMR 

interactions and are often very useful in unequivocal determination of the structure 

of a molecule. In 2D NMR signals are recorded as a function of two time variables, 

which can be Fourier transformed to provide two frequency axes, resulting in a 

correlation describing an interaction/correlation dependent on the particular 

experiment. A general 2D NMR scheme is laid out in Figure 1.14 below and consists 

of preparation, evolution, mixing and detection periods. The value of 1 during the 

evolution period is increased incrementally over each acquisition to build up a time 

domain dataset which when Fourier transformed will yield a 2D frequency domain 

spectrum. 

 

Figure 1.14. Basic 2D pulse scheme. The evolution period, 1, between the preparation and 

mixing time elements is increased incrementally followed by another period which allows for 

mixing before detection in the t2 period. 

 

  



46 
 

1.2.3.9.1 INADEQUATE 

Spectral assignment is key to assigning/confirming structures. Whilst this is often 

completed using one-dimensional techniques, more challenging structures require 

more information, which we can gain from more complex, two-dimensional, pulse 

programs. The incredible natural abundance double quantum experiment 

(INADEQUATE) provides through-bond connectivities of adjacent nuclei (most 

commonly 13C), exploiting scalar couplings to do so.20 

The INADEQUATE pulse sequence is shown in Figure 1.15 below. The first step 

requires a polarization transfer from 1H to 13C via a CP step. 13C magnetization then 

evolves, and is refocused during the -- period. The 13C 
𝜋

2
 pulse generates double 

quantum coherences (a phase coherence where the state changes by a magnetic 

quantum number of 2, rather than single quantum coherences where the quantum 

number changes by the allowed value of 1) for bonded nuclei, which evolves during 

t1, and is detected in the indirect dimension. The final 
𝜋

2
 pulse enables acquisition of 

single quantum transitions, and a standard FID is acquired for first dimension 

detection (Figure 1.15). Although this method provides very valuable information, 

the low abundance of the 13C nuclei result in the experiment requiring a large amount 

of scans, and hence a substantial amount of spectrometer time to get sufficient 

signal.  

 

Figure 1.15. INADEQUATE pulse sequence. A cross polarisation step is used for initial 

polarisation transfer. SPINAL64 heteronuclear decoupling is used during 13C acquisition. 
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1.2.3.9.2 R-PDLF (proton detected local field) 

Proton detected local field (PDLF) experiments can probe dipolar coupling and hence 

distances in relatively small molecules.21 PDLF is a 2D experiment which correlates 

the chemical shift in the F2 dimension with the dipolar coupling in the indirect 

dimension allowing the dipolar coupling spectrum to be extracted at each site. It 

follows the pulse program in Figure 1.16 below. During the 1H evolution period, rotor 

synchronised recoupling blocks are applied to recouple the heteronuclear dipolar 

coupling which has been removed by MAS whilst removing homonuclear dipolar 

coupling. In the middle of the t1 period a  pulse is applied to refocus the 13C chemical 

shift. This is followed by a polarization transfer step using the PRESTO sequence 

which recouples the heteronuclear dipolar coupling to allow transfer, whilst 

decoupling 1H and therefore eliminating any spin diffusion from occurring ready for 

13C detection. CP can also be used for the polarization transfer step, however it is 

susceptible to 1H 1H spin diffusion and therefore to minimise this short contact times 

are required, often resulting in lower signal intensity. 

 

Figure 1.16. Proton Detected Local Field (PDLF) experiment using the windowed sequence 

(wPDLF)20 that correlates the 13C chemical shifts in 2 with the 13C 1H dipolar coupling spectra 

in 1. 𝐰𝐑𝟏𝟖𝟐
𝟓 recouples the heteronuclear dipolar interaction during the rotor synchronised 

evolution period t1 to enable observation of 13C 1H dipolar spectra, whilst the 𝐰𝐑𝟏𝟖𝟏
𝟕 blocks 

recouple the heteronuclear dipolar interaction enabling the transfer of polarization from 13C 

to 1H using the PRESTO sequence. SPINAL64 heteronuclear decoupling10 is used during 13C 

acquisition. 
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1.3 Systems and materials used in this thesis 

In this thesis the above techniques have been utilised to study advanced molecular 

materials.  

In chapter 3, we explore the tubular covalent cages (TCC), a recently discovered 

family of porous organic cages which have been shown to have inherent porosity and 

are capable of applications similar to molecular organic frameworks, including 

molecular separation and gas storage.22 These TCCs have been chosen as they have 

an architecture which can permit the observation of these properties. I.e., by 

studying the dynamics of the “windows” in these TCCs guest capture/release can be 

observed. 

Chapter 4 assesses the pillar[n]arene macrocycles which also have use in molecular 

separation.23 The chosen pillar[n]arene; perethylated pillar[6]arene, in particular has 

been shown to selectively adapt and adsorb para-xylene over the other xylene 

isomers, which is a known challenge due to the similarity in the boiling/freezing 

points of these materials.24 This flexibility and adaptation was an ideal property to 

probe in order to gain more understanding of these macrocycles. 

Hybrid perovskites were explored in chapter 5. These three-dimensional structures 

are typically used as photovoltaic materials in solar cells.25 Melting of these structures 

is often desired as the defects created in the melted structure often promote thermal 

and electrical conductivities. The three hybrid perovskites studied in chapter 5 have 

a paramagnetic metal ion, causing challenging conditions to study these materials by 

NMR, however with the techniques outlined earlier in this chapter, these are 

overcome to confirm the structure of both the crystalline and melted materials. 
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1.4 Conclusion 

The techniques presented here are only a small portion of those that are used within 

the field of NMR and there are many more schemes which can provide 

similar/alternative information on dynamics and structure of materials. However, 

these solid state NMR techniques are those selected and used routinely throughout 

this thesis to probe various supramolecular assemblies. 
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Chapter 2: Recent Advances in Probing Host-Guest Interactions with 

Solid State Nuclear Magnetic Resonance 

 

 

 

2.1 Overview 

Chapter 2 is a paper entitled “Recent Advances in Probing Host-Guest Interactions 

with Solid State Nuclear Magnetic Resonance” by Ashlea R. Hughes, and Frédéric 

Blanc. Which has been submitted for publication in 2021. The author contributions 

are as follows: A.R.H. wrote the manuscript with consultation from F.B. 
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2.2 Abstract  

An overview of the recent role of solid-state Nuclear Magnetic Resonance (NMR) 

spectroscopy in the field of supramolecular chemistry to probe host-guest 

interactions is provided. Over the last few years, solid state NMR methodologies have 

provided unique insights into the atomic level structure and dynamics of guest 

molecules adsorbed in solid materials that are not available by other approaches. 

This chapter discusses the range of NMR interactions that enable access to this 

information and provides a number of illustrating examples that highlight their 

applications in a wide range of chemical systems and porous materials covering metal 

organic frameworks, porous molecular solids and zeolites.  
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2.3. Introduction to host-guest interactions and supramolecular chemistry 

Host-guest interactions are prevalent in nature and play important roles in many 

critical functions. These non-covalent interactions form supramolecular complexes 

between multiple molecules to occur by hydrogen bonding, hydrophobic forces, van 

der Waals forces, - interactions and electrostatic effects and are responsible for 

the three-dimensional structure of biomacromolecules, molecular recognition 

processes, self-assembly, and many further examples of which would not be able to 

perform their function without these crucial interactions.1 These examples listed 

above have inspired chemists to exploit host-guest interactions for drug discovery, 

molecular separation and catalysis leading to the growing field of supramolecular 

chemistry. To the best of our knowledge, the first example of a synthetic compound 

capable of complexing alkali metal cations was the crown ether dibenzo-18-crown-6 

(illustrated in Figure 2.1), discovered by Charles J. Pedersen in 1967.2 The affinity of 

dibenzo-18-crown-6 for the potassium ion was found to be greater than that of the 

smaller sodium cation, enabling preferential molecular separation of these alkali 

metal cations. Leading on from this seminal work, Charles J. Pedersen along with 

Donald J. Cram and Jean-Marie Lehn were in 1987 awarded the Nobel Prize in 

Chemistry for their “development and use of molecules with structure-specific 

interactions of high selectivity”.3–5 The field of supramolecular chemistry was then 

again rewarded with the 2016 Nobel Prize in Chemistry to Jean-Pierre Sauvage, Sir J. 

Fraser Stoddart and Bernard L. Feringa for their design and production of molecular 

machines, where molecules are linked together via a mechanical bond, rather than 

covalent.6–8 The diversity of this research area causes it to be an ever growing and a 

rapidly developing field of chemistry. 
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Figure 2.1. Typical host-guest chemistry example of dibenzo-18-crown-6 and K+ ions forming 
supramolecular complex held together by electrostatic interactions originally discovered by 
Charles J. Pedersen.2 

The understanding of the functionality of supramolecular materials requires the 

knowledge of both the structure of the materials and their configuration in relation 

to each other. This however, largely depends on the materials dynamics and 

flexibility, as these factors control the chemistry, adsorption or encapsulation. In this 

chapter, recent examples of host-guest interactions in supramolecular assemblies in 

which the understanding has been advanced by solid state NMR experiments in order 

to demonstrate its utility will be reviewed. This chapter will highlight the most recent 

advances since the last review on this topic in 20169 and describe the interactions 

from the perspective of the solid state NMR techniques which have been used rather 

than either the types of interactions,9–11 or class of molecules.12 Each section is 

illustrated by brief examples which use a particular solid state NMR technique 

needed to gain further insights into the structure and dynamics which are of high 

importance in this field. 
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2.4. Widely used approaches to probe host-guest interactions 

A range of experimental methods has been used to investigate host-guest systems. 

Fluorescence spectroscopy is widely exploited within this area, due to its ability to 

yield key information regarding the occurrence of complexation in the form of a 

spectral shift13 whilst contributing rather limited information about the strength or 

location of the host-guest interaction and is therefore often combined with other 

methods to achieve this. Calorimetry is able to provide the strength of the host-guest 

interaction,14 however, the location of the guest and the type of interactions are 

difficult to decipher without prior knowledge of potential binding sites. Diffraction-

based methods such as X-ray diffraction (XRD) probe long-range order and are critical 

to elucidate structural host-guest features. However, the dynamics and mobility of 

supramolecular assemblies are challenging to assess using these methods due to the 

inherent requirement to accessing short range structural information. Diffraction 

methods are therefore often paired with NMR to provide a more complete 

understanding of the interactions and dynamics at play in supramolecular 

assemblies.11 Additionally, density functional theory (DFT) studies are becoming 

more and more prevalent to procure detailed structural information regarding 

bonding and electronic structures (e.g. to compute NMR parameters and support 

spectral assignment),15–17 all providing complementary information to experimental 

data crystallography.9,11,18,19 Hence, in conjunction with diffraction-based methods 

and computational studies, solid state NMR is playing an important role in the study 

of host-guest systems and has strong potential to provide information regarding both 

structure and dynamics of supramolecular chemistry as illustrated below. 
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2.5. Solid state NMR and NMR interactions as probes to study supramolecular 

materials 

Solid state NMR is a powerful tool for understanding the short-range order and 

dynamics for a range of solid materials in both crystalline and amorphous states. NMR 

provides site-specific and local structural information, and is therefore a robust 

approach for probing spatial proximities. The NMR spectra of solids are affected by a 

number of NMR interactions which include Zeeman splitting (interaction of the 

nuclear spin with the external magnetic field B0), isotropic and orientation dependent 

(anisotropic) chemical shifts (indirect interaction of the nuclear spin with B0 via the 

electrons), through-space dipolar coupling (direct nuclear spin dipole-dipole 

coupling) and through-bond scalar J couplings (indirect nuclear spin dipole-dipole 

coupling via the electrons), and for nuclei with spin quantum number I >1/2, 

quadrupolar interaction (interaction of the nuclear electrical quadrupolar moment 

with the electric field gradient (EFG)). All of these interactions affect the appearance 

of the NMR spectrum and provide structural and dynamics information on the local 

environment.  

The two most common methods to explore host-guest interactions by solid state 

NMR methods exploit chemical shielding (directly relating to the observed chemical 

shift) and dipolar interactions, both of which are highly dependent on local structure 

and packing arrangements. The chemical shielding interaction is a sum of both the 

diamagnetic and paramagnetic shielding contributions. In diamagnetic materials, 

external magnetic fields cause movement of electrons within orbital to oppose the 

external magnetic field. Diamagnetic currents relate directly to the electron density 

surrounding a nucleus and perturbs the magnetic field which the nucleus experiences 

away from the external magnetic field (Zeeman interaction) causing the nucleus to 

resonate at a different frequency (and chemical shift) that is dependent on the local 

electron density. Whereas paramagnetic currents occur due to the mixing of ground 

and excited states that amplifies the effect of the external magnetic field causing 

deshielding. These paramagnetic currents are related to the average excitation 

energy as well are the distance between the nucleus and electrons. The dipolar 

interaction arises from the interaction between the nuclear magnetic moments of 
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two alike (homonuclear dipolar coupling) or different (heteronuclear dipolar 

coupling) nuclear spins and depends on both the strength of the magnetic moments 

and the inverse cube of the distance between both spins.  

Although chemical shieldings and dipolar couplings provide a wealth of information 

regarding the local environment of the nucleus, the information can be challenging 

to extract due to the inherently low sensitivity, poor resolution, and broad 

resonances often dominating the experimental spectra which has led to the 

development of a range of methods to overcome these obstacles. The NMR 

sensitivity is largely dependent on the Boltzmann energy difference between the 

magnetic states of the nuclear spin which is determined by the strength of the 

external magnetic field and the value of the gyromagnetic ratio of the nucleus. High 

field NMR20–22 is therefore often used to overcome this challenge by increasing this 

energy gap and also often results in higher resolution by increasing chemical shift 

dispersion. Dynamic nuclear polarisation (DNP)23–25 and cross polarisation (CP)26 

emerged as powerful approaches to significantly increase sensitivity by polarisation 

transfer of the high magnetisation of electron spins to nucleus spins, and of higher 

polarised nucleus spins (e.g. 1H) to lower polarised spins, respectively. Other 

hyperpolarisation methods (a branch of which DNP belongs to) that amplified the 

nuclear polarisation beyond that obtained by the Boltzmann distribution have also 

been discovered, mostly in liquid state NMR spectroscopy. Additionally, magic angle 

spinning (MAS)27 that approximates molecular tumbling experienced in the liquid 

state, is routinely used in the solid state to suppress first order anisotropic 

interactions such as chemical shieldings and dipolar couplings increasing both 

sensitivity and resolution.28 Many of these methods are exploited in the examples 

given below and their more comprehensive description being beyond the scope of 

this chapter, the reader is directed to explore other sources.11,18,29 

2.5.1. Complexation induced shift 

Complexation induced shifts (CIS),30 also known as chemical shift perturbation, 

delivers a significant advantage for structural and conformational determination in 

supramolecular complexes, and provides indispensable information regarding 

binding in supramolecular assemblies. Chemical shifts are indicative of the local 



60 
 

environment surrounding a nucleus as described in Section 2.5 above and 

complexation induced shifts probe the change in chemical shielding of the nuclei in a 

molecule due to electron density arising from nearby nuclei or molecules in an 

assembly. CISs were originally discovered in liquid state NMR due to solvent effects30 

and have now been used extensively in solid state NMR to observe host-guest 

assemblies.31 CH- interactions of toluene and pyridine in p-tert-butylcalix[4]arene32 

have been observed using CISs combining NMR crystallography and ab initio 

calculations to determine the positioning of the toluene or pyridine location inside 

the host structures.  

Most notably, hydrogen bonding, which is one of the strongest driving forces for host-

guest interactions in supramolecular assemblies, results in a very large change of 1H 

chemical shifts up to approximately 20 ppm.33 Hydrogen bonding can also be 

monitored via a heteronuclear spin (e.g. 13C) that results in reduced electron density 

around the bridging proton, greater amount of deshielding experienced by this 

nucleus and a higher chemical shift.  

Hydrogen bonding interactions are often exploited in pharmaceutical sciences to 

obtain amorphous solid dispersions (ASD)34 in which polyvinylpyrrolidone (PVP) is a 

common polymer used to stabilise amorphized active pharmaceutical ingredients 

(API) with increased oral bioavailability due to their amorphous nature increasing the 

exposed surface area.35 13C CP MAS NMR has recently been used to study the 

cogrinding process of the nifedipine (NIF) API with PVP and a surfactant (Figure 

2.2(a)) and assess improved drug dissolution properties from physical cogrinding 

modification.36 The 13C CP MAS NMR spectrum of the PVP NIF ASD obtained after a 

short period of 15 minutes of grinding (Figure 2.2(b)) shows two narrow well resolved 

signals for the two chemically inequivalent carbonyl carbons around 170 ppm37 and 

supports a crystalline NIF phase. Upon further cogrinding to 100 minutes, these sharp 

carbonyl peaks significantly broaden (Figure 2.2(b)) and suggest complete NIF 

amorphization as confirmed by the absence of Bragg reflections in the XRD pattern. 

It was also observed that there is a small deshielded shift of the PVP carbonyl carbon 

during the grinding process (Figure 2.2(b)) which might indicate some hydrogen 

bonding in these systems.38 This interaction between PVP and NIF potentially results 
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in stabilising the amorphization, making PVP an appealing polymer to increase oral 

bioavailability. To strengthen the argument for hydrogen bonding, a single NMR 

technique is rarely used and a multinuclear approach combining 

homonuclear/heteronuclear correlation techniques or NMR crystallography is often 

used to provide further insights.39 

 

Figure 2.2. (a) Chemical structure of Nifedipine (NIF) and Polyvinylpyrrolidone (PVP). (b) 13C 
CP MAS NMR spectra of (i) PVP, a mechanically ground mixture of NIF/PVP/sodium dodecyl 

sulfate system ground for (ii) 15 min, (iii) 40 min, and (iv) 100 min obtained under MAS at r 
= 15 kHz. The spectral assignments are shown in the figure. Reprinted (adapted) with 
permission from ref 36. Copyright 2016 American Chemical Society.  

2.5.2. Lineshape analysis  

Deuterium 2H (I = 1) is a quadrupolar nucleus whose lineshape dominated by 

broadening arising from the quadrupolar interaction. 2H NMR is a very common tool 

exploited for the study of molecular dynamics as its lineshape is highly sensitive to a 

range of different motions and their rates on the kHz-MHz timescale.40 The low 

natural abundance of this isotope (0.0115%) is both a drawback with the need for 

isotopic enrichment requiring additional synthetic steps and an advantage as 

selective labelling allows site specific information to be obtained. In the absence of 

motion, static 2H spin echo NMR experiments under non spinning conditions produce 

a Pake pattern which have outer horns that are symmetrically distributed towards 

the edges of the pattern (Figure 2.3). However, the presence of motion in the 103 Hz 

– 108 Hz frequency range causes changes in this lineshape to occur due to T2 
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anisotropy preventing certain crystallite orientations to refocus during the spin echo 

sequence.40,41 The temperature-dependence evolution of the lineshape (Figure 2.3) 

is a function of the type of motion, geometry and reorientation rates (accessible from 

numerical simulations using for example the EXPRESS,42 MXET143 or weblab44 

packages), thereby producing a change in lineshape characterising the overall 

dynamics of the motion.  

2H NMR has been used to explore the motion in molecular rotors in a range of 

systems45–47 and it has recently been identified that tubular covalent cages (TCC)48 

are the fastest exclusively organic molecular rotors found to date. The two TCCs that 

possess a central phenylene ring between either the trisubstituted aromatic (TCC2) 

or acetylene moieties (TCC3, Figure 2.3(a))49 have the potential to rotate in the solid 

state. Variable temperature 2H static NMR lineshape analysis of TCCs (that have been 

deuterated on the phenylene ring) show a typical Pake pattern in the slow motion 

regime at 105 K and a temperature dependent lineshape that is typical of a fast 

rotational 180° flip upon heating. Through numerical simulations, the 2H NMR 

lineshapes of TCC3-R were found to consistently have faster reorientation rates than 

its smaller counterpart TCC2-R and this is ascribed to facile rotation around the 

acetylene bonds due to a reduction in steric hindrance, showing structural 

dependency of phenylene motion.  

Upon iodine loading (Figure 2.3(b)), the change of 2H NMR lineshape indicates 

significantly slower reorientation rates and demonstrates that the iodine host has 

hindered phenylene rotation in these TCCs molecular rotors. Upon iodine release 

from TCCs at 353 K, faster rotational rates are obtained, indicating that these TCCs 

are responsive materials not only to temperature changes, but also host-guest 

interactions. 
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2H NMR lineshape analysis has also recently been used to study the unique dynamics 

of aromatic hydrocarbon tubular host, [4]CC, with corannulene (COR) guest (Figure 

2.4(a)).50 Theoretical DFT calculations gave insights into the presence of CH- bonds 

interaction in this supramolecular assembly and revealed a bowl-in-tube host-guest 

structure where, despite the presence of multiple CH- bonds binding the assembly 

together, guest rotation of the bowl-shaped COR guest is permissible which was 

further supported by experimental work deploying solid state NMR. Utilising a 

deuterated guest ([D10]COR), 2H NMR studies examined the dynamics of the bowl 

shaped guest in the assembly (Figure 2.4(b)) and show that a single resonance is 

observed in the 2H Pake pattern, indicating that the COR guest molecules are all 

equivalent. The quadrupolar splitting measured from the horns of the Pake pattern 

was found to be smaller than expected value for motionless molecules, indicating 

some rotational motion with monotypic dynamics is occurring in the guest.  

 

Figure 2.3. (a) TCC3-R structure (red) and variable temperature 2H static solid echo NMR 
spectra of [D12]TCC3-R. (b) iodine-loaded TCC3-R structure (burgundy) and variable 
temperature 2H static solid echo NMR spectra of iodine loaded [D12]TCC3-R. Corresponding 
simulated spectra (black dashed lines) and rotational rates obtained from numerical 
simulations of the NMR lineshape obtained at various temperatures are also given. Spectral 
artefacts are denoted with (#). In the crystal structures, the cyclohexane groups are 
represented in red; other C, grey; N, blue; H/D omitted for clarity. Ref 48 is an open access 
article distributed under the terms of the Creative Commons CC BY license. 



64 
 

 

The quadrupolar splitting is dependent on the axis of rotation of the guest molecule 

and calculations show that the experimental splitting of 42 kHz can be obtained at 

either an angle of  of 42˚ or 69˚. X-ray crystallography and simulated 2H spectrum 

matching the experimental one confirmed a value of 66˚ (Figure 2.4(c)). This indicates 

that the guest has axial anisotropy in the host-guest complex with potential for these 

types of systems to be exploited for their chiro-optical properties.  

13C is obviously a popular I = ½ nucleus for which lineshape analysis has been 

extensively used to probe host and guest in supramolecular assemblies. A significant 

challenge is also the poor natural abundance of 13C (1.1%), hence isotopic enrichment 

or transfer of polarisation techniques such as CP are often used to improve sensitivity.  

Guest capture of CO2 is of particular interest in supramolecular chemistry45,51,52 and 

has recently been extensively investigated from the analysis of the 13C chemical shift 

anisotropy (CSA) lineshape.52,53 13C labelled CO2 is often used to focus on the loaded 

CO2 whilst signals arising from the metal organic framework (MOF), linkers at natural 

abundance are highly decreased in intensity. One example compares two different 

metal centered (Al and Ga) MIL-53 MOFs, that contain corner sharing MO4(OH)2 

octahedra interconnected by benzenedicarboxylate linkers, and the related amine 

 

Figure 2.4. (a) Chemical structures of tubular host ([4]CC) and bowl-shaped guest (COR). (b) 
Observed and simulated 2H static solid echo NMR spectra of [D10]COR in [4]CC obtained at 
298 K. (c) Schematic of the molecular structure of COR showing a representative 
experimental cone angle (θexp) measured from the crystal structure. Ref 50 is an open article 
distributed under the terms of the Creative Commons CC BY license. 
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functionalised derivatives,54 providing an understanding of the CO2 dynamics within 

this family of MOFs. The experimental static 13C CSA NMR spectra could be modelled 

with two types of possible motion, a six- and a two-fold rotation. This analysis showed 

that MIL-53(Al) gave a smaller hopping angle of CO2 rotation in comparison to MIL-

53(Ga), which had more mobility, and indicates that the metal centre affects the CO2 

binding strength with Ga causing a weaker CO2 adsorption. Adsorption of CO2 in the 

NH2 functionalised benzenedicarboxylate (Al and Ga) MIL-53 was also studied and 

revealed similar 13C CSA lineshape for both cations, although with a general greater 

affinity for the CO2 in comparison to the non-functionalised MIL-53. In other work, 

13C CSA lineshape analysis on Mg2(dobdc) MOF-74 (dobdc4− = 2,5-dihydroxy-1,4-

benzenedicarboxylic acid)52,53 adsorbed with a range of CO2 pressures showed that 

the CO2 molecules have an orientation dependency on the pressure and hence the 

number of CO2 molecules adsorbed.  

A combination of 13C CSA and pulsed field gradient (PFG) experiments has recently 

been used to quantitatively determine the diffusion coefficients of CO2 in 

Zn2(dobpdc) (dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate)52 which is also a 

MOF-74 possessing one-dimensional hexagonal channels containing unsaturated 

metal centres. Static 13C NMR spectra of 13CO2 loaded Zn2(dobdc) are shown in Figure 

2.5(a) and do not show the expected narrow resonance expected for CO2 in the gas 

phase but rather exhibit a powder pattern that corresponds to different orientations 

of the confined CO2 molecules relative to B0. This pattern is a consequence of the 

reduced 13C CSA of CO2 confined in the pores due to preferred orientations of the 

crystal frame relative to B0 (Figure 2.5(b)). Based on a number of considerations, 

including MAS NMR spectra, the sign of the 13C CSA, difference CO2 dose, diffusion 

coefficients D values and molecular dynamics (MD) simulations, the deshielded and 

shielded edges of the powder pattern were assigned to crystals perpendicular (D⊥) 

and parallel (D∥) to B0, respectively.  
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Static 13C NMR spectra of 13CO2 loaded Zn2(dobdc) recorded as a function of 

increasing gradient field strengths (Figure 2.5(a)) have revealed faster decay of the 

deshielded signal than the shielded signal and enabled CO2 self-diffusion coefficients 

in both the parallel (D∥) and perpendicular (D⊥) directions to the hexagonal channels 

to be obtained. CO2 was observed to diffuse through the channels parallel to the 

crystallographic c axis (D∥) as expected but also and, more surprisingly, between the 

hexagonal channels in the crystallographic ab plane (D⊥, Figure 2.5(b)) which was 

attributed to defects in the MOF structure. It is worth pointing out that neither in situ 

XRD nor MD revealed this anisotropic diffusion thereby highlighting the 

complementarity of these methods.  

  

 

Figure 2.5. (a) 13C PFG static NMR spectra for Zn2(dobpdc) crystals at a pressure of 625 mbar 
13CO2 with different applied gradient strengths and at 298 K. D∥ is the signal arising from 
crystals parallel to the external magnetic field at a lower chemical shift, whilst those at higher 
chemical shift are aligned perpendicular to the field D⊥. (b) Cross-section of the crystal 
structure of the Zn2(dobpdc) framework at 298 K showing the two diffusion pathways. Light 
blue, red, grey, and white spheres represent Zn, O, C, and H atoms, respectively. Reprinted 
(adapted) with permission from ref 52. Copyright 2018 American Chemical Society.  
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2.5.3. NMR relaxometry 

NMR relaxometry encompasses a wide range of experiments that access the rates of 

relaxation (either longitudinal relaxation times in the laboratory frame T1 or rotating 

frame T1, or transverse relaxation time T2) which measure polarisation returning to 

their equilibrium values in a magnetic field. Temperature dependent relaxometry 

measurements in particular are insightful for the study of molecular dynamics, 

allowing access to the correlation times of the motion and their activation energies, 

providing some important information about host-guest interactions.20,34 

The adsorption of 13C labelled CO2 in MOF-74 Zn2(dotp) (where dotp4- = 2,5-

dioxidoterephthaate, Figure 2.6(a)) has recently been studied using a combination of 

solid state NMR techniques, including 13C CSA lineshape analysis, 2D exchange 

spectroscopy, 13C MAS and NMR relaxometry.55 The T1 times of the CO2 guest were 

found to increase with increasing numbers of CO2 molecules (Figure 2.6(b)), 

indicating that at higher pressures the CO2 mobility is hindered due to the CO2-CO2 

interactions. The correlation times obtained from T1 data over the 305-363 K 

temperature range and assuming a CSA relaxation mechanism were calculated and 

yielded activation energies of 4.4 and 3.5 kJ mol-1 for two samples with different CO2 

pressure of 100 and 1000 mbar, respectively (Figure 2.6(c)). This slight difference 

supports the hypothesis that the CO2-CO2 and CO2-pore surface interactions increase 

with pressure. The correlation time found was also significantly longer than that of 

gaseous CO2, also providing further evidence for the host-guest interactions 

occurring at the pore surface. 
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Analysis of the T1 data in Zn2(dotp) MOF-74 also revealed the occurrence of unusually 

slow localized wobbling and hopping motions (at a rate of 10-8 s) that are much 

smaller than for the Mg-MOF-74 (10-10 s) analogue and further studies are highly 

anticipated to provide more information on the mobility, adsorption and separation 

properties of these MOFs. 

2.5.4. Spin Diffusion 

Spin diffusion NMR experiments observe the transfer of nuclear magnetization via 

through space dipole-dipole interactions and is used to probe host-guest interactions 

among a range of systems.39 As spin diffusion coefficients, D, are proportional to the 

cube root of the nuclei concentration and the square of the nuclei gyromagnetic ratio, 

nuclei with sufficiently high values (e.g. 1H, 7Li, etc.) are often used in these 

experiments and provide qualitative and quantitative information on spatial 

proximities.  

 

Figure 2.6. (a) MOF-74 chemical structure with adsorption sites shown. (b) Pressure and (c) 
temperature dependence of T1 values for the adsorbed CO2 in Zn2(dotp) MOF-74 under MAS 

at r = 6 kHz, 305 K and at 100 mbar (black) and 1000 mbar (red), respectively. Experimental 
and calculated T1 values (based on a 13C CSA relaxation mechanism) are shown as data points 
and solid lines, respectively. Reproduced from ref. 50 with permission from the PCCP Owner 
Societies. 
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Along with T1 relaxometry data on Zn2(dotp) MOF-74, 13C two-dimensional (2D) 

exchange MAS NMR data was also used to investigate the diffusion of CO2 enriched 

in 13C thereby increasing 13C spins concentration.55 With the possibility of multiple 

adsorption sites, the determination of the type of sites is crucial for the 

understanding of the mechanism of adsorption. Surprisingly and in contrast to 

previous work assessing the 13C CSA patterns of Mg-MOF-74,56 two CO2 resonances 

were observed in Zn-MOF-7455 and initially assigned to a primary adsorption site and 

a secondary adsorption site only accessible under greater pressure. However, the 

corresponding 2D exchange 13C MAS NMR spectra revealed that these two signals do 

not exchange (over 10-1000 ms mixing times) and it was therefore concluded that 

the second resonance is due to mobile CO2 located in the dead space of the NMR 

tube rather than a secondary adsorption site.  

1H 1H spin diffusion experiments were performed on (Zr6O4(OH)4(bpdc)6 MOF UiO-67 

(where bpdc2- = biphenyl-4,4’-dicarboxylate) loaded with a range of light alkanes 

(methane, ethane and propane) to explore their interactions into the MOF pores 

(Figure 2.7(a)).57 First principle calculations and neutron diffraction studies had 

previously been used to probe host-guest interaction in methane-loaded M2(dhtp) 

MOFs (M = Mg, Mn, Co, Ni, Zn; dhtp2- = 2,5-dihydroxyterephthalate),58 however, due 

to the motional dynamics and disorder in these systems, significant direct 

experimental evidence for the interaction at room temperature has been difficult to 

achieve. The 1H 1H spin diffusion spectra of the methane loaded UiO-67 are shown in 

Figure 2.7(b) at various mixing times and reveal cross peaks correlating methane (-

0.4 ppm) with aromatic protons belonging to the UiO-67 bpdc organic linker, 

supporting van der Waals interactions. Experiments conducted with heavier alkanes 

(ethane and propane) showed similar results, albeit requiring longer spin diffusion 

times for cross peaks to appear and suggests there is a slight preference for the 

smaller alkanes, and overall showing evidence that UiO-67 could be utilised for the 

storage of these light alkanes. 
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Figure 2.7. (a) Schematic structure of UiO-67. (b) 2D 1H−1H spin-diffusion spectra of methane 
loaded UiO-67 at mixing times of (i) 1 ms, (ii) 36 ms and (iii) 121 ms obtained at a MAS rate 

r = 10 kHz. Reprinted (adapted) with permission from ref 57. Copyright 2017 American 
Chemical Society. 
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2.5.5. Xenon NMR 

Xenon 129Xe (I = ½) enables detailed information about the size and shape of the 

cavity in porous solids59 and is often used to probe supramolecular assemblies. This 

is largely due to the inert nature and large electron density of Xe which makes this 

nucleus particularly sensitive to the atomic scale.59,60 Although the high gyromagnetic 

ratio (-7.441 x107 rad T-1 s-1) and natural abundance (26.4%) seem favourable for NMR 

detection, the reduced xenon-xenon interactions needed to promote observation of 

adsorption sites requires low concentration challenging detection. Hyperpolarised 

129Xe NMR is therefore used to perform experiments at lower xenon concentration 

with significant sensitivity. Importantly, changes in the chemical shifts from free 

gaseous xenon (at 0 ppm) indicate host-guest interactions and result from a 

combination of the xenon-surface interaction and the pore volume.59  

129Xe has been extensively used to investigate the pore structure in solids that is 

largely key to the physical properties. An example of such material includes zeolites, 

which possess structural flexibility that is enabled by structure-directing agents leads 

to new catalytic applications.61,62 Recently, interlayer expansion of zeolites has been 

proposed to expand the current range of available zeolite topological structures and 

129Xe NMR has been shown to determine the order of the interlayer structure in a 

new ten-membered ring (MR) functionalised skeleton zeolite (named COE-4) 

prepared by expansion of the 8-MR layered silicate RUB-36 zeolite precursor.63 The 

129Xe spectrum of the calcined RUB-36 (RUB-37) phase shows a weak signal at 89 ppm 

at 213 K (Figure 2.8(a)) and has been ascribed to accumulated Xe in the mesopores 

and not in the 8-MR channels (of size of 3.1 x 4.7 Å and 2.5 x 4.2 Å along the [010] 

and [001] directions, respectively) which are too small for Xe (dynamic diameter of 

4.4. Å). In COE-4, the 129Xe signal appears at a larger shift of 111 ppm (Figure 2.8(b)) 

indicating the xenon is more “trapped” and these are classed as micropores. 

Additionally, the 129Xe lineshape of the single resonance observed in COE-4 (Figure 

2.8(b)) indicates high symmetry and a homogenous distribution of the interlayer 

expansion. It should also be noted that the 129Xe NMR spectra of both COE-4 and 

ZSM-5 zeolites are very similar, indicating that the pore sizes are comparable.  
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Figure 2.8. Variable temperature hyperpolarised static 129Xe NMR spectra of (a) RUB-37 and 
(b) COE-4. Reprinted from ref 63: Structural investigation of interlayer-expanded zeolite by 
hyperpolarized 129Xe and 1H NMR spectroscopy, 109555, Copyright 2019, with permission 
from Elsevier.  

Porous organic cages (POCs) are a relatively new family of supramolecular 

assemblies, with the above mentioned TCC3 being one of their newest members. CC3 

is another POC consisting of tetrahedral cages formed by imine bonds connecting 

rigid aromatic rings to the more flexible cyclohexane linkers and arranges into an 

interconnected 3D pore structure when packed together (Figure 2.9(a)). Since their 

discovery in 2009, POCs have been shown to possess wide applications and 

unprecedented performance in rare gas separation.60 The cage structure of CC3 was 

initially studied by 129Xe NMR and it was observed that the xenon can diffuse in three 

dimension throughout the crystalline pore structure, moving between the window 

cavities via the cage cavities and indicating interconnectivity of the pore structure.64 

A follow up study60 delved into the CC3 cage and its dynamics revealing only one 

resonance for both the cage and window sites due to fast thermal motion causing the 

exchange of nuclei between these sites to occur faster than the NMR timescale 

(Figure 2.9(b)). Upon Xe loading, it was observed that the 129Xe chemical shift 

increases to 210 ppm as the more shielded window sites of the cage (as opposed to 

the Xe nuclei located in the less shielded cage cavities which appear at 20 ppm) 

become more occupied. At a lower temperature of 260 K, the chemical shift is slightly 

reduced due to the increase in relative occupancy of the window cavities. 129Xe spin 

lattice relaxation rates were also explored due to their dependence on dynamics. 

Upon increasing Xe loading the correlation times extracted were observed to be 
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considerably slower in the highly loaded sample in comparison to the medium and 

low loadings. This indicates that the diffusion of xenon becomes restricted at high 

loading, giving slower T1 rates due to all the cage and window cavities being occupied. 

 

Figure 2.9. (a) Crystal structure of CC3 showing both cage cavities (yellow) and window 
cavities (green). (b) 129Xe NMR spectra of CC3 with varying xenon loadings (HLXe – high 
loading, MlXe – middle loading and LLXe – low loadings) at 295 and 260 K. Ref 55 – Published 
by the PCCP Owner Societies. 

2.5.6. Cross polarisation  

CP is one of the most commonly used experiments in solid state NMR to transfer 

polarisation from abundant nuclei (typically 1H) to sparse nuclei (e.g. 13C, 15N) in order 

to gain sensitivity. The polarisation transfer is largely dependent on the through 

space heteronuclear dipolar interactions, and hence can also be exploited to probe 

dynamics and measure distances including the observation of internuclear 

interactions and informing host-guest binding. MIL-53 has also been studied with CP 

and, recently, 1H 129Xe CP has been utilised for the first time in this class of 

supramolecular assemblies65 to probe the mobility of xenon (Figure 2.10).  
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Figure 2.10. (a) 3D structure of MIL-53(Al) in exchange between the large and narrow pore 

form. (b) 1H 129Xe CP spectra as a function of contact time under a MAS rate r = 8 kHz at a 
temperature of 153 K and a pressure of 500 mbar. Reprinted (adapted) with permission from 
ref 65. Copyright 2016 American Chemical Society. 

No 129Xe signal is present in large-pore MIL-53 due to the high mobility completely 

averaging the 1H 129Xe heteronuclear dipolar interactions, and hence significantly 

reducing CP efficiency. The signal intensity obtained for the 129Xe located in the 

narrow-pore MIL-53 was found to increase with CP contact time until a maximum at 

10 ms which is significantly longer than in the absence of motion (2 ms), hence 

concluding that the xenon atoms still possess significant motions in these pores. 

The zeolitic H-ZSM-5 catalysed methanol-to-hydrocarbon (MTH) process remains a 

highly studied industrial reaction due to its mechanistic aspects and complexity.66 

Solid state NMR has already identified a range of catalytic intermediates aiding the 

mechanistic understandings.67 Recently, it has also been reported that Lewis acidity 

is not a spectator in this MTH reaction and that the incorporation of alkaline-earth 

metals into the zeolite results in a generation of Lewis acid sites changing the 

reactivity of the zeolite catalyst throughout the MTH process.68 Using 1D 1H 13C CP 

MAS experiments performed at increasing contact times, the post reacted H-ZSM-5 

and Ca-ZSM-5 zeolites have been analysed to study diffusion characteristics (Figure 

2.11).69 The peak at 100 ppm is assigned as an acetal (OCH2O) and its intensity 
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increases with increasing contact time, indicating a more efficient CP transfer at 

longer contact times, suggesting that acetals are preferentially located within the 

zeolite framework. Direct spectral comparison of both zeolites shows large signal 

intensity in the 120-135 ppm region for H-ZSM-5 indicating a higher concentration of 

unsaturated hydrocarbon pool species (like aromatics/polyaromatics) on its surface 

in comparison to Ca-ZSM-5 (Figure 2.11(a)). Upon increasing the CP contact times to 

3 ms, the aromatic peak around 133 ppm in the H-ZSM-5 spectra (Figure 2.11(b)(i)) 

disappears, implying the presence of polyaromatic products exclusively residing on 

the surface of the zeolite. However, this weak peak at 133 ppm is absent in the post-

reacted Ca-ZSM-5 zeolite (Figure 2.11(b)(ii)) at short contact times, which indicates 

the absence of any aromatic species in the calcium modified zeolite, especially on its 

surface.  

 

  

 

Figure 2.11. (a) 1D 1H 13C CP MAS DNP spectra of post-MTH reacted H-ZSM-5 (blue) and Ca-
ZSM-5 (red) at a contact time of 2 ms. (b) 1D 1H 13C CP MAS DNP spectra at various CP contact 
times (p15) of (i) H-ZSM-5 (blue) and (ii) Ca-ZSM-5 (red). Samples have been formulated in a 
16 mM TEKPol solution65 in 1,1,2,2-tetrachloroethane. Data were obtained with a recycle 

delay of 3 s and a MAS rate r = 8 kHz. Ref 69 – Published by the Royal Society of Chemistry. 
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2.5.7. Rotational Echo Double Resonance  

Driven by the need for high resolution, MAS is used extensively to average out 

heteronuclear dipolar interactions to zero, however, these interactions provide 

access to spatial proximities and hence probe host-guest interactions. Their 

reintroduction, whilst under MAS to still achieve the desired spectral resolution, is 

often achieved using recoupling pulse sequences so that the dipolar coupling is not 

averaged out to zero under MAS of which the Rotational Echo Double Resonance 

(REDOR)71 is the archetype. Spin echo experiments with (S0) and without (S’) 

refocusing pulses are acquired as a function of evolution time and enable access to 

(recoupled) heteronuclear dipolar couplings and interatomic distances. In particular, 

REDOR type experiments are prevalent in the study of zeolites due to their catalytic 

performance often being linked to host-guest interactions. 

Figure 2.12 shows such 29Si - 13C REDOR experiments to probe the confined 

hydrocarbon species in the H-ZSM-5 zeolite framework.72 Fitted REDOR fraction 

(Figure 2.12(b)) returns a 29Si - 13C heteronuclear coupling of 80 Hz and an 

internuclear distance of 4.2 Å which highlights the strong hydrocarbon – zeolite 

interaction and provide insights into zeolite poisoning by blockage of the channels 

rather than the acid sites. 
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Figure 2.12. (a) 29Si CP, 29Si CP spin echo (S0), and 29Si {13C} REDOR signal reintroducing dipolar 

couplings (S’) and the difference S signal (S0 - S’) at a MAS rate of r = 5 kHz for H-ZSM-5 

zeolite. (b) Plot of the REDOR fraction S0-S’/S0 as a function of evolution time N/r and 
corresponding best-fit curve (black line) and fit boundaries (dashed lines). Ref 72 – Published 
by the Royal Society of Chemistry.  

An adaptation of the REDOR experiment to measure dipolar interactions between 

spin ½ and quadrupolar nuclei was introduced in 2010 as Symmetry-based 

Resonance-Echo Saturation-Pulse Double-Resonance (S-RESPDOR)73 and recently 

used to understand spatial proximities between 13C in the MTH hydrocarbon pools 

and 27Al in zeolites having different topologies (e.g. H-ZSM-5, HSSZ-13 and H-MOR).74 

Comparison of both S0 and S’ RESPDOR signals (Figure 13) indicate the spatial 

proximities of methylbenzenes (17.0 and 19.3 ppm), cyclopentenyl cations (25.2, 45.8 

and 48.1 ppm), surface bound methanol (58.7 ppm) and DME (60.0 and 63.4 ppm) 

with a preference for the latter.  
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Figure 2.13. 13C spectra observed with (S, black) and without (S0, red) {27Al} S-RESPDOR for 
the trapped products retained in H-ZSM-5 after reaction with methanol for 15 minutes at 573 

K. NMR spectra obtained at a MAS rate of r = 10 kHz. Reprinted (adapted) with permission 
from ref 74. Copyright 2017 American Chemical Society. 

Variable temperature experiments in the 300 - 400 K range showed minimal change 

in S0 and S’ spectra for the cyclopentenyl carbons suggesting the retention of close 

spatial proximity even at higher temperatures. This is in sharp contrast to the 

methylbenzene signals where S becomes 0 at higher temperatures due to a 

reduction in the spatial interaction of methyl benzene enabling the guest to have 

more mobility within the framework. Comparison between three topologies indicates 

no significant difference for the cyclic carbocations, however, methylbenzenes 

present stronger interactions with H-SSZ-13 and H-MOR implying that these two 

zeolites may have a range of reactivity in the methanol to olefin reaction. 

2.5.8. Separated local field NMR  

Separated local field (SLF) NMR experiments correlate heteronuclear dipolar 

couplings with chemical shifts in two dimensional NMR spectra and provide 

orientation and distance dependent restraints to aid structure determination, 

accessing dynamics and probing host-guest interactions. These experiments were 

initially designed for the study of liquid crystals75,76 and now find widespread use 

including in supramolecular assemblies. A particular version of SLF is the Dipolar 

Chemical Shift correlation (DipShift) which uses a principle similar to REDOR that 
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recouple heteronuclear dipolar interactions with refocusing  pulses.13C - 1H DipShift 

NMR was used to obtain the magnitude of the motionally averaged one-bond 13C 1H 

dipolar couplings and values of -11.1 and -8.7 kHz were obtained for the aromatic 

carbons of styrene and ethyl benzene loaded on MIL-53(Al), respectively (Figure 

2.14).77 These values are much slower than the ones expected in the absence of 

motion (-23 kHz) and determined from CH distances which indicate significant 

dynamic processes. The lower value obtained for ethylbenzene indicates higher 

mobility in the MIL-53 pore than for styrene and suggests that this latter aromatic 

has a stronger host-guest interaction with this MOF. This work has provided direct 

insights into the structure-selectivity relationship in MIL-53 and has contributed to 

further understanding of the exceptional property of this MOF to separate both 

aromatics which is a challenging separation. 

Figure 2.14. Schematic of MIL-53(Al) upon adsorption of (a) styrene and (b) ethylbenzene 
and their corresponding dipolar dephasing curves extracted from 13C-1H DipShift MAS NMR 

dataset obtained at a MAS rate of r = 6 kHz. The CH sites at 128 and 127 ppm where chosen 
to capture the dynamic in styrene and ethylbenzene, respectively. Reprinted from ref 77: 
Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR, 
Copyright 2018, with permission from Elsevier. 
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2.6. Conclusion  

Solid state NMR approaches that provide detailed insights into host-guest chemistry 

in supramolecular assemblies have been described. These studies enable 

understanding of the role of dynamics, binding sites and spatial interactions and 

often complement other approaches e.g. diffraction-based methods and 

computational investigations, to deliver comprehensive knowledge. The NMR 

technology plays an important role in the design and development of materials with 

new and improved adsorption phenomena for a wide range of applications including 

separation, catalysis and energy conversion and storage.   
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Chapter 3: Ultra-Fast Molecular Rotors within Porous Organic Cages 

 

 

3.1 Overview 

Chapter 3 is adapted from a paper entitled “Ultra-Fast Molecular Rotors within 

Porous Organic Cages” by Ashlea R. Hughes, Nick J. Brownbill, Rachel C. Lalek, Michael 

E. Briggs, Anna G. Slater, Andrew I. Cooper and Frédéric Blanc which was published 

in Chemistry – A European Journal in 2017. The author contributions are as follows: 

F.B. devised the project. M.E.B. and A.G.S. synthesized the TCCX cages, prior to 

loading by A.R.H. A.R.H. conducted the NMR experiments, with support from and 

R.L., N.J.B. and F.B. Data analysis and interpretation was undertaken by A.R.H. A.R.H. 

and F.B. wrote the manuscript with consultation from all other authors. 
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3.2 Abstract 

Using variable temperature 2H static NMR spectra and 13C spin-lattice relaxation 

times (T1), we show that two different porous organic cages with tubular 

architectures are ultra-fast molecular rotors. The central para-phenylene rings, that 

frame the ‘windows’ to the cage voids, display very rapid rotational rates of the order 

of 1.2-8×106 Hz at 230 K with low activation energy barriers in the 12-18 kJ mol-1 

range. 13C T1 rates associated with the carbons on the phenelyene rings were shorter 

in comparison with the rest of the molecule, again supporting fast motion. These 

cages act as hosts to iodine guest molecules, which dramatically slow down the 

rotational rates of the phenylene groups (5-10×104 Hz at 230 K), and lengthen the 13C 

T1 times for the carbons on the para-phenylene rings, demonstrating potential use in 

applications that require molecular capture and release. Iodine release was observed 

upon heating detected by thermogravimetric analysis. The release of iodine resulted 

in the restoration of the rapid rotational rates of the phenylene rings detected by 2H 

NMR spectroscopy. 
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3.3 Introduction 

Porous organic frameworks (POFs) are supramolecular assemblies that have ordered 

architectures containing an inherent void. Examples include metal organic 

frameworks (MOFs), covalent organic frameworks (COFs), zeolitic imidazolate 

frameworks (ZIFs), and porous organic cages (POCs).1-4 POCs differ from these other 

framework families because they consist of discrete molecules containing both an 

intrinsic void within the cages in addition to voids within the overall lattice; because 

of these properties, POCs are also solution-processable and have been explored for 

a range of applications including catalysis, molecular separation and gas storage.5-10 

For example, POCs have been shown to capture guest molecules such as iodine, SF6, 

and hydrocarbons.11 The sequestration of iodine, which is an unwanted fission 

product,12-14 is of strong importance for the nuclear industry.15 The selective loading 

and retention of guests such as iodine often relies on molecular flexibility and 

dynamics, and the understanding of these processes plays a central role in the design 

of the next generation of POFs. 

Figure 3.1. Chemical structure and side view of the X-ray crystal structure of (a) TCC2-R and 
(b) TCC3-R.10 The cyclohexane groups are shown in red; other C, grey; N, blue; H omitted for 
clarity in the crystal structure representation. The green arrows indicate fast molecular 
rotation of the para-phenylene. The 13C spin-lattice relaxation times (T1) obtained for 
selected carbons are given in the Figure, including T1 values after iodine loading (values in 
parentheses). The deuterium-labelled positions on the para-phenylene are also shown for 
[D12]TCC2-R and [D12]TCC3-R. 
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Recently, a new family of POCs with a chiral, tubular covalent cage (TCC) architecture 

has been discovered.10 These TCCs consist of three ‘walls’ bound by trans-imine 

cyclohexane linkers. Two of these structures (TCC2-R and TCC3-R) are shown in Figure 

3.1; they differ only by the additional acetylene moieties between the phenylene 

rings in TCC3-R. The intrinsic pore within these molecules permits guest sorption into 

the tubular cavities.4, 16 The static imine cyclohexane linkers and rotating phenylene 

groups allow these POCs to be classified as molecular rotors.17-19 It is likely that the 

window dynamics in these molecules controls guest loading into the molecular pore, 

and we therefore set out to understand the response of these cages to external 

stimuli, such as guest inclusion. 

2H solid echo NMR has become an extremely powerful tool for the understanding of 

dynamics in the kHz timescale,20-22 which is enabled by the large change in the 2H 

NMR line shape with temperature. This approach provides a qualitative description 

of the motion as well as its rate and associated activation energies in both pristine 

fast molecular rotors and those hampered by guest loading (e.g., H2O, acetone, 

iodine, CH4 and hydrocarbons);23-33 these include mesoporous para-phenylene 

silica,23 polyaromatic frameworks (PAFs),24 and MOFs.28, 29, 31, 33 Additionally, 13C T1 

values provide correlation times in the ns timescales (MHz frequency regime) and 

complementary details of the molecular reorientation.  

Here, we performed variable temperature 2H solid echo NMR experiments and room 

temperature 13C T1 measurements on pristine and iodine-loaded TCC2-R and TCC3-R 

materials to understand the rotational dynamics of the cages and their host-guest 

interactions. 
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3.4 Materials and Methods 

3.4.1. General synthesis consideration for the syntheses of the chiral tubular 

covalent cages10 

Analytical HPLC analysis was conducted using a Dionex Ultimate 3000 HPLC system. 

Solution NMR spectra were recorded using either a Bruker Avance 400 MHz or 500 

MHz NMR spectrometer. Mass spectrometry was carried out by the EPSRC National 

Mass Spectrometry Facility at Swansea University using a Xevo G2-S ASAP (QTOF), 

GCT Premier GC/MS (GC-EI-MS), or ultrafleXtreme (MALDI) instrument, and at the 

Microbiorefinary (University of Liverpool) using an Agilent Technologies 6530B 

accurate-mass QTOF Dual ESI mass spectrometer. Thermogravimetric analysis was 

carried out using a Q5000IR analyser (TA Instruments). The samples were heated at 

a rate of 5 °C /min, being held for 10 minutes at 70 °C and 90 °C. Infrared spectra 

were collected on a Bruker ALPHA platinum attenuated total reflectance fourier 

transform infrared spectrometer (ATR-FTIR). Spectra were recorded for 24 scans in 

transmission mode. Laboratory powder X-ray diffraction (PXRD) data were collected 

in transmission mode on samples held on thin Mylar film in aluminium well plates on 

a Panalytical X’Pert PRO MPD equipped with a high throughput screening (HTS) XYZ 

stage, X-ray focusing mirror, and PIXcel detector, using Ni-filtered Cu Kα radiation. 

Data were measured over the range 5−50° over 30 min.  

The TCC2-R and TCC3-R cages were prepared according to a literature procedure.10 

The deuterated cages, [D12]TCC2-R and [D12]TCC3-R were prepared using the 

syntheses outlined below. 5-Bromoisophthalaldehyde was synthesized according to 

literature procedures.41, 42 All other chemicals were purchased from Sigma Aldrich or 

TCI and used as received. 

3.4.2 Synthesis of the aldehyde precursors 

3.4.2.1 Synthesis of 2,2'-([D4]1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (1) 

[1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium (II) (0.412 g, 0.563 mmol) 

was added to a degassed suspension of [D4]1,4-dibromobenzene-2,3,5,6 (2.0 g, 8.3 
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mmol), bis(pinacolato)diboron (4.8 g, 19 mmol), and potassium acetate (5.2 g, 53 

mmol) in 1,4-dioxane (40 mL) and the mixture was heated at reflux under a nitrogen 

atmosphere for 3 days. After cooling to ambient temperature, the reaction mixture 

was diluted with hexane (60 mL) and the suspension was charged to a pad of silica 

gel and washed with 1 % ethyl acetate/hexane until all the product had eluted. The 

filtrate was evaporated to dryness. The residue was redissolved in CH2Cl2, diluted 

with hexane and evaporated until ~20 mL of solvent remained. The suspension was 

filtered and the solid dried under vacuum to yield the desired pure compound 1 (2.0 

g, 6.0 mmol, 75 %). 1H NMR (500 MHz, CDCl3):  1.35 (24 H, s, 8 x CH3); 13C NMR (101 

MHz, CDCl3):  133.59 (t, 1J (C,D) = 24.3 Hz), 83.97, 25.01 ppm. MS(CI)+ calcd for 

C18H25D4B2O4 [M+H]+: 335.1; found: 335.3. HRMS (TOF) calcd for C18H25D4B2O4 

[M+H]+: 335.2503; found: 335.2511. 

3.4.2.2 Synthesis of (([D4]1,4-phenylene)bis(ethyne-2,1-diyl))bis(trimethylsilane) 

(2)  

[D4]1,4-dibromobenzene-2,3,5,6 (2.50 g, 10.4 mmol) was added to a flame-dried, 

backfilled flask. Et3N (36 mL) was added via cannula. CuI (0.048 g, 0.25 mmol) and 

Pd(PPh3)4 (0.15 g, 0.13 mmol) were added, followed by the dropwise addition of 

trimethylsilyl acetylene (3.7 mL, 25 mmol). The mixture was refluxed for 8 hours, 

cooled, and then evaporated under reduced pressure to yield a crude off-white solid. 

This solid was purified via column chromatography (Biotage Isolera4, KP-Sil cartridge, 

100 % hexane) to yield the product 2 as a white solid (2.6 g, 9.5 mmol, 95 %). 1H NMR 

(400 MHz, CDCl3 + TFA):  0.14 (18 H, s, CH3); 13C NMR (101 MHz, CDCl3):  130.49 (t, 

1J (C,D) = 25.2 Hz), 103.64, 95.46, -0.96 ppm. MS(CI)+ calcd for C16H19D4Si2 [M+H]+: 

275.5; found: 275.2. HRMS (TOF) calcd for C16H19D4Si2 [M]+: 274.1511; found: 

274.1516. 

3.4.2.3 Synthesis of [D4]1,4-diethynylbenzene-2,3,5,6 (3)  

 (([D4]1,4-phenylene)bis(ethyne-2,1-diyl))bis(trimethylsilane) 2, (2.5 g, 9.2 mmol) was 

dissolved in MeOH (50 mL) and CH2Cl2 (50 mL). K2CO3 (8.5 g, 62 mmol) was added, 

and the mixture stirred at room temperature for 24 hours. The colourless solution 

was then poured into H2O (100 mL), extracted with Et2O (3 x 100 mL) and washed 
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with brine (200 mL). The organic layer was dried over MgSO4, filtered, and evaporated 

under reduced pressure to yield the pure product 3 as a white solid (0.99 g, 7.6 mmol, 

83 %). 1H NMR (500 MHz, CDCl3 + CF3CO2H):  3.17 (2 H, s, CH); 13C NMR (101 MHz, 

CDCl3):  130.76 (t, 1J (C,D) = 25.0 Hz), 121.49, 82.11, 78.24 ppm. MS(CI)+ calcd for 

C10H3D4 [M+H]+: 131.2; found: 131.1. HRMS (TOF) calcd for C10H3D4 [M]+: 

130.0721; found: 130.0716. 

3.4.2.4 Synthesis of [1,1':4',1''-terphenyl]-3,3''5,5''-tetracarbaldehyde (4)  

5-Bromoisophthalaldehyde (1.9 g, 9 mmol), 2,2'-([D4]1,4-phenylene)bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolane) 1 (1.0 g, 3 mmol), and K2CO3 (4.1 g, 30 mmol) were 

suspended in (CH2)4O (50 mL) and H2O (15 mL) and thoroughly degassed with N2 for 

30 minutes. Pd(PPh3)4 (0.17 g, 0.15 mmol) was added and the mixture was heated at 

85 °C under N2 for 18 hours. A white precipitate was observed. The solution was then 

cooled to room temperature and the precipitate was collected by suction filtration. 

The filter cake was washed with Et2O (100 mL), H2O (100 mL), and a further portion 

of Et2O (100 mL) and dried under suction to yield the desired pure compound 4 (0.89 

g, 2.6 mmol, 87 %). 1H NMR (400 MHz, CDCl3 + CF3CO2H):  10.20 (4 H, s, CHO), 8.59 

(4 H, d, 4J = 1.6 Hz, Ar-H) 8.55 (2 H, t, 4J = 1.5 Hz, Ar-H); 13C NMR (101 MHz, CDCl3):  

194.94, 143.15, 138.38, 137.05, 134.89, 131.99, 127.95 (t, 1J (C,D) = 24.7 Hz) ppm. 

MS(CI)+ calcd for C22H11D4O4 [M+H]+: 347.1; found: 347.1. HRMS (TOF) calcd for 

C22H11D4O4 [M+H]+: 347.1221; found: 347.1220. 

3.4.2.5 Synthesis of 1,4-bis(3,5-diformylphenyl)phenylethynylbenzene (5)  

 5-Bromoisophthalaldehyde (4.6 g, 22 mmol), [D4]1,4-diethynylbenzene-2,3,5,6 (3) 

(0.99 g, 7.6 mmol), and CuI (0.05 g, 0.26 mmol) were added to a flame-dried flask 

which had been backfilled with N2 three times. Et3N (distilled, 100 mL) was added, 

and the mixture was degassed with N2 for 30 minutes. Pd(PPh3)4 (0.30 g, 0.26 mmol) 

was then added and the mixture was heated at 60 °C for 24 hours under N2. The 

resulting suspension was diluted with water and the precipitate collected by 

filtration. The filter cake was washed with water and acetone, then dried under 

suction. The filter cake was transferred to a Soxhlet and extracted with CH2Cl2 for 24 

hours. The CH2Cl2 extracts were concentrated to ~50 mL, the suspension was filtered 
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and the filter cake was washed with acetone and dried under suction to afford a 

yellow powder (1.9 g, 4.8 mmol, 63 %). 1H NMR (500 MHz, CDCl3):  10.11 (4 H, s, 

CHO), 8.43 (2 H, t, 4J = 1.6 Hz, Ar-H), 8.37 (4 H, d, 4J = 1.6 Hz, Ar-H). 13C NMR (101 MHz, 

CDCl3):  191.96, 137.57, 135.80, 130.75 (t, 1J (C,D) = 24.4 Hz), 130.01, 125.25, 121.74, 

91.65, 87.47. ppm. MS(CI)+ calcd for C26H11D4O4 [M+H]+: 395.4; found: 395.1. HRMS 

(TOF) calcd for C26H11D4O4 [M+H]+: 395.1221; found: 395.1219. 

3.4.3 Synthesis of the chiral tubular covalent cages 

3.4.3.1 Synthesis of solvated cage compound [D12]TCC2-R 

To a stirred suspension of 4 (0.80 g, 2.3 mmol) and CF3CO2H (2 drops) in CH2Cl2 (15 

mL) was added a solution of R,R-cyclohexanediamine (0.53 g, 4.6 mmol) in CH2Cl2 (10 

mL). The mixture was stirred overnight at room temperature, during which time the 

solution turned yellow and the tetraaldehyde compound was seen to dissolve. After 

five days, the reaction mixture was diluted with CH2Cl2 and the mixture was filtered 

to remove any insoluble byproducts. The filtrate was concentrated to ~20 mL, hexane 

(40 mL) was charged whilst undergoing stirring and the resulting white precipitate 

was collected via suction filtration to yield [D12]TCC2-R (0.88 g, which contains 1.3 

wt% hexane as calculated by integration of additional solvent peaks in the NMR at 

1.26 and 0.83 ppm, adjusted yield 0.87 g, 0.58 mmol, 75 %). 1H NMR (400 MHz, CD3OD 

+ CDCl3):  8.28 (6 H, s), 8.19 (6 H, s), 7.88 (12 H, m), 7.41 (6 H, s), 3.50 (6 H, br. m.), 

3.29 (6 H, m), 2.10 – 2.03 (6 H, m), 1.98 – 1.76 (30 H, m), 1.55 (12 H, m). 13C NMR (101 

MHz, CDCl3):  162.21, 161.87, 141.21, 138.97, 136.55, 135.84, 131.99, 126.77, 

125.93, 125.57, 75.20, 73.90, 32.20, 31.58, 24.26, 24.23. HRMS (TOF) calcd for 

C102H92D12N12 [M+2H]2+: 754.4630; found: 754.4659 [M+2H]2+ and 503.3142 

[M+3H]3+. 

3.4.3.2 Synthesis of cage compound [D12]TCC3-R 

[D12]TCC3-R was prepared using the same method as for [D12]TCC2-R described above 

using aldehyde 5, and required repeated recrystallisations from CH2Cl2/hexane to 

obtain a pure product (0.40 g from 1.00 g aldehyde, no hexane observed in the 1H 

NMR, 0.24 mmol, 28 %). 1H NMR (500 MHz, MeOD/CDCl3):  8.17 (6 H, s, N=CH), 8.16 
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(6 H, s, N=CH), 7.95 (6 H, m, Ar-H), 7.89 (6 H, m, Ar-H), 7.50 (6 H, m, Ar-H), 3.45 (6 H, 

m, NCH), 3.37 (6 H, m, NCH), 1.90–1.50 (48 H, m, CH2) 13C NMR (101 MHz, CDCl3):  

160.37, 160.05, 136.6, 136.2, 135.9, 131.05 (t, 1J (C,D) = 26.1 Hz), 129.64, 127.58, 

123.91, 122.62, 90.27, 90.06, 75.04, 74.30, 32.71, 32.35, 24.2, 24.15. HRMS (TOF) 

calcd for C114H90D12N12 [M+2H]2+: 826.4630; found: 826.4674 [M+2H]2+ and  551.3152 

[M+3H]3+. 

3.4.3.3 Preparation of all the desolvated cages  

Prior to solid state NMR, all pristine cages were dried at 333 K for 24 hours under 

vacuum to ensure no residual solvent or water was present. 

3.4.3.4 Iodine loading into the cages16 

The cages were initially desolvated under vacuum and pristine TCC2-R, TCC3-R, 

[D12]TCC2-R and [D12]TCC3-R (ca. 0.05-0.11 g, 0.03-0.07 mmol) were held in a non-

porous aluminum cup in an atmosphere of I2 in large excess (~1 g, ~4 mmol, ~60-130 

equiv.) at atmospheric pressure. The uptake of iodine was monitored gravimetrically 

and a colour change was observed. The white [D12]TCC2-R and pale yellow [D12]TCC3-

R cages became dark yellow within an hour and turned brown within a few hours. It 

was assumed that all weight increases were related only to the uptake of iodine into 

the cages. All NMR spectra were recorded after samples had been in an I2 atmosphere 

for a minimum of 48 hours. 

After 40.5 hours, [D12]TCC2-R (0.110 g, 0.073 mmol) had absorbed 0.090 g of iodine 

atoms (0.709 mmol), resulting in an uptake of 10 iodine atoms per molecule. After 

40.5 hours, [D12]TCC3-R (0.049 g, 0.030 mmol) had absorbed 0.044 g of iodine atoms 

(0.346 mmol), resulting in an uptake of 12 iodine atoms per molecule.  

Upon heating for 7 hours at 70 °C, iodine was released from the cages with the colour 

changing significantly from dark brown/black to light brown. Additionally, the mass 

decreased with a loss of 49 and 44 wt% of iodine for [D12]TCC2-R and [D12]TCC3-R, 

respectively, corresponding to almost complete release of iodine over one cycle.  
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3.4.3 Solid State NMR methods 

All 2H and 13C solid-state NMR experiments were performed on a 9.4 T Bruker Avance 

III spectrometer equipped with a 4 mm HXY Magic Angle Spinning (MAS) probe in 

double resonance mode. The 1H channel was tuned to 0(1H) = 400.13 MHz and the 

X channel tuned to either (2H) = 61.42 MHz, or 0(13C) = 100.62 MHz. All 1H-13C cross 

polarisation (CP) spectra were recorded at r = 12.5 kHz with a 13C RF field of 45 kHz 

for an optimal contact time of 2 ms, while the 1H RF field amplitude was ramped to 

obtain maximum signal at approximately 60 kHz. 1H decoupling was applied at 83 kHz 

with a SPINAL-64 shaped pulse.34 Typically 1024-3072 scans were accumulated and 

were recorded with a recycle delay corresponding to the maximum signal to noise 

per unit time of 1.3 x T1.
35 Variable temperature 2H static solid echo data were 

obtained using a pulse delay of 30 s at a 2H RF field of 65 kHz. Fully relaxed spectra 

were acquired with a minimum of 512 scans and recycling delays ranging from 2 to 

15 s depending on temperature. 

NMR data were processed with TopSpin 3.2 and MATLAB R2016b.36 Temperature 

calibration was preformed prior to NMR data acquisition using the 207Pb chemical 

shift of Pb(NO3)2 according to the procedure outlined in the literature.37,38 All 

temperatures reported are actual sample temperatures and have an estimated 

accuracy of ± 10 K. 1H spectra were referenced to H2O at 4.8 ppm, 13C spectra were 

referenced to CH of adamantane at 29.45 ppm, corresponding to TMS at 0 ppm,39 

and 2H spectra were referenced to D2O at 0 ppm.  

Theoretical simulation of the 2H solid echo NMR spectra were performed using the 

Express 3.0 program40 supported in MATLAB. A powder average of 1000 was used 

along with the ZCW tiling algorithm.40 A two site jump model was used for the para-

phenylene ring flip with a β angle of 60° and a γ between 0° and 180°. A probe band 

width of 300 kHz was also applied. The resulting simulation was then left shifted to 

only take signal from the top of the echo and lorentzian broadening applied.  
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3.5 Results and Discussion 

3.5.1 Synthesis of TCC(X) cages 

TCC2-R and TCC3-R cages were synthesized using literature procedures.10 Cages 

deuterated on the para-phenylene rings (i.e. [D12]TCC2-R and [D12]TCC3-R, Figure 3.1) 

were prepared via a similar approach10 described in detail in Section 3.4 above.  

The synthesis of [D12]TCC2-R breifly consists of a palladium catalysed cross coupling 

reaction of [D4]1,4-dibromobenzene-2,3,5,6 and bis(pinacolato)diboron to form 2,2'-

([D4]1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) followed by 

another palladium catalysed cross coupling reaction of the dioxaborolane with 5-

Bromoisophthalaldehyde to form  [1,1':4',1''-terphenyl]-3,3''5,5''-tetracarbaldehyde. 

This was then reacted with R,R-cyclohexanediamine to form the [D12]TCC3-R 

sturcture. This synthesis is outlined in Scheme 3.1 below. 

 

Scheme 3.1. Synthesis of cage compound [D12]TCC2-R from the deuterated precursor 1 and 
aldehyde 4 via a palladium catalysed coupling reaction. The cyclohexane groups are shown 
in red; other C, grey; N, blue; D, yellow; H, omitted for clarity in the crystal structure 
representation. 
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[D12]TCC3-R was prepared in a similar mannar to [D12]TCC2-R. [D4]1,4-

dibromobenzene-2,3,5,6 was reacted with trimethylsilyl acetylene via a palladium 

catalysed cross coupling reaction to form (([D4]1,4-phenylene)bis(ethyne-2,1-

diyl))bis(trimethylsilane), which was then deprotected to yield [D4]1,4-

diethynylbenzene-2,3,5,6. This then underwent a further cross coupling reaction with 

5-Bromoisophthalaldehyde to form 1,4-bis(3,5-

diformylphenyl)phenylethynylbenzene which could then undergo imine formation 

resulting in the production of [D12]TCC3-R. This is outlined in Scheme 3.2 below. 

 

Scheme 3.2. Synthesis of cage compound [D12]TCC3-R from the deuterated precursor 3 and 
aldehyde 5 via a palladium catalysed coupling reaction. The cyclohexane groups are shown 
in red; other C, grey; N, blue; D, yellow; H, omitted for clarity in the crystal structure 
representation. 

 

 

  



99 
 

The powder XRD shown in Figure 3.2 indicates that neither the deuterated or 

protonated cages show long range order. This has been observed previously that 

upon the removal of solvent, the homochiral cage materials (e.g. TCC2-R) become 

amorphous.10 All the cage materials used within this study were amorphous, as 

confirmed by powder XRD. 

With the amorphous pattern obtained via XRD, we employed 13C CP MAS NMR to 

confirm no structural decomposition occurred during desolvation. The spectra and 

corresponding assignment, shown in Figure 3.3 below, confirmed that the cage 

structures remained intact. 

In the 2H NMR experiments conducted, we utilise the deuterated cages ([D12]TCC2-R 

and [D12]TCC3-R) due to the selective enrichment of the para-phenylene moieties. 

This allows the probing of the dynamics of only the para-phenylene rings within the 

terphenylene cage structure, as the natural abundance 2H signals (0.015%) are not 

detected.  

  

Figure 3.2. Powder XRD profiles of TCC2-R (light blue), TCC3-R (orange), [D12]TCC2-R (blue), 
[D12]TCC3-R (red), iodine-loaded [D12]TCC2-R (dark blue) and iodine-loaded [D12]TCC3-R 
(burgundy). 
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Figure 3.3. Chemical structure and corresponding 13C CP MAS NMR spectra at r = 12.5 kHz 
of (a) TCC2-R (light blue) and (b) TCC3-R (orange). The spectral assignments are given in the 
figure, with lines of symmetry shown and spinning sidebands marked with asterisks (*). 
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3.5.2 2H NMR Studies 

2H static echo NMR spectra in the 105-298 K temperature range were recorded on 

desolvated and and iodine-loaded [D12]TCC2-R and [D12]TCC3-R cages (Figure 3.4). 

With decreasing temperature a gradual change in the 2H NMR line shape is observed 

for these materials, however, the motion induced T2 anisotropy is dependent on the 

particular cage. Line shape simulations of the 2H NMR spectra support a motion 

consisting of a rapid two-site 180° flip reorientation of the para-phenylene ring along 

its para axis, and this provides the rate of molecular reorientation (k) at each 

temperature on the kHz timescale.  

Figure 3.4 (a) and (c) show the variable temperature evolution of the 2H static echo 

NMR spectra of [D12]TCC2-R and [D12]TCC3-R cages. As the temperature decreases 

from 298 to 105 K, the appearance of the outside horns around ±60 kHz agrees with 

slower rotation rates at low temperature and a static motional regime at 105 K with 

the anticipated Pake doublet pattern. The line shape evolution of both cages is 

analogous, as anticipated for materials with similar tubular covalent architectures. 

However, the 2H NMR spectra of [D12]TCC3-R suggest a significantly larger jump rate, 

as evidenced by the weakening of the spectral shoulders of this cage at a lower 

temperature (230 K) compared to [D12]TCC2-R (261 K), showing slower motion for 

the latter.  

Simulation of the 2H solid echo NMR spectra were performed using the Express 3.0 

program.40 Rotational rates of around 1.2×106 and 8×106 Hz were extracted for 

[D12]TCC2-R and [D12]TCC3-R cages, respectively, at 230 K. These data suggest that 

the presence of an acetylene group enables easier rotation of the para-phenylene 

ring in [D12]TCC3-R by reducing the strong steric interactions of the ortho-hydrogens 

and opening up the void space (Figure 3.1). Additionally, it is also possible that small 

electronic factors play a role and for example include the smaller degree of 

conjugation between the adjacent phenylene rings in [D12]TCC3-R and [D12]TCC2-R 

likely also contributes to the smaller activation barrier seen for para-phenylene 

rotation in the former. 
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Figure 3.4. Low temperature 2H static solid echo NMR spectra of (a) [D12]TCC2-R (blue), (b) 
iodine-loaded [D12]TCC2-R (dark blue), (c) [D12]TCC3-R (red), (d) iodine-loaded [D12]TCC3-R 
(burgundy) and their corresponding simulated spectra (black dashed lines) obtained at 
various temperatures. The rotational rates, k, obtained from numerical simulations of the 
NMR line shapes are also given. Spectral artefacts are denoted with (#). 

Moreover, while the [D12]TCC2-R rate is comparable to other organic frameworks,27-

29, 47 the very fast reorientation rate value obtained for [D12]TCC3-R cage is larger than 

in any exclusively organic systems reported previously below ≈200 K (Table 3.1).18, 19, 

24, 29, 32, 47-49 In particular, below this temperature, the dynamics of [D12]TCC3-R are 

faster than those observed very recently for the para-phenylene reorientation in a 

bis(sulfophenylethynyl)-benzene frameworks based on an overall similar architecture 

of a phenylene molecular rotor sandwiched between two acetylene moieties (Figure 

3.1 (b)), which previously showed the largest reorientation rate for porous organic 

materials.32 
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Table 3.1. Comparison of molecular rotors in literature with rotational frequencies of 180° 

site reorientations exceeding 105 Hz at selected temperature studied by 2H NMR.  

Molecular Rotor Temp /K k /Hz Ref 

Porous Organic Materials 

TCC2-R 

 
298 4 x107 

This 

work 
230 1.2 x106 

TCC3-R 

 298 8 x107 

This 

work 

230 8 x106 

202 4 x106 

180 3 x106 

Bis(sulfophenylethynyl)-benzene 

frameworks 

 290 1 x 108 

32 200 1.8 x106 

179 2 x105 

PAF3 polytetraphenylsilane-d4-

based 

 
300 1 x108 

24 

230 [a] 1.6 x106 

1,4-naphthalenediyl-bridged 

molecular gyrotops (C18) 

phenylene-d4 

 

290 1 x107 

19 

230 [a] 4.8 x106 

Porous molecular crystal with 

4,4′-

bis(sulfophenylethynyl)benzene-

d4 structure 

 

230 1 x106 

27 

193 5.6 x104 
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Metal Organic Frameworks [b] 

Zn-1,4-bis(1H-pyrazol-4-

ylethynyl)-benzene-d4 

 

290 > 1 x108 

18 

150 > 1 x108 

[Zn(5-nitroisophthalate)x (5-

methoxyisophthalate)1−x 

(deuterated 4,4′- 

bipyridyl)}(DMF·MeOH)]n 

 

298 ~ 5 x107 48 

Zr-UiO66-d4 

 

296 2.3 x106 29 

Non Porous Crystalline Materials 

Co-crystal between 

tritylacetylene bromide TrBr and 

diazabicyclo[2.2.2] octane-d12 

(dabco-d12) 

 296 > 1 x108 

49 

150 > 1 x108 

[a] No data below 230 K are available. [b] Selection of fastest rotational frequencies of 

MOFs taken from within the literature.18 
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At temperatures higher than 298 K, the 2H NMR line shape of the [D12]TCC2-R and 

[D12]TCC3-R pristine cages is characteristic of that of the fast motional regime with 

rates exceeding 108 Hz (Figure 3.5 (a) and (c)). No additional change in line shape 

occurs at higher temperature probably indicating an absence of C-D librational 

motion and is in sharp contrast to what is observed in PAFs.24 This difference likely 

arises from the more flexible nature of the PAFs architecture compared to the relative 

rigidity of these TCC2-R and TCC3-R cage structures (Figure 3.1). 

Figure 3.5. High temperature 2H  static solid echo NMR spectra of (a) [D12]TCC2-R (blue), (b) 
iodine-loaded [D12]TCC2-R (dark blue), (c) [D12]TCC3-R (red), (d) iodine-loaded [D12]TCC3-R 

(burgundy), obtained at temperatures of 298 K and above. 
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Using a linear regression of the Arrhenius equation of the form 

Ln(𝑘) =
−Ea

𝑅
 𝑥 

1

𝑇
+ ln(𝑘0) 

(3.1) 

a plot of ln(k) as a function of reciprocal temperature T-1 (Figure 3.6) shows a linear 

Arrhenius behaviour from which rotational activation energies, Ea, of 18 and 12 kJ 

mol-1, respectively, were obtained (Table 3.2), along with extrapolated rotational 

rates at infinite temperature (attempt frequencies), k0, of (9±4)×1010 and (10±7)×109 

Hz for [D12]TCC2-R and [D12]TCC3-R, respectively. The larger Ea value obtained for 

[D12]TCC2-R versus [D12]TCC3-R is again consistent with stronger steric interactions in 

the terphenylene cage structure. The change in enthalpy values shown in Table 3.1 

are concordant with the activation energy data which show that the para-phenylene 

ring rotates more easily in [D12]TCC3-R than in [D12]TCC2-R.  

Figure 3.6. Arrhenius plot of the rotational rates, k, of the para-phenylene ring in desolvated 

and iodine-loaded [D12]TCC2-R and [D12]TCC3-R molecular rotor cages. The lines show the 

linear fit to the Arrhenius equation (3.1) with the extracted values being reported in Table 

3.2. Error bars are estimated from comparison of the 2H NMR line shape fit at various 

rotational rates. The errors associated with the 154 K rates for iodine-loaded [D12]TCC2-R and 

[D12]TCC3-R are due to the indistinguishable line shape between 1 and 9 kHz. The 2H NMR 

rotational rates obtained at 230 K (k230) from the iodine re-leased [D12]TCC2-R and [D12]TCC3-

R cages are also shown in empty circles. 
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The k0 values obtained are on the low side of the ≈1012 Hz22 value often associated 

with para-phenylene rotation, although these values vary significantly with the 

systems studied and k0 in the 108-1041
 Hz are known.19, 23, 24, 27-29, 32, 46, 47, 50, 51 The 

associated change in entropy (ΔS) is negative for all the systems studied here and is 

tentatively assigned to correlated rotational motion (Table 3.2), leading to a relatively 

low attempt frequency, k0.51, 52 

 

  

Table 3.2. Comparison of the activation energy barriers (Ea) and rotational rates at 

230 K (k230) for all the TCC cages investigated. 

Tubular covalent cages 
Ea  

/kJ mol-1[a] 

k230  

/K Hz-1 

k0  

/Hz 

H  

/kJ mol-1 

S  

/J K-1 mol-1 

[D12]TCC2-R 18 (18-20) 1.2 x106 (9 ± 4) x1010 18 ± 1 -42 ± 5 

Iodine-loaded 

[D12]TCC2-R 
21 (15-21) 1 x105 (10 ± 8) x109 17 ± 1 -65 ± 11 

[D12]TCC3-R 12 (10-13) 8 x106 (10 ± 7) x109 10 ± 3 -62 ± 7 

Iodine-loaded 

[D12]TCC3-R 
21 (14-21) 5 x104 (4 ± 4) x109 16 ± 3 -72 ± 12 

[a] Range of Ea values estimated from errors in the values of k are given in brackets. 
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3.5.3 Iodine Loading 

Iodine was loaded into [D12]TCC2-R and [D12]TCC3-R using a chemical vapour 

sublimation procedure, to determine if guest addition hampers motional dynamics in 

these systems.23, 24 Upon exposure to iodine at room temperature, the colour of the 

cages changed from yellow to black (Figure 3.7(b) and (c)), and the guest uptake was 

monitored gravimetrically (Figure 3.7 (a)). This is equivalent to a high loading of 10 

and 12 iodine atoms per TCC2-R and TCC3-R cage molecule, respectively, after 40 

hours of iodine exposure. The increase in weight is due to insertion of iodine into the 

void, however during the shallower section of the uptake (> 60 hours) for [D12]TCC2-

R, it is possible that the iodine is also interacting with the cage structure.  
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To confirm if the iodine is interacting with the cage structure, 13C CP MAS NMR was 

used in conjuction with Infrared (IR) spectroscopy. Figures 3.8, 3.9 and 3.10 do not 

display 13C CP MAS NMR resonances or IR peaks within the aldehyde carbonyl region 

(178-200 ppm and 1720-1740 cm-1, respectively),44 indicating that no decomposition 

of the solid cages is occurring during iodine loading. The shoulder observed in the 

iodine-loaded [D12]TCC2-R IR spectrum in Figure 3.9 at 1687 cm-1 is within the imine 

stretching region43 and probably indicates that charge transfer is occurring within this 

cage as previously observed on the tetrahedral organic cage molecule CC316 from IR 

literature data.43, 44 

Figure 3.7. (a) Gravimetric uptake of iodine into [D12]TCC2-R (blue) and [D12]TCC3-R (red) 

cages as a function of time at room temperature, solid lines are a guide for the eye. Empty 
circles show the percentage weight of iodine left after heating the [D12]TCC2-R and [D12]TCC3-
R samples for 7 hours at 70 °C. Photographs showing the colour change of (b) [D12]TCC2-R 
and (c) [D12]TCC3-R during iodine uptake after 1, 5 and 48 hours with the pictures on the right 
showing the iodine-released samples after 7 hours at 70 °C. 
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Figure 3.8. 13C CP MAS NMR spectra at r = 12.5 kHz of (a) TCC2-R (light blue), (b) [D12]TCC2-
R (blue) ,(c) iodine-loaded TCC2-R (dark blue), (d) TCC3-R (orange), (e) [D12]TCC3-R (red) and 
(f) iodine-loaded TCC3-R (burgundy). Asterisks (*) denote spinning sidebands, C‘ denotes the 
roatating carbon on the phenylene ring . 
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Figure 3.9. ATR-FTIR spectra of (a) TCC2-R (light blue), (b) [D12]TCC2-R (blue) and (c) iodine-
loaded [D12]TCC2-R (dark blue). The red shaded region between 1720 and 1740 cm-1 and the 
dotted lines at 1687 and 1644 cm-1 are the anticipated area for the strong aldehyde carbonyl 
CO stretch44 and the known frequencies for imine stretching mode,43, 44 respectively.  
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The variable temperature 2H static echo NMR spectra of iodine-loaded [D12]TCC2-R 

and [D12]TCC3-R are given in Figures 3.4 (b) and (d) as well as Figure 3.12 and 3.13 

(a) and (b) respectively. There is a clear difference in rotational rates of the molecular 

rotor between the empty and guest-loaded materials. The less rapid two-site ring flip 

is particularly evident at 230 K for the iodine-loaded materials, reducing the 

rotational rates to only 105 and 5×104 Hz for [D12]TCC2-R and [D12]TCC3-R, 

respectively (Table 3.2). This is smaller than the change seen when iodine is loaded 

into other porous materials,24 which probably relates to the different host-guest 

properties of the materials. Above room temperature, the iodine-loaded cages 

continue to exhibit line shape narrowing at higher temperatures (Figure 3.5), 

implying faster motion, which is likely a result of iodine being released from the cages 

at these temperatures, as confirmed by thermogravimetric analysis (see Figure 3.11 

below). 

Figure 3.10. ATR-FTIR spectra of (a) TCC3-R (orange), (b) [D12]TCC3-R (red) and (c) iodine-
loaded [D12]TCC3-R (burgundy). The red shaded region between 1720 and 1740 cm-1 and the 
dotted lines at 1682 and 1643 cm-1 are the anticipated area for the strong aldehyde carbonyl 
CO stretch44 and the known frequencies for imine stretching mode,43, 44 respectively. Flexibility 
within the TCC3-R structure10 allows for multiple imine modes to be visible. 
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Additionally, Arrhenius plots of ln(k) as a function of T-1, yield an increase of Ea with 

respect to the guest-free cages: from 18 to 21 kJ mol-1 for [D12]TCC2-R and from 12 

to 21 kJ mol-1 for [D12]TCC3-R (Table 3.2 and Figure 3.6). The value obtained for the 

reorientation rate at 230 K, is also reduced: from 1.2x106 to 1x105 Hz and from 8x106 

to 5x104 Hz for [D12]TCC2-R and [D12]TCC3-R respectively. These data show that the 

presence of the iodine guest within the void of the cages, and potentially in extrinsic 

voids between cages, largely suppresses molecular reorientation of the para-

phenylene rings. With iodine loading, [D12]TCC3-R shows a strong increase in H 

values (Table 3.2), validating that rotation has become more difficult. [D12]TCC2-R 

does not show a drastic increase in enthalpy upon loading, indicating that iodine is 

possibly entering the voids within the lattice rather than the molecular pores.  

Figure 3.11. Thermogravimetric analysis of TCC2-R (light blue), TCC3-R (orange), iodine-
loaded TCC2-R (dashed light blue) and iodine-loaded TCC3-R (dashed orange). 
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It has been reported that when the motion of a guest molecule is restricted within a 

cavity, fast librational motions are expected;43 this is not apparent in these TCC2-R 

and TCC3-R cages, since even when a guest is located inside the cages, the line shapes 

remain consistent with a 180° site reorientation of the para-phenylene rings. 

After iodine-loaded [D12]TCC2-R and [D12]TCC3-R were heated for 7 hours at 70 °C, 

almost complete release of iodine over one cycle is observed as detected by 

thermogravimetric analysis (Figure 3.11) and visual inspection of the sample (Figure 

3.7 (b) and 3.2(c)); 2H static solid echo NMR spectra were re-ran and their simulations 

obtained. These are shown in Figures 3.12 and 3.13 for [D12]TCC2-R and [D12]TCC3-R 

respectively. It can be seen that after iodine has been released from the cages, 

rotational rates increase to close to that of the fast motional regime shown in the 

pristine cages highlighting again that these materials are responsive with the 

rotational dynamics being modulated by the capture and release of a guest molecule. 

Figure 3.12. Low temperature 2H static solid echo NMR spectra of (a) [D12]TCC2-R (blue), (b) 
iodine-loaded [D12]TCC2-R (dark blue), (c) iodine-released [D12]TCC2-R (purple), obtained at 
various temperatures. The rotational rates, k, obtained from numerical simulations of the 
NMR line shapes are also given. 
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Figure 3.13. Low temperature 2H  static solid echo NMR spectra of (a) [D12]TCC3-R (red), (b) 
iodine-loaded [D12]TCC3-R (burgundy), (c) iodine-released [D12]TCC3-R (brown), obtained at 
various temperatures. The rotational rates, k, obtained from numerical simulations of the 
NMR line shapes are also given. 
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3.5.4 Relaxation rates 

Finally, 13C T1 values were also monitored due to their strong dependence on 

molecular motion on the MHz timescale.53 The considerably shorter room 

temperature 13C T1 values of 1.3-1.5 s obtained in TCC2-R and TCC3-R (see Figure 3.1 

and Table 3.3) for the C’H carbons on the para-phenylene ring versus the other 

carbons in the cages (appearing in the range of 4-7 s) suggests an efficient relaxation 

mechanism and rapid molecular reorientation of the cage windows, supporting the 

fast molecular rotors of these cages. The 13C T1 relaxation times were found to 

increase significantly upon loading (Figure 3.1, Table 3.3), being consistent with the 

change in 2H solid echo NMR line shape noted above, where guest addition into the 

central void slows reorientation of the phenylene rings within the cage structures. 
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Table 3.3. 13C NMR spectra assignments, 13C isotropic chemical shifts, , and room 

temperature 13C spin-lattice relaxation times T1 obtained for pristine and iodine-

loaded TCC2-R and TCC3-R cages. 

Assignments 
13C assignment 

numbers 
 (13C) /ppm T1 /s Iodine-loaded T1 /s 

TCC2-R 

-HC=N- 4 161 4.8 ± 1.0 32.0 ± 12.1 

-CHC=N- 6 141 5.9 ± 2.3 63.7 ± 23.8 

-CCC’H- + -CC’H- 8, 9 137 4.9 ± 0.5 52.2 ± 4.7 

-HCCCHCC- + -C’H- + -

CHCCC’H- 
5, 7, 10 126 1.3 ± 0.3 33.3 ± 5.0 

-CHN- 3 75 5.4 ± 1.0 20.2 ± 8.4 

-CH2CHN- 2 33 5.6 ± 0.8 13.9 ± 3.2 

-CH2CH2CHN- 1 25 5.9 ± 0.9 11.5 ± 2.1 

TCC3-R 

-HC=N- 14 161 4.2 ± 0.9 19.7 ± 5.8 

-CHC=N- + -CHCC- 16, 17 137 4.9 ± 0.6 28.0 ± 4.3 

-C’H- 22 132 1.5 ± 0.3 21.5 ± 2.0 

-HCCCHCC- + -CCCH- 

+ -CC’H- 
15, 18, 21 125 5.8 ± 0.5 32.2 ± 4.1 

-C≡CCC’H- + -

C≡CCC’H- 
19, 20 90 7.1 ± 2.5 38.3 ± 7.4 

-CHN- 13 75 7.5 ± 0.9 31.1 ± 5.2 

-CH2CHN- 12 33 7.3 ± 0.5 21.6 ± 2.8 

-CH2CH2CHN- 11 25 7.3 ± 0.5 20.3 ± 2.0 
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3.6 Conclusion 

To conclude, we employed 2H solid echo NMR and determined 13C T1 values to probe 

the rotational dynamics of the para-phenylene rings that define access to the central 

void in two porous chiral tubular covalent cages, TCC2-R and TCC3-R. Using 2H NMR, 

we show that TCC2-R cages show reorientation rates that are comparable with the 

fastest molecular rotors reported for other porous frameworks; TCC3-R cages display 

even faster dynamics (below 200 K), with a very small activation energy barrier, which 

is ascribed to the facile rotation around the acetylene bonds, due to a reduction in 

the steric hindrance present. Iodine loading slows the phenylene rotation 

considerably, as further supported by the lengthening of the 13C T1 values, while high 

temperature treatment induces iodine release and reacceleration of the phenylene 

ring reorientation rates. These data show that the effect on cage dynamics is highly 

guest dependent, which might have important implications for processes such as 

competitive loading, molecular separation, and drug release. These findings also 

emphasize that models of porosity derived from static single crystal structures might 

be misleading, but that "time-averaged" models of the pore space could be equally 

inappropriate because guest inclusion can switch the rotational dynamics off. This 

suggests that computational models for loading in such systems need to capture the 

interplay of guest inclusion and rotational dynamics in the porous host. 
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Chapter 4: Dynamics in flexible pillar[n]arenes probed by solid-state 

NMR 

 

 

4.1 Overview 

Chapter 4 is work which has expanded from a publication1 entitled “Near-Ideal 

Xylene Selectivity in Adaptive Molecular Pillar[n]arene Crystals” by Kecheng Jie, Ming 

Liu, Yujuan Zhou, Marc A. Little, Angeles Pulido, Samantha Y. Chong, Andrew 

Stephenson, Ashlea R. Hughes, Fumiyasu Sakakibara, Tomoki Ogoshi, Frédéric Blanc, 

Graeme M. Day, Feihe Huang, and Andrew I. Cooper in which we used solid state 

NMR for structural analysis, confirming the asymmetric unit cell. Following this 

project we studied the dynamics and flexibility of these pillar[n]arenes in a paper 

which has recently been sent for publication entitled “Dynamics in flexible 

pillar[n]arenes probed by solid-state NMR” by Ashlea R. Hughes, Ming Liu, Subhradip 

Paul, Andrew I. Cooper and Frédéric Blanc which is the primary focus of this chapter. 

 

The author contributions are as follows: F.B. designed the project. A.R.H. loaded the 

pillar[n]arenes with M.L. A.R.H. conducted the NMR experiments, with support from 

F.B. S.P. assisted with NMR data acquisition at 14.1 T. Density functional theory 

calculations were carried out by G.M.D. NMR data analysis and interpretation was 

undertaken by A.R.H. A.R.H. and F.B. wrote the manuscript with consultation from all 

other authors. 



124 
 

4.2 Abstract  

Pillar[n]arenes are supramolecular assemblies that can perform a range of 

technologically important molecular separations that are enabled by their molecular 

flexibility. Here, we probe dynamical behaviour by performing a range of variable 

temperature solid-state NMR experiments on microcrystalline perethylated 

pillar[n]arene (n = 5, 6) and the corresponding pillar[6]arene xylene adducts in the 

100 – 350 K range. This was achieved either by measuring site-selective motional 

averaged 13C 1H heteronuclear dipolar couplings and subsequently accessing order 

parameters, or by determining 1H and 13C spin-lattice relaxation times and extracting 

correlation times based on dipolar and/or chemical shift anisotropy relaxation 

mechanisms. We demonstrate fast motional regimes at room temperature and 

highlight a significant difference in dynamics between the core of the pillar[n]arenes, 

the protruding flexible ethoxy groups, and the adsorbed xylene guest. Additionally, 

unexpected and sizeable 13C 1H heteronuclear dipolar couplings for a quaternary 

carbon were observed for para-xylene adsorbed in pillar[6]arene only, indicating a 

strong host-guest interaction and establishing the para-xylene location inside the 

host, confirming structural refinements.  
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4.3 Introduction 

Host-guest chemistry is an important concept in the field of supramolecular 

chemistry that is driven by the interactions of molecular assemblies or ions via non-

covalent interactions.2 These interactions play a vital role in the design of advanced 

functional materials with improved physical properties and potential applications in 

processes, such as adsorption, catalysis, energy storage and molecular separations. 

Consequently, this area has become of increasing importance over the past few 

decades3–6 and a wide range of supramolecular assemblies with a large variety of 

structural motifs has been discovered. There are multiple types of macrocycles 

reported to date, with the most prevalent being those that are structurally tuneable, 

and which therefore have adaptability to host different guests depending on their 

purpose.7  

Over the last decade, pillar[n]arenes (n=5-15) have emerged as a novel class of easily 

functionalised supramolecular macrocycles with tuneable properties such as 

solubility, functionality and molecular flexibility.8–11 Their structure consists of a 

generic unit of substituted phenolic moieties repeated n- times and connected by 

methylene linkages in the para position to form the macrocycle (Figure 4.1). For most 

values of n (except n = 7), the resulting architecture is a symmetrical cylindrical 

structure from the side view (top row in Figure 4.1) and a symmetrical polygon from 

the top views (middle row in Figure 4.1) that yields a single pentagonal and hexagonal 

cavity for n = 5 and 6, respectively, and two pentagonal and/or hexagonal cavities for 

n > 7. The cavity plays an important role in hosting appropriately sized guest 

molecules with potential applications as guest capture, molecular separation12–17 and 

controlled delivery systems.18,19  

Pillar[5]arenes and pillar[6]arenes have found the greatest interest, mostly due to 

their relatively small cavity sizes that enable them to host small molecules,11 

combined with substituted alkyl and branched chains that strongly affect the host-

guest properties.20–23 Perethylated pillar[5]arene (EtP5) and perethylated 

pillar[6]arene (EtP6) are examples of these substituted pillar[n]arenes; these 

molecules  contain ethoxy groups and a one-dimensional (1D) channel pore network 

assembled from the five or six para-phenylene rings (Figure 4.1(a) and (b)), 
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respectively. Multiple phases of EtP6 have recently been discovered recently 

including crystalline EtP6- and the metastable EtP6-.1 Due to its large 

conformational flexibility, EtP6 has been found to adsorb a number of guest 

molecules including styrene, ethylbenzene and xylene,1,15 and we have recently 

shown that EtP6- adapts during adsorption of a xylene isomer mixture to efficiently 

capture para-xylene (pX) over ortho-xylene (oX) and meta-xylene (mX) with a high 

selectivity of 90% to form pX@EtP6 (Figure 4.1(c)). This is a step forward for the 

energy efficient separation of the xylene isomers, which are widely used as chemical 

feedstocks.1,24  

Figure 4.1. Crystal structures (a) perethylated pillar[5]arene, EtP5-, (b) perethylated 

pillar[6]arene EtP6-, (c) para-xylene in EtP6 (pX@EtP6), (d) meta-xylene in EtP6 (mX@EtP6), 
(e) ortho-xylene in EtP6 (oX@EtP6).1 The side and top views are shown on the first and 
second rows. The pillar[n]arene host and xylene guests are denoted by ‘ball and stick’ and 
‘space filling’ models, respectively, with carbons shown in grey, oxygens in red and protons 
omitted for clarity in the ball and stick model whilst shown in white in the space filling model. 

The two left panels of the third row provide the chemical structures of both EtP5- and EtP6-

 using consistent colour coding for different carbon environments (CH3, orange; CH2, light 
blue; OCH2, green; CH, pink; CH2CIV, yellow and OCIV, grey) throughout for NMR spectra 
assignments. The three right panels of the third row show a magnified view of the through 
space interaction between the xylene guest and EtP6 in pX@EtP6 (yellow circle) while no 
interaction is observed for mX@EtP6 and oX@EtP6 (see text for details). 
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Solid-state Nuclear Magnetic Resonance (NMR), often in conjunction with 

computational methods such as crystal structure prediction (CSP), is playing an 

important role in increasing our understanding of the structure of supramolecular 

assemblies,25–30 complementing diffraction-based approaches. For example, we took 

advantage of the very high spectral resolution of the 13C NMR spectra of various 

guest-free pillar[n]arenes such as EtP5-, EtP6- and EtP6- to support the 

conformational energy landscape exploration and identify the number of different 

carbons in the asymmetric unit cell.1  

One important criterion for these supramolecular structures is their adaptive 

behaviour and flexibility that dictates the adsorption of guest molecules in the cavity 

space. Understanding this flexibility and the associated dynamics are key factors to 

consider in the design of these pillar[n]arenes and a vital step in determining their 

potential applicability. Liquid state NMR has routinely been used to assess the 

flexibility of these materials by investigating conformational properties,31,32 often via 

variable temperature NMR measurements,33,34 to assess if rotation of the para-

phenylene units is present, but little is known regarding the adaptive behaviour in 

the solid state. Thanks to a range of complementary approaches, solid-state NMR is 

well equipped to assess this behaviour via dynamics measurements performed on a 

very wide range of timescales from slow motion (Hz) with e.g. EXchange 

SpectroscopY (EXSY) to moderate motional rates (kHz) with residual dipolar couplings 

and fast motion (MHz) with relaxation measurements. By performing these 

measurements at various temperatures, we can access thermodynamic parameters. 

Recent 2H NMR work has focused on the molecular dynamics on n-hexane-d14 in 

pillar[5]arene bearing different substituents that showed that the resulting varied 

molecular arrangement of the pillar[5]arene gave rise to a different pattern of guest 

uptake and release.35   

Here, we determine the dynamics of both guest-free EtP5- and EtP6- and xylene-

adsorbed analogues of perethylated pillar[6]arenes over a wide time scale (kHz to 

MHz) by probing site selective 13C 1H heteronuclear dipolar couplings from dipolar 

coupling spectra and accessing 1H and 13C correlation times from spin lattice 

relaxation measurements as a function of temperature. We first utilise 13C isotropic 
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chemical shifts, spectral editing 13C NMR experiments and spectral deconvolution to 

aid spectral assignments of the significantly different 13C cross polarisation (CP) magic 

angle spinning (MAS) NMR spectra of the xylene-adsorbed pillar[n]arenes that arise 

from their various crystal structures. We find that the room temperature molecular 

dynamics of these systems in the kHz regime differ for each crystallographically 

different carbon subgroup. The flexibility of the protruding OCH2 groups in the guest-

free pillar[n]arenes is reduced when there are fewer phenolic moieties, or at 

temperatures below 298 K, as well as by adsorption of xylene isomers; by contrast,  

other carbon groups have largely similar dynamics over the temperature range 

studied (383 – 100 K). We identify intermolecular 13C 1H dipolar couplings at low 

temperatures in pX@EtP6, that are absent on both oX@EtP6 and mX@EtP6, which 

provides evidence for the location of xylenes in the EtP6 architecture and highlight 

the host-guest interactions in pX@EtP6. Finally, we exploit variable temperature spin 

lattice relaxation measurements to access dynamics in the MHz regime, which 

confirm the flexibility of the extruding ethoxy groups of these pillar[n]arenes as 

opposed to the carbon atoms located in the ring core. 
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4.4. Materials and Methods 

4.4.1. Materials synthesis. Guest-free EtP5-36 and EtP6-36 and xylene-

adsorbed perethylated pillar[6]arenes1 were synthesised using established literature 

procedures. Prior to adsorption, PXRD and NMR measurements, EtP5- and EtP6- 

were dried and heated under vacuum at a pressure of 10-3 mbar to 433 K for 2 hours 

to ensure no solvation and that the correct phases were obtained. pX@EtP6 and 

mX@EtP6 were synthesised using the xylene vapour adsorption method, whereas 

oX@EtP6 was prepared via solvent evaporation.1 

4.4.2. Powder X-ray diffraction. Powder X-ray diffraction (PXRD) data were 

collected in transmission mode on samples held on thin Mylar film in aluminium well 

plates on a Panalytical X’Pert PRO MPD equipped with a high throughput screening 

XYZ stage, X-ray focusing mirror, and PIXcel detector, using Ni-filtered Cu Kα radiation 

of wavelength 1.5406 Å. Data were measured over the range 5 - 50° over 30 min. All 

PXRD patterns (Figure 4.2) are consistent with those previously published in the 

literature.1 

4.4.3. Differential scanning calorimetry. Differential scanning calorimetry 

(DSC) was performed using a TA Instruments Discovery DSC with the following heat 

treatment: equilibrate to 298 K, then ramp to 303 K at 10 K per minute, then cooled 

back to 188 K and ramped again to 303 K (Figure 4.20). 

4.4.4. NMR experiments. The 1H and 13C solid-state NMR experiments at an 

external magnetic field B0 = 9.4 T were performed on a Bruker Avance III HD NMR 

spectrometer equipped with a 4 mm HXY triple-resonance MAS probe in double-

resonance mode tuned to Larmor frequencies of 0(1H) = 400.13 MHz for 1H and 

0(13C) = 100.62 MHz for X = 13C. The B0 = 14.1 T NMR experiments were performed 

on a 14.1 T Avance III DNP NMR spectrometer equipped with a low temperature 3.2 

mm HXY triple-resonance MAS probe in double-resonance mode37 tuned to 0(1H) = 

600.25 MHz on 1H and 0(13C) = 150.93 MHz for X = 13C. All experiments were obtained 

under MAS with the sample spinning at r = 12.5 kHz. 1H pulses and SPINAL-64 

heteronuclear decoupling38 during 13C acquisition performed at a radio-frequency 

(RF) field amplitude of 83 kHz for all samples except the room temperature CP 
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experiments on the guest-free samples where it was performed at 96 kHz. 13C pulses 

were performed at a RF field of 60 and 70 kHz at 9.4 and 14.1 T, respectively. Rotor 

synchronised echo and z-filter delays of the INADEQUATE spectra obtained at 9.4 T 

were experimentally optimised for best efficiency and found to be 3.2 ms and 0.8 ms 

respectively. INADEQUATE spectra were obtained with 78 t1 increments and 2048 

scans. For all data obtained at 14.1 T, a presaturation block consisting of 100 1H pulses 

separated by 1 ms was used prior to the standard pulse sequences described in 

Chapter 1 of the thesis. For variable temperature experiments, zirconia drive caps 

were used at 9.4 T and Vespel caps at 14.1 T. 

In the variable temperature CP experiments the CP steps were performed with a 13C 

RF field of 41 kHz (at 9.4 T) and 70 kHz (at 14.1 T) while the 1H RF field amplitude was 

ramped to obtain maximum signal at approximately 65 kHz (at 9.4 T) and between 70 

- 96 kHz (at 14.1 T), dependent on samples and temperatures. An optimised contact 

time of 1.5 - 3.0 ms was used. Typically, 13C CP experiments were accumulated with 

2048 scans (at 9.4 T) and 32 - 2048 scans (at 14.1 T) dependent on samples and 

temperatures, and used recycle delays of 1.3 x 1H T1
39 (with T1 the spin lattice 

relaxation times measured as given below) that corresponds to the maximum signal 

to noise per unit time. Note that although 13C CP MAS experiments are not 

quantitative, only 13C integration within a chemically distinct carbon environment is 

given as its similar nature and mobility in these systems allows comparison of the 

number of carbons to be appropriately estimated. 

Variable temperature 1H and 13C spin lattice relaxation times T1s were obtained with 

the saturation recovery and T1 Torchia40 pulse programs respectively. In the 

saturation recovery experiment, the magnetisation is saturated by a presaturation 

block consisting of 100 1H pulses separated by 10 ms at 9.4 T or 1 ms at 14.1 T, 

followed by magnetisation build-up during a variable  delay and NMR detection. In 

the T1 Torchia sequence,40  an initial 13C CP step creates 13C magnetisation which then 

decays during a variable delay  and 13C detection is achieved using a two-step phase 

cycle to account for the direct (unenhanced) 13C Boltzmann value rather than CP 

enhanced values. The data obtained via integrated intensities were fitted to stretch 

exponential functions of the form of:  
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1-exp[-(/T1)]  and  exp[-((/T1)] 

for the 1H and 13C T1 data, respectively, where  is the variable delay time and  

(between 0.75 and 0.96) and  (between 0.60 and 0.88) are the respective stretch 

exponential factors. Stretch exponentials were used due to the data showing a small 

amount of non-exponential magnetisation recovery. Errors associated from the T1 

values are quoted to a 95% confidence level and are smaller than the symbol sizes in 

all figures.  

Variable temperature 2D Proton Detected Local Field (PDLF) spectra correlating 13C 

NMR spectra in the direct frequency dimension 2 with 13C 1H dipolar coupling 

spectra in the indirect 1 dimension were obtained using the windowed41 sequence 

(wPDLF).42 The sequence starts with the reintroduction of the heteronuclear 13C 1H 

dipolar coupling under MAS during the rotor synchronised evolution period t1 using 

the symmetry-based R182
5 1H recoupling block43 which was optimised for maximum 

signal around the 1H RF field amplitude of approximately 9 x r (112.5 kHz). R182
5 also 

removes the homonuclear 1H 1H dipolar coupling43 and the 180° phase shift in the 

recoupling block refocuses the (small) 1H Chemical Shift Anisotropy (CSA) while the 

synchronised 180° 13C pulse applied in the middle of t1 prevents the same refocusing 

from occurring for the heteronuclear 13C 1H dipolar coupling and refocuses the 13C 

chemical shift. The 13C CSA is averaged out over 2 rotor periods. The 13C 

magnetisation is therefore only modulated by the 13C 1H dipolar coupling in t1 that 

yields 13C 1H dipolar coupling spectra in 1. Polarisation transfer to 13C is subsequently 

achieved using the rotor synchronised PRinciples of Echo Shifting using a Train of 

Observations (PRESTO)44 pulse sequence optimised for maximum signal for the 

protonated resonances to a length of 
16

9
 x r (142 s), where r is the rotor period (80 

s), and by varying the recoupling length of the R181
7 1H recoupling block43 (which is 

also optimised to a similar 1H RF field of approximately 9 x r (112.5 kHz)). PRESTO is 

preferred to CP for polarisation transfer as 1H spin diffusion in the latter results in an 

increase of the signal intensity for the zero frequency signal.42 Following Fourier 

transformation in the F1 dimension, an effective dipolar coupling constant κRdCH 

(with κR the scaling factor of the wPDLF sequence and dCH the dipolar coupling 

constant, see section 4.5.2 for the experimental determination of κR) is obtained in 
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the 1 frequency dimension.42,45,46 The (scaled) 13C 1H dipolar coupling spectra are 

then extracted at each 13C isotropic resonance and the dipolar coupling values are 

obtained from the distance between the outer singularities to yield site-specific 

motional averaged dipolar coupling <dCH> values. The estimated errors associated 

with these values are obtained from the small variations across the carbon 

environment (an example of which is given in Figure 4.24 for the CH3 resonance of 

EtP6-).  

Static dipolar coupling constants dCH were calculated from equation 4.2 and carbon 

proton bond lengths. These were obtained from computed CSP1 data for the EtP5- 

and EtP6- conformers or experimental low temperature high resolution powder 

neutron diffraction data from ortho-xylenes47 and meta-, para-xylenes48 crystal 

structures for the xylene isomers. 

Temperature calibrations were preformed prior to NMR data acquisition using either 

the 207Pb chemical shift thermometer of Pb(NO3)2
49,50 or the 79Br T1s51 of KBr, 

extracted from polarisation build-up curves using the saturation recovery pulse 

sequence according to procedures outlined in the literature. All temperatures 

reported are actual sample temperatures and have an estimated accuracy of ± 10 K. 

NMR data were processed with TopSpin and MATLAB R2019a.52 1H and 13C spectra 

were referenced to H2O at 4.8 ppm and the CH of adamantane at 29.45 ppm,53 

respectively, both corresponding to TMS at 0 ppm. Small deviations in the observed 

isotropic chemical shifts (± 0.7 ppm in 13C CP MAS NMR spectra) is likely attributed to 

small changes in shim coil temperatures during variable temperature experiments.  

 4.4.5. Solid state NMR calculations  

The structure of EtP6- was optimized at the DFT-D level with lattice vectors fixed at 

their experimental values and the shielding tensor was calculated at the DFT-D 

optimized geometry. Periodic DFT-D calculations, geometry optimizations and NMR 

simulations, were carried out with CASTEP program,54 v17.21, using the functional 

PBE generalized gradient approximation,55 with dispersion interactions included via 

Grimme’s D2 scheme,56 plane wave basis sets, on-the-fly generated ultra-soft 

pseudo-potentials and a Monkhorst-Pack grid of k-points corresponding to a 
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maximum spacing of 0.05 Å‒1.57 A plane-wave maximum energy cut off of 500 eV was 

employed during geometry optimization and was increased to 850 eV for chemical 

shielding calculations. The isotropic and symmetric parts of the chemical shift tensor 

were described by the isotropic chemical shift, δiso, span and Ω parameters. 

Theoretical NMR interaction tensors were derived from periodic calculations using 

the GIPAW method57–59 as implemented in CASTEP. Calculated 13C isotropic chemical 

shifts  were calculated from the chemical shielding values  using the scaling 

parameters derived below in equation 4.1:54  

 = −0.9902 + 169.19 (4.1) 
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4.5. Results and discussion 

4.5.1. NMR structural analysis  

EtP5 and EtP6 were synthesised by reaction of 1,4-diethoxybenzene with 

paraformaldehyde in the presence of boron trifluoride diethyl etherate followed by 

separation from the other pillar[n]arenes, EtPn, by column chromatography (Scheme 

4.1).36 EtP5- was obtained by recrystallisation from tetrahydrofuran followed by a 

drying step while EtP6- was prepared by heating to 333 K for 1 hour. Subsequently, 

both pX@EtP6 and mX@EtP6 were prepared using the solid-vapour diffusion 

method and oX@EtP6 via solvent evaporation as recently published.1 The PXRD 

patterns of all materials are given in Figure 4.2 and agree with the reported ones.1  

 

Scheme 4.1. Synthesis of perethylated pillar[n]arenes from 1,4-diethoxybenzene and 
paraformaldehyde.36 The perethylated pillar[n]arenes were purified by column 
chromatograph to separate EtP5 and EtP6. The crystal structures of the pillar[n]arenes (5 and 
6) are denoted by ‘ball and stick’ models, with carbons shown in grey, oxygens in red and 
protons omitted for clarity. Resulting yields obtained via this synthesis method are also 
given.36  
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Figure 4.2. Powder XRD patterns of (a) EtP5-, (b) EtP6-, (c) pX@EtP6, (d) mX@EtP6 and 
(e) oX@EtP6. 



136 
 

The 13C cross polarization (CP) magic angle spinning (MAS) NMR spectra of the three 

guest free pillararenes (EtP5-, EtP6- and EtP6-) are shown in Figure 4.3 and 

provide structural information regarding the asymmetric unit. EtP6- shows a range 

of narrow and well resolved resonances that could be assembled into the six different 

chemical sub-groups for EtP6, corresponding to the chemically-distinct carbons 

environments; for example, the quaternary carbon atoms bonded to oxygens in OCIV 

appear in the 149 - 155 ppm region.  

Figure 4.3 13C CP MAS NMR spectra of (a) EtP5- (b) EtP6- and (c) EtP6-. Asterisks (*) 
denote spinning sidebands. The expansion shows the experimental spectrum (full line), total 

fit (dotted line) and spectral deconvolution (dashed lines) of the OCIV carbons.Integrations 
obtained by deconvolution are given in respectve expansion.  
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The assignment given is based on 13C-editing NMR experiments and known 13C 

chemical shift values from the literature.60 With remarkable sharp lines acquired at 

natural abundance, the carbon connectivities obtained from the two-dimensional 13C 

13C through-bond INADEQUATE61 correlation spectrum (Figure 4.4(a)) further 

confirmed the assignment. 

Figure 4.4. (a) 2D z-filter refocused INADEQUATE61 spectrum of natural abundance EtP6-, 
showing a limited number of linkages between the carbon signals. Top is the 1D 13C CP MAS 

NMR spectrum. Spectral assignments are based on known 13C chemical shifts60 and 
calculations. The asterisks (*) denote spinning sidebands. (b) Plot of simulated and 

experimental 13C NMR chemical shifts for EtP6-. Each chemically distinct carbons 
environments are given with a different marker as indicated in the figure itself. The root-
mean-square error for all of the 13C shifts was found to be 1.9 ppm. 
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The insert in Figure 4.3(c) (and the full spectral deconvolution in Figure 4.5) shows 

that each environment consists of multiple 13C peaks whose integrations match well 

with the expected number of non-equivalent carbon atoms in the asymmetric units, 

as determined by X-ray diffraction (Figure 4.2). For example, seven OCIV resonances 

are resolved integrating 1:1:1:1:3:3:2 (from high to low frequency) and matching the 

expected twelve OCIV carbons in of EtP6-. Calculations of the 13C chemical shifts of 

EtP6- was also carried out, which was used to compare with the experimental 

chemical shifts (as shown in Figure 4.4(b)). The comparison shows to be in excellent 

agreement with the experimental chemical shifts (Table 4.1), further validating the 

spectral assignments. It also provides proof of the good match between the 

experimentally obtained crystal structures and the calculated conformers.1 
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Figure 4.5. Experimental 13C CP MAS NMR spectrum of EtP6- (full line) with the total fit and 
spectrum deconvolutions shown with dotted and dashed lines, respectively. Each panel 
shows chemically distinct carbons environments. Whilst the 13C CP spectrum is not 
quantitative, the similar nature of each carbon environments allows for the peaks ratio (given 
above each signal with error around ± 0.3) to be estimated. Asterisks (*) denote spinning 
sidebands. 
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Table 4.1. 13C NMR assignments for EtP6- (Figure 4.3(c)) with isotropic chemical shifts iso 

from deconvoluted data previously published,1 spin lattice relaxation times T1 obtained via 
area integration, motional averaged dipolar coupling constants <dCH> and order parameters 
<SCH>. Data obtained at room temperature and 9.4 T. 

Assignment 13C iso /ppm T1 /s <dCH> /kHz <SCH> 

CH3 

14.25 

2.4 ± 0.1 -7.2 ± 0.5 0.31 ± 0.03 

14.52 
15.00 
15.36 
15.75 
15.99 
16.30 
17.03 

CH2 

27.83 

181.9 ± 33.5 -22.4 ± 0.8 0.97 ± 0.03 

28.58 
29.43 
29.88 
33.27 
34.09 

OCH2 

62.15 

24.8 ± 2.2 -18.1 ± 0.7 0.78 ± 0.03 

62.80 
63.47 
63.75 
64.78 
65.30 
65.48 
66.15 

CH 

111.68 

261.6 ± 27.1 -23.9 ± 0.8 1.03 ± 0.03 

112.01 
112.98 
113.95 
115.20 
116.11 
116.55 
117.28 

CH2CIV 

123.86 

236.4 ± 26.4 N/Aa N/A 

124.30 
125.83 
126.72 
127.77 
128.45 
129.05 
131.38 
131.76 

OCIV 

150.08 

227.4 ± 13.9  N/A N/A 

151.13 
150.40 
150.67 
151.38 
153.00 
153.92 

a Not Applicable. 
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Similarly, the highly resolved 13C CP MAS NMR spectrum of EtP5-. allows each 

carbon environment to be observed and quantified; there is a good agreement 

between the deconvoluted spectra and the expected number of non-equivalent 

carbon atoms in EtP5-. (e.g. ten OCIV carbons, Figure 4.3(a) and 4.6).  

  

Figure 4.6. Experimental 13C CP MAS NMR spectrum of EtP5- (full line) with the total fit and 
spectrum deconvolutions shown with dotted and dashed lines, respectively. Each panel 
shows chemically distinct carbons environments. Whilst the 13C CP spectrum is not 
quantitative, the similar nature of each carbon environments allows for the peak ratio (given 
above each signal with error around ± 0.3) to be estimated. 13C CP NMR measured at short 
contact times enabled the identification of protonated carbons. Asterisks (*) denote spinning 
sidebands and hashes (#) denote impurities. 
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Table 4.2. 13C NMR assignments for EtP5- (Figure 4.3(a)) with isotropic chemical 

shifts iso from deconvoluted data previously published,1 spin lattice relaxation times 
T1 obtained, motional averaged dipolar coupling constants <dCH> and order 
parameters <SCH> . Data obtained at room temperature and 9.4 T. 

Assignment 13C iso /ppm T1 /s <dCH> /kHz <SCH> 

CH3 

14.42 

1.7 ± 0.1 -7.2 ± 0.5 0.31 ± 0.03 
15.13 
15.71 
16.22 
16.83 

CH2 

28.01 

165.8 ± 48.4 -23.3 ± 0.8 1.01 ± 0.03 
28.67 
29.63 
35.07 
37.53 

OCH2 

61.16 

44.5 ± 5.0 -18.4 ± 0.7 0.79 ± 0.03 

62.50 
63.22 
64.15 
64.45 
64.73 
67.42 

CH 

111.78 

246.2 ± 27.0 -23.8 ± 0.8 1.03 ± 0.03 

112.49 
112.76 
113.00 
113.35 
114.29 
115.97 
117.32 
123.06 

CH2CIV 

127.12 

262.0 ± 56.0 N/Aa N/A 

127.39 
127.75 
128.49 
129.44 
130.22 
130.65 
135.36 

OCIV 

146.51 

217.2 ± 32.8 N/A N/A 

148.30 
149.33 
150.12 
150.31 
151.16 
151.53 
152.56 
154.12 

a Not Applicable. 
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However, by comparison, the resolution of the EtP6- spectrum is much poorer with 

broader peaks observed (Figure 4.3(b) and 4.7). This indicates that unlike EtP6- and 

EtP5-, EtP6- is not phase pure which we attribute to the existence of multiple EtP6 

conformers in the metastable EtP6- activated material and highlights the 

importance of correlating X-ray diffraction studies with solid state NMR 

measurements. Due to the less stable nature of this phase, it will not be studied 

further here. 

   

Figure 4.7. Experimental 13C CP MAS NMR spectrum of EtP6-  (full line) with the total fit and 
spectrum deconvolutions shown with dotted and dashed lines, respectively. Each panel 
shows chemically distinct carbons environments. Asterisks (*) denote spinning sidebands. 
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The 13C CP MAS NMR spectra of guest-free EtP5- and EtP6- collected under MAS 

at 12.5 kHz and at a magnetic field of 9.4 T are shown in Figure 4.3(b) and (c) as well 

as Figure 4.8(a) and (b)1 and are extremely well resolved with full width at half 

maximum lines typically around 30 Hz (or 0.3 ppm at 9.4 T), in agreement with the 

excellent crystallinity of these samples. Each different chemical subgroup is assigned 

straightforwardly and the remarkable resolution obtained enables the observation of 

all non-equivalent magnetically distinct carbon atoms in the asymmetric unit cells, as 

previously discussed.1 The 13C CP MAS NMR spectra of all xylene-adsorbed EtP6 

molecules are given in Figures 4.8(c-e) and are all different from EtP6- and from 

each other, as previously identified by CSP of the molecular conformational space. 

Therefore, the spectral identification of the corresponding resonances of the xylenes 

(red daggers in Figures 4.8(c-e) is not straightforward and is obtained based on 

comparisons with well-established chemical shift values,62–64 13C-edited NMR 

experiments (Figures 4.9, 4.11 and 4.13) employing CP steps of various contact times, 

the existence of CH dipolar coupling (see PDLF data below, Figure 4.29) and spectral 

deconvolution (Figures 4.10, 4.12 and 4.14). 
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Figure 4.8. 13C CP MAS NMR spectra of (a) EtP5-, (b) EtP6-, (c) pX@EtP6, (d) mX@EtP6 and 

(e) oX@EtP6 obtained at a magnetic field of 9.4 T. The spectra for EtP5- and EtP6- are 
identical to those previously published.1 Spectral assignments are given in the figure (see 
Figure 4.1) and are obtained from known isotropic chemical shifts, 13C-edited CP experiments 
(Figures 4.9, 4.11 and 4.13), spectral deconvolution (Figures 4.10, 4.12 and 4.14) and 2D PDLF 
data (see below). The red daggers (†) denote signals arising from the xylene guests. The CH3 
originating from the ortho-xylene guest in (e) is unidentifiable due to spectral broadening and 
overlapping resonances with the CH3 signals of the EtP6 host. Asterisks (*) and hashes (#) 
denote spinning sidebands and amorphous impurities, respectively.  
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More specifically, in pX@EtP6, each group of resonances that are attributed to the 

different carbon subgroups in the EtP6 host (e.g., CH2 at 27 - 38 ppm or OCIV at 148 - 

154 ppm) consist of multiple peaks which number and integration (when the peaks 

are partially resolved) are in agreement with the expected number of carbons in 

asymmetric unit cell (e.g., 6 for CH2, 12 for OCIV etc.),1 while the para-xylene 

resonances can be mostly assigned based on their isotropic chemical shifts. There are 

spectral overlaps in the 124 - 136 ppm region between the quaternary CH2CIV 

resonances of EtP6 host and the protonated CHs of para-xylene and the spectral 

assignment was performed by comparing the 13C-edited CP MAS spectra obtained 

with a very short contact time of 50 s that predominantly enhance protonated 

carbons vs. longer contact times that enhance all 13C signals (Figure 4.9). Two 

distinguishable CH3s, CHs and quaternary carbons resonances are therefore observed 

for para-xylene in pX@EtP6 which is in agreement with the asymmetric unit cell of 

this phase that contains two xylene molecules, enabling a full spectral assignment of 

pX@EtP6 (Figure 4.8(c) and Table 4.3).  
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Figure 4.9. 13C edited experiments of pX@EtP6 obtained by comparing the 13C CP MAS NMR 

spectra acquired with contact times of (a) 50 s and (b) 2000 s. Data were obtained at a 
magnetic field of 9.4 T. Spectral assignments are given in the figure (see Figure 4.1). The red 
daggers (†) (also shown in red in the spectral deconvolution in Figure 4.10) denote signals 
arising from the para-xylene guest. The CH resonances of para-xylene are apparent in the 

spectrum obtained at a short contact time of 50 s where the signal intensities of the 
quaternary carbons are largely reduced. Spinning sidebands are marked with asterisks (*). 
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Table 4.3. 13C NMR assignments for pX@EtP6 (Figure 4.8(c)) with isotropic chemical 

shifts iso from spectral deconvolution in Figure 4.10, spin lattice relaxation times T1 
obtained via area integration, motional averaged dipolar coupling constants <dCH> 
and order parameters <SCH>. Data obtained at room temperature and 9.4 T. Red 
daggers (†) denote signals arising from para-xylene guest. 

Assignment 13C iso /ppm T1 /s <dCH> /kHz <SCH> 

CH3 

14.0 

15.9 ± 0.1 -6.9 ± 0.5 0.30 ± 0.03 

14.4 
14.9 

15.2 
15.5 
16.0 

18.7 (†) 
20.5 (†) 

CH2 

27.9 

85.6 ± 31.7 -21.6 ± 0.8 0.94 ± 0.03 

29.4 
30.8 
31.2 
32.8 
37.8 

OCH2 

61.8 

39.2 ± 2.8 -18.4 ± 0.7 0.81 ± 0.03 

62.4 
62.9 
63.3 
63.9 
64.1 
64.8 
65.0 

CH 

111.0 

139.6 ± 9.9 -22.4 ± 0.8 0.94 ± 0.03 

111.5 
112.1 
113.6 
114.2 
114.6 
115.4 
115.8 
117.2 

CH2CIV 

125.8 

139.9 ± 15.2 N/Aa N/A 

126.3 
126.6 
127.4 
127.6 
128.7 

129.4 (†) 
129.8 (†) 

130.3 
132.8 (†) 
133.4 (†) 

OCIV 

148.6 

127.3 ± 11.1 N/A N/A 

149.0 
149.5 
149.7 
150.6 
150.9 
151.5 
152.1 
152.5 
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Figure 4.10. Experimental 13C CP MAS NMR spectrum of pX@EtP6 (full line) with the total fit 
and spectrum deconvolutions shown with dotted and dashed lines, respectively. Integration 
values for each carbon subgroup are given. Data obtained at 298 K and 9.4 T. Each panel 
shows chemically distinct carbons environments of the EtP6 host. Spectral assignments are 
given in the figure (see Figure 4.1) and are obtained from known isotropic chemical shifts, 
13C-edited experiments and 2D PDLF data (see manuscript). Note that the low resolution of 
some of the resonances results in uncertainty in the estimated integration. Red daggers (†) 
denote signals arising from the para-xylene guest. 
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Likewise, all 13C NMR resonances in mX@EtP6 are assigned (Table 4.4) using 13C-

edited experiments (Figure 4.11) and spectral deconvolution (Figure 4.12) which 

reveal one meta-xylene molecule per host in the asymmetric unit cell. We point out 

that the 13C resonances for meta-xylene in mX@EtP6 and free meta-xylene (in 

solution)62 are very close (less than 1.6 ppm), which strongly supports a limited effect 

on the chemical shielding of meta-xylene from EtP6 resulting from its structural 

deformation and meta-xylene - EtP6 size exclusion (Figure 4.1(d)). 

Table 4.4. 13C NMR assignments for mX@EtP6 (Figure 4.8(d)) with isotropic chemical 

shifts iso from spectral deconvolution in Figure 4.12, spin lattice relaxation times T1 
obtained via area integration, motional averaged dipolar coupling constants <dCH> 
and order parameters <SCH>. Data obtained at room temperature and 9.4 T. Red 
daggers (†) denote signals arising from meta-xylene guest. 

Assignment 13C iso /ppm T1 /s <dCH> /kHz <SCH> 

CH3 

14.4 

2.8 ± 0.1 -6.9 ± 0.5 0.30 ± 0.03 

15.2 
15.3 
15.8 
16.2 
16.4 

21.6 (†) 

CH2 
31.2 

168.2 ± 17.4 -22.2 ± 0.8 0.97 ± 0.03 31.5 
33.2 

OCH2 

62.2 

44.9 ± 2.8 -19.2 ± 0.7 0.84 ± 0.03 
63.3 
64.2 
64.5 
65.4 

CH 

111.4 

158.4 ± 10.9 -23.5 ± 0.8 0.99 ± 0.03 
111.9 
114.9 
116.4 

CH2CIV 

126.6 (†) 

136.4 ± 9.2 N/Aa N/A 

126.8 
127.6 

128.4 (†) 
129.0 

130.1 (†) 
130.6 

137.2 (†) 

OCIV 

149.3 

189.5 ± 11.3 N/A N/A 
149.9 
151.1 
151.6 
152.5 

a Not Applicable. 
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Figure 4.11. 13C edited experiments of mX@EtP6 obtained by comparing the 13C CP MAS NMR 

spectra acquired with contact times of (a) 50 s and (b) 2000 s. Data were obtained at a 
magnetic field of 9.4 T. Spectral assignments are given in the figure (see Figure 4.1). The red 
daggers (†) (also shown in red in the spectral deconvolution in Figure 4.12) denote signals 
arising from the para-xylene guest. The CH resonances of para-xylene are apparent in the 

spectrum obtained at a short contact time of 50 s where the signal intensities of the 
quaternary carbons are largely reduced. Spinning sidebands are marked with asterisks (*). 
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Figure 4.12. Experimental 13C CP MAS NMR spectrum of mX@EtP6 (full line) with the total fit 
and spectrum deconvolutions shown with dotted and dashed lines, respectively. Integration 
values for each carbon subgroup are given. Data obtained at 298 K and 9.4 T. Each panel 
shows chemically distinct carbons environments of the EtP6 host. Spectral assignments are 
given in the figure (see Figure 4.1) and are obtained from known isotropic chemical shifts, 
13C-edited experiments and 2D PDLF data (see manuscript). Red daggers (†) denote signals 
arising from the meta-xylene guest. 
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The 13C NMR spectrum of oX@EtP6 is given in Figure 4.8(e) and allows the 

observation of all different types of carbon in EtP6. However, the spectrum is more 

poorly resolved than those of pX@EtP6 and mX@EtP6, likely due to the lower 

crystallinity of this material as seen by the broad lines in both PXRD data (Figure 4.2) 

and solid-state NMR (Figure 4.8(e)), and for which we only provide a tentative 

assignment for overlapping resonances between ortho-xylene and the EtP6 host 

(Table 4.5). Notably, the short contact time 13C CP spectrum (Figure 4.13) only 

enables clear identification of the CHs originating from the ortho-xylene while its CH3 

resonance is not directly attributable. This resonance is likely shifted to a lower 

frequency than in mX@EtP6 and pX@EtP6 due to the increased shielding effect of 

the ortho-xylene methyl groups located in the centre of the cavity (Figure 4.1(e)) and 

is therefore expected to overlap with the CH3 resonances of the ethyl group around 

16 ppm.  
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Table 4.5. 13C NMR assignments for oX@EtP6 (Figure 4.8(e)) with isotropic chemical 

shifts iso from spectral deconvolution shown in Figure 4.14, spin lattice relaxation 
times T1 obtained via area integration, motional averaged dipolar coupling constants 
<dCH> and order parameters <SCH>. Data obtained at room temperature and 9.4 T. 
Red daggers (†) denote signals arising from ortho-xylene guest and (#) denote 
amorphous signals. Overlapping resonances between the guest and the host in the in 
the 15-17 ppm and 123-137 ppm region of the 13C CP MAS NMR spectrum prevents 
spectral assignment of the CH3 and only allow tentative assignment of the CH2CIV 
carbons. 

Assignment 13C iso /ppm T1 /s <dCH> /kHz <SCH> 

CH3 
15.1 

2.0 ± 0.1 -7.1 ± 0.5 0.31 ± 0.03 15.9 
16.3 

CH2 

28.6 

65.2 ± 6.7 -23.8 ± 0.8 1.03 ± 0.03 
29.8 
30.6 
33.0 
37.6 

OCH2 

62.1 

25.8 ± 1.5 -18.3 ± 0.7 0.81 ± 0.03 
62.7 
63.1 
63.8 

65.4 (#) 

CH 

111.4 

89.3 ± 4.1 -23.8 ± 0.8 1.00 ± 0.03 
111.9 
114.9 
116.4 

CH2CIV 

124.0 (#) 

52.2 ± 4.8 N/Aa N/A 

125.4 
126.3 
126.7 

128.2 (†) 
128.8 (†) 

129.2 
129.5 

134.6 (†) 
137.0 (#) 

OCIV 

149.2 

88.0 ± 3.9 N/A N/A 

149.6 
150.2 
151.8 
151.5 
152.1 

a Not Applicable. 
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Figure 4.13. 13C edited experiments of oX@EtP6 obtained by comparing the 13C CP MAS NMR 

spectra acquired with contact times of (a) 50 s and (b) 2000 s. Data were obtained at a 
magnetic field of 9.4 T. Spectral assignments are given in the figure (see Figure 4.1). The red 
daggers (†) (also shown in red in the spectral deconvolution (Figure 4.14) denote signals 
arising from the ortho-xylene guest. The CH resonances of ortho-xylene are apparent in the 

spectrum obtained at a short contact time of 50 s where the signal intensities of the 
quaternary carbons are largely reduced. Spinning sidebands and signals arising from 
unknown minor phase(s) are marked with asterisks (*) and dashes (#), respectively. 
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Figure 4.14. Experimental 13C CP MAS NMR spectrum of oX@EtP6 (full line) with the total fit 
and spectrum deconvolutions shown with dotted and dashed lines, respectively. Integration 
values for each carbon subgroup are given. Data obtained at 298 K and 9.4 T. Each panel 
shows chemically distinct carbons environments of the EtP6 host. Spectral assignments are 
given in the figure (see Figure 4.1) and are obtained from known isotropic chemical shifts, 
13C-edited experiments and 2D PDLF data (see manuscript). Note that the low resolution of 
some of the resonances results in uncertainty in the estimated integration. The overlapping 
peaks in the CH3 region do not allow for the CH3 of the ortho-xylene guest to be accurately 
identified. Broad signals tentatively assigned to some unknown amorphous phase(s) are 
marked with dashes (#). Red daggers (†) denote signals arising from the ortho-xylene guest. 
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Variable temperatures 13C CP MAS NMR spectra (Figures 4.15-4.19) of all five 

materials were performed in the 383 - 100 K temperature range (down to only 243 K 

for EtP5). Upon cooling, significantly broader 13C NMR resonances are observed at 

low temperature (e.g., from 30 Hz at 298 K to 60 Hz at 100 K for the CH resonance of 

EtP6-  at 14.1 T) as anticipated from the macrocycles being trapped in a variety of 

conformations and leading to inhomogeneous broadening. There is minimal change 

in the intensity of the spinning sidebands which likely indicates that the 13C CSA is 

largely unchanged in the temperature range studied here while also suggesting that 

accessing 13C CSAs is likely not a suitable method to obtain dynamics information in 

the kHz regime for the majority of carbon environments for these materials as 

discussed in Section 4.5.5. There is also no evidence of signal coalescence due to 

chemical exchange.   
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Figure 4.15. Variable temperature 13C CP NMR spectra of guest-free EtP5- collected at the 
temperatures given in the figure. Data was obtained at 9.4 T. Spectral assignments are given 

in the figure (see Figure 4.1) and correspond to those previously published.1 Asterisks (*) 
denote spinning sidebands. 
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Figure 4.16. Variable temperature 13C CP NMR spectra of guest-free EtP6- collected at the 
temperatures given in the figure. Data shown in black and blue were obtained at 9.4 and 14.1 
T, respectively. Spectral assignments are given in the figure (see Figure 4.1) and correspond 

to those previously published.1 The dotted line indicates a polymorphic transition in EtP6- 
(see DSC data in Figure 4.20). Asterisks (*) denote spinning sidebands. 
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Figure 4.17. Variable temperature 13C CP NMR spectra of pX@EtP6 collected at the 
temperatures given in the figure. Data shown in black and blue were obtained at 9.4 T and 
14.1 T, respectively. Spectral assignments are given in the figure (see Figure 4.1) and are 
derived from known isotropic chemical shifts,62 13C-edited experiments (Figure 4.9) and PDLF 
data. Red daggers (†) and asterisks (*) denote signals arising from the para-xylene guest and 
spinning sidebands, respectively 
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Figure 4.18. Variable temperature 13C CP NMR spectra of mX@EtP6 collected at the 
temperatures given in the figure. Data shown in black and blue were obtained at 9.4 T and 
14.1 T, respectively. Spectral assignments are given in the figure (see Figure 4.1) and are 
derived from the known isotropic chemical shifts,62 13C-edited experiments (Figure 4.11) and 
PDLF data. The dashed line indicates that meta-xylene is lost between room temperature and 
323 K. Red daggers (†) and asterisks (*) denote signals arising from the meta-xylene guest 
and spinning sidebands, respectively. 
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Figure 4.19. Variable temperature 13C CP NMR spectra of oX@EtP6 collected at the 
temperatures given in the figure. Data shown in black and blue were obtained at 9.4 T and 
14.1 T respectively. Spectral assignments are given in the figure (see Figure 4.1) and are 
derived from known isotropic chemical shifts,62 13C-edited experiments (Figure 4.13) and 
PDLF data. Broad signals tentatively assigned to some unknown amorphous phase(s) are 
marked with dashes (#). Red daggers (†) and asterisks (*) denote signals arising from the 
ortho-xylene guest and spinning sidebands, respectively. 



163 
 

Upon heating above 323 K, the 13C CP MAS NMR spectrum of EtP6- remains very 

well resolved and the number of resonances halves (vs. 298 K), indicating a crystal 

structure of higher symmetry. The change of symmetry and a polymorphic phase 

transition are in agreement with both the DSC data (Figure 4.20), that shows an 

endothermic peak at 339 K, and with refined XRD data at 433 K that indicated a 

transition from triclinic P1̅ EtP6- at room temperature to a different metastable 

triclinic P1̅ state at 339 K with data that could be fitted with a unit cell with halved 

volume of the room temperature data.1 Spectral deconvolution of a corresponding 

13C CP MAS NMR spectrum at 383 K (Figure 4.21) also provides signal integrations 

reflecting this observation. In contrast, the 13C CP MAS NMR spectrum of EtP5- up 

to 383 K remains unchanged upon heating (Figure 4.15) and no polymorphic 

transition is therefore observed. 

 

Figure 4.20. Differential scanning calorimetry thermogram of EtP6- showing a phase 
transition from triclinic P1̅ to a metastable, triclinic P1̅ state with higher symmetry at 339 K 

(dashed line).1  
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Figure 4.21. Experimental 13C CP MAS NMR spectrum of EtP6 (full line) obtained at 383 K and 
9.4 T with the total fit and spectrum deconvolutions shown with dotted and dashed lines, 
respectively Integration values for each carbon subgroup are given. Each panel shows 
chemically distinct carbons environments of EtP6. Spectral assignments are given in the 
figure (see Figure 4.1). Integrations match with half the number of non-equivalent carbon 

atoms in the asymmetric unit cell of EtP6- 
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No changes in the 13C CP MAS NMR spectra upon the heating of pX@EtP6 or 

oX@EtP6 to 323 - 330 K occurred (Figures 4.17 and 4.19). This is consistent with 

previous DSC and thermogravimetric analysis (TGA) work that show that the 

adsorbed xylenes are only lost from the pores at temperatures exceeding 415 K for 

pX@EtP6 and 433 K for oX@EtP61 (these temperatures have not been accessed in 

this NMR work). The 13C CP MAS NMR spectrum of mX@EtP6 at 323 K (Figure 4.18), 

however, shows the disappearance of the peaks assigned to the adsorbed xylene and 

accounts for the loss of the meta-xylene from the pores. It is likely that the meta-

xylene remains in the MAS rotor as a liquid phase that would not be detectable under 

the CP conditions used. Upon cooling this sample back to room temperature, the 13C 

CP MAS NMR spectrum (data not shown) indicates that the material has not returned 

back to EtP6- as this process only occurs at temperatures higher than 433 K.1 We 

ascribe this difference of behaviours between mX@EtP6, and pX@EtP6 and 

oX@EtP6 to the smaller cavity of the former preventing the meta-xylene guest 

(Figure 4.1) to be fully accommodated in the pores and facilitating this removal upon 

heating.  
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4.5.2. Temperature dependent motional averaged site-selectivity in guest-

free pillar[n]arenes  

Heteronuclear dipolar couplings are dependent on distance and motion, and the 

magnitude of this dipole-dipole coupling is given by the following expression: 

dij=-
μ0

4π
 
ħγiγj

rij
3

 (4.2) 

where dij is the dipolar coupling constant for the nuclei i and j in rad s-1, µ0 is the 

vacuum permittivity, ħ is the reduced Planck constant, γi and yj are the respective 

gyromagnetic ratios for nuclei i and j and rij is the distance between the i and j nuclei. 

Dipolar couplings are often highly temperature dependent, enabling the 

conformational dynamics and flexibility to be assessed over a wide temperature 

range. Hence, dipolar couplings are a useful tool to probe host-guest interactions and 

dynamics.65 

Motional averaged dipolar couplings <dCH> can be obtained by two-dimensional (2D) 

Proton Detected Local Field (PDLF) 41,42,66 experiments that correlate the 13C isotropic 

chemical shifts with their corresponding 13C 1H dipolar spectra, providing site-

selective heteronuclear dipolar coupling constants. These experiments employ R-

type recoupling blocks67 to reintroduce the heteronuclear dipolar couplings averaged 

out by MAS whilst also suppressing the 1H 1H homonuclear dipolar couplings and 13C 

CSA (see Materials and Methods section 4.4 for further details). We have employed 

this approach to observe the temperature dependent dynamics of guest-free and 

xylene-adsorbed pillar[n]arenes.  

Recoupling sequences to reintroduce heteronuclear dipolar coupling dCH such as the 

R symmetry class43,46,67,68used in this work results in an effective dipolar coupling 

constant dCH
m  according to: 

dCH
m =κRdCH (4.3) 
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where κR is the scaling factor of the recoupling sequences. Whilst this can often be 

determined numerically,67 this is beyond the scope of this work for the 𝑤R182
5 block 

used and we have instead used a robust experimental method to determine R from 

a 𝑤R182
5 PDLF experiment on model D-alanine as a reference. The corresponding 13C 

CP NMR, 2D PDLF and site specific 13C 1H dipolar spectra are shown in Figure 4.22 

from which dCH
  could be determined from the outer singularities (see Materials and 

Methods section) of the C carbon (dCH
  = -7.55 kHz, Table 4.6). Comparison with the 

rigid dCH  value (-23.14 kHz) obtained from equation 4.3 and the −carbon proton 

bond length (1.093 Å) determined from neutron diffraction69 affords:  

κR=
dCH

  

dCH

=
-7550 

-23140
=0.326 (4.4) 

 

 

Figure 4.22. (a) 13C CP MAS spectrum and chemical structure, (b) PDLF spectrum and (c) site-
specific 13C 1H dipolar spectra of D-alanine. Spectral assignments are given in the figure. Data 
obtained at 298 K and 9.4 T. dCH

  is measured using the outer singularities of the dipolar 
coupling spectra. Vertical light grey lines in the dipolar coupling spectra indicate the static limit 
dipolar coupling constants dCH. 
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Figure 4.23 presents the room temperature 2D PDLF spectrum of EtP6- that, as 

expected, shows dipolar coupling for all protonated carbons. The corresponding 13C 

1H dipolar spectra can be extracted at each 13C shifts (Figure 4.23(c)) and the motional 

averaged dipolar coupling <dCH> measured from their outer singularities revealing 

significant differences in <dCH> between each carbon subgroup. For example, smaller 

dipolar coupling constants <dCH> of -7.2 ± 0.5 and -18.1 ± 0.7 kHz are obtained for the 

CH3 and OCH2 carbons of the ethoxy group, respectively, while larger values of -22.4 

± 0.8 and -23.9 ± 0.8 kHz are extracted for the CH2 and CH carbons of the 

pillar[6]arene backbone ring (Tables 4.7 and 4.1). Note that the variation of <dCH> 

values obtained from each carbon resonance for a particular carbon subgroup (Figure 

4.24) is within the estimated error so we have chosen to give an averaged value for 

<dCH>. Whilst no dipolar coupling splitting is apparent for the quaternary OCIV 

carbons, partially resolved small couplings of -2.9 ± 0.3 kHz are obtained for the 

CH2CIV carbons. This is likely due long range through space coupling of these carbons 

to the nearby methylene CH2 group of the ring that is absent for OCIV which is more 

isolated from any protons. Similar long range dipolar couplings can also be observed 

around dipolar frequencies of -4.0 ± 0.3 and -6.1 ± 0.5 kHz in the dipolar coupling 

spectra of the CH3 and CH2 environments, respectively, which arise from spatial 

proximity with protons on the nearby carbons. 

Table 4.6. 13C NMR spectrum assignments, 13C isotropic chemical shifts and the motional 
averaged dipolar coupling obtained from the 2D PDLF spectrum of D-alanine shown in Figure 
4.22 above. 

Assignment 13C iso /ppm dCH
  /kHz dCH /kHz 

CH3 20.7 -2.45 -7.50 

HCNH3 51.2 -7.55 -23.10 

CIV 178.1 -0.65 -1.99 
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Figure 4.23. (a) 13C CP MAS spectrum, (b) PDLF spectrum and (c) selected site-specific 13C 1H 

dipolar spectra for guest-free EtP6-. Spectral assignments are given in the figure and 
correspond to those previously published.1 The data presented above was obtained at 298 K 
and 9.4 T. <dCH> is measured using the outer singularities of the dipolar coupling spectra as 
highlighted in the experimental section. Vertical light grey lines indicate the static limit 
dipolar coupling constants dCH calculated from equation 4.2 and the computed CH distances 
obtained at the DFT level on the various conformers identified by CSP.1 OCH2 distances are 
shorter than CH yielding larger dCH. Asterisks (*) denote spinning sidebands. 
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Figure 4.24. Comparison of the 13C 1H dipolar spectra for each resolved CH3 resonance in EtP6-

.1 Data were obtained at 298 K and a magnetic field of 9.4 T. The corresponding 13C isotropic 
chemical shift is given next to each dipolar spectrum. Dashed lines indicate the average <dCH> 
= -7.2 kHz obtained from this data which also illustrate very small change between each 

dipolar spectrum (<dCH> = 1.0 kHz); hence, in this dataset <dCH> = -7.1 ± 0.5 kHz. Vertical 
light grey lines in the spectra indicate the static limit dipolar coupling constants dCH. 
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Table 4.7. 13C NMR assignments, 13C isotropic chemical shifts  iso from spectral 
deconvolution, calculated static dipolar coupling constants dCH, experimentally found 
motional averaged dipolar coupling constants <dCH> and order parameters <SCH> for 

protonated carbons in  EtP5-, EtP6-, pX@EtP6, mX@EtP6 and oX@EtP6 at 298 and 243 K.  
Red daggers (†) denote signals from xylenes. 

Assignment 13C  iso /ppma  dCH /kHzb 298 K, 9.4 T 243 K, 14.1 T 

<dCH> /kHzc <SCH>d <dCH> /kHzc <SCH>d 

EtP5- 

CH3 14-17 -23.1 -7.2 ± 0.5 0.31 ± 0.02 -7.5 ± 0.5 0.32 ± 0.02 

CH2 28-38 -23.0 -23.3 ± 0.8 1.01 ± 0.04 -22.8 ± 0.8 0.98 ± 0.04 

OCH2 61-68 -22.8 -18.4 ± 0.7 0.81 ± 0.03 -19.8 ± 0.7 0.87 ± 0.03 

CH 111-124 -23.8 -23.8 ± 0.8 1.00 ± 0.03 -23.4 ± 0.8 0.98 ± 0.04 

EtP6- 

CH3 14-18 -23.1 -7.2 ± 0.5 0.31 ± 0.02 -7.2 ± 0.5 0.31 ± 0.02 

CH2 27-35 -23.0 -22.4 ± 0.8 0.97 ± 0.04 -21.7 ± 0.8 0.94 ± 0.04 

OCH2 62-67 -22.8 -18.1 ± 0.7 0.79 ± 0.03 -18.3 ± 0.7 0.80 ± 0.03 

CH 111-118 -23.8 -23.9 ± 0.8 1.00 ± 0.04 -23.4 ± 0.8 0.98 ± 0.03 

pX@EtP6 

CH3 13-16 -23.1 -6.9 ± 0.5 0.30 ± 0.02 -7.3 ± 0.5 0.32 ± 0.03 

CH3(†) 18-21 -23.7 -7.0 ± 0.5 0.30 ± 0.03 -7.1 ± 0.5 0.30 ± 0.02 

CH2 27-38 -23.1 -21.6 ± 0.8 0.94 ± 0.04 -21.3 ± 0.8 0.92 ± 0.04 

OCH2 61-65 -22.9 -18.4 ± 0.7 0.80 ± 0.03 -19.2 ± 0.7 0.84 ± 0.03 

CH 110-118 -23.8 -22.4 ± 0.8 0.94 ± 0.03 -22.5 ± 0.8 0.95 ± 0.04 

CH(†) 129-130 -23.7 -21.6 ± 0.8 0.91 ± 0.04 -22.6 ± 0.8 0.95 ± 0.04 

mX@EtP6 

CH3 14-17 -23.1 -6.9 ± 0.5 0.30 ± 0.02 -7.0 ± 0.5 0.30 ± 0.02 

CH3(†) 21-22 -24.4 -6.2 ± 0.5 0.25 ± 0.02 -6.7 ± 0.5 0.27 ± 0.03 

CH2 31-34 -23.1 -22.2 ± 0.8 0.96 ± 0.04 -21.2 ± 0.8 0.92 ± 0.04 

OCH2 62-66 -22.8 -19.2 ± 0.7 0.84 ± 0.03 -20.0 ± 0.7 0.88 ± 0.03 

CH 111-117 -23.7 -23.5 ± 0.8 0.99 ± 0.03 -23.2 ± 0.8 0.98 ± 0.03 

CH(†) 126-131 -24.0 -22.5 ± 0.8 0.94 ± 0.04 -22.3 ± 0.8 0.93 ± 0.03 

oX@EtP6 

CH3 14-17 -23.1 -7.1 ± 0.5 0.31 ± 0.02 -7.0 ± 0.5 0.30 ± 0.02 

CH3(†)e  -23.7     

CH2 28-38 -23.2 -23.8 ± 0.8 1.03 ± 0.04 -22.2 ± 0.8 0.96 ± 0.04 

OCH2 62-66 -22.7 -18.3 ± 0.7 0.81 ± 0.03 -18.8 ± 0.7 0.83 ± 0.03 

CH 111-116 -23.9 -23.8 ± 0.8 1.00 ± 0.04 -22.8 ± 0.8 0.96 ± 0.04 

CH(†)e 128-129 -23.6 -17.0 ±0.7 0.72 ± 0.03 -18.8 ± 0.7 0.80 ± 0.03 
a Range of 13C isotropic chemical shifts obtained at room temperature are given for each 

carbon subgroup. Exact isotropic chemical shifts for all individual carbons are provided in 

Tables 4.1-4.5. b Static dipolar coupling constants were calculated as described in the 

Materials and Methods section. c Only the short range <dCH> constants are given (see text for 

details). Errors are estimated from the uncertainty in the determination of the position of the 

outer singularities of the 13C 1H dipolar coupling spectra. d Estimated errors are calculated 

from the errors in <dCH>. e Overlapping resonances between the guest and the host in the 13C 

CP MAS NMR spectrum of oX@EtP6 prevents spectral assignment of the CH3 and only allow 

tentative assignment of the CH2CIV carbons. 
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Motion can be quantified by a site-specific order parameter <SCH> (Table 4.7 and 

Figure 4.25) that compares the motional averaged dipolar coupling constants <dCH> 

with the static limit dipolar coupling constants dCH in the absence of motion 

(determined as indicated in the Materials and Methods section 4.4, Table 4.7) and 

ranges from 0 for isotropic motion to 1 for a rigid system: 

<SCH≥
<dCH> 

dCH
 (4.5) 

The order parameters <SCH> obtained for each carbon subgroup in EtP6- are found 

to be 0.31 ± 0.02 for CH3, 0.97 ± 0.04 for CH2, 0.79 ± 0.03 for OCH2 and 1.00 ± 0.04 for 

CH (Table 4.7) at room temperature. There is therefore no (or limited) motion for the 

CH2 and CH carbons of pillar[6]arene and is to be expected for these carbons which 

are situated in the arene core of the pillar[n]arene ring. However, both CH3 and OCH2 

carbons in the ethoxy group show motional averaging caused by dynamics which is 

ascribed to rotational and librational motions of these carbons. While this effect is 

fairly small for the OCH2 carbon (<SCH> = 0.79), motion is particularly pronounced for 

the CH3 group which <dCH> is approximately one third of the dCH yielding <SCH> = 0.31, 

as rapid rotation of the methyl group is permitted further away from the arene core  
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To access the temperature dependency of <SCH>, site selective <dCH> were measured 

for EtP6- over an extended temperature range from 383 K down to 100 K and <SCH> 

reported as function of these temperatures (Figure 4.25(b)). The <SCH> values for CH3 

group remain largely constant at 0.31 ± 0.02 over this temperature range indicating 

that this group still possesses significant motion even at 100 K. This is consistent with 

literature report indicating that temperatures lower than 100 K are required to 

“freeze” the rapid 3-site hopping motion of CH3 in various biomolecules.70,71 This is in 

contrast to the <SCH> values of the OCH2 which increase significantly upon cooling 

from 0.79 ± 0.03 at 298 K to 0.95 ± 0.03 at 100 K, supporting reduction in motion and 

lower flexibility by the pillar[n]arene at lower temperatures.  

Similarly, variable temperature 2D PDLF NMR experiments were recorded on guest-

free EtP5- and averaged dipolar coupling <dCH> were extracted and order 

parameters <SCH> obtained (Table 4.7 and Figure 4.25(a)). While the room 

temperature <SCH> values for the CH3, CH2 and CH carbon subgroups are virtually 

identical to those determined for EtP6- (Table 4.7), a difference was observed for 

the OCH2 group upon cooling with <dCH> increasing from -18.3 ± 0.7 kHz in EtP6- to 

-19.8 ± 0.7 kHz in EtP5- as evidenced by larger splitting of the outer singularities in 

the 13C 1H dipolar spectra at 243 K (Figures 4.25(b)) and resulting larger <SCH> values 

for this OCH2 site in EtP5- (0.87 ± 0.03) than in EtP6- (0.80 ± 0.03). Similarly, at 

higher temperature (383 K), the 13C 1H dipolar coupling spectra of the OCH2 group 

yield larger <dCH> values (-16.6 ± 0.7 and -14.5 ± 0.6 kHz) and smaller <SCH> values 

(0.73 ± 0.03 vs. 0.64 ± 0.03) in EtP5- than in EtP6-, respectively. This indicates more 

restricted motion and increased hindrance which is likely due to the reduced void 

space of the smaller EtP5- assembly versus EtP6-.  
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Figure 4.25. (Left) Temperature dependency of the motional averaged CH dipolar coupling 
order parameters <SCH> and (right) selected 13C 1H dipolar coupling spectra of the OCH2 

signals at various temperatures for (a) guest-free EtP5- (stars), (b) guest-free EtP6- 
(circles) (c) pX@EtP6 (squares) (d) mX@EtP6 (diamonds) and (e) oX@EtP6 (triangles). The 
different carbon subgroups can be identified with the following colour coding for CH3 
(orange), CH2 (light blue), OCH2 (green) and CH (pink) (Figure 4.1). Data recorded at room 
temperature have been collected at both 9.4 and 14.1 T. Error bars in <SCH> (ΔSCH ) are 
consistently smaller than 0.04 and are obtained from estimated errors in the determination 
of <dCH> and small variations in the dipolar coupling values across one carbon subgroup 
(Figure 4.24); these errors are less than the symbol size. Data below 243 K were not 

recorded for EtP5-. The dotted line in (b) indicates a polymorphic transition in EtP6- at 
339 K (Figure 4.20). Dashed line in (d) represents the temperature at which meta-xylene is 
lost from mX@EtP6 as identified by the changing NMR spectrum (Figure 4.18). Para- and 
ortho-xylenes are lost from pX@EtP6 and oX@EtP6 at 415 and 433 K,1 respectively, outside 
the temperature range used here. Vertical light grey lines in the dipolar coupling spectra 
indicate the static limit dipolar coupling constants dCH. 
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4.5.3. Temperature dependent motional averaged site-selectivity in xylene-

loaded pillar[6]arenes  

Variable temperature 2D PDLF experiments were also acquired for the three guest-

adsorbed xylene adducts in EtP6 (Figure 4.25(c-e)) and the trends are largely similar 

to data obtained for EtP6- with temperature independent <SCH> around 1 for the 

CH2 and CH carbons in the pillar[n]arene core, around 0.3 for the CH3 and increasing 

towards 1 for the OCH2 group as temperatures are lowered into the static regime. 

Although the <dCH> and hence the <SCH> room temperature values for the CH3, CH2 

and CH carbon subgroups are within error of each other for EtP6- and the xylene-

adsorbed adducts, there is a significant difference observed in the <SCH>  values 

obtained for the OCH2 group in mX@EtP6 vs. EtP6-/oX@EtP6/pX@EtP6. More 

specifically, in this OCH2 group, at room temperature, there is a slight increase of the 

site-specific order parameters <SCH> from 0.79 ± 0.03, 0.81 ± 0.03 and 0.80 ± 0.03 in 

EtP6-, oX@EtP6 and pX@EtP6, respectively, to 0.84 ± 0.03 in mX@EtP6 (Table 4.7). 

This small difference is enhanced upon cooling to 243 K from 0.80 ± 0.03, 0.83 ± 0.03 

and 0.84 ± 0.03 in EtP6-, oX@EtP6 and pX@EtP6, respectively, to 0.88 ± 0.03 in 

mX@EtP6. The data therefore seems to suggest marginally slower dynamics of the 

OCH2 group in mX@EtP6 than in EtP6-, oX@EtP6 and pX@EtP6. In contrast to 

oX@EtP6 and pX@EtP6, the xylene in mX@EtP6 lies on top of the EtP6 host rather 

than within the void space, as illustrated in Figure 4.1 from experimental XRD data 

and computational CSP methods, therefore the interaction of the meta-xylene with 

the protruding ethoxy groups is likely to cause their slower dynamics, at least for the 

OCH2 subgroup. These experiments therefore highlight small change in structure 

flexibility between guest-free and guest-adsorbed EtP6 assemblies. 

All CH3s in xylenes and ethoxy groups in all samples and at all temperatures studied 

here have <SCH> around 0.3 as is commonly observed for methyl groups above around 

100 K due to rapid CH3 motion as discussed above,72 this highlights that the 

adsorption into the EtP6 host does not induce any other motion in these groups. The 

room temperature PDLF data on the three xylene adducts revealed observable 

dipolar coupling for the methyl groups and CHs of the xylenes as expected (Figures 

4.26 – 4.28), which combined with 13C-edited CP MAS spectra (Figures 4.9, 4.11 and 
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4.13), were used to aid spectral assignments, in particular by differentiating these 

CHs from the CH2CIV resonances of EtP6 that appear in the same spectral region 

(Figures 4.8 and 4.26 – 4.28). At room temperature, whilst the corresponding <dCH> 

for these CHs in pX@EtP6 and mX@EtP6 indicate limited motion with <SCH> values 

found in the 0.91 - 0.94 ± 0.04 range (Table 4.7), the CHs in oX@EtP6 show 

considerably more motion with smaller <SCH> values of 0.72 ± 0.04 at 298 K. This 

indicates that the ortho-xylene has a significant amount of spatial freedom to allow 

for mobility and that the CH and CH3 motion of the xylene is not completely limited 

upon loading into the EtP6 cavity at room temperature. 

 

Figure 4.26. (a) 13C CP MAS spectrum, (b) PDLF spectrum and (c) selected site-specific 13C 1H 
dipolar spectra for pX@EtP6. Spectral assignments are given in the figure and correspond to 

those previously published.1 The data presented above was obtained at 298 K and 9.4 T. 
<dCH> is measured using the outer singularities of the dipolar coupling spectra as highlighted 
in the experimental section. Vertical light grey lines indicate the static limit dipolar coupling 
constants dCH calculated from equation 4.2 and the computed CH distances obtained at the 
DFT level on the various conformers identified by CSP. Red daggers (†) and asterisks (*) 
denote signals arising from the para-xylene guest and spinning sidebands, respectively. 
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Figure 4.27. (a) 13C CP MAS spectrum, (b) PDLF spectrum and (c) selected site-specific 13C 1H 
dipolar spectra for mX@EtP6. Spectral assignments are given in the figure and correspond to 

those previously published.1 The data presented above was obtained at 298 K and 9.4 T. 
<dCH> is measured using the outer singularities of the dipolar coupling spectra as highlighted 
in the experimental section. Vertical light grey lines indicate the static limit dipolar coupling 
constants dCH calculated from equation 4.2 and the computed CH distances obtained at the 
DFT level on the various conformers identified by CSP.  Red daggers (†) and asterisks (*) 
denote signals arising from the meta-xylene guest and spinning sidebands, respectively. 
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Figure 4.28. (a) 13C CP MAS spectrum, (b) PDLF spectrum and (c) selected site-specific 13C 1H 
dipolar spectra for oX@EtP6. Spectral assignments are given in the figure and correspond to 

those previously published.1 The data presented above was obtained at 298 K and 9.4 T. 
<dCH> is measured using the outer singularities of the dipolar coupling spectra as highlighted 
in the experimental section. Vertical light grey lines indicate the static limit dipolar coupling 
constants dCH calculated from equation 4.2 and the computed CH distances obtained at the 
DFT level on the various conformers identified by CSP. Broad signals tentatively assigned to 
some unknown amorphous phase(s) are marked with dashes (#). Red daggers (†) and 
asterisks (*) denote signals arising from the ortho-xylene guest and spinning sidebands, 
respectively. 
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4.5.4. Host-guest interaction probed by dipolar coupling in xylene-loaded 

pillar[6]arenes 

No large dipolar coupling is observed at room temperature for the quaternary 

carbons of either the xylenes or the pillar[6]arene host in pX@EtP6, mX@EtP6 and 

oX@EtP6 (Figures 4.23 and 4.26-4.28) as expected, however, surprisingly, upon 

cooling pX@EtP6 to 100 K, strong dipolar couplings of -23.4 ± 0.8 kHz were observed 

for the CH2CIV carbon (Figures 4.29 and 4.30(c)). These couplings in pX@EtP6 do not 

originate from either of the CHs in the xylene which appear at 129.4 and 129.8 ppm 

and appear in the CH2CIV chemical shift region of 125-131 ppm or a long range 

interaction in the EtP6 architecture as no coupling is observed in the CH2CIV of guest-

free EtP6- (Figure 4.23 at room temperature and Figure 4.31 at 100 K). Therefore, 

this coupling was ascribed to intermolecular heteronuclear dipolar coupling between 

the quaternary CH2CIV carbon of the EtP6 host and the protons of para-xylene 

identifying EtP6-para-xylene spatial interaction and strong host-guest interaction. 

These results are in sharp contrast to the 100 K PDLF data for mX@EtP6 and oX@EtP6 

adducts (Figures 4.32 and 4.33 respectively) for which no coupling is observed for 

CH2CIVs suggesting an absence of host-guest interaction (or that the corresponding 

intermolecular coupling is likely still averaged out at 100 K). 

 

Figure 4.29. Comparison of selected CH2CIV 13C 1H dipolar spectra for (a) EtP6- and (b) 
pX@EtP6 obtained at 298 K and 9.4 T, and at 100 K and 14.1 T. The polarisation transfer to 
13C during the PRESTO block of 2D PDLF sequence was optimised for maximum signal on the 
protonated resonances (see Materials and Methods section 4.4) which accounts for the 
signal to noise of these quaternary carbon resonances. 
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Figure 4.30. (a) 13C CP MAS spectrum at 100 K, (b) PDLF spectrum at 100 K and (c) comparison 
of selected site-specific 13C 1H dipolar spectra for the host CH2CIV quaternary carbon in 
pX@EtP6 obtained at 298 K and 100 K. Data presented above were obtained at 14.1 T, (d) 
side view of pX@EtP6. Spectral assignments are given in the figure. Signals arising from the 
adsorbed para-xylene guest are assigned with red daggers (†).  Vertical light grey lines in the 
spectra indicate the static limit dipolar coupling constants dCH. Asterisks (*) denote spinning 
sidebands. 

 

Figure 4.31. (a) 13C CP MAS spectrum, (b) PDLF spectrum and (c) selected site-specific 13C 1H 

dipolar spectra for guest-free EtP6-. Spectral assignments are given in the figure and 

correspond to those previously published.1 The data presented above was obtained at 100 K 
and 9.4 T. <dCH> is measured using the outer singularities of the dipolar coupling spectra as 
highlighted in the experimental section. Vertical light grey lines indicate the static limit 
dipolar coupling constants dCH calculated from equation 4.2 and the computed CH distances 
obtained at the DFT level on the various conformers identified by CSP. Asterisks (*) denote 
spinning sidebands. 
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Figure 4.32. (a) 13C CP MAS spectrum at 100 K, (b) PDLF spectrum at 100 K and (c) comparison 
of selected site-specific 13C 1H dipolar spectra for the host CH2CIV quaternary carbon in 
mX@EtP6 obtained at 298 and 100 K. Data presented above were obtained at 14.1 T. Spectral 
assignments are given in the figure. Signals arising from the adsorbed meta-xylene guest are 
assigned with red daggers (†). No 2D PDLF signal is observed for the quaternary carbon of 
the meta-xylene due to poor signal to noise. Vertical light grey lines in the spectra indicate 
the static limit dipolar coupling constants dCH. Asterisks (*) denote spinning sidebands.  

 

 

Figure 4.33. (a) 13C CP MAS spectrum at 100 K, (b) PDLF spectrum at 100 K and (c) comparison 
of selected site-specific 13C 1H dipolar spectra for the host CH2CIV s quaternary carbon in 
oX@EtP6. Data presented above were obtained at 14.1 T. Spectral assignments are given in 
the figure. Signals arising from the adsorbed ortho-xylene guest are assigned with red 
daggers (†), except the corresponding methyl resonance which is not directly attributable 
(see text). Broad signals tentatively assigned to some unknown amorphous phase(s) are 
marked with dashes (#). Vertical light grey lines in the spectra indicate the static limit dipolar 
coupling constants dCH. Asterisks (*) denote spinning sidebands. 
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These results strongly support the structures obtained from single crystal X-ray 

studies1 illustrated in Figure 4.1. In particular, in pX@EtP6, para-xylene is located in 

the centre of the EtP6 cavity which is stabilised by strong π−π stacking with two 

aromatic rings from EtP6 (Figure 4.1(c)), yielding strong heteronuclear dipolar 

coupling <dCH> between the CH2CIV carbons of the pillar[6]arene backbone with the 

para-xylene protons. It is also likely that this coupling arises preferentially from the 

aromatic protons of para-xylene rather than the methyl protons as their <dCH> are 

small and averaged out to one third by methyl group rotation around the carbon-

carbon single bond. In oX@EtP6, similar rotational dynamics prevent coupling of the 

methyl protons of ortho-xylene located inside the cavity to the EtP6 backbone while 

the aromatic protons are positioned outside the cavity (Figure 4.1(e)) from which a 

small static dipolar coupling would only be expected (0.44 kHz based on the smallest 

4.1 Å distance with the EtP6 CH2CIV carbon). The small EtP6 cavity in mX@EtP6 is too 

small to host meta-xylene (Figure 4.1(d)) resulting in m-xylene to be excluded from 

the host and the absence of dipolar coupling interaction with EtP6. 

 

  



183 
 

4.5.5. Temperature dependent relaxation studies of guest-free and loaded 

pillar[n]arenes  

T1 relaxation is a measure of the time for the spin population to recover to 

equilibrium after a perturbation and is mediated by fluctuations of the local magnetic 

fields, as quantified by the correlation times of the motion c with corresponding 

frequencies c
-1 on the order of the Larmor frequency, i.e., MHz. The 1H and 13C spin 

lattice relaxation rates T1
-1s have been obtained versus temperatures (Figures 4.34 -

4.38) in the 383 - 243 K and 298 - 100 K temperature range at 9.4 T (0(1H) = 400 MHz, 

0(13C) = 100 MHz) and 14.1 T (0(1H) = 600 MHz, 0(13C) = 150 MHz), respectively, for 

EtP6-, all xylene-adsorbed EtP6 adducts and EtP5- (data only available at 9.4 T for 

this phase).  
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Figure 4.34. (a) 1H and (b) 13C spin−lattice relaxation rates (T1
-1) Arrhenius plots. Data were 

obtained at 9.4 T for guest-free EtP5- (stars), guest-free EtP6- (circles), pX@EtP6 
(squares), mX@EtP6 (diamonds) and oX@EtP6 (triangles). The data were fitted to a stretch 

exponential function in the form of 1-exp[-(/T1)] and the errors associated are given to a 

95% confidence level and are smaller than the symbol sizes.  
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Figure 4.35. (a) 1H and (b) 13C spin−lattice relaxation rates (T1
-1) Arrhenius plots. Data were 

obtained at 14.1 T for EtP6- (circles), pX@EtP6 (squares), mX@EtP6 (diamonds) and 
oX@EtP6 (triangles). The data were fitted to a stretch exponential function in the form of 1-

exp[-(/T1)] and the errors associated are given to a 95% confidence level and are smaller 
than the symbol sizes.  
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Figure 4.36. (Left) 1H spin−lattice relaxation rates T1
-1 against correlation times c and (right) 

corresponding 1H correlation frequencies c
-1 Arrhenius plots. Data shown in black and blue 

were obtained at 9.4 T and 14.1 T, respectively, for (a) guest-free EtP5- (stars), (b) guest-

free EtP6- (circles), (c) pX@EtP6 (squares), (d) mX@EtP6 (diamonds) and (e) oX@EtP6 
(triangles). The associated errors are smaller than the symbol sizes. The solid (-) lines in the 
left panels are those obtained from a dipolar coupling relaxation mechanism (equation 4.7) 
at both fields using experimentally determined local field fluctuations terms of 2 x109, 5 x109, 

3 x109 and 2 x109 s-2 for EtP6-, pX@EtP6, mX@EtP6 and oX@EtP6, respectively (A calculated 

value of 5 x109 s-2 from the 1H-1H distances computed by CSP was used for EtP5- as no T1 
minimum was found in the temperature range studied) and in the right panels are fit to the 
Arrhenius equation.  



187 
 

Figure 4.37. (Left) 13C spin−lattice relaxation rates T1
-1 against correlation times c and (right) 

corresponding 13C correlation frequencies c
-1 Arrhenius plots. Data shown in black and blue 

outlines were obtained at 9.4 T and 14.1 T, respectively, for (a) guest-free EtP5- (stars), (b) 

guest-free EtP6- (circles), (c) pX@EtP6 (squares), (d) mX@EtP6 (diamonds) and (e) 
oX@EtP6 (triangles). Selected carbon subgroups have been plotted here with the following 
colour coding for CH3 (orange), OCH2 (green) and OCIV (grey) (Figure 4.1) whilst plot giving 
the three other carbons are given in Figure 4.38. The associated errors are smaller than the 
symbol sizes. In the left panels, the solid (-) lines are those obtained from a dipolar coupling 
relaxation mechanism (equation 4.10) for CH3 (orange) and OCH2 (green) and the dotted (··) 
lines from a CSA relaxation mechanism (equation 4.11) for OCIV (grey) at both fields, using 

the experimentally determined local magnetic fields terms (values from EtP6- were used 

for EtP5- as no T1 minimum was found in the temperature range studied). A T1 minima was 
found for OCIV in oX@EtP6 in the temperature range studied at 9.4 T, therefore this data was 
used to extract correlation times and is plotted for this series. In the right panels, the lines 
are fit to the experimental data using the Arrhenius equation.  
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Figure 4.38. (Left) 13C spin−lattice relaxation rates T1
-1 against correlation times c and (right) 

corresponding 13C correlation frequencies c
-1 Arrhenius plots. Data shown in black and blue 

outlines were obtained at 9.4 T and 14.1 T, respectively, for (a) guest-free EtP5- (stars), (b) 

guest-free EtP6- (circles), (c) pX@EtP6 (squares), (d) mX@EtP6 (diamonds) and (e) 
oX@EtP6 (triangles). Selected carbon subgroups have been plotted here with the following 
colour coding for CH2 (light blue), CH (pink) and CH2CIV (yellow) (Figure 4.1) whilst plot giving 
the three other carbons are given in Figure 4.37. The associated errors are smaller than the 
symbol sizes. In the left panels, the dashed (-·) lines are those obtained from dipolar coupling 
and CSA relaxation mechanisms (equation 4.9) for CH (pink), the solid lines (-) from a dipolar 
coupling relaxation mechanism (equation 4.10) for CH2 (light blue) and the dotted(··) lines 
from a CSA relaxation mechanism (equation 4.11) for CH2CIV (yellow) at both fields, using the 

experimentally determined local magnetic fields terms (values from EtP6- were used for 

EtP5-  as no T1 minimum was found in the temperature range studied). A T1 minima was 
found for OCIV in oX@EtP6 in the temperature range studied at 9.4 T, this data was used to 
extract correlation times and is plotted for this series. In the right panels, the lines are fit to 
the experimental data using the Arrhenius equation. 
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The corresponding 1H one pulse spectra were obtained at 9.4 T for EtP5-, EtP6-, 

pX@EtP6, mX@EtP6 and oX@EtP6 as shown in panel (a) in Figures 4.39-4.43 

respectively. Limited resolution allows for identification of very chemically distinct 

sites. Upon increasing the field to 20 T and increasing the MAS rate to 60 kHz, 

resolution of the 1H one pulse spectra increases, to allow further sites to be identified 

(panel (c) in Figures 4.39-4.43) however, due to the significant broadening due to 1H 

1H dipolar coupling within 1H spectra within the solid state, only limited information 

can be obtained. The 1H one pulse spectra obtained upon variable temperature at 

14.1 T are shown in panel (b) of Figures 4.39-4.43. The T1 values extracted from the 

corresponding variable temperature saturation recovery experiments obtained via 

spectral integration of the entire spectra are shown in Figure 4.35(a) and used to 

extract corresponding correlation times c discussed throughout this manuscript. 
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Figure 4.39. 1H one pulse MAS NMR spectra of EtP5- obtained (a) under MAS at r = 12.5 

kHz and 9.4 T, (b) under variable temperature conditions at r = 12.5 kHz and 9.4 T and (c) at 

r = 60 kHz at 20 T. Spectral assignments are given in the figure.  
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Figure 4.40. 1H one pulse NMR spectra of EtP6- (a) obtained at r = 12.5 kHz and 9.4 T (b) 

obtained under variable temperature conditions at r = 12.5 kHz and 9.4 T and (c) obtained 

at r = 60 kHz at 20 T. Spectral assignments are given in the figure. 
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Figure 4.41. 1H one pulse NMR spectra of pX@EtP6 (a) obtained at r = 12.5 kHz and 9.4 T (b) 

obtained under variable temperature conditions at r = 12.5 kHz and 9.4 T and (c) obtained 

at r = 60 kHz at 20 T. Spectral assignments are given in the figure. 
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Figure 4.42. 1H one pulse NMR spectra of mX@EtP6 (a) obtained at r = 12.5 kHz and 9.4 T 

(b) obtained under variable temperature conditions at r = 12.5 kHz and 9.4 T and (c) 

obtained at r = 60 kHz at 20 T. Spectral assignments are given in the figure. 
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Figure 4.43. 1H one pulse NMR spectra of oX@EtP6 (a) obtained at r = 12.5 kHz and 9.4 T (b) 

obtained under variable temperature conditions at r = 12.5 kHz and 9.4 T and (c) obtained 

at r = 60 kHz at 20 T. Spectral assignments are given in the figure. 
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Additionally, the 1H T1’s are fairly long (3 s for EtP6- at 298 K and 9.4 T) and 1H 1H 

spin diffusion results in an equilibration of the T1 values for all resonances so that it 

is likely that the 1H T1s detect the same motional processes. At 14.1 T and for all 

materials, the 1H T1
-1 values increase with increasing temperatures, reaching a 

maximum around 160 K for pX@EtP6, 170 K for mX@EtP6 and 190 K for both EtP6-

 and oX@EtP6, and then decreasing above these temperatures (Figure 4.35(b)). At 

these T1
-1 maxima, the motion is near the 1H Larmor frequency 0,H (in rad.s-1) with 

the following expression being satisfied: 73 

ω0,Hτc≈0.62 (4.6) 

from which a c value of 2.5 x10-10 s at the aforementioned temperatures for the 

named materials could be obtained for 1H at 14.1 T. The 1H T1
-1s maxima are not 

observed in the 383 - 243 K temperature range accessible on the MAS probe at 9.4 T 

which is in agreement with the largely magnetic field independence of dipolar 

coupling driven T1s values as illustrated in Figure 4.34 - 4.36, and equation 4.7 (see 

below). 

lmportantly, there is a marked dependency of the T1
-1 maxima temperature with the 

materials under consideration which decrease from ~190 K for EtP6- and oX@EtP6 

to ~170 K for mX@EtP6 and ~160 K for pX@EtP6. It is well known that the position 

of the T1
-1 maximum depends on c with lower temperatures required to satisfy 

equation 4.6 for larger molecular size resulting in slower tumbling.73 The 

temperature dependency of the T1
-1 maximum therefore indicates decreasing 

tumbling rates for EtP6- and oX@EtP6 to mX@EtP6 and to pX@EtP6 that are 

associated with larger molecular assemblies. These suggest that ortho-xylene has 

little effect on the relaxation rates of the host due to its larger spatial freedom as 

observed above from xylene CH dipolar coupling experiments, whereas both meta-

xylene and para-xylene shift this maximum towards lower temperatures (170 K and 

160 K, respectively) suggesting that the filling of the pillar[6]arene void upon loading 

of meta-xylene and the adaptive adsorption of para-xylene results in an overall 

smaller conformation.  
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It is assumed that the 1H relaxation is driven by 1H-1H homonuclear dipole-dipole 

coupling and the longitudinal relaxation rates T1
-1 can be related to c with the 

following equation (in the approximation of isotropic motion):73,74 

1

T1
=

3

10
(

μ0

4π
)

2

γH
4 ħ2 (∑

1

ri
6

i

) [
τc

1+ω0,H
2 τc

2
+

4τc

1+4ω0,H
2 τc

2
] (4.7) 

by summing over all the effective 1H-1H internuclear distances ri. The local magnetic 

field fluctuation term of this expression, displayed prior to the square brackets, is 

proportional to the square of the dipole-dipole coupling constant (equation 1.9) 

while the terms in squared bracket are the spectral density functions. All other 

possible relaxation mechanisms for a spin 1/2 nucleus such as those driven by CSA, 

spin-rotation or scalar coupling are likely quite small for 1H to satisfy the frequencies 

for relaxation and have therefore been neglected. 

Combining equation 4.6 and 4.7 above at the temperatures of the 1H T1 minimum 

allows the determination of the local dipolar magnetic field fluctuation term to be 

determined. Experimental values of 2 x109 s-2 for EtP6- and oX@EtP6, 3 x109 s-2 for 

mX@EtP6 and 5 x109 s-2 for pX@EtP6 were obtained which compares extremely well 

with the value of 5 x109 s-2 calculated for all materials from the explicit expression of 

the local fields and using the shortest 1H-1H  distances in the known CSP data of these 

phases.1 No T1 minimum is observed for EtP5- in the temperature range studied 

preventing the local field term to be determined so this later calculated value was 

used.  

Figure 4.36 displays the corresponding 1H T1
-1 versus c logarithmic plots for all 

samples at 9.4 T (black data) and 14.1 T (blue data). The T1
-1 and c values extracted 

from this approach show no field dependence in the fast motion limit where c are 

much shorter than the Larmor frequency i.e. 0,Hc << 1 (left hand side of the T1
-1 

maxima) as expected from equation 4.7. The c’s extracted from this approach do not 

vary significantly between the materials and suggest the same similar motional 

process. The temperature dependence of the correlation frequencies c
-1 was 

subsequently modelled with the Arrhenius equation of the form: 
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τc
-1=τc,0

-1  exp (-
Ea

RT
) (4.8) 

with τc,0
−1, Ea and R the attempt frequency and activation energy of the thermally 

activated motional process, and the universal gas constant, respectively. Assuming a 

single activation energy, fit to c
-1 versus reciprocal temperatures (Figure 4.36) is 

satisfactory and the extracted Eas (Table 4.8) are small, suggesting similar facile 

motion of the pillar[n]arene assemblies. Upon adsorption of para-xylene and ortho-

xylene into EtP6-, the activation barriers very slightly increase by ca. 0.5-0.8 kJ mol-

1 while it decreases by 0.6 kJ mol-1 in the case of mX@EtP6 material. The assumed 

isotropic motion and associated errors with these values imply that the activation 

energies obtained should simply be taken as an indication of possible motional 

effects of xylenes into EtP6-. In the case of pX@EtP6 and oX@EtP6, it is postulated 

that their larger Eas vs. the one for EtP6- capture increase in the steric hindrance of 

the assemblies upon adsorption of para-xylene and ortho-xylene (Figures 4.1(c) and 

4.1(e)), resulting in overall larger conformation of these materials and therefore 

slower overall dynamics when xylenes occupy (pX@EtP6) or partially occupy 

(oX@EtP6) the pillar[6]arene void. In contrast, the smaller Ea obtained for mX@EtP6 

could be potentially due to folding of the pillar[6]arene void upon meta-xylene 

adsorption (Figure 4.1(d)) and associated with the position of the meta-xylene on top 

of the pillar[6]arene core.  
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Table 4.8. Comparison of the attempt frequencies c,0
-1 and activation energy barriers Ea of 

guest-free EtP5-, guest-free EtP6-, pX@EtP6, mX@EtP6 and oX@EtP6 obtained from the 

Arrhenius plots of the 1H correlation frequencies. 

Pillar[n]arenes c,0
-1 / s-1 Ea /kJ mol-1 a 

EtP5- b 9 x1011 7 

EtP6- 2 x1011 6 

pX@EtP6 6 x1011 6 

mX@EtP6 2 x1011 5 

oX@EtP6 4 x1011 6 

a Errors are in the order of 1 kJ mol-1. b Data in the 383 - 243 K temperature range only 

available. 

Site specific 13C T1 values for all carbons at 9.4 T between 383 and 243 K and at 14.1 

T between 298 K and 100 K were measured experimentally using the T1 Torchia 

approach (Figure 4.35(b)).40 Illustration of the data obtained at room temperature 

and 9.4 T are given in Tables 4.1-4.5 for EtP5-, EtP6-, pX@EtP6, mX@EtP6 and 

oX@EtP6, respectively, and we have chosen to give a single T1 value (with associated 

errors) for each carbon subgroup as these are within errors of each other. The 

following general trend is observed in all of the guest-free and xylene-adsorbed 

pillar[n]arenes: the CH3 group has the shortest relaxation times (approx. 2 s at room 

temperature) of all the carbon environments as it is well known that methyl groups 

are relaxation sinks due to their facile 3-site hopping motions in the temperature 

range studied here and efficient 13C 1H heteronuclear dipole-dipole coupling 

relaxation; the 13C T1 times of the OCH2 moieties are also relatively short (approx. 20 

- 40 s) and likely due to rotation around the O-C bond; these T1s are in contrast with 
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the ones of the CH2 (and CH) groups that are in the 102 s range and suggest a lack of 

the relaxation pathways which arise from limited motional freedom and rigidity of 

these groups which are located in the pillar[6]arene core; the OCIV and CH2CIV carbons 

yield the longest relaxation times as the dominant relaxation mechanism of CSA (see 

below) is less efficient than dipolar coupling to 1H for these non-protonated carbons. 

Note that upon loading of para and meta-xylene, the OCH2 group shows an increase 

in T1s at room temperature (Figure 4.35(b)), suggesting that guest addition lowers 

the flexibility of the pillar[n]arenes. oX@EtP6 shows a reduction in nearly all T1s in 

comparison to EtP6-, however this is likely attributed to the more amorphous 

nature of this material.  

The 13C T1
-1 rates for each carbon subgroup in EtP6- and its xylene-adsorbed adducts 

typically increase with increasing temperatures. Maxima are reached at 165 - 168 K 

(at 14.1 T) for the majority of resonances (excluding the CH2 in pX@EtP6, CH in 

oX@EtP6 and the CH3, CH2, CH and OCIV in mX@EtP6) followed by a decrease in 13C 

T1
-1 rates at higher temperatures (Figure 4.35(b)).  These maxima are not observed 

at 9.4 T due to limitation on the lowest temperatures accessible (243 K) for the 

majority of resonances (Figure 4.34(b)). At these T1
-1 maxima at 14.1 T, and using 

equation 4.6 for the 13C Larmor frequency 0,C (in rad.s-1), a c value of 6.5 x10-10 s for 

these materials at the temperatures of the T1
-1 maxima are obtained.  

Assuming negligible contribution from spin-rotation and scalar coupling relaxation 

mechanisms, the 13C longitudinal relaxation rates T1
-1 can generally be expressed as 

the sum of both 13C 1H heteronuclear dipolar coupling and 13C CSA relaxation 

mechanisms and be written as:73,74 

1

T1
= (

1

T1
)

dd

+ (
1

T1
)

CSA

  (4.9) 

with the dipolar coupling term given by:  
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(4.10) 

and the CSA term by:  

(
1

T1
)

CSA

=
2

15
ω0,C

2 (ΔδC)2 (1+
ηC

2

3
) [

τc

1+ω0,C
2 τc

2
]   (4.11) 

with n the number of protons attached to 13C, rCH the effective 13C-1H distance, C 

the (reduced) anisotropy (sensitivity of the chemical shift interaction to the 

orientation) and C the asymmetry parameter (deviation from axial symmetry) of the 

second rank 13C chemical shift tensor with principal components 11, 22 and 33. 

Using the Haeberlen convention,75 these are defined as:  

ΔδC=δ33-
δ11+δ22

2
 (4.12) 

and 

ηC=
δ22-δ11

δ33-δiso
 (4.13) 

with iso the isotropic chemical shift (trace of the tensor):  

δiso=
δ11+δ22+δ33

3
 (4.14) 

The local magnetic fields fluctuation term of the CSA expression is magnetic field 

dependent and proportional to the square of the Larmor frequency and anisotropy.  
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13C relaxation arises from 13C-1H heteronuclear dipole-dipole coupling for protonated 

carbons with small CSA, i.e. CH3, OCH2 and CH2, and from 13C CSA for quaternary 

aromatic carbons, i.e. OCIV and CH2CIV as generally assumed in the literature and 

specifically revealed by comparing the local dipolar and CSA magnetic field terms in 

equations 4.10 and 4.11. For example, in mX@EtP6 (similar observations were made 

on the other materials), the calculated local dipolar magnetic field term for CH3 (6 

x109 s-2 determined using the known carbon-proton CSP distances in this phase) is 

two orders of magnitude larger than the calculated CSA term (8 x107 s-2 at 14.1 T 

assuming a typical 13C C for this carbon of 25 ppm),76 while for OCIV, the CSA term 

largely dominates even at the lower magnetic field of 9.4 T (1 x109 s-2 at 14.1 T for a 

similar carbon environment with a 13C C of -142 ppm vs. 4 x107 s-2 using the shortest 

distance from CSP). However, for the remaining aromatic CH sites, 13C relaxation 

derives from cross terms between dipolar and CSA interactions77 as both local 

magnetic field contributions are comparable (2 x109 s-2 for dipolar vs. 3 x109 s-2 at 

14.1 T and 1 x109 s-2 at 9.4 T for CSA using an aromatic CH with a 13C C of -147 

ppm)78 and is further suggested by the slight magnetic field dependency of the T1s 

(e.g. in mX@EtP6 and at room temperature, T1 = 160 and 180 s at 9.4 and 14.1 T, 

respectively).  

Observation of the temperatures of the 13C T1 minimum, and assuming a 

predominant relaxation mechanism(s) as explained above, allows experimental 

access to the local magnetic field term by combining equation 4.6 (for 13C) and either 

4.10 (for heteronuclear dipolar coupling relaxation), 4.11 (for CSA relaxation), or 4.8 

(for both mechanisms). For example, in keeping with mX@EtP6, the experimentally 

determined local dipolar magnetic field term for CH3 (3 x109 s-2) compares well with 

the calculated value (6 x109 s-2). The experimentally determined terms were then 

used to obtain c at all temperatures and Figures 4.37 and 4.38(b) show the 

corresponding 13C T1
-1 versus c logarithmic plots for all materials for CH3, OCH2 and 

OCIV (Figure 4.37) and CH2, CH and CH2CIV (Figure 4.38(b)). 

Room temperature correlation times c extracted from this approach for all materials 

are the shortest for the CH3 and OCH2 groups supporting that indeed these sites are 

significantly mobile while c values for groups in the arene ring core of the 
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pillar[n]arene. The activation energies Ea of the motion were obtained from Arrhenius 

plots of the corresponding c
-1 frequencies versus reciprocal temperatures (Figures 

4.37 and 4.38) and are summarised in Table 4.9. The activation energy for CH3 in 

EtP6- (6 kJ mol-1) is significantly smaller than in EtP5- (11 kJ mol-1) and is likely due 

to the smaller ring size of the latter hindering molecular rotation. Upon addition of 

any guest of EtP6-, the Ea for CH3 increases to 8-10 kJ mol-1 which suggests enhanced 

restricted motion caused by their spatial proximities. No significant differences 

between the different guest-adsorbed materials were however observed. A similar 

trend is largely also noted for the OCH2 groups. Much smaller changes in the T1 times 

and hence c values are detected and would therefore indicate that, within the 

temperature range probed, all materials experience the same motional processes.  

Correlation times c were also extracted for the methyl groups of the xylene guests 

in both pX@EtP6 and mX@EtP6 as shown in Figure 4.44 (overlaps of these 

resonances with the host CH3 region in oX@EtP6, Figure 4.19, prevent these T1s to 

be measured) and the temperature dependency of their correlation frequencies was 

used to extract Ea values (Figure 4.44). In both materials, activation energies for the 

xylene CH3 groups are small (1 - 3 kJ mol-1, Table 4.9) and significantly less than the 

activation energies determined for the CH3 groups of the host (10 kJ mol-1 in 

pX@EtP6; 8 kJ mol-1 in mX@EtP6), indicating that the xylene CH3 groups still have 

significantly higher degree of motion than those groups in the backbone of the 

pillar[6]arene. Additionally, further comparison between the xylene CH3 in pX@EtP6 

and mX@EtP6 reveals higher Ea in the former and supports the xylene location inside 

the arene core.  



203 
 

 

Figure 4.44. (Left) 13C spin−lattice relaxation rates T1
-1 against correlation times c and (right) 

corresponding 13C correlation frequencies c
-1 Arrhenius plots. Data shown in black and blue 

outlines were obtained at 9.4 T and 14.1 T, respectively, for the xylene methyl groups in (a) 
pX@EtP6 (squares) and (b) mX@EtP6 (diamonds). The associated errors are smaller than the 
symbol sizes. In the left panels, the solid (-) lines are those obtained from a dipolar coupling 
relaxation mechanism (equation 4.10) for CH3 at both fields, using the calculated local 
magnetic fields term and distances available in literature from diffraction data.48 In the right 
panels, the lines are fit to the experimental data using the Arrhenius equation. 
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Table 4.9. Comparison of the attempt frequencies c,0
-1 and activation energy barriers 

Ea of guest-free EtP5-, guest-free EtP6-, pX@EtP6, mX@EtP6 and oX@EtP6 
obtained from the Arrhenius plots of the 13C correlation frequencies. Red daggers (†) 
denote signals from xylenes. 

Carbon subgroup c,0
-1 / s-1 Ea /kJ mol-1 a 

EtP5- b 
CH3 5 x1012 11 

29 

± 0.5 

0.31 ± 0.02 

-7.2 ± 0.5 

0.31 ± 0.02 

CH2 6 x1010 5 

-23.0 

2.03 x109 

 

0.97 ± 0.04 

-21.7 ± 0.8 

0.94 ± 0.04 

OCH2 6 x1010 2 

-22.8 

2.03 x109 

0.79 ± 0.03 

-18.3 ± 0.7 

0.80 ± 0.03 

CH 4 x1010 5 

-23.8 

2.27 x109 

1.00 ± 0.04 

-23.4 ± 0.8 

0.98 ± 0.03 

CH2CIV 5 x1012 4 

3.85 x107 

 

OCIV 4 x1010 5 

 

3.54 x107 

 

EtP6- 

CH3 4 x1011 6 

-23.1 

2.15 x109 

± 0.5 

0.31 ± 0.02 

-7.2 ± 0.5 

0.31 ± 0.02 

CH2 6 x1010 5 

-23.0 

2.03 x109 

 

0.97 ± 0.04 

-21.7 ± 0.8 

0.94 ± 0.04 

OCH2 2 x1011 7 

-8 

2.03 x109 

0.79 ± 0.03 

-18.3 ± 0.7 

0.80 ± 0.03 

CH 3 x1010 4 

-23.8 

2.27 x109 

1.00 ± 0.04 

-23.4 ± 0.8 

0.98 ± 0.03 

CH2CIV 8 x109 3 

3.85 x107 

 

OCIV 1 x1010 4 

 

3.54 x107 

 

pX@EtP6 

CH3 5 x1012 10 

-23.1 

2.15 x109 

± 0.5 

0.31 ± 0.02 

-7.2 ± 0.5 

0.31 ± 0.02 

CH3(†) 5 x1012 3 

 CH2 2 x1011 7 

-23.0 

2.03 x109 

 

0.97 ± 0.04 

-21.7 ± 0.8 

0.94 ± 0.04 

OCH2 7 x1011 8 

-2 

2.03 x109 

0.79 ± 0.03 

-18.3 ± 0.7 

0.80 ± 0.03 

CH 7x1010 5 

-23.8 

2.27 x109 

1.00 ± 0.04 

-23.4 ± 0.8 

0.98 ± 0.03 

CH2CIV 1 x1010 4 

3.85 x107 

 

CH(†)c,d   
OCIV 2 x1010 4 

3.54 x107 

 

mX@EtP6 

CH3 2 x1012 8 

-23.1 

2.15 x109 

± 0.5 

0.31 ± 0.02 

-7.2 ± 0.5 

0.31 ± 0.02 

CH3(†) 4 x1012 1 

 CH2 5 x1010 5 

-23.0 

2.03 x109 

 

0.97 ± 0.04 

-21.7 ± 0.8 

0.94 ± 0.04 

OCH2 1 x1012 9 

-22.8 

2.03 x109 

0.79 ± 0.03 

-18.3 ± 0.7 

0.80 ± 0.03 

CH 8 x109 3 

-23.8 

2.27 x109 

1.00 ± 0.04 

-23.4 ± 0.8 

0.98 ± 0.03 

CH2CIV 7 x109 3 

3.85 x107 

 

CH(†)c,d   
OCIV 5 x109 2 

3.54 x107 

 

oX@EtP6 

CH3 2 x1012 8 

-23.1 

2.15 x109 

± 0.5 

0.31 ± 0.02 

-7.2 ± 0.5 

0.31 ± 0.02 

CH3(†)c   
CH2 5 x109 2 

-23.0 

2.03 x109 

 

0.97 ± 0.04 

-21.7 ± 0.8 

0.94 ± 0.04 

OCH2 2 x1011 7 

-2 

2.03 x109 

0.79 ± 0.03 

-18.3 ± 0.7 

0.80 ± 0.03 

CH 3 x109 2 

-23.8 

2.27 x109 

1.00 ± 0.04 

-23.4 ± 0.8 

0.98 ± 0.03 

CH2CIV 5 x109 3 

3.85 x107 

 

CH(†)c,d   
OCIV 7 x109 3 

 

 

3.54 x107 

 

a Errors are in the order of 1 kJ mol-1. b Data in the 383 - 243 K temperature range only 

available. c Overlapping resonances between guest and host in the 13C CP MAS NMR spectra 

prevents measurements of T1 times. d Signal to noise of some of the signals are also too weak 

for accurate determination of T1 times. 
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4.6. Conclusions  

We employed a range of multinuclear solid-state NMR experiments to provide a 

detailed understanding of the structure and dynamics in guest-free perethylated 

pillar[5]arene and pillar[6]arene, and as well as pillar[6]arene with adsorbed xylene 

guests. The resulting 13C CP MAS NMR spectra of the guest-adsorbed pillar[6]arenes 

are very well resolved owning to the high crystallinity of these materials and 13C 

isotropic chemical shifts values combined with 13C edited experiments and spectral 

deconvolution identified most expected carbon resonances. Using 2D PDLF 

experiments, variable temperature site-selective 13C 1H dipolar spectra in the 100 - 

330 K range were obtained and allowed for the determination of motional averaged 

heteronuclear 13C 1H dipolar couplings and quantification of order parameters that 

reveal differential dynamics properties. Protruding carbons were found to have faster 

dynamics than those within the pillar[n]arene core while the larger void size of the 

EtP6- hexagonal cavity than the EtP5- pentagonal cavity results in a less restricted 

OCH2 motion of the perethylated group which slows down with lower temperatures.  

Upon adsorption of the various xylenes into EtP6, low temperature 13C 1H dipolar 

spectra identified  dipolar coupling, and hence spatial proximity, between the CH2CIV 

quaternary carbon of the EtP6 host and para-xylene in pX@EtP6 while this dipolar 

coupling was not detected (or still had significant motional averaging at 100 K) for the 

other two xylenes adducts oX@EtP6 and mX@EtP5. This demonstrates a significantly 

strong π−π stacking host guest interaction in this pX@EtP6 system where para-xylene 

is situated in the centre of the void while ortho- and meta-xylenes are mainly located 

at the entrance of the cavity, supporting the crystal structure of these phases and the 

adaptive behaviour of EtP6. 

Variable temperature 1H and 13C relaxation times T1 obtained at multiple external 

magnetic fields were experimentally determined and allowed access to temperature-

dependent correlation frequencies of the motion from T1 minimum and a range of 

dipolar and/or CSA relaxation mechanisms. The resulting 1H data would tentatively 

suggest that oX@EtP6 has the largest size conformation, while mX@EtP6 and 

pX@EtP6 have the smallest, thus supporting the guest locations and folding of the 

EtP6 pillar[6]arene in the meta-xylene adduct previously determined. Site-specific 13C 
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NMR correlation times indicate largely restricted motion for pillar[n]arene carbons 

core and extensive motional dynamics of the perethylated and xylene methyl 

carbons, further reinforcing the dynamical behaviours captured from 13C 1H dipolar 

coupling order parameters. 

This work demonstrates that NMR spectroscopy enables the capture of structural 

transformations resulting from host-guest interactions and motional effects in 

adaptive pillar[n]arene materials, which could have implications for processes such 

as competitive loading, molecular separation, and drug release. This adds to our 

understanding of motion in flexible molecular solid state systems and opens up new 

perspectives in the rational design of materials with enhanced physical properties.  
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Chapter 5: Melting of Hybrid Organic-Inorganic Perovskites 

 

5.1 Overview 

Chapter 5 is adapted from a paper entitled “Melting of Hybrid Organic-Inorganic 

Perovskites” by Bikash Kumar Shaw, Ashlea R. Hughes, Maxime Ducamp, Stephen 

Moss, Anup Debnath, Adam F. Sapnik, Michael F. Thorne, Lauren McHugh, Andrea 

Pugliese, Dean Keeble, Philip Chater, Juan M. Bermudez-Garcia, Xavier Moya, 

Shyamal K. Saha, David A. Keen, Francois-Xavier Coudert, Frédéric Blanc and Thomas 

D. Bennett which has been submitted to the ChemRxiv archive: (2020): Hybrid 

Inorganic-Organic Perovskite Glasses. ChemRxiv. Preprint. 

https://doi.org/10.26434/chemrxiv.11956599.v1. This manuscript has since been 

submitted to a peer reviewed journal and is currently under review. As this is a large 

collaborative project, the manuscript has been edited for use in the thesis to focus 

on the solid state NMR data acquisition and analysis which was undertook by A.R.H. 

and supported by F.B. B.K.S and T.D.B. prepared the samples prior to NMR analysis. 

B.K.S ran both the DSC and the IR data shown in this chapter.  
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5.2 Abstract 

Hybrid perovskites occupy a prominent position within solid-state materials 

chemistry due to their (e.g.) ionic transport, photoconductivity ferroelectricity and 

multiferroicity. Here we show that a series of dicyanamide based hybrid organic-

inorganic perovskites melt below 300 °C. Solid state NMR along with other 

approaches demonstrates that they also form glasses upon melt quenching. These 

largely retain the inorganic-organic bonding of the three-dimensional crystalline 

phase. Work from other co-authors which explores the very low thermal 

conductivities of these glasses (~ 0.2 W m-1 K-1), combined with moderate electrical 

conductivities (10-2 – 10-4 S m-1) and thermo-mechanical properties reminiscent of 

polymeric materials identifying them as a new family of functional glass-formers will 

not be explored within this thesis. 
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5.3 Introduction 

ABX3 hybrid organic-inorganic perovskites (HOIPs) are an emerging family of 

materials, where A = organic cation, B = metal ion and X = bridging ligand. The family 

occupies a prominent position within solid state chemistry and materials science due 

to interest in their utility in e.g. ionic transport, ferroelectric, luminescent and 

multiferroic applications.1–3  

Hybrid lead halide perovskites in particular have been extensively studied for their 

performance and efficiency in photovoltaic devices.4,5 The replacement of the halide 

ion by flexible bidentate bridging ligands, such as formate [HCOO-],6 6 hypophosphite 

[H2POO-]7 and dicyanamide [dca, N(CN)2
-]8 gives rise to an even wider array of 

functional properties, while preserving their three-dimensional (3D) coordination 

polymer structures.9  

Crystalline materials dominate the field of HOIP research, and show rich structural 

behaviour such as octahedral tilting, columnar shifts and molecular disordering 

associated with  phase transitions.10 Non-crystalline materials receive comparatively 

little attention, though the reversible pressure-induced amorphization of 3D 

methylammonium lead halide perovskites has been studied.11,12 Melting of the two 

dimensional layered HOIP series [(C4H9NH3)2MI4] (M  = Ge, Sn, Pb) has also been 

observed and ascribed to the weakening of inter-layer non-covalent interactions, or 

‘chain-melting’.13  

Solid-liquid transitions have however started to be reported in 3D metal-organic 

frameworks (MOFs).9 For example, the melt-quenching of several Zn(Im)2 structures 

results in the formation of a new category of glasses, which are structurally similar to 

silica glass, yet contain linked inorganic and organic components.10 Accordingly, the 

mechanical and optical properties of ‘hybrid’ glasses, or those which contain both 

inorganic and organic components, are of great interest and routes to expand this 

family are sought after. 

Density has been observed to play a key role in the stabilization of the liquid state of 

zeolitic imidazolate frameworks (ZIFs),14 though the requirement for dense starting 

structures means that the number of 3D structures which exhibit melting is limited. 
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Chemical variance within the lower dimensionality coordination polymers reported 

to melt is equally constrained. The HOIP family on the other hand displays great 

chemical variance whilst retaining similar, dense 3D structures. 

Solid state nuclear magnetic resonance (NMR) spectroscopy has had major advances 

in recent years with regards to very fast magic angle spinning (MAS) and broadband 

inversion pulses which can aid in the study of paramagnetic materials,15,16 resulting 

in an increase of its use to study such structures throughout literature.16–18 The typical 

challenges of solid state NMR are augmented with paramagnetic materials due to 

their large chemical shift anisotropy (CSA) causing numerous spinning sidebands 

subsequently resulting in a poor signal to noise ratio. This challenge combined with 

short transverse relaxation rates which can add to a loss of signal and poor resolution. 

Short high powered adiabatic pulses (SHAPs) have been developed,19 which when 

combined with echo sequences can overcome some of these challenges. 

Motivated by the above, in this report we extend the phenomenon of melting to the 

ABX3 perovskite family. Three [TPrA][M(dca)3] (TPrA = tetrapropylammonium, 

(CH3CH2CH2)4N+, M = Mn2+, Fe2+, Co2+) materials were selected for study due to the 

multiple possible coordination modes possible for the dca ligands, which bridge 

transition metal cations through the N atom in μ1,5 end-to-end connectivity. The TPrA 

cations are situated in the pseudo-cubic cavities, resulting in 3D perovskite 

architectures (Figure 5.1). At room temperature, both [TPrA][Co(dca)3] and 

[TPrA][Fe(dca)3] crystallise in an orthorhombic space group (Pnna), as opposed to the 

tetragonal Mn analogue, which crystallizes in P-421c. 

In this work, we show that these materials melt at temperatures lower than existing 

MOFs, and that the liquids can be quenched into hybrid glasses. The amorphous 

nature of the melted glasses can be confirmed using solid state NMR techniques 

which also are able to establish that the amorphous glasses have not decoordinated 

during the melt/quench process. The 3D nature of the parent perovskites means that 

the recrystallisation observed in lower dimensional zinc phosphate coordination 

polymer glasses is avoided,20 whilst the presence of organic cations distinguishes 

them from the three dimensional MOFs found to melt thus far.  
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Figure 5.1. Hybrid perovskites structure. Simplified representation of perovskite structure 
[TPrA][Mn(dca)3] at room temperature.4 Mn, C and N atoms are shown as pink, grey and blue 
spheres, respectively.  All H atoms have been omitted for clarity, as have all TPrA ions except 
the TPrA ion located on the body-centre. Furthermore, only one of the possible orientations 
of the TPrA and dca ions within the average crystal structure are shown.21  
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5.4 Materials and Methods 

5.4.1 Synthesis of Hybrid Organic-Inorganic Perovskites 

The synthesis reported in the literature was followed.21–23 Specifically, 10 ml of an 

aqueous solution of metal salt (2 mmol M: Mn2+, Fe2+, Co2+) was placed at the bottom 

of a thin crystallization tube and layered with a mixture of a solution of Na(dca) (6 

mmol in 10 ml of water) and (TPrA)Br (2 mmol in 10 ml of ethanol). Block-shaped 

single crystals were obtained from the mother liquor after one week of slow 

evaporation in an open atmosphere. 

The amorphous glasses were heated to temperatures beyond their previously 

reported solid-solid polymorphic phase transitions, 21,23 until a visual change was seen 

corresponding to the melting of these structures and amorphous glasses being 

formed upon cooling as observed by differential scanning calorimetry (DSC) (Figure 

5.2). The glasses, in keeping with the existing nomenclature on hybrid glasses, are 

termed ag[TPrA][M(dca)3] (ag : melt quenched glass). 

5.4.2 Solid State NMR 

Solid state NMR experiments were performed on a 9.4 T Bruker Avance III HD 

spectrometer equipped with a 1.3 mm HXY magic angle spinning (MAS) probe in 

double resonance mode. The 1H channel was tuned to 0(1H) = 400.13 MHz and the 

X channel was tuned to 0(13C) = 100.61 MHz. Spectra were recorded under an 

optimised approach for paramagnetic systems combining very fast MAS18 with 

double adiabatic echo detection and shaped pulses.19 All NMR spectra were recorded 

at a spinning rate of 60 kHz, which heats the sample to a temperature of ca. 45 °C (as 

measured from the 79Br NMR chemical shift change of KBr24), and pulses were applied 

at a radiofrequency field of 200 kHz at an offset of 0 ppm for [TPrA][Mn(dca)3], and 

2985 ppm for both [TPrA][Fe(dca)3] and [TPrA][Co(dca)3]. The double adiabatic echo 

pulse sequence19 (Figure 5.3(a)) was employed to record the MAS NMR spectra and 

used square /2 excitation pulses of duration 1.25 s and rotor synchronised short 

(50 s) high powered adiabatic tanh/tan (SHAPs)19 inversion pulses sweeping through 

10 MHz to refocus the chemical shift evolution19; this sequence shows an 

approximate two-fold increase in signal intensity versus the double echo pulse 
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sequence employing square /2 and  pulses, largely in agreement with the 

literature.19 TEDOR experiments19,25 (Figure 5.3(b)) were performed with an 

optimised recoupling time equal to 3 rotor periods (50 s) and adiabatic SHAPs 

inversion pulses applied to the 1H channel to improve polarization transfer.19 TEDOR 

experiments were performed with a recycle delay of 1.3 x 1H T1 to ensure maximum 

signal to noise per unit time. No 1H decoupling was used during any 13C acquisition. 

The 13C MAS NMR spectra were typically accumulated with 2 million scans with 

recycle delays of 0.01 s which were found to be long enough to avoid saturation. Note 

that the 13C signal intensities do not directly relate to the number of carbons present 

as the optimised data acquisition strategy is not quantitative due to the likely large 

differences in the 13C T2’ values. 1H spectra were referenced to H2O at 4.8 ppm and 

13C spectra were reference to the CH peak of adamantane at 29.45 ppm 

corresponding to TMS at 0 ppm.26 All samples for solid-state NMR were finely ground. 
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5.5 Results and Discussion 

5.5.1 Synthesis of amorphous glasses 

Crystalline [TPrA][Mn(dca)3], [TPrA][Fe(dca)3] and [TPrA][Co(dca)3] were synthesized 

using literature procedures as detailed in section 5.4.1 above.21–23 

DSC was carried out on each sample, and upon initial heating sharp endotherms were 

identified at temperatures far in excess of the reported solid-solid polymorphic phase 

transitions.21,23 The temperatures of these features, indicative of a previously 

unreported phase transition, correspond to melting (Tm) at 271 °C, 263 °C and 230 °C 

for the Mn, Fe and Co analogues (Figure 5.2) forming amorphous glasses. The 

increase in melting temperature from Co to Mn follows the trend in the ionic radii rCo 

< rFe < rMn, and is in accordance with the stronger polarizing power of Co and the 

larger covalent character of the Co-N bond.  

 

Figure 5.2. Glass formation from hybrid perovskites. Change in heat flow with increase in 
temperature for [TPrA][M(dca)3] samples. Values for the enthalpy of fusion (∆Hf) for the 
crystalline to liquid transition were extracted from the shaded sigmoidal areas, which were 
determined after subtracting sigmoidal baselines from the calorimetric data. Inset. Optical 
images of [TPrA][Mn(dca)3] before heating (left) and after melt-quenching (right). DSC ran by 
Bikash Kumar Shaw. 
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5.5.2 Delineating Decoordination and Decomposition  

13C NMR double adiabatic echo (Figure 5.3(a)) spectra of [TPrA][Mn(dca)3], 

[TPrA][Fe(dca)3] and [TPrA][Co(dca)3] before and after melt-quenching were 

obtained (Figure 5.4).15 Spectra of [TPrA][Fe(dca)3] and [TPrA][Co(dca)3] contain one 

resonance in the 200 to -100 ppm region per type of carbon in the TPrA cation and 

two (or more) poorly resolved resonances around 3900 ppm for the NCN carbon of 

the dca anions (see below and Figure 5.5, 5.6 for spectral assignment). In contrast, in 

crystalline [TPrA][Mn(dca)3] where the NMR lines are much narrower, resonances for 

each type of carbon in the TPrA and dca ions (e.g. the NCN resonance appears as two 

resolved shifts of 7 and 3 ppm in a 2:1 ratio) can be observed (Figure 5.7). These 

observations are consistent with the phases expected based on previous reports of 

phase transitions in the family.   

 

Figure 5.3. NMR pulse sequences used in this work. (a) Double adiabatic echo pulse 
sequences. (b) TEDOR pulse sequence. Hard pulses are shown as square whilst adiabatic 
pulses are denoted by shaped pulses above. 
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Figure 5.4. Structural insights into melting and glass structure. 13C Double adiabatic echo 

MAS NMR spectra of crystalline [TPrA][Mn(dca)3] before heating (pale green), after melt-

quenching (green), crystalline [TPrA][Fe(dca)3] (pale red), after melt-quenching (red), 

crystalline [TPrA][Co(dca)3] before heating (pale blue) and after melt-quenching (blue). 

Magnified views of the 200 to -100 ppm region (within box) are shown on the right hand side 

with spectral assignments. Spectra were processed with exponential line broadenings (of 20 

Hz), appropriate for the magnified views shown in order to capture the various spectral 

features, while the overlaid views in the 6000 to 1000 ppm paramagnetic shifts region show 

data processed with increased line broadenings (of 200 Hz) taking into account the larger 

linewidths of the NCN resonances of the dca ligand. C3H3N3 corresponds to triazine-based 

structures. Asterisks (*) denote spinning sidebands. 
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Due to the paramagnetic nature of the metal centres within these perovskite 

structures, large changes in chemical shifts are expected and therefore the 

assignment was confirmed by using the TEDOR pulse scheme as illustrated in Figure 

5.3 above. This experiment provides detail concerning directly connected protons 

and carbons, enabling the differentiation between the dca ligand and the TPrA ligand.  

The absence of 13C signal at ca. 3900 ppm in both [TPrA][Fe(dca)3] and 

[TPrA][Co(dca)3] TEDOR spectra (Figure 5.5 and 5.6 below) strongly supports its 

assignment to the NCN carbon of the dca anions, which contains the only quaternary 

carbon amongst both TPrA and dca ions. It is therefore postulated that the very large 

paramagnetic shifts observed in dca result from its μ1,5 bonding mode to two metal 

centres (Figure 5.4).  
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Figure 5.5. 13C Double adiabatic echo19 MAS NMR spectra of crystalline [TPrA][Fe(dca)3] 
before heating (black), 13C edited TEDOR NMR spectrum of crystalline [TPrA][Fe(dca)3] before 
heating (black), immediately prior to melting (red) and upon quenching (blue), 
ag[TPrA][Fe(dca)3]. Magnified views of the 200 to -100 ppm region (within box) are shown on 
the right hand side. Spectra were processed with exponential line broadenings (of 20 Hz), 
appropriate for the magnified views shown in order to capture the various spectral features, 
while the overlaid views in the 6000 to 1000 ppm paramagnetic shifts region show data 
processed with increased line broadenings (of 200 Hz) taking into account the larger 
linewidths of the NCN resonances of the dca ligand. C3H3N3 corresponds to triazine-based 
structures. Asterisks (*) denote spinning sidebands. 
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Figure 5.6. 13C Double adiabatic echo19 MAS NMR spectra of ground [TPrA][Co(dca)3] before 
heating (top), 13C edited TEDOR NMR spectrum of crystalline [TPrA][Co(dca)3] before heating 
(black) immediately prior to melting (middle) and upon quenching (bottom), 
ag[TPrA][Co(dca)3]. Magnified views of the 200 to -100 ppm region (within box) are shown on 
the right hand side Spectra were processed with exponential line broadenings (of 20 Hz), 
appropriate for the magnified views shown in order to capture the various spectral features, 
while the overlaid views in the 6000 to 1000 ppm paramagnetic shifts region show data 
processed with increased line broadenings (of 200 Hz) taking into account the larger 
linewidths of the NCN resonances of the dca ligand. Asterisks (*) denote spinning sidebands. 

Notably, the NCN carbon within the [TPrA][Fe(dca)3] and [TPrA][Co(dca)3] materials 

appears at a very similar chemical shift, which is also seen elsewhere in literature.27 

The 13C shifts of the TPrA cation are significantly less affected due to the greater 

distance of this species from the metal centres (Figure 5.4), whilst the different 

chemical shift of the dca ligand in crystalline [TPrA][Mn(dca)3] (ca. 5 ppm, Figure 5.7 

and Table 5.1) is ascribed to the difference in magnetic susceptibility of Mn2+, in 

comparison to Fe2+ and Co2+. This yields smaller anisotropic bulk magnetic 

susceptibility broadening in the former, consistent with 7Li MAS NMR of LiMPO4, M = 

Mn, Fe, Co.15,27 
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Figure 5.7. 13C Double adiabatic echo19 MAS NMR spectra of crystalline [TPrA][Mn(dca)3] 
before heating (black), 13C edited TEDOR NMR spectrum of crystalline [TPrA][Mn(dca)3] 
before heating (black), 13C Double adiabatic echo MAS NMR spectra of crystalline 
[TPrA][Mn(dca)3] immediately prior to melting (red) and after quenching (blue), 
ag[TPrA][Mn(dca)3]. Magnified views of the 100 to -50 ppm region (within box) are shown on 
the right hand side with spectral assignments. Asterisks (*) denote spinning sidebands. 
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Table 5.1. 13C NMR chemical shifts for crystalline and quenched glass phases of 

[TPrA][Mn(dca)3], [TPrA][Fe(dca)3] and [TPrA][Co(dca)3]. 

Samples 

Chemical Shift /ppm 

CH3 CH2CH3 NCH2 NCN Free NCN C3H3N3 

[TPrA][Mn(dca)3] 16 20-23 66-69 3-7 N/A N/A 

ag[TPrA][Mn(dca)3] 15 20 67 Not observed Not observed Not observed 

[TPrA][Fe(dca)3] -8 10 60 3630-4020 N/A N/A 

ag[TPrA][Fe(dca)3] -6 13 61 Not observed 119 158 

[TPrA][Co(dca)3] -10 13 61 3790-4020 N/A N/A 

ag[TPrA][Co(dca)3] -12 10 59 Not observed Not observed N/A 

Comparison of the spectra of crystalline and glass samples (Figures 5.4-5.7) shows 

similar chemical shifts in the TPrA region, suggesting that the ‘A’ site cation remains 

intact during the melt-quenching process. No resonances for dca are observed in 

their paramagnetic NMR regions for any of the quenched glasses due to a likely 

decrease in the T2’ upon vitrification and hence, an increase in paramagnetic 

broadening of the glasses.  

Experimental evidence for the decoordination of dca ligands during the melting 

process arises from an additional resonance at 120 ppm in the spectra for 

ag[TPrA][Fe(dca)3], which is assigned to a ‘free’ dca ligand.28 A further peak at 159 

ppm, combined with the appearance of two (weak) absorption bands at 1629-1634 

cm-1 and 802-806 cm-1 in the infrared (IR) spectra for all glasses, may also indicate a 

small degree of ligand decomposition upon melting (Figures 5.5 and 5.8).28–30 This 

minimal decomposition has been confirmed by further liquid state NMR work 

conducted which is not presented in this thesis.  
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Figure 5.8. FT-IR spectra. (a) [TPrA][Mn(dca)3], (b) [TPrA][Fe(dca)3], (c) [TPrA][Co(dca)3] at 
three different states, before heating (black), immediately prior to melting (red) and upon 
quenching from the liquid phase (blue). Dashed lines (green) appeared at 1629-1634 cm-1 
and 802-806 cm-1 in all ag[TPrA][M(dca)3] spectra, indicates high temperature deformation 
of a portion of dca ligands (deformation vibration of δC-N-C) to triazine-based structures. 
Spectra ran by Bikash Kumar Shaw. 

No 13C resonance outside the standard diamagnetic 200 to 0 ppm region was 

observed in crystalline [TPrA][Mn(dca)3] (Figure 5.4) prompting us to explore the use 

of 13C-edited experiment to identify the dca carbon which is best achieved in these 

systems with a 1H 13C double resonance TEDOR NMR experiment.19,25 In this 

experiment, only protonated carbons are observed and the corresponding 1H-13C 

TEDOR NMR spectrum of [TPrA][Mn(dca)3] unambiguously showed the 

disappearance of the 3-7 ppm signal which is therefore assigned to the carbon of the 

dca anion ligand. 
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The spectral deconvolution of [TPrA][Fe(dca)3] and [TPrA][Co(dca)3] in Figures 5.9 

and 5.10 shows three resonances in the 200 to -100 ppm region corresponding to 

three carbon environments within the TPrA molecule in the unit cell.23 The spectral 

deconvolution of [TPrA][Mn(dca)3] in Figure 5.11 shows three resonances 

corresponding to the NCH2 within the TPrA molecule and two resonances for the NCN 

at 7 and 3 ppm within the dca ligand in a 2:1 ratio. This is in agreement with the 

expected number of carbon environments in the unit cell for this compound.2 The 

limited resolution does not permit the CH2CH3 and CH3 groups to be distinguished 

from one another. 

 

Figure 5.9. Deconvoluted 13C double adiabatic echo19 MAS NMR spectra of crystalline 
[TPrA][Fe(dca)3] in the 200 to -100 ppm region. Experimental spectrum (solid line) with the 
spectral deconvolution (dotted lines) and total fit (dashed lines) shown. 
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Figure 5.10. Deconvoluted 13C double adiabatic echo19 MAS NMR spectra of crystalline 
[TPrA][Co(dca)3] in the 200 to -100 ppm region. Experimental spectrum (solid line) with the 
spectral deconvolution (dotted lines) and total fit (dashed lines) shown. 

 

 

 

Figure 5.11. Deconvoluted 13C double adiabatic echo19 MAS NMR spectra of crystalline 
[TPrA][Mn(dca)3] in the 100 to -50 ppm region. Experimental spectrum (solid line) with the 
spectral deconvolution (dotted lines) and total fit (dashed lines) shown. 
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5.6 Conclusion 
 
The NMR of the crystalline compounds are consistent with the literature. Specifically, 

they support the existence of one TPrA cation and two dca anions in the asymmetric 

unit cell within the orthorhombic Ibam (centrosymmetric) space group of 

[TPrA][Fe(dca)3] and [TPrA][Co(dca)3],23 and the presence of three independent ions 

in the tetragonal space group P-421c of [TPrA][Mn(dca)3] at 45 °C.21 The spectra were 

assigned based on known chemical shift values for TPrA in diamagnetic systems,27 

spatial proximity to the metal centres and 13C-edited experiment using 1H 13C TEDOR 

19,28 (transferred echo double resonance) experiments that filter out any non-

protonated carbons (Figures 5.5-5.7). Unambiguous structural assignment is vital to 

aid in the interpretation of the change occurring through the melting process and 

solid state NMR is a key player in enabling this understanding. 

The dca-containing family of perovskites themselves offer great potential for 

developing structure-property relationships by changing the ‘A’ site ammonium 

cation, or by utilizing different transition metals on the ‘B’ site(s), whilst the melting 

of HOIPs containing different organic linkers such as azides or hypophosphites will 

also be of interest.7 Studies of the effect of defects (near ubiquitous in the wider HOIP 

family) upon melting behaviour will also be important, whilst electrical conductivities 

may be raised further through precise control of partial decomposition processes to 

approach those of the best inorganic (~ [103-106] S m-1)31 and organic (~ [10-3-105] S 

m-1)32 thermoelectrics. Such considerations and the enormous chemical variance 

possible within HOIPs family warrant further investigation into this new family of 

hybrid glass-formers.  
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Chapter 6: Conclusions and Further Work. 

 

6.1 Conclusions. 

Throughout this thesis the research presented utilises solid state NMR to monitor 

both the dynamics and structures of various supramolecular assemblies. 

In Chapter 3 a new family of tubular covalent cages was explored and found that 

TCC3-R was the fastest exclusively organic molecular rotor to date. The reorientation 

rates using experimental 2H solid state NMR and simulation at variable temperature 

were probed, finding the low activation barriers for these materials. Subsequent 

iodine loading was also monitored by 2H as well as 13C spin lattice relaxation rates to 

show that iodine has been trapped within the voids, inhibiting rotation of the 

phenylene ring. Finally, upon monitoring iodine release a reorientation rate of the 

same order of magnitude to the pristine cage was observed, showing that these are 

smart materials which are responsive to external stimuli.1  

In Chapter 4 the structure and dynamics of pillar[n]arenes, a relatively new class of 

macrocycles, were studied by solid state NMR. From the 13C cross-polarisation magic 

angle spinning NMR spectra, deconvolutions and the 2D 13C-13C through-bond 

connectivities INADEQUATE experiment, the NMR spectra of both EtP5- and EtP6-

 were fully assigned and confirmed the asymmetric unit cells of these phases.2 The 

dynamics were studied utilising Proton Detected Local Field (PDLF) NMR and 

displayed small differences indicating faster motion for the OCH2 groups in EtP6- in 

comparison to EtP5- that is attributed to the larger void space. Upon para-xylene 

loading, and at low temperature (100 K), additional dipolar spectra are observed 

indicating a host-guest interaction between the loaded xylene and the carbons within 

the core of the pillar[n]arene. 

In Chapter 5 spectral assignment is used to confirm the structures of various hybrid 

perovskites. The challenges of paramagnetic compounds were minimised by using 

Short High Adiabatic Pulses to sweep the frequency enabling detection of signal over 
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a larger chemical shift range. Transferred double echo rotation experiments 

confirmed the spectral assignment originally based on location to the paramagnetic 

centre with the aid of spectral deconvolution. In this work it was shown that this 

series of dicyanamide based hybrid organic inorganic perovskites melt below 300 °C, 

forming perovskite glasses which can be seen by the increase in width of the NMR 

resonances, indicating the amorphous nature of the glasses. 
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6.2 Further work 

In both Chapter 3 and 4 dynamics are studied, however different techniques are 

used. In Chapter 3 the predominant technique utilised is static 2H NMR line shape 

analysis and although touched on in Chapter 3, Chapter 4 delves further into the use 

of relaxation rates to probe dynamics. Chapter 4 also utilises the PDLF NMR 

technique which has not been applied to supramolecular assemblies before. 

Therefore, it is possible to build upon these chapters by re-assessing the molecular 

rotors using both variable temperature relaxation rates and PDLF NMR. 

Further work expanding on Chapter 4 could incorporate deuteration of the xylene 

guests. Performing 13C CP on a deuterated xylene EtP6 adduct (where the EtP6 host 

is of natural abundance) would allow for a further confirmation of the signals arising 

from the host or guest molecule in the NMR spectrum. With deuterated xylene, 2H 

NMR could also be utilised to determine the guest mobility in the guest loaded 

adducts. However, it should be noted that deuteration (in particular selective 

deuteration of certain parts of the molecule) can be a costly process and to provide 

a full analysis with minimal overlapping peaks could require analysis of adduct with 

differing degrees of deuteration. The time taken to complete this was therefore 

considered superfluous to this PhD project, however it does have a potential for 

progressing both the characterisation and understanding of dynamics of these 

materials.  

In the literature review (Chapter 2) it was shown that spin diffusion techniques can 

be a useful tool to study interactions within supramolecular assemblies.3 Some 

preliminary work has been completed on the pillar[n]arenes used in Chapter 3 

applying this EXSY type pulse program and the resulting build up curves are shown in 

Figure 6.1(c) below. These curves show the typical decay of signal for the peaks which 

lie on the diagonal (shaded) and as mixing time increases, the polarisation transfer to 

the cross peaks typically increases. The increasing growth rate can be seen to have 

different rates dependent on the observed cross peak. Some negative cross peaks 

were also observed. Negative cross peaks have been hypothesised in solid state NMR 

literature to be due to a high-order spin diffusion process involving four spins.4 
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Although there is a significant increase in resolution upon spinning at 60 kHz and 20 

T (Figure 6.1(a) and (b)), data from the spectrum is still difficult to extract with the 

current resolution. These pillar[n]arene molecules have a strong proton-proton 

dipolar coupling network, resulting in a large amount of homonuclear dipolar 

coupling occurring which is unable to be averaged out at these MAS rates. The 

potential use of homonuclear decoupling could aid in simplifying the 1H spectra 

providing higher resolution spectra capable of complete analysis and interpretation.  

The combined X-ray technique, DFT work and NMR crystallography work in Chapter 

42 confirmed the molecular structure of EtP6-. As spin diffusion curves are 

dependent on distance, with this confirmed molecular structure, spin diffusion curves 

and their rates could be simulated.5 The reverse is also possible, as we have the 

experimental spin diffusion curves the rate of growth of polarisation can give data 

corresponding to distance and therefore it is possible to provide details regarding the 

crystal structure.  

To further expand on this spin diffusion work, this method could also be applied to 

the xylene loaded EtP6 adducts. The build-up curves would enable us to probe the 1H 

dipolar interaction in the supramolecular assembly and we would expect to see a 

variation in 1H dipolar coupling interactions via a difference in build-up curves 

observed depending on the guest present. This would then enable an enhanced 

crystal structure to be produced, providing further details regarding the guest 

positioning within the guest-host framework. 

Chapter 5 has so far focused on the characterisation of hybrid perovskites. However, 

the materials have a wide range of applications most predominantly in photonics,6 

which relates to both structure and dynamics. Therefore, we could also look into 

studying these materials and how the dynamics change upon loading using the 

techniques studied in this thesis or those suggested throughout literature and 

highlighted in Chapter 2. 
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Figure 6.1. 1H one pulse spectrum of EtP6- obtained at (a) 9.4 T and r = 12.5 kHz, (b) 20 T 

and r = 60 kHz. (c) Spin diffusion build up curves of EtP6- obtained from data collected 

with the incrementing spin diffusion mixing time until 1 ms was reached, under r = 60 kHz 
and 20 T. 
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