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Abstract— Reliable communication is a critical factor for
ensuring robust performance of multi-robot teams. A selection
of results are presented here comparing the impact of poor
network quality on team performance under several conditions.
Two different processes for emulating degraded network signal
strength are compared in a physical environment: modelled sig-
nal degradation (MSD), approximated according to increasing
distance from a connected network node (i.e. robot), versus
effective signal degradation (ESD). The results of both signal
strength processes exhibit similar trends, demonstrating that
ESD in a physical environment can be modelled relatively well
using MSD.

I. INTRODUCTION

Reliable communication is one of the key requirements
for successful operation of a multi-robot team—without it,
team coordination is difficult. Many works focus on network
optimisation and communication-aware motion planning for
multi-robot systems [1]-[6]. The aforementioned works use
either optimisation-based control or consensus algorithms
for centralised or distributed multi-robot communication and
resilience against either uncooperative robots or maximis-
ing communication performance. The majority of research
conducted with physical multi-robot teams takes place in
controlled indoor laboratory settings supported by robust
network infrastructure. However, many recognise the grow-
ing need for reliable wireless communication in multi-robot
systems in a wide range of environments and applications.

In earlier work [7], we introduced a behaviour-based,
network-aware control algorithm which aims to prevent loss
of communication by keeping robots within range of net-
worked nodes (i.e. neighbouring robots), even if the network
is severely crippled, e.g. due to reduced signal strength or
high percentage of dropped network packets. In order to
test this behaviour, we previously modelled two of the most
common network problems [7]-[9]: simulated packet-loss
(SPL), which drops a pre-defined percentage of messages
(09%,25%,50%,75%), and a method of estimating network
signal strength, which periodically examines the distance be-
tween robots and based on a pre-determined threshold warns
the robots if they are likely to disconnect. The contribution
presented here briefly summarises an extension of our ex-
perimental framework, adding modelled signal degradation
(MSD') and effective signal degradation (ESD) to allow more

'In previous works MSD was denoted SSD (simulated signal degrada-
tion)
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comprehensive testing of behaviours that respond to network
failure.

II. APPROACH

In our previous work [8], we performed preliminary anal-
ysis of how multi-robot team performance was impacted by
simulated packet-loss (SPL). We then extended this work
by introducing our novel Leader-Follower (LF) behaviour
designed to respond to network weaknesses, described in [7]
and evaluated using our Multi-Robot Communication testbed
(MRComm) [9]. Our contributions can be separated into
two parts: (1) modelling various aspects of network quality
(MRComm); and (2) controlling robot behaviour in response
to changes in the network quality (LF).

The network type is the communication medium that is
used to transfer messages between robots. In the experiments
demonstrated here we analyse Ad Hoc (AH) network type,
which is an uncommon network to use in robotics as it
has no infrastructure. A robot is used to initialise an AH
network and the rest of the team connect directly to the
that robot. Communication is peer-to-peer, and increasing the
proximity of neighbouring robots (i.e. causing signal degra-
dation) negatively impacts communication quality. Moreover,
certain assumptions are made about the network type to
make our problem more tractable. Firstly, it is assumed that
signal-to-noise ratio (SNR) experiences uniform loss and
that interference from other devices is negligible. Secondly,
the final assumption (limitation) for AH is that after 9.0
meters robots can no longer communicate, no matter the
experiment configuration. From the tests conducted in our
physical environment, a separation greater than 9.0 meters
between robots would consistently return a signal strength
lower than -60 dBm, which is considered a poor signal.

Here we define two network thresholds that are related
to signal strength in order to model different types of
communication failure: MSD and ESD.

MSD is modelled in the same environment that the multi-
robot team experiments are conducted in (i.e. indoor office
building). Furthermore, it is modelled using two separately
trained Support Vector Regression (SVR) models with Radial
Basis Function kernels (RBF), for both direct and obstructed
line-of-sight signal strength. The data for the models was
obtained by dividing and performing two levels of granularity
tests (i.e. at a rate of 0.1 m and 1 m steps) on signal strength
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Fig. 1. Signal strength of ESD and MSD samples, measured over time

with increasing distance’. The fine granularity test was to
get more accurate data and the coarse granularity test was
to allow for acceptable estimation of signal strength with
increasing distance.

ESD is a new process implemented in MRComm that
queries all network devices connected to the AH network at
a frequency of 2 Hz, obtaining the signal strength from each
device. Executing this process in parallel with our package
provided three main benefits. Firstly, if a robot experiences
hardware malfunction and loses some/all sensor functional-
ity, assuming the network device is still functional, it would
continue pulsing a signal. Secondly, if a robot experiences
a software crash caused by an internal or external issue of
MRComm, it would continue pulsing a signal. Finally, this
functionality of MRComm would allow almost any type of
device to run this process and send out a signal, therefore
increasing its utility.

Figure 1 shows the mean MSD and ESD signal strength
over a range of time ¢, measured in seconds from when
experiments start at £y = 0 up until £ = 150 s (i.e. the first
150 seconds of each experiment). To improve comparability
between MSD and ESD the results were obtained from
experiments using the same configuration. It was expected
that MSD and ESD would yield near identical signal strength
results. However, as observed in Figure 1 the distributions
are different, but the trends are similar and the standard
deviations overlap in many cases. The difference between
MSD and ESD is to be expected, since MSD’s accuracy is
limited to the SVR models used. The SVR models are based
on a small sample size of the physical environment and to
improve the predicted signal strength either the sample size
needs to be expanded to include a data point at every possible
location of the physical environment or a more accurate
model needs to be introduced. However, the most simple
approach can be to apply an offset to the current SVR models
to artificially boost the predicted signal strength and thereby
improve MSD.

MRComm provides a response to the network parameters
in the form of one of two robot behaviours, which are

2Each data point reading was repeated 30 times to get an average result.
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Fig. 2. Comparison of the average number of failed tasks for MSD vs
ESD, using AH and {SPL0,SPL25,SPL50, SPLT75}, for both LF (on
the left of each sub-plot) and NB (on the right of each sub-plot) behaviours.
The LF behaviour recovers from all perturbations so there are no failed
tasks. NB reveals the effects of MSD versus ESD.

the baseline Non-responsive Behaviour (NB) and the novel
Leader-Follower (LF). The NB behaviour does not react to
any network parameters and simply enables robots to attempt
to complete tasks assigned to them, even if the network
drops out. In contrast, LF responds to different network
perturbations and thresholds. It uses a high-level grouping
technique to alert and force robots to move together in the
event that signal strength is too weak (degraded).

III. EXPERIMENTAL RESULTS

A series of experiments were run using the MRComm
framework [7]-[9] and an AH network, which is initially
established and then maintained by the robot team using the
Robot Operating System (ROS) framework and the multi-
master package (FKIE [10]). The experiments were run in
in an office building and each experiment was performed
5 times. Experiments were run with 3 Turtlebot2 robots
performing 7 independent (i.e., not constrained by any other
task), single-robot observation tasks, starting in a clustered
formation. A network perturbation and threshold are applied
to each experiment: an SPL (with packet loss varying from
0% to 75%), followed by either MSD or ESD).

Figure 2 shows a sample of experiment configurations and
the number of tasks that failed to be communicated per robot
in the team. The results for this performance metric showed
that no robot using NB successfully communicated all their
task status messages. However, Figure 2 shows that robots
using the LF behaviour managed to always communicate all
their task status messages.

IV. SUMMARY

The results presented in this paper show that communi-
cation of shared messages was successfully carried out on
a physical multi-robot team using the novel LF behaviour.
Furthermore, we observe that the MSD parameter has a
similar signal strength trend to the ESD parameter. Our
objective of having a behaviour capable of reacting and
mitigating common network issues has been achieved. In
future work we will focus on optimising and expanding the
capability of the behaviour to deal with more challenging
tasks and environments.
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