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����������
�������

Citation: Kazançoğlu, Y.; Sağnak, M.;
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Abstract: Ever-changing conditions and emerging new challenges affect the ability of the healthcare
sector to survive with the current system, and to maintain its processes effectively. In the healthcare
sector, the conservation of the natural resources is being obstructed by insufficient infrastructure for
managing residual waste resulting from single-use medical materials, increased energy use, and its
environmental burden. In this context, circularity and sustainability concepts have become essential
in healthcare to meliorate the sector’s negative impacts on the environment. The main aim of this
study is to identify the barriers related to circular economy (CE) in the healthcare sector, apply big
data analytics in healthcare, and provide solutions to these barriers. The contribution of this research
is the detailed examination of the current healthcare literature about CE adaptation, and a proposal
for a big data-enabled solutions framework to barriers to circularity, using fuzzy best-worst Method
(BWM) and fuzzy VIKOR. Based on the findings, managerial, policy, and theoretical implementations
are recommended to support sustainable development initiatives in the healthcare sector.

Keywords: circular economy; sustainable development; healthcare sector; big data tools; barriers;
fuzzy best-worst; fuzzy VIKOR; waste issues

1. Introduction

The healthcare sector is undergoing significant changes that constantly create new
challenges, hindering the implementation of the current model, and negatively affecting it
on various levels, especially in developing countries [1]. The usage of resources, materials,
and energy has been increased dramatically in the healthcare sector over the years [2]. This
increasing resource need and demand in the health sector has led to an increase in the usage
of disposable medical equipment, and single-use medical supplies. A large number of these
healthcare supplies are used once and then discarded [3], which causes huge disruptions
and burdens from the environmental perspective. Most of these disposable medical types
of equipment are plastic products that are frequently used for various medical applications.
The non-biodegradable nature of these has a harmful effect on the environment [4]. As
a result of these emerging trends, the healthcare sector itself has been affected, and seeks
sustainable solutions.

Additionally, the effect of the COVID-19 pandemic has placed tremendous strains on
medical equipment movements resulting from supply chain disruptions, on aspects such
as the reverse action of disposal and recycling practices to eliminate infectious medical
wastes [5,6]. The growing amount of hazardous and contagious healthcare waste created as
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a result of advances in patient treatment has posed a significant threat to the entire planet [5].
The healthcare sector accounts for approximately 4.6 percent of global greenhouse-gas
emissions [7]. From the viewpoint of healthcare, the volume of waste generated during
these periods of outbreak crisis has provided various opportunities for the implementation
of principles driven by the Circular Economy (CE), invovlving treatment of medical waste
and the local procurement/recovery of essential raw materials [8,9].

The circular economy can be described as a restorative and regenerative approach
that contrasts with a linear economy, which regards resources and energy as purely
disposable [7]. One of the main principles of CE is to protect the value and quality of
products and materials, and maintain their value in the economic system by extending the
end-of-life cycle of the product [10,11]. As a result, while CE can help address shortages on
the input side of the healthcare industry during the COVID-19 outbreak, the generation
of hazardous waste inhibits CE adoption on the output side [9]. The reason for this was
supply problems during the pandemic, such as lack of raw materials in the face-to-face
transaction structure, and incompatibility between needs and available products, including
sizes and quantities [8,12].

Similar to CE, monitoring generated waste requires the use of several networks of
smart technology such as artificial intelligence (AI), big data, and the Internet of Things
(IoT) [5,13]. Therefore, Industry 4.0 provides tremendous opportunities for CE, in which
products are being remanufactured, reused, and recycled at end-of-life cycles [13]. Espe-
cially, ongoing advancements in the healthcare field, coupled with the rise of big data, have
culminated in a rapid and vast expansion of medical data [14]. Big data analytics (BDA)
can create evidence for better care delivery by allowing the extraction of valuable informa-
tion from collected data patterns in research, clinical care environments, and operational
settings. In this context, industrial and academic experts are becoming progressively more
interested in the potential benefits of big data technology in healthcare [15].

The absence of suitable infrastructure, and the existence of barriers to achieve an efficient
healthcare waste management system, particularly in emerging economies, have been
cited as a significant challenge in addressing waste [5,16–18]. Additionally, the current
literature on the healthcare sector shows a gap in terms of the connection between CE and
I4.0 technologies, particularly big data analytics. Thus, big data analytics can be a promoter
force in the overcoming of healthcare barriers due to the requirement for more expanded
applications of I4.0 technologies. In this context, the following research questions (RQs)
addressing the research gap are proposed:

RQ1: What are the barriers to CE and these indicators’ significance in the healthcare sector?
RQ2: Can big data analytics and its tools be applied to the healthcare sector to propose

solutions in terms of circularity practices?
In order to address the aforementioned RQs, the current literature on the healthcare

sector was scrutinized, and CE perspectives were adopted to manage sustainability-related
barriers Next, big data analytics and its tools were used for proposing solutions for each
barrier to be overcome. For this purpose, this study initially points out the barriers related to
CE in the healthcare sector. Following this, big data analytics was adapted to the healthcare
sector to provide solutions. In this context, the main contribution of this study is the detailed
examination of the current healthcare literature about CE adaptation, and the proposal for
big data-enabled framework that matches and ranks the solutions to circularity-oriented
barriers using fuzzy best-worst method (BWM) and fuzzy VIKOR methods.

The paper is structured as follows. In Section 2, theoretical background about barriers
to CE in healthcare sector and big data tools are presented and explained in detail. In
Section 3, the methodology is presented. In Section 4, the case study is discussed. In
Section 5, discussions, and managerial, policy, and theoretical implications emerging from
the findings are presented. Finally, in Section 6, the concluding remarks are presented.
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2. Theoretical Background
2.1. Samples Preparation

The below-mentioned barriers to CE adoption in the healthcare sector, derived from
the relevant literature, were scrutinized. These barriers to CE, drawn from the literature,
were grouped under various dimensions. These determined barriers were classified under
eight sub-dimensions as economic and financial, policy, organizational, environmental,
social, human resources, managerial, and operational and technology. Table 1 presents the
barriers to circularity for healthcare sector.

Table 1. Barriers to CE in Healthcare Sector.

Main Dimensions Code Barriers References

Economic and Financial Barriers

B1 High cost requirement for circular technologies and implementations [2,13,19–23]

B2 Lack of financial capabilities and resources on
environmental investments [19,23–26]

B3 Challenges in identifying the economic benefits of
environmental investments [23]

B4 Lack of demand for eco-friendly medical supplies [20,21]

Policy Barriers

B5 Lack of circular policies, incentives, and regulations in healthcare [7,13,19–22,25–28]

B6 Lack of favorable policies for using technology [25]

B7 Unfavorable government legislation and execution on
circular healthcare [4,19,25]

Organizational Barriers

B8 Poor organizational design for CE principles [20,21]

B9 Current institutional misconceptions about sustainability [20,22]

B10 Inconsistency of healthcare cultures and values with CE principles [24,29–34]

B11 Lack of established standards for CE activities in healthcare [20,21]

B12 Lack of organizational readiness for CE activities [24,31,33,35–38]

Environmental
Barriers

B13 Lack of safe management of medical waste in healthcare [13,39]

B14 Lack of environmental management [7,27,40,41]

B15 Single-use medical devices and supplies [2,7,42]

Social Barriers

B16 Lack of public perception and commitment to environmental issues [4,20,21,23]

B17 Lack of awareness about circularity [19,24,36,43–46]

B18 Lack of public interest and reaction [21]

Human Resources Barriers

B19 Resistance to change [20,25,47,48]

B20 Limited knowledge-base on environmental problems among
employees for CE activities [23,24,31,35,36,49,50]

B21 Lack of know-how, training, and expertise training for CE activities [19–21,25,26]

B22 Limited HR capacity for CE activities [24,31,33,35–38]

Managerial Barriers

B23 Lack of top management support and commitment about circularity [19–21,23,25,26,30,31,34–
36,45,48,49,51,52]

B24 Proactive strategies for environmental burden [23,27]

B25 Conflict of interest among stakeholders [20,48]

Operational and Technology
Barriers

B26 Challenges in identifying the impacts of environmental practices to
clinical processes [23]

B27 Capacity building [24,29–31,44,46,49,52–55]

B28 Complexity of circularity in healthcare systems [22,47]

B29 Poor infrastructure [5,13,24,46,49,51,53,54,56,57]

B30 Lack of recycling options in medical supplies [4]

B31 Limited IT infrastructure and technologies in medical informatics [25,26,58]

Technologies required for CE principle implementations in healthcare can have ben-
eficial effects on the environment, including maximizing efficiency in usage of energy,



Int. J. Environ. Res. Public Health 2021, 18, 7513 4 of 21

providing cost-efficient solutions, and the elimination of the natural resource waste. How-
ever, the adoption of these technologies, equipment, and solutions requires high-cost
investments. Especially, with the impacts of the COVID-19, the healthcare sector has ex-
perienced a rising shortage of medical supplies, thus, the pandemic created a devastating
financial burden. In addition to the pandemic, the healthcare sector faces challenges arising
from a lack of financial resources and capabilities, hindering investment in green technology
and solutions and for environmentally circular applications [23,59]. The reason underlying
individual hospitals and health systems’ failure to give the required attention to these
eco-friendly medical supplies is due to the challenges in identifying the economic benefits
of environmental investments in the sector. One of the reasons for the lack of attention to
these environmental investments is associated with healthcare’s miscellaneous portfolio,
which includes products of both low and high economic value [3,10]; thus, financial gains
of these investments are difficult to determine.

Governments may have some shortcomings in CE-oriented policy-making, regulation,
implementation, and incentives for the healthcare sector on waste generation, and policies
for the management and improvement of this waste. As a result of the constraints caused
by the lack of government laws and policies, waste produced within the healthcare system
endangers the environment and human health in many ways, as they are not inspected
and recycled. In this context, a key barrier to the health sector’s transition to CE, a more
sustainable option, is the lack of policies that enable health systems to adopt green-focused
solutions and encourage this transition. To strengthen and accelerate the transition into
a more circular and sustainable system for the healthcare sector, an important role will be
played by emerging technologies. However, some views in the current literature suggest
government policies, business models, and management decisions have the power not
only to accelerate the implementation of suitable technologies, but also hinder it [16].
In this context, the lack of favorable policies for using technology and unfavorable gov-
ernment legislation is a key barrier to this transition in the health sector and requires
immediate action.

Supply chain practices in a healthcare environment are deeply connected to orga-
nizational conditions, such as establishing partnerships, allocating responsibilities and
authority, and coordinating and organizing interface processes [20,60]. Therefore, organiza-
tional barriers play a key role in establishing the organizational design, culture, value, and
standards necessary for the adaptation of CE in the healthcare sector. Barriers towards CE
are especially caused by deficiencies in healthcare systems’ organizational culture, such
as poor organizational design, misconceptions about sustainability issues, inconsistent
healthcare culture and values, and lack of established standards for CE activities.

The current healthcare system jeopardizes natural resources, causing irrevocable dam-
ages to the environment. Therefore, safe management and treatment of resultant medical
waste and disposals is essential for eliminating contagion and meliorating the standards for
public health. Although safe management of medical waste and disposal is a requirement
for the prevention and control of health-related infections, necessary to strengthen trust in
services, and reduce the cost of service provision [61], this issue continues to impede the
transition to CE. Additionally, the lack of environmental management contributes to the
generation of hazardous chemical and substances, such as carbon/greenhouse emission,
one of the most widely studied barrier in the literature for emerging countries [62–66]. The
healthcare supply chain accounts for the vast majority of the sector’s global greenhouse gas
emissions. Moreover, the idea that single-use (disposable) medical devices and supplies
are safer than reusable ones is one of the greatest drivers of the dominance of single-use
devices in the healthcare supply chain [7].

Social barriers are also key challenges against CE implementation in the healthcare
sector. For instance, lack of awareness regarding the concepts of sustainability and circu-
larity issues has been determined as the factor that prevents organizations from adopting
advanced environmental conscious practices [67–69]. Apart from the lack of awareness of
circularity on organizational and managerial perspectives, public interest and reaction are
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also substantial influences on adoption of circularity. Therefore, lack of public interest and
reaction to circular equipment (reusable medical devices) hold organizations back, and pre-
vent organizations pursuing circular trends [67,68,70]. Therefore, lack of public perception
and commitment to environmental issues is also a considerable barrier to accomplishing
CE practices.

Limited Human Resources (HR) capacities also hinder the healthcare systems’ imple-
mentations of CE. In this context, the following limitations to CE practices are emphaisized:
resistance to change, lack of knowledge, training, expertise, and training in organizations
for sustainable and circular actions [20,28,71]. In this context, another substantial bar-
rier is limited knowledge among healthcare workers and professionals of environmental
problems, resulting from insufficient HR capabilities.

Managerial barriers, such as lack of top management support and commitment about
circularity, proactive strategies for environmental burden, and conflict of interest among
stakeholders, also play a vital role in CE adoption. These obstacles can affect the moral
judgments of employees, who may face a mismatch between their personal values and
their need to comply with corporate rules [20,28,72]. Even when laws exist, lack of law
enforcement and government support lead to low adherence to sustainability [73,74].

Capacity building (e.g., resources, skills, knowledge, tools, equipment, etc.) as op-
erational and technology barriers towards CE adoption, is among the most frequently
mentioned barriers in the literature [24]. In addition, the size and complexity of cir-
cularity in healthcare systems are considered as another major barrier that inhibits the
improvement of green and circular healthcare systems [22]. Furthermore, the absence of
suitable infrastructure is another crucial barrier for safe management of the healthcare
waste disposal systems [5,16–18], and also lack of recycling options for medical devices and
equipment in terms of their reusability and end-of-life cycle, causing detrimental effects
on the environment. On the technical side, limited IT infrastructure and technologies
in medical informatics can be determined as a barrier, i.e., lack of or insufficient tech-
nologies, poor quality of designs, standards, and codes, and inefficient performance on
circular practices [75–79].

2.2. Big Data Tools in Healthcare Applications

The healthcare system is comprised of broad and complicated medical devices, and
equipment that has a long end-of-life cycle. However, these devices have residual value
at the end of their lifespan, and also have hygienic and quality risks [3]; thus, recycling
of such medical devices has become a controversial issue. The problem of socially, envi-
ronmentally, and economically sustainable disposal of healthcare waste has become even
more complex, especially with the highly infectious waste from COVID-19 patients and
healthcare professionals [5]. If medical waste is not appropriately managed and disposed
of, it poses significant health threats, such as potential infection and injuries to health-
care workers [80], and results in serious damage to the environment. The increase in
healthcare waste is not solely due to demographic growth. Simultaneously, the increasing
usage of disposable (single-use) materials resulting from the growing number and size of
hospitals has contributed dramatically to the rise of these wastes [2,80]. The healthcare
sector has detrimental effects on the environment; thus, healthcare professionals need
to be aware of the environmental cost caused in order to reduce the materials used and
energy consumed [2,81].

The CE concept is designed to be restorative or regenerative, as opposed to a linear
economy, which absorbs limited resources, increases energy use [7], and generates waste.
CE can be defined as an economic model that aims to reuse discarded or used products,
resources, and materials as a production resource by providing protection and restoration
to products and resources. It also deals with social, economic, and environmental issues at
every stage of the system [3,82]. Therefore, the main objective of the CE is the elimination
of waste by extending the product end-of-life cycle and closing the loop for the product
and its components by recycling them back into the system [10]. The transition to a CE
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can provide efficiency measures by increasing cost savings, promoting more supportive
environments and resilient cities, as well as improved and strengthened public health,
healthcare delivery, and quality of life [83].

In the economic transition scenario for emerging economies in the healthcare sec-
tor, the adaptation and application of the CE in the I4.0 brings both opportunities and
challenges [84]. Due to the inherent challenges and difficulties of healthcare data, designing
and conducting big data technologies in this realm has opportunities and benefits [85]. Most
healthcare systems are striving to replace outdated infrastructure and obsolete technologies
with very scarce capital resources [86]. Hence, pervasive big data analytics infrastructures
and computational technologies have begun to play a vital role in competitive and digital
organizations, e.g., in the healthcare and pharmaceutical industry [87,88]. In recent years,
big data has become essential in various fields, including public management, scientific
research, business organizations, healthcare, manufacturing, social networking, and natural
resource management [89].

Broad, diverse, and complicated computerized healthcare datasets that cannot be
processed with traditional software, hardware, or data management tools are called big
data in healthcare [25,90]. Big data refers to access, collects and store a large volume of
data that is difficult to utilize using traditional data processing methods and platforms [89].
These modern big data technologies evaluate these vast amounts of data in a short time,
and generate predictive models through machine learning, and statistical techniques [91].
In this context, big data analytics employs tools such as machine learning algorithms, and
facilitates exploration of meaningful decisions through understanding the structure and
relationships of data [92].

Machine learning tools can be described as a subset of artificial intelligence (AI),
which incorporates algorithmic approaches, allowing computers to solve problems without
the need for complex computer programming [93]. The integration of machine learning
technologies into the healthcare sector and clinical practice has the potential to enhance
healthcare quality [94]. The key areas of use of machine learning tools in the healthcare
sector are clinical workflow design, training of healthcare workers, healthcare profes-
sional’s performance, forecasting of the potential problems and diseases, and legal and
ethical application practices [93]. Machine learning techniques can be integrated with
other soft computing techniques to improve results, depending on their performance
and reliability [95]. Depending upon the increasing significance of quality benchmarks
in public assessments and setting reimbursement rates, it might be valuable to train ma-
chine learning algorithms to direct consumers toward clinical activities that boost quality
outcomes [94]. In addition, the use of machine learning in complex health systems can
support the provision of infrastructure in the field of medical informatics by receiving
information from patients through electronic records.

The main description of optimization generally refers to maximization or minimization
of a numerical problem by providing a function, and finding the most desirable solutions
to a problem. Optimization can be adapted into all engineering regulations, as well as
other fields of data mining [96]. The usefulness of maintenance optimization algorithms
differs significantly based on their capability to calculate an optimal solution in the least
amount of time and money [97].

Artificial neural networks can be defined as a computational approach that focuses on
mathematical structures and models that have a series of connected processing elements,
configuration, and function that perform parallel. Artificial intelligence offers many tech-
nological advances to healthcare services, such as cost-effective and optimal healthcare ser-
vices in real-time, efficient and reliable collaboration among interdisciplinary stakeholders,
and solutions for non-traditional care environments, transforming the healthcare workplace
and workforce, and introducing novel and different health information systems [86].

Cloud computing is generated from the development and integration of the many
independent computing approaches and technologies that refer to utility computing, on-
demand services, grid computing, and self-service internet infrastructures [98]. Cloud
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computing technologies encourage and reinforce IT capabilities so that they can be accessi-
ble at all times and from every location [99,100]. Cloud-based clinical big data analytics
offer intelligence for more reliable and sustainable health tracking [101]. Cloud computing
can provide various benefits to organizations such as the minimization of technology-
related costs (capital, operational expense saving, and labor cost) and accordingly better
healthcare services [102,103], improved infrastructure and, efficient usage of resources, and
increased technology standards and expertise [100,104]. Additionally, there are serious
obstacles in medical informatics (e.g., medical data collection, analysis, management, and
proposing a solution) resulting from its expense-related issues [105,106]. Furthermore,
cloud computing ensures scalability, flexibility, and productivity increase in IT infrastruc-
ture, eliminates costs of energy and power. Observance with legislation, development of
healthcare services, enhanced operating processes and procedures, and accurate decision-
making capability are some important examples of cloud in healthcare practices in terms
of managerial, legal, and operational perspectives [100].

Data mining is the method of observing and revealing previously discovered knowl-
edge, patterns, and trends in datasets, which is used to create meaningful data for gener-
ating predictive models [107]. Data mining technologies comprise a number of different
approaches such as data summarization, clustering, finding dependency networks, clas-
sification, evaluating changes, and specifying outliers [108]. Usage of data mining can
provide proactive solutions to the many barriers and challenges. These technologies aim to
eliminate risks encountered by the organization, and facilitate decision-making processes
of organizations through examining their patterns and trends [107]. Data mining can
assist organizations in healthcare management, customer relationship management [109],
detection of fraud, and abuses to determine unusual, abnormal, and outlier patterns [108].

Social network analysis can be characterized as a social structure that consists of
a group of actors or networks of people who are connected by specific characteristics [110].
Thus, social network analysis usually deals with interactions and communications among
individuals and groups [111]. Rather than the assessment of a single clinical discipline,
social network analysis can be used in optimizing the entire system [112,113].

Statistical techniques are subsidiary mathematical structures that extract meaning-
ful information and insights from the data by making predictions such as modeling,
machine learning, data mining [114], multiple regression, discriminant analysis, logistic
regression [115], nonparametric regression, and cluster analysis [86]. The application areas
of statistical techniques can be categorized as accounting and finance, health and medicine,
research, manufacturing, marketing, and business [115].

3. Methodology

In the methodology section of the study, the first step was setting the search strings
for the identification and search for the barriers, and identifying publications related to our
aim. For this purpose, search queries and strings were prepared before starting the search
(see Table A1).

Based on a detailed investigation of the current literature review, the determined
barriers to circularity in the healthcare industry and corresponding big data solutions
to these barriers are presented. After identifying the barriers, these were categorized
depending on their relevance or dimensions. Big data techniques were also determined
to address each of these barriers. For the implementation step of the study, 30 experts
were selected as decision-makers to decide the best-worst barriers in each dimension,
and among all dimensions separately via interviews. Additionally, for related big data
solutions, these experts were asked to apply VIKOR as a methodology. The best-worst
method and VIKOR method were adopted in this study after a detailed investigation of the
methodology sections of the studies. For instance, Gupta (2018) investigated a novel hybrid
methodology consisting of the best-worst method and the VIKOR method for evaluating
attribute weights, and subsequently rating the numerous alternatives (airlines) in the
airline sector in terms of service quality [116]. Shojaei et al. (2018) proposed an airport
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evaluation and ranking model that combines the Taguchi Loss Function, the best-worst
method (BWM), and the VIKOR approach [117]. Tian et al. (2018) investigated failure
mode and effects analysis (FMEA) by combining a hybrid structure, fuzzy best-worst
method, relative entropy, and a fuzzy VIKOR (VIsekriterijumska optimizacija I KOm-
promisno Resenje) methodology to improve the performance of traditional FMEA [118].
After obtaining results from the respındents, the calculations and validation of the results
must be performed.

Therefore, regarding these aforementioned barriers and relevant big data solutions
discussed in the previous section of this study, the proposed barriers and big data so-
lutions need to be validated through expert opinions. In this context, a group of seven
experts, consisting of two professors from the faculty of medicine (25 and 20 years of expe-
rience, respectively), three industry experts, managing directors of well-known hospitals
(14, 17, and 11 years of experience), and two governmental experts from the Ministry of
Health (14 and 12 years of experience). They met to discuss the predetermined barriers
and related big data solutions. Interviews were held with these industry experts and aca-
demics to discuss the proposed barriers to circularity in the healthcare industry. Although
independent opinions of experts were based on the importance of specific barriers, we
selected the most frequently mentioned barriers that play a major role in the adoption of
CE initiatives in the healthcare sector.

After the validation process, the healthcare barriers to circularity were matched with
Big Data solutions. Figure 1 displays the all-inclusive flow of current research work.

Figure 1. The overall flow of current research work.
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The fuzzy best-worst method was adopted to this study to calculate the relevant
barrier and sub-barrier weights, and the fuzzy VIKOR method was used for ranking the
big data analytics solutions for predetermined barriers.

The next section introduces the fuzzy set theory, the fuzzy best-worst method, and the
fuzzy VIKOR method.

3.1. Fuzzy Set Theory

The process of decision-making involves some vagueness as a result of the ambiguity
in the decision-making process. In attempt to deal with uncertainty, Zadeh [119] developed
fuzzy set theory. This idea assists decision-makers in minimizing the subjectivity and
ambiguity of human-related factors. A fuzzy set is referred to as a collection of objects with
a range of grades.

3.2. Fuzzy Best-Worst Method

The best-worst method (BWM) is a comparatively new method, which was introduced
by Rezaei [120]. As BWM is a vector-based method, it requires fewer pairwise comparisons
compared to AHP or ANP, and the solution may be reached in a shorter time and with less
complication. Furthermore, BWM comprises a mathematical model.

For weighing the criteria, BWM has five steps to follow.
Step 1: A criterion set, which is {c1, c2, . . . , cn} is defined;
Step 2: The most important (cB), and least important (cW) criteria are identified;
Step 3: The most important criterion is compared with each of the other criteria. The

best-to-others vector is identified by comparing the most important criterion with each of
the other criteria. The best-to-others vector can be expressed as ÃB = (ãB1, ãB2, . . . , ãBn,).
ãBj represents the fuzzy force of the most important criterion over criterion j. For example,
ãBB = (1, 1, 1);

Step 4: Each of these criterion needs to be compared with the least important crite-
rion. The others-to-worst vector is identified by comparing each criterion with the least
important one. The others-to-worst vector can be denoted as ÃW = (ã1W , ã2W , . . . , ãnW)T .
ãiW rerepresents the criterion’s fuzzy force j over the least important criterion. For instance,
ãWW = (1, 1, 1)

Step 5: The optimal or ideal fuzzy weights (w̃∗
1 , w̃∗

2 , . . . , w̃∗
n) are calculated. The optimal

fuzzy weights are w̃B/w̃j=ãBj and w̃j/w̃W = ãjW for each pair. The maximum absolute

differences are determined as
∣∣∣ w̃B

w̃j
− ãBj

∣∣∣ and
∣∣∣ w̃j

w̃W
− ãjW

∣∣∣ for all j. All j values need to be

formulated as a minimization model. w̃B, w̃W , and w̃j are triangular fuzzy numbers.
The mathematical model was developed as follows:

Minimize max

{∣∣∣∣∣ w̃B
w̃j

− ãBj

∣∣∣∣∣,
∣∣∣∣ w̃j

wW
− ãjW

∣∣∣∣
}

s.t.



n
∑

j=1
R
(
w̃j
)
= 1

lw
j ≤ mw

j ≤ uw
j

lw
j ≥ 0

j = 1, 2, . . . , n

w̃B = (lw
B , mw

B , uw
B ), w̃W = (lw

W , mw
W , uw

W), w̃j = (lw
j , mw

j , uw
j ),

This mathematical model can be written as follows:
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Minimize ξ̃

s.t.



n
∑

j=1
R
(
w̃j
)
= 1

lw
j ≤ mw

j ≤ uw
j∣∣∣ w̃B

w̃j
− ãBj

∣∣∣ ≤ ξ̃∣∣∣ w̃j
wW

− ãjW

∣∣∣ ≤ ξ̃

lw
j ≥ 0

j = 1, 2, . . . , n

ξ̃=
(

lξ , mξ , uξ
)

.

It can be supposed that ξ̃∗ = ( k∗, k∗, k∗ ) and k∗ ≤ lξ when lξ ≤ mξ ≤ uξ . The
model can then be formulated as:

Minimize ξ̃

s.t.



n
∑

j=1
R
(
w̃j
)
= 1

lw
j ≤ mw

j ≤ uw
j∣∣∣∣∣ lw

B , mw
B , uw

B(
lw
j , mw

j , uw
j

) − (lBj, mBj, uBj
)∣∣∣∣∣ ≤ ( k∗, k∗, k∗ )∣∣∣∣∣

(
lw
j , mw

j , uw
j

)
(lw

W , mw
W , uw

W)
−
(
ljW , mjW , ujW

)∣∣∣∣∣ ≤ ( k∗, k∗, k∗ )

lw
j ≥ 0

j = 1, 2, . . . , n

The optimal fuzzy weights, (w∗
1 , w∗

2 , . . . , w∗
n) can be obtained.

3.3. Fuzzy VIKOR

The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method was
introduced by Opricovic [121], and Opricovic and Tzeng [122]. The main aim of the VIKOR
method is identified as selecting the best alternative among others.

Opricovic [123] highlighted the steps of fuzzy VIKOR as the following:
Step 1: The fuzzy best and worst values are identified. The fuzzy best value

f̃ ∗j =
(

l∗j , m∗
j , r∗j

)
and fuzzy worst value f̃−j =

(
l−j , m−

j , r−∗
j

)
are found as follows:

f̃ ∗j = max
i

x̃ij

f̃−j = min
i

x̃ij

Step 2: The fuzzy difference (d̃ij) is found as follows:

d̃ij =
(

f̃ ∗j − x̃ij

)
/
(

r∗j − l−j
)

Step 3: The separation values S̃i, and R̃i of ith alternative are found as follows:

S̃i =
m

∑
j=1

w̃j × d̃ij

R̃i = max
j

w̃j × d̃ij



Int. J. Environ. Res. Public Health 2021, 18, 7513 11 of 21

where S̃i =
(

Sl
i , Sm

i , Sr
i

)
is a weighted score of the sum in terms of the separation value of

ith option from f ∗j . In a similar way, R̃i =
(

Rl
i , Rm

i , Rr
i

)
determines the separation value

of ith alternative from f−j . wi is the respective criterion’s weight, Cj;

Step 4: Qi value is found: The value of Q̃i = (li, m, ri) is found by:

Q̃i = v
[(

S̃i − S̃∗
)

/
(

S−r − S∗l
)]

+ (1 − v)

[
R̃i − R̃∗

R−r − R∗l

]

where S̃∗ = miniS̃i, S̃−r = maxiS̃r
i , R̃∗ = miniR̃i, and R̃−r = miniR̃i. v represents the

weight for the maximum group utility, whereas (1 − v) shows the weight for individual
regret. Then, S̃i, R̃i, and Q̃i values are defuzzified to reveal the crisp values. The crisp Si,
Ri, and Qi values are sorted escalatory order. The best alternative is identified through the
corresponding minimum Qi value when the following two conditions are satisfied:

1. Q
(

A(2)
)
− Q

(
A(1)

)
≥ DQ, where A(1) and A(2) are the first- and second-best alter-

natives, respectively;
2. A(1) must also be found as the best alternative respecting Si, and Ri values [124].

4. Case Study

This study mainly addresses the implementation phase, conducted in five chain
hospitals located in Izmir, Turkey. However, it is important to note that these selected
hospitals were chain hospitals, with branches operating in various regions of Turkey. Thus,
the results of the study may be generalizable beyond the Izmir region.The major purpose
is to determine the barriers of circular economy for the healthcare industry, and propose
big data solutions to overcome each barrier.

The pairwise comparisons are conducted with 30 experts with different backgrounds.
Table 2 displayed participant’s information during the study.

Table 2. Information about Participants.

Experts Position of the
Participants

Years of Work Experiences
(in Total) Experts Position of the

Participants
Years of Work Experiences

(in Total)

1 Hospital Manager 21 16 Sustainability Expert 11

2 Hospital Manager 18 17 Sustainability Expert 9

3 Hospital Manager 14 18 Sustainability Expert 10

4 Hospital Manager 17 19 Circularity Expert 8

5 Hospital Manager 18 20 Circularity Expert 9

6 Head Doctor 24 21 Information Technology
Expert 15

7 Head Doctor 20 22 Information Technology
Expert 13

8 Head Doctor 19 23 Information Technology
Expert 9

9 Head Doctor 23 24 Information Technology
Expert 14

10 Head Doctor 27 25 Information Technology
Expert 18

11 Supply Chain Manager 13 26 Ministry of Health Personnel 11

12 Supply Chain Manager 15 27 Ministry of Health Personnel 12

13 Supply Chain Manager 9 28 Ministry of Health Personnel 9

14 Supply Chain Manager 15 29 Ministry of Health Personnel 14

15 Supply Chain Manager 14 30 Ministry of Health Personnel 7
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The proposed framework can be used for generic purposes where circular economy
barriers in healthcare industry are studied; however, the findings are unique and cannot
be generalized.

Table 3 demonstrates the best and worst criteria for each main criterion.

Table 3. The best and worst criteria for each main criterion.

Main Criteria Best Criteria Worst Criteria

Economic and Financial High cost requirement for circular technologies
and implementations Lack of demand for eco-friendly medical supplies

Policy Unfavorable government legislation and execution on
circular healthcare Lack of favorable policies for using technology

Organizational Lack of organizational readiness for CE activities Current institutional misconceptions
about sustainability

Environmental Lack of safe management of medical waste in healthcare Single-use medical devices and supplies

Social Lack of awareness about circularity Lack of public interest and reaction

Human Resources Lack of know-how, training, and expertise training for
CE activities Resistance to change

Managerial Lack of the top management support and commitment
about circularity Proactive strategies for environmental burden

Operational and Technology Complexity of circularity in healthcare systems Limited IT infrastructure and technologies in
medical informatics

The weights of the main barriers were found as the step-by-step application of fuzzy
BWM, and can be shown in Table 4.

Table 4. The Weights of Main Barriers.

Main Barriers Weights

Economic and Financial 0.275

Policy 0.203

Organizational 0.087

Environmental 0.111

Social 0.056

Human Resources 0.073

Managerial 0.079

Operational and Technology 0.117

According to the results in Table 4, economic and financial barriers were classified as
the most substantial barrier to circularity with 0.275 weight. Policy barriers, operational
barriers, and environmental barriers were also found as the other substantial barriers.

The weights of the sub-barriers within their own cluster, and the overall individual
weights can be shown in Table 5.

Table 5. Sub-Barrier Weights.

Barriers Weights of
Barriers Sub-Barriers Weights of

Sub-Barriers
Overall Individual

Weights

Economic and
Financial 0.275

High cost requirement for circular technologies
and implementations 0.477 0.131

Lack of financial capabilities and resources on
environmental investments 0.252 0.069

Challenges in identifying the economic benefits of
environmental investments 0.166 0.045

Lack of demand for eco-friendly medical supplies 0.106 0.029
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Table 5. Cont.

Barriers Weights of
Barriers Sub-Barriers Weights of

Sub-Barriers
Overall Individual

Weights

Policy 0.203

Lack of circular policies, incentives, and regulations in healthcare 0.310 0.063

Lack of favorable policies for using technology 0.150 0.030

Unfavorable government legislation and execution on
circular healthcare 0.540 0.110

Organizational 0.087

Poor organizational design for CE principles 0.153 0.013

Current institutional misconceptions about sustainability 0.095 0.008

Inconsistency of healthcare cultures and values with CE principles 0.230 0.020

Lack of established standards for CE activities in healthcare 0.137 0.012

Lack of organizational readiness for CE activities 0.385 0.033

Environmental 0.111

Lack of safe management of medical waste in healthcare 0.601 0.066

Lack of environmental management 0.246 0.027

Single-use medical devices and supplies 0.153 0.017

Social 0.056

Lack of public perception and commitment to environmental issues 0.192 0.011

Lack of awareness about circularity 0.660 0.037

Lack of public interest and reaction 0.147 0.008

Human Resources 0.073

Resistance to change 0.100 0.007

Limited knowledge-base on environmental problems among
employees for CE activities 0.205 0.015

Lack of know-how, training, and expertise training for CE activities 0.540 0.039

Limited HR capacity for CE activities 0.154 0.011

Managerial 0.079

Lack of the top management support and commitment about
circularity 0.640 0.051

Proactive strategies for environmental burden 0.167 0.013

Conflict of interest among stakeholders 0.192 0.015

Operational and
Technology 0.117

Challenges in identifying the impacts of environmental practices to
clinical processes 0.133 0.016

Capacity building 0.122 0.014

Complexity of circularity in healthcare systems 0.415 0.049

Poor infrastructure 0.178 0.021

Lack of recycling options in medical supplies 0.094 0.011

Limited IT infrastructure and technologies in medical informatics 0.058 0.007

Accordingly, “High cost requirement for circular technologies and implementations”
was found as the most important barrier, with a weight of 0.131. Other important barriers
were found to be “Unfavorable government legislation and execution on circular health-
care”, “Lack of financial capabilities and resources on environmental investments”, “Lack
of safe management of medical waste in healthcare”, “Lack of circular policies, incentives,
and regulations in healthcare”, “Lack of the top management support and commitment
about circularity”, “Complexity of circularity in healthcare systems”, and “Challenges in
identifying the economic benefits of environmental investments”.

After the implementation of the best-morst method, the next step was to identify ways
to overcome these barriers. In this context, the VIKOR method was applied in the study in
order to determine which big data-enabled technologies and solutions would appropriate
for a smoother CE transition in the healthcare sector. Therefore, to overcome the barriers to
CE initiatives, the experts investigated related big data technologies, including statistical
techniques, cloud computing, data mining, artificial neural network, optimization, machine
learning, and social network analysis.
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According to the VIKOR application, Table 6 presents the rankings of the Big Data
solutions for overcoming the barriers connected with a CE in healthcare industry. The
ranking for the barriers is calculated via fuzzy VIKOR method.

Table 6. Rankings of Big Data Solutions.

Rankings Solutions Qi

1 Cloud Computing 0.065

2 Artificial Neural Network 0.313

3 Optimization 0.455

4 Data Mining 0.496

5 Machine Learning 0.551

6 Statistical Techniques 0.749

7 Social Network Analysis 0.882

Accordingly, cloud computing was found as the most important solution of big data
to overcome the barriers to CE in healthcare industry. Other important solutions were
found to be artificial neural networks, optimization, and data mining.

5. Discussion of Findings

The results suggest that 8 of 31 barriers were found as important: namely “High cost
requirement for circular technologies and implementations”, “Unfavorable government leg-
islation and execution on circular healthcare”, “Lack of financial capabilities and resources
on environmental investments”, “Lack of safe management of medical waste in health-
care”, “Lack of circular policies, incentives, and regulations in healthcare”, “Lack of the top
management support and commitment about circularity”, “Complexity of circularity in
healthcare systems”, and “Challenges in identifying the economic benefits of environmen-
tal investments”. These combined have a total nearly 58% of importance weight. Three
were determined among economic and financial barriers, two were policy barriers, and
one each was environmental, managerial, and operational and technology barriers. This
is not a surprise, as financial constraints were considered the most important obstacles in
healthcare sector. In addition, policy barriers were directly related to governmental and
legal issues, which were externally determined by governmental institutions; therefore, it
is natural to find policy barriers as important.

Cloud computing was found as the most important big data solution to overcome
the barriers to CE in the healthcare industry. In addition to that artificial neural networks,
optimization, and data mining were suggested as other important solutions that can be
adopted for addressing CE barriers and overcoming them. This was expected, as cloud
computing can provide subsequent benefits to organizations, such as the minimization
of cost for technology investments (capital, operational expense saving, and labor cost)
and, accordingly, better healthcare services [102,103], overcoming poor infrastructure,
insufficient resources, and lack of expertise and technology [100,104].

5.1. Managerial Implications

According to the results of the study, it can be deduced that insufficient or non-
existent infrastructure investments of hospitals result from the high-cost of adopting and
implementing these circular technologies. This result shows that hospitals need to take
a more proactive role in improving the healthcare infrastructure, as it allows for rapid
adaptation to continuously changing environments, which improves response times during
pandemics [125]. In order to propose a solution for healthcare organizations with insuffi-
cient resources to invest in circular technologies and build infrastructure, cloud technologies
are appropriate due to their infrastructure and different platforms, allowing users to install
and run their applications in virtual servers based on their specific requirements [104].
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Additionally, the lack of know-how, training, and expertise barrier is a substantial
obstacle to the effective implementation of the circular activities, due to the recruitment,
training, expertise, and knowledge of the medical staff involved. Thus, these processes
require digital capabilities, skills, and in-job training, which can be used to increase the
medical staff’s capacities. The artificial neural network (ANN) model could be valuable in
the recruitment processes to determine and predict the staff’s expertise and performance-
related information, and applied to in-job training to increase the capability and capacity
of the workers. In addition, the results show that stakeholder management should be
improved, as the healthcare industry’s multi-stakeholder structure needs to be digitally
managed. The inimitableness of the healthcare sector, which has a substantial effect on the
design of SCs, derives from its features such as the complexity of circular technologies, and
the multiple tiers of stakeholders in the healthcare supply chain [60]. In this context, it is
necessary to examine entire health processes and tiers in detail to reveal all the complexities
of the healthcare supply chain for this transition. Process reengineering, data mining, and
machine learning can be adapted to reveal the complexities of this barrier.

5.2. Policy Implications

Policy barriers are one of the two most important barriers, according to the global
weights in all dimensions. Thus, policy implications have a causal relationship with the
other barriers, and solutions to these barriers might provide effective solutions to the
others. For instance, the underlying reason for most barriers is the lack of education and
sufficient incentives. It is therefore vitally important to provide government legislation for
education about circular practices. The competence to use digital technologies effectively
needs to be a key focus in the healthcare sector. Students’ digital skills, analytical thinking,
and decision-making skills are becoming incrementally important, and are highly related
with the rapid transition and adaptability to the ever-changing conditions. This solution
involves incorporating artificial intelligence and data mining in digital skills education.
Furthermore, the optimization tool of big data can be beneficial in analytical thinking.
Finally, optimization and statistical techniques can be adapted to the purpose of decision-
making processes. Additionally, focusing on education can play a key role in reducing the
deficiencies in know-how, training, and expertise. Government incentives are another cru-
cial element due to the high cost of in-job training required for the development of workers.
These cost-related investments must be encouraged and supported by the government.
Data mining and machine learning tools can be used to reduce the financial burden of
these requirements.

5.3. Theoretical Implications

The systems approach can be suitable for the healthcare sector, which is composed
of multiple tiers and stakeholders. A systems approach can be described as a way of
thinking in terms of connectedness, interactions, and context towards sustainability imple-
mentations, which can be a more valuable viewpoint than other theoretical approaches.
A systems methodology entails gathering together experts from the appropriate disciplines
into a team, which then uses a systematic framework to deliver a system, operating from
needs to specifications and concept to implementation [126].

6. Conclusions

In the healthcare sector, the conservation of the natural resources is hindered by
insufficient infrastructure for managing residual waste resulting from the usage of single-
use medical materials, and by the environmental burden of excessive energy use. In
addition, the COVID-19 pandemic has increased the challenges to the already strained
healthcare sector. Additionally, economic crisis in the healthcare sector has had a huge
impact, urging a faster transition to environmental sustainability, and the adoption of
business strategies to eliminate residual waste and lower costs [127]. In this context, the
circularity and sustainability concepts have become a must for healthcare to meliorate the
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sector’s negative impacts on the environment. Therefore, this study aims to identify the
circular-related barriers in the healthcare sector and propose solutions.

In order to propose solutions to challenges, a detailed examination of the existing
literature on healthcare was conducted, and it was understood that big data technologies
and tools should be applied to the healthcare supply chain. Additionally, it was found that
the connection between circularity (CE) and big data was a gap in the current literature
hindering circularity practices in healthcare. Therefore, this problem requires special
attention and solution suggestions. Usage of big data tools can provide social, economic,
and environmental opportunities, and innovative solutions for circularity practices in the
healthcare sector, especially during a pandemic, in which medical waste are ever increasing.
In the health sector, waste management and recycling activities are key in reducing costs
and, thus, enabling better patient care [61]. In this context, the main contribution of this
study is the proposal for a big data-enabled framework for CE adoption in healthcare.

A detailed examination of the existing literature in the healthcare sector allowed the
identification of barriers to CE transition. As a result, determined 31 sub-barriers were
categorized under eight main dimensions. Fuzzy set theory was also incorporated into the
study in order to deal with subjective and vague human decisions. For obtaining ranking
and weights to these barriers, the fuzzy best-worst method was applied to find the best
and worst main and sub-barriers. After this step, the fuzzy VIKOR method was used to
rank the alternatives.

Accordingly, “High cost requirement for circular technologies and implementations”
was found as the most important barrier. Other important barriers were “Unfavorable
government legislation and execution on circular healthcare”, “Lack of financial capabilities
and resources on environmental investments”, “Lack of safe management of medical waste
in healthcare”, “Lack of circular policies, incentives, and regulations in healthcare”, “Lack
of the top management support and commitment about circularity”, “Complexity of
circularity in healthcare systems”, and “Challenges in identifying the economic benefits
of environmental investments”. Cloud computing was found as the most important big
data solution to overcome the barriers to CE in healthcare industry, and other important
solutions were artificial neural networks, optimization, and data mining.

This study addresses a case study implementation in Turkey, which is a developing
economy, thus it can be identified as a limitation of this study because of the generalizability
of the results. When the implementation is applied to a developed country, different results
may emerge. Another limitation is that the data used includes subjective judgments.

Future research might focus on the implementation of this proposed framework
in other developing and emerging economies. Additionally, to better understand the
implications of the framework, further studies could focus on determining the cause and
effect relationship among barriers to CE and analytics of big data.
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Appendix A

Table A1. The Search Strings for Examination of Barriers.

Healthcare (“healthcare sector” OR “medical” OR “health management” OR “public health” OR “health”)

AND

Big Data Techniques

(“machine learning tools” OR “cloud computing” OR “artificial neural network” OR “optimization” OR
“data mining” OR “statistical techniques” OR “social network analysis” OR “A/B testing” OR “data
fusion and data integration” OR “natural language processing” OR “statistics” OR “association rule

learning” OR “sentiment analysis” OR “genetic algorithms” OR “classification tree analysis” OR
“regression analysis” OR “predictive modeling” OR “feature engineering”)

AND

Circular Economy

(“circular economy” OR “green economy” OR “closed-loop economy” OR “circularity” OR
“sustainability” OR “single-use medical materials” OR “medical waste” OR “greenhouse-gas emissions”
OR “recycle” OR “reuse” OR “refuse” OR “reduce” OR “refurbish” OR “remanufacture” OR “repair” OR

“recovery” OR “repurpose”)

AND

Barriers (“barriers” OR “challenges” OR “obstacles”)
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