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Cancer cells can survive chemotherapy-induced stress, but how
they recover from it is not known. Using a temporal multiomics
approach, we delineate the global mechanisms of proteotoxic stress
resolution in multiple myeloma cells recovering from proteasome
inhibition. Our observations define layered and protracted programs
for stress resolution that encompass extensive changes across the
transcriptome, proteome, and metabolome. Cellular recovery from
proteasome inhibition involved protracted and dynamic changes of
glucose and lipid metabolism and suppression of mitochondrial func-
tion. We demonstrate that recovering cells are more vulnerable to
specific insults than acutely stressed cells and identify the general
control nonderepressable 2 (GCN2)-driven cellular response to amino
acid scarcity as a key recovery-associated vulnerability. Using a tran-
scriptome analysis pipeline, we further show that GCN2 is also a
stress-independent bona fide target in transcriptional signature-
defined subsets of solid cancers that share molecular characteris-
tics. Thus, identifying cellular trade-offs tied to the resolution of
chemotherapy-induced stress in tumor cells may reveal new ther-
apeutic targets and routes for cancer therapy optimization.

proteasome | myeloma | proteostasis | GCN2 | metabolism

One of the distinguishing characteristics of cancer cells is
their ability to overcome barriers that would normally neg-

atively impact their survival, growth, proliferation, or metastatic
spread (1). Cancer cells overcome diverse challenges such as nu-
trient scarcity, mechanical stress, or immune attack through cel-
lular adaptations that enhance traits that increase their fitness in a
selective environment. For example, cancer cells in hypoxic tumor
regions activate a gene-expression program that rewires cellular
energy metabolism, allowing them to thrive in limiting conditions
(2, 3). However, given that cellular resources are finite, promoting
adaptive hallmarks in one context is likely to come at the expense
of decreased fitness in other selective conditions. In evolutionary
biology, such effects are known as trade-offs (4–7) and are mir-
rored in cancer cell biology when tumor-promoting genetic or
phenotypic changes simultaneously confer a vulnerability on al-
ternative cellular processes (8–11).
Anticancer therapies are often administered in temporally spaced

doses that each kill a fraction of tumor cells by causing over-
whelming cellular injuries, while other cells survive. In this scenario,
a substantial proportion of the remaining tumor cells nonetheless
suffer from drug-induced stress that they need to resolve to survive
and proliferate. The redistribution of cellular resources that is re-
quired for stress resolution is likely to decrease cellular fitness to

withstand alternative challenges. In short, vulnerabilities linked
to cellular recovery from anticancer therapies represent trade-
offs that may reveal therapeutic targets and offer new routes for
enhancing drug synergies. However, how cancer cells manage to
resolve therapy-induced stress is not known.
The bone marrow cancer, multiple myeloma (MM), and its

treatment with proteasome inhibitors (PIs) represent a scenario
in which therapy-induced cellular fitness trade-offs can modulate
clinical responses. PIs are proteotypical proteostasis-targeting drugs
that by disrupting the ubiquitin–proteasome system, which is re-
sponsible for the controlled degradation of most cellular proteins,
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kill tumor cells through an array of proteotoxic effects both
upstream and downstream of the proteasome, such as accumu-
lation of misfolded proteins and impaired amino acid recycling
for protein synthesis (12–16). Treatment typically consists of weekly
PI doses that each eliminate a fraction of MM cells by triggering
overwhelming stress, while other tumor cells survive. Clinically, this
means that most patients respond to PI treatment but also that
curative elimination of all cancer cells cannot be achieved (17).
Working toward understanding the stress–recovery paradigm and
using an integrated systems-level approach to study cellular events,
we show that the MM cell transcriptome, proteome, and metab-
olome undergo unexpectedly complex and protracted changes
during the resolution of PI-induced stress. We conclusively dem-
onstrate that recovering cells are more vulnerable to specific insults
than acutely stressed cells and identify mitochondrial respiration
and the cellular response to amino acid depletion as druggable
recovery-associated vulnerabilities. Moreover, we demonstrate that
general control nonderepressible 2 (GCN2), a kinase that governs
the resolution of amino acid scarcity (18, 19), is a bona fide ther-
apeutic target in transcriptional signature-defined subgroups of di-
verse cancers irrespective of PI treatment.

Results
Resolution of Proteasome Inhibitor-Induced Stress Entails Protracted
System Perturbations. To establish a clinically relevant in vitro
model of PI stress recovery, we exposed RPMI-8226 MM cells to
a 1 h pulse of the PI carfilzomib at 750 nM, which reduced the
number of viable cells by ∼50% 2 d after the pulse (Fig. 1A). This
approach closely replicates typical clinical pharmacokinetics and
antitumor responses in MM patients (20, 21). We then carried
out sequential transcriptome analyses by RNA sequencing, quan-
titative proteome analyses using a tandem mass tag (TMT) labeling
approach, and metabolite profiling by liquid chromatography–mass
spectrometry (LC–MS) at baseline and 1, 2, 4, 6, 8, and 10 d after
treatment. At the same time points, we also collected mRNA and
whole-cell protein extracts for quantitative real-time PCR and im-
munoblotting analyses, respectively, and cell culture supernatants
for biochemical profiling by NMR spectroscopy. The number of
viable cells reached a nadir on day 2 after proteasome inhibition
and recovered to pretreatment levels on day 6 (Fig. 1A and SI
Appendix, Fig. S1A). The amount of ubiquitinated proteins in
whole-cell extracts as a readout of proteasome inhibition peaked
on day 1 and then decreased to, or even slightly beyond, pretreat-
ment levels on day 6 (Fig. 1B). A largely comparable temporal
pattern of changes in viable cell numbers and ubiquitinated protein
levels was observed in four other MM cell lines (SI Appendix, Fig.
S1 B and C). Analysis of apoptosis and cell cycle in RPMI-8226 cells
showed that the proportion of apoptotic cells peaked on day 4,
while proliferation was lowest on day 2 and began to increase by day
4 (SI Appendix, Fig. S1 D–F).
To identify significant differences in transcripts, proteins, and

metabolites compared to baseline (day 0), we used a 5% false dis-
covery rate as cutoff, in line with comparable multiomics ap-
proaches (22, 23) (Fig. 1C). To enhance stringency further, a fold
change > 2 was used as an additional cutoff for mRNA expression.
The number of deregulated transcripts peaked on day 1 (n = 2,792
out of 18,062 transcripts, 15.5%) but was still at 4% (715 transcripts)
on day 10. The highest number of deregulated proteins was ob-
served on day 2 (n = 1,303 out of 7,206 proteins, 18.1%), while the
largest proportion of deregulated metabolites was seen on day 8
(n = 48 out of 537 metabolites, 8.9%). We then performed
principal component analysis (PCA) of transcriptomic, proteo-
mic, and metabolomic data (Fig. 1D and SI Appendix, Fig. S1G),
which showed separation of day 10 from day 0 samples, indicating
that stress resolution was not complete on day 10. Moreover, PCA
patterns indicated that the transcriptome, proteome, and metab-
olome of recovering cells differed from acutely stressed cells,

suggesting that stress resolution was not a simple reversal of the
processes that occurred during stress buildup.
In line with previous reports, we observed moderate but pos-

itive and significant correlations (r value range 0.222 to 0.344,
P < 0.0001 for all days) between the fold changes of up- or down-
regulated transcripts and proteins (22, 23) (SI Appendix, Fig.
S1H). To further characterize the kinetics of the responses to
proteasome inhibition, we focused on temporal changes in the
transcriptome. First, using unsupervised machine learning ap-
plied to the time-course response of each transcript, we built a
gene-to-gene network graph from the RNA-sequencing time
series (Fig. 1E), where nodes represent transcripts, and the
strength of connections between nodes represent the similarity of
their time courses. Next, the network was clustered using a
multiscale algorithm, which resulted in six clusters of 2,542
transcripts in total that represent the most prominent patterns of
gene-expression changes (SI Appendix, Fig. S2A). Each cluster
contained between 318 (cluster 6) and 549 (cluster 5) transcripts
(Table S1) and was characterized by a unique temporal gene-
expression profile (Fig. 1F). Pathway enrichment analysis in each
cluster showed pronounced activity in pathways linked to the
endoplasmic reticulum (ER) or proteasome-related protein
processing, the unfolded protein response, and autophagy in
clusters 1 and 2 (SI Appendix, Fig. S2 B and C), indicating that
these processes were most active on day 1. Cell-cycle–associated
pathway enrichment was predominantly found in cluster 3, in-
dicating the reinitiation of proliferation during early recovery, in
line with our cell-cycle analyses (SI Appendix, Fig. S1 E and F). In
clusters 5 and 6, we observed enrichment of pathways related to
protein processing at the ER and incorrect protein folding, and
ribosome biogenesis and protein synthesis, indicating challenges
of maintaining proteostasis while restoring a fully operational
translational program.

Proteasome Renewal and Oxidative Stress Dominate Early Proteasome
Inhibition Effects. Focusing on events during stress buildup, we first
compared our findings with those of the only study we are aware
of in which the myeloma cell transcriptome of newly diagnosed
patients was analyzed after a single in vivo dose of a PI (24). In this
study, patients received a dose of bortezomib and underwent a
bone marrow aspirate 48 h later followed by gene-expression
profiling, which identified 65 genes with significantly altered
expression that were highly survival discriminatory. Of those, 59
transcripts were captured by our RNA-sequencing approach. Despite
differences in the gene-expression analysis platform and proteasome
inhibitor used, and the heterogeneity of the patient population, 45
(76%) and 39 (66%) of the genes were also significantly deregulated
on day 1 and 2, respectively, of our experiment (Fig. 2A and Table
S2). These results highlight that our experimental model faithfully
recapitulates clinically relevant effects of in vivo treatment with PIs.
One of the most striking early effects of proteasome inhibition

we observed in line with the Shaughnessy study (24) was the quick
and robust up-regulation of 35 proteasome subunit mRNAs,
which were found predominantly in transcript cluster 2 (Table S1).
This rapid but largely transient increase in transcripts in acutely
stressed cells was observed for both 19S and 20S subunits. However,
more 19S than 20S subunit transcripts subsequently dropped to below
baseline levels during stress resolution (SI Appendix, Fig. S3A). Ac-
cordingly, gene set variation analysis (GSVA) also showed protea-
somal pathway enrichment that peaked on day 1, followed by a return
toward baseline (SI Appendix, Fig. S3B). Transcripts coding for the
proteasome “bounce-back” regulator p97 (VCP) and its cofactors
NPLOC4 and UFDL1 were also found in clusters 1 and 2. Thus, the
cellular response by which proteasome subunits are renewed upon PI
(25–27) was triggered rapidly.
Another prominent, early PI effect was the rapid onset of

oxidative stress. Nuclear factor erythroid 2-related factor 2 (NRF2,
encoded by NFE2L2) is a transcription factor that regulates genes,
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Fig. 1. Global analysis of transcript, protein, and metabolite changes in MM cells recovering from proteasome inhibition. (A) Percentage of viable RPMI-8226
cells before and after carfilzomib (Cfz; 750 nM, 1 h) treatment (n = 4) as determined by Trypan Blue exclusion. (B) Immunoblot analysis of ubiquitinated
proteins in whole-cell extracts from Cfz-treated RPMI-8226 cells (representative blot of n = 3). (C) Proportion of significantly deregulated transcripts, proteins,
and metabolites (total numbers are indicated). (D) Unsupervised principal component (PC) analysis plots for transcripts, proteins, and metabolites. Percent (%)
explained variation per PC is indicated by axis labels. (E) Gene-to-gene network for RNA sequencing data. Each node represents a transcript, and the con-
nections between nodes represent the degree of similarity between their temporal response across all measured days; colors represent clusters of genes with
similar temporal responses. (F) Average temporal expression profile of transcripts in clusters shown in E, also indicating the number of transcripts contained in
each cluster.
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Fig. 2. Recovery from proteasome inhibition entails oxidative stress resolution and triggers dynamic shifts in energy metabolism. (A) Heatmap showing
deregulated and prognostic transcripts in myeloma cells derived from patients following treatment with a single dose of bortezomib (Shaughnessy et al.) (24)
that were also identified by RNA sequencing in this study (red, up-regulated; blue, down-regulated; white, no significant change; two-way ANOVA, Dunnett’s
test for multiple comparison, significance cutoff P < 0.05). (B) Heatmap representing relative levels of oxidative stress-related metabolites in carfilzomib-
treated RPMI-8226 cells. SAM, S-adenosyl methionine; SAH, S-adenosyl-L-homocysteine; GSH, glutathione; CySSG, cysteine-glutathione disulfide (data shown
as mean intensity, log2, of each metabolite normalized to day 0, n = 3). (C) Heatmap indicating relative levels of glycolytic metabolites. G6P, glucose
6-phosphate; F1,6BP, fructose 1,6-biphosphate; F6P, fructose 6-phosphate; G3P, glycerol 3-phosphate; DHAP, dihydroxyacetone phosphate (data shown as
mean intensity, log2, of each metabolite normalized to day 0, n = 3). (D) Enrichment of glycolysis pathways as determined via GSVA of RNA-sequencing data.
For visualization, the enrichment score range was scaled to be between −1 (underrepresented gene sets, blue) and +1 (overrepresented gene sets, red), also
represented by the size of circles. K, KEGG; R, Reactome; B, Biocarta. (E and F) Metabolite consumption (negative values) and release (positive values) rates of
glucose (E) and lactate (F) for RPMI-8226 cells based on NMR spectroscopy of cell culture supernatants (mean ± SEM, n = 3). (G) Immunoblot analysis of TXNIP
and GLUT1 levels (representative blot of three independent experiments). (H) Changes in intracellular lipid-subfamily metabolites (mean ± SEM, n = 3) in
response to carfilzomib (Cfz).
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which contain antioxidant response elements in their promoters,
and has been linked to PI treatment (28). We observed up-regulation
of multiple NRF2 target-gene mRNAs predominantly in transcript
cluster 2 (SI Appendix, Fig. S3C). Moreover, the NRF2 target
HMOX1 (transcript cluster 2) stood out as the most highly expressed
protein of all on day 1 (SI Appendix, Fig. S3D). We also observed a
sharp and transient increase in levels of the major antioxidant,
glutathione (GSH), its precursors, and its metabolite cysteine–
glutathione disulphide (CySSG) (Fig. 2B and Table S3). Thus, a
PI pulse rapidly triggered oxidative stress and a cellular response
that gradually resolved it.

Proteasome Inhibition Temporarily Enhances Glycolysis Followed by
Increased Fatty Acid Catabolism. Prompted by Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis of RNA-
sequencing data that showed “metabolic pathways” as the most
highly enriched term from day 2 to day 10 after PI treatment (SI
Appendix, Fig. S3E), we investigated metabolic processes in more
detail. One of the most striking metabolic changes was a profound
and persistent decrease of intracellular glucose levels. While levels
of glycolytic intermediates also dropped below baseline levels
(Fig. 2C and Table S4), pyruvate and lactate progressively in-
creased and reached peak levels on days 6 and 8, respectively,
while the pyruvate/lactate ratio gradually decreased until day 10
(SI Appendix, Fig. S3F). GSVA of RNA-sequencing data showed
that enrichment of glycolytic pathways, reflecting increased ex-
pression of glycolytic enzyme mRNAs, peaked on day 2 and then
returned to baseline levels on day 10 (Fig. 2D). While these data
suggested an increase in glycolytic activity during stress buildup
and the early phases of stress resolution, analysis of corresponding
cell culture supernatants by NMR spectroscopy showed that cel-
lular glucose uptake decreased rapidly following proteasome in-
hibition and became even more suppressed during recovery
(Fig. 2E). NMR data also showed that cells switched from lactate
consumption at baseline to lactate release, which peaked on day 4
and then gradually decreased in recovering cells. (Fig. 2F).
Looking for an explanation for the suppression of glucose uptake
during recovery, we analyzed expression levels of the major glu-
cose transporter, GLUT1, and of TXNIP, a suppressor of GLUT1
membrane expression and glucose uptake that is induced by high
lactate levels (29–31). While GLUT1 levels decreased after day 2,
TXNIP became increasingly up-regulated (Fig. 2G and SI Ap-
pendix, Fig. S3 G and H), providing a possible mechanistic link
between increasing lactate levels and decreased glucose uptake
during recovery. In addition to these complex changes in glucose
metabolism, we also found that later stages of recovery were ac-
companied by increasing levels of acyl-carnitines and β-oxidation
enzyme transcripts, suggesting enhanced β-oxidation (Fig. 2H and
SI Appendix, Fig. S3I). Taken together, the results indicate that the
cellular response to proteasome inhibition entails a dynamic shift
in energy metabolism from increased glycolysis during acute stress
to fatty acid catabolism during recovery.

Proteasomal Stress Resolution Triggers Increased Mitochondrial
Vulnerability. Increased glycolytic activity in cancer cells is often
associated with a decrease in mitochondrial oxidative phosphory-
lation (OXPHOS). To determine how proteasome inhibition al-
ters mitochondrial function, we first analyzed the mitochondrial
transcriptome, using MitoCarta2.0 (32), and found that more
genes encoding mitochondrial proteins were up-regulated than
down-regulated from day 1 to 10 (Fig. 3A). GSVA of MitoCarta2.0
genes showed a biphasic signature enrichment that peaked on day 2
(SI Appendix, Fig. S4A), and we observed the highest proportion of
MitoCarta2.0 genes in transcript cluster 2 (SI Appendix, Fig. S4B).
In contrast, proteomic data revealed that significantly more mito-
chondrial proteins were down-regulated than up-regulated on days
1 to 10 (Fig. 3B). The discrepancy between transcripts and proteins
prompted us to take a closer look at mitochondrial ribosomal

proteins (MRPs), evolutionarily conserved and lifespan-regulating
nodal points in mitochondrial stress communications (22, 33). We
found that mRNAs coding for MRPs were largely up-regulated
during stress buildup and returned to near-baseline levels during
stress resolution (Fig. 3C and Table S5), in line with the predomi-
nant temporal pattern observed for MitoCarta2.0 genes. In contrast,
protein levels initially dropped and then gradually increased to
near-baseline levels during late stages of recovery (Fig. 3D and
Table S6). These findings prompted us to test if mitochondrial
respiration changed during stress buildup and recovery. Using
Seahorse technology, we observed a reduction in the basal, max-
imal, and ATP-dependent oxygen consumption of viable cells
on days 1 and 2, followed by a considerable further decrease
throughout stress resolution (Fig. 3E and SI Appendix, Fig. S4C).
Consistently, we found that electron transport chain (ETC)
protein levels decreased during stress buildup and largely remained
below baseline levels during recovery. Complex I proteins such as
NDUFB8 were the most suppressed during recovery (Fig. 3F). This
led us to test if mitochondrial stressors would have a different effect
on recovering cells compared to acutely stressed or unstressed cells.
We found that a panel of drugs that target ETC complexes,
maintenance of the transmembrane proton gradient, or mitochon-
drial translation largely triggered a greater reduction in cell viability
in recovering cells than in acutely stressed cells, although the effects
only partly met statistical significance criteria (SI Appendix, Fig.
S4D). Similarly, changes in transcript levels of ATF4, the main
mitochondrial stress transducer (22), suggested that mitochondrial
stress was enhanced by these agents at the same level or more in
recovering cells compared to acutely stressed or unstressed cells (SI
Appendix, Fig. S4E). We also determined the impact of metformin,
a drug that exerts anticancer effects partly through OXPHOS dis-
ruption (34–36). While metformin was not overtly cytotoxic (SI
Appendix, Fig. S4F), metabolite profiling showed that metformin
perturbed a considerably larger fraction of the cellular metabolome
when it was added to cell cultures during stress recovery compared
to acutely stressed cells (Fig. 3G and Table S7). Moreover, the
metabolic effects of metformin during stress resolution were
profoundly different from the effects during stress buildup and
were dominated by a significant decrease in the level of 70 lipidic
metabolites, demonstrating that metformin perturbed the recovery-
associated increase in fatty acid catabolism (SI Appendix, Fig. S4G).
In contrast, ritonavir, syrosingopine, and GSK2837808A, drugs that
target different metabolic processes (37–40), did not have a pref-
erential effect on recovering cells (SI Appendix, Fig. S4 H and I),
demonstrating that stress resolution does not result in universally
increased vulnerability of the cellular metabolome. Taken together,
these observations indicate that several aspects of mitochondrial
function are compromised in cells recovering from PI stress and that
these impairments may be tied to increased vulnerabilities to
mitochondrial stressors.

Intracellular Amino Acid Scarcity in Recovering Cells Triggers Dependency
on GCN2 Signaling. Amino acids contribute to the generation of tri-
carboxylic acid (TCA)-cycle intermediates and thus the provision of
reducing equivalents that drive OXPHOS (41). We found that dif-
ferent amino acids were altered in strikingly different ways during PI-
induced stress buildup and recovery (Fig. 4A and Table S8). Cysteine
levels increased rapidly but transiently, in line with an early oxidative
stress response (Fig. 2B). Alanine levels increased from day 4 and
peaked on days 6 and 8, which is compatible with increased pyruvate
availability during recovery (Fig. 2C). However, levels of most amino
acids decreased to below baseline in response to carfilzomib at some
point. Most notably, glutamine levels dropped rapidly and remained
low throughout recovery. Consistent with the established importance
of glutamine anaplerosis in MM cells (42), and in line with the
observed decrease in mitochondrial respiration, levels of gluta-
mate and TCA-cycle metabolites α-ketoglutarate, succinate, fu-
marate, and malate also dropped to below baseline (Fig. 4B and
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Fig. 3. Mitochondrial changes during proteasome inhibitor-induced stress buildup and recovery. (A and B) Absolute numbers (x-axis) and proportion of
significantly deregulated mitochondrial and nonmitochondrial genes (A) and proteins (B) based on MitoCarta2.0 presence or absence. Up- and down-
regulated transcripts or proteins passing Benjamini–Hochberg Q ≤ 0.05 compared to day 0 were included. Level of statistical significance: ***, < 0.001;
**, < 0.01; *, < 0.05. (C) Heatmap representing the expression levels of MRP transcripts (results shown as mean expression normalized to day 0, n = 5). (D)
Relative abundance of TMT-labeled MRP peptides (data shown as mean levels normalized to day 0, n = 2). (E) Oxygen consumption rates (OCR) indicating
basal (Top) and ATP-dependent (Bottom) respiration (mean ± SEM, n = 2 with 5 technical replicates each). (F, Left) Immunoblot analysis of NDUFB8 and actin
(representative blot of n = 3); (F, Right) changes in ETC complex protein levels as determined by TMT-labeling analysis (mean ± SEM, n = 2). (G) Quantification
of significantly altered metabolites in response to metformin as determined by LC–MS. Cfz-treated (day 0) RPMI-8226 cells were exposed to metformin (1 mM,
24 h) on day 0 (Cfz early) or day 5 (Cfz late; two-way ANOVA, 5% false discovery rate for multiple comparisons).
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Table S9). However, citrate and aconitate became more abun-
dant during stress recovery, a finding that is compatible with the
increased availability of acetyl-CoA downstream of pyruvate.
We then asked whether the observed reduction in amino-acid

levels triggered a cellular response. When intracellular amino-acid
abundance decreases, the ensuing increase in uncharged transfer
RNAs (tRNAs) activates GCN2 (EIF2AK4) (18). Active GCN2
phosphorylates eIF2-α on serine 52, which triggers a largely
ATF4-driven stress response often referred to as the integrated
stress response (ISR) (19). First, we searched for key targets of
the GCN2–ATF4 axis in the transcript clusters described in Fig. 1E.
A group of genes encoding transmembrane amino acid transporters
(SLC7A11, SLC3A2, SLC1A5, SLC7A1, and SLC6A9) were all
found in transcript cluster 6 (Table S1). Moreover, genes encoding
tRNA synthetases, enzymes that charge tRNAs with their cognate
amino acids, were also largely found in clusters 5 and 6 (AARS,
CARS, GARS, MARS, QARS, SARS, TARS, WARS, and YARS).
Similarly, EIF2AK4 and ATF4 and functionally well-characterized
major GCN2–ATF4 axis targets (DDIT3, SESN2, ASNS, and
CHAC1) were also part of cluster 6. In contrast, mRNAs encoding
key ER chaperones BIP (HSPA5) and P58IPK (DNAJC3), which
are up-regulated by increased protein misfolding in the ER, and the
ER stress transducer and eIF2-α kinase PERK (EIF2AK3), were
not represented in any of the transcript clusters. GSVA of unfiltered
RNA-sequencing data revealed a compatible enrichment pattern of
an established amino acid depletion signature (KRIGE_AMINO_
ACID_DEPRIVATION) and of ATF4 targets (IGARASHI_
ATF4_TARGETS) (Fig. 4C and SI Appendix, Fig. S5A). Taken
together, the findings reveal that, following a brief inactive period in

the aftermath of proteasome inhibition, amino acid depletion-
induced GCN2–ATF4 signaling becomes increasingly reac-
tivated during recovery.
To ascertain if cellular recovery depends on a GCN2-driven

stress response, we made use of the selective GCN2 inhibitor,
GCN2iB (43). The choice of pharmacological inhibition over ge-
netic depletion was driven by the requirement to rapidly switch off
GCN2 signaling at precisely defined time points during stress
buildup or recovery. First, we validated that GCN2iB disrupts
stress signals triggered by amino-acid depletion but not by pro-
tein misfolding (SI Appendix, Fig. S5 B and C). Next, we tested if
GCN2 inhibition affects myeloma cell growth. GCN2iB alone
had a moderately inhibitory effect on the proliferation of RPMI-
8226 cells. While GCN2iB did not enhance carfilzomib-induced
cell death on days 2 and 4, GCN2 inhibition had a significant effect
on viable cell numbers on day 7. When we extended our analysis to
additional myeloma cell lines, we found that GCN2iB significantly
enhanced the carfilzomib-induced reduction of viable OPM2 and
NCI-H929 cells on day 7 but had no effect on MM.1S cells
(Fig. 4D). Thus, GCN2 blockade disrupts cellular recovery from
proteasome inhibition in a proportion of MM cell lines. Extending
these data to nonmyeloma cells, and using a genetic targeting ap-
proach, we observed that short hairpin (sh)RNA-mediated deple-
tion of GCN2 enhanced the cytotoxicity of proteasome inhibition in
A549 lung adenocarcinoma cells (SI Appendix, Fig. S5D). We then
tested the susceptibility of nonmalignant bone-marrow cells to
GCN2 inhibition. To this end, we pooled primary mesenchymal
bone-marrow stromal cells (MSCs) from three healthy pediatric
MCS donors and exposed them to carfilzomib and GCN2iB. In line

Fig. 4. Proteasome inhibition causes amino acid depletion and GCN2 dependency during stress recovery. (A) Heatmap showing relative levels of amino acids
in RPMI-8226 cells measured by LC–MS (data shown as mean intensity, log2, normalized to day 0, n = 3). (B) Heatmap depicting relative levels of TCA-cycle
metabolites measured by LC–MS (data shown as mean intensity, log2, normalized to day 0, n = 3). (C) Krige amino acid deprivation–gene signature en-
richment based on GSVA of RNA-sequencing data. (D) Effect of GCN2iB (1 μM, continuous for 7 d) on myeloma cell viability following a 1 h Cfz pulse (RPMI-
8226, 750 nM; NCI-H929, 35 nM; OPM2, 100 nM; MM.1S, 75 nM). Viable cell numbers were determined by Trypan Blue exclusion (mean ± SEM, two-way
ANOVA and Tukey’s test for multiple comparisons, n = 3).
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with previous observations using continuous bortezomib treatment
(44), a 1 h carfilzomib pulse had a minor effect on the viability of
MSCs, and inhibition of GCN2 did not result in any overt toxicity
when given alone or following proteasome inhibition (SI Appendix,
Fig. S5E). Taken together, the findings show that GCN2 promotes
the resolution of PI-induced stress in cancer cells.

GCN2 Blockade Highlights Its Intricate Metabolic Functions in Recovering
Cells. Next, to gain a mechanistic insight into the role of GCN2 in
stress recovery, we determined the effects of GCN2 inhibition on
the cellular metabolome. Biochemical profiling (Table S10) showed
that pharmacological GCN2 blockade in unstressed cells predomi-
nantly triggered a decrease in the levels of diverse metabolites, in-
cluding glutamine and aspartate, in line with the primary role of
GCN2 in maintaining amino acid availability. However, GCN2
inhibition during PI-induced stress buildup had a qualitatively
different effect, with lower levels of GSH, N-acetylcysteine, and
cysteine pointing to a role for GCN2 in modulating oxidative stress.
However, GCN2 inhibition during stress resolution triggered a dif-
ferent response. Out of 51 significantly altered metabolites, 45 were
increased. Of those, 29 (64%) were classified as lipids, predominantly

n-3 and n-6 fatty acids and acyl-carnitines, indicating a further
metabolic shift toward β-oxidation (Fig. 5 A and B). Thus, the
role of GCN2 in cells recovering from PI-induced stress is different
from its function in acutely stressed or unstressed cells.
Next, we performed RNA sequencing to complement the

biochemical profiling. We found that GCN2 inhibition signifi-
cantly deregulated 95 transcripts in unstressed cells and that key
GCN2–ATF4 targets with roles in amino acid homeostasis (DDIT3,
ATF3, CHAC1, SESN2, SLC7A11, and TRIB3) were among the
71 down-regulated mRNAs (Fig. 5C and Table S11). When GCN2
was inhibited in cells that had reached the nadir in viable cell
numbers (day 2 to 4), a lower number of mRNAs were deregulated
than in unstressed cells, consistent with the lack of apparent cytotoxic
synergy at this point. However, pharmacological GCN2 blockade in
recovering cells (day 4 to 6) increased the number of deregulated
transcripts more than 18-fold to 919 (down, 460; up, 459). GCN2
inhibition also increased 20S and particularly 19S proteasome-subunit
transcript levels most during recovery, with a moderate effect in un-
stressed cells, and almost no detectable change in acutely stressed
cells (SI Appendix, Fig. S6A). Focusing on the most relevant Gene
Ontology (GO)-Biological Processes (BP) terms linked to GCN2

Fig. 5. Differential effect of GCN2 inhibition on the cellular transcriptome and metabolome during stress recovery. (A) Quantification and classification of
metabolites significantly deregulated by GCN2iB (1 μM, 24 h) in RPMI-8226 cells nontreated or treated with carfilzomib (Cfz; early, GCN2iB treatment on day
0; late, GCN2iB treatment on day 5) based on two-way ANOVA (5% false discovery rate for multiple comparisons). (B) Distribution of significantly deregulated
lipids in lipidic subfamilies. Pie-chart sizes are representative of the number of deregulated lipids. (C) Volcano plots showing deregulated mRNAs after GCN2
inhibition. Cut-offs (dashed lines) are drawn at Benjamini–Hochberg Q ≤ 0.05 and absolute log2 fold change ≥1 based on RNA-sequencing–derived mRNA
expression levels in RPMI-8226 cells treated with GCN2iB (1 μM, 48 h) early (day 2 to 4) or late (day 4 to 6) after a Cfz pulse, or without prior Cfz treatment.
Selected genes of interest related to the ISR, TGF-β signaling, and fatty acid and cystine metabolism are indicated.
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inhibition (SI Appendix, Fig. S6 B and C), we examined “Car-
boxylic acid metabolic process” in more detail and found that
over 80% of up-regulated genes in this category code for pro-
teins involved in amino acid or lipid metabolism, in line with
metabolite data, while 36% of the down-regulated genes are
involved in glucose metabolism (SI Appendix, Fig. S6D). We also
found that components of the TGF-β pathway, which promotes MM
growth and myeloma bone disease (45–47), were repressed by GCN2
inhibition during recovery (Fig. 5C and SI Appendix, Fig. S6E), in-
cluding ligands (like TGFB1 or BMP7), receptors (BMPR2), and
effectors (FOS) (Table S11). RNA-sequencing results also showed
that transcripts coding for both subunits of the cystine–glutamate
antiporter (SLC7A11 and SLC3A2) were up-regulated in GCN2iB-
treated cells, in line with increased levels of cystine observed by
LC–MS (Table S10). Together, the results demonstrate that cells
that are recovering from proteasome inhibition have a height-
ened dependency on GCN2 to maintain homeostasis in multiple
cellular systems.

GCN2 Dependency Signatures in Cancer Subgroups. Having identi-
fied GCN2 as a recovery-associated vulnerability in myeloma
cells, we then set out to explore whether other cancer cells might
be vulnerable to GCN2 irrespective of prior chemotherapy-induced
stress. To this end, we made use of CRISPR essentiality screen data
available in the Cancer Dependency Map (DepMap) (https://depmap.
org/portal, CRISPR [Avana] Public 20Q1 release). In line with our
finding that the cytotoxic effects of GCN2 inhibition on PI-naïve
myeloma cell lines were absent or moderate, no myeloma cell
line is classified as GCN2-dependent in DepMap. However, we
found that 93 out of 739 cancer cell lines (13%) are dependent on
GCN2 (EIF2AK4). By comparison, one, zero, and five cancer cell
lines (0.1, 0, and 0.7%) are dependent on the other three eIF2-α
kinases, EIF2AK1 (HRI), EIF2AK2 (PKR), and EIF2AK3 (PERK).
To test if gene-expression signatures can predict GCN2 dependency,
we identified 61 cancer cell lines with the highest DepMap GCN2
dependency (median CERES scores −0.95; range −0.58 to −1.79)
and 60 tissue-matched cell lines with the lowest GCN2 depen-
dency (median CERES scores 0.21; range 0.0 to 0.61) (Table S12).
Heatmap analysis of RNA-sequencing data revealed a clear dif-
ference in mRNA expression patterns between GCN2-dependent
and GCN2-independent cell lines but was also indicative of tissue-
specific heterogeneity (SI Appendix, Fig. S7). We therefore fo-
cused on skin cancer, the cancer type with the largest number of
GCN2-dependent cell lines in DepMap. First, we identified a
56-gene signature that identifies GCN2-dependent skin cancer
cell lines (SI Appendix, Fig. S8). We then projected this signature
onto the transcriptomes of 424 melanomas in The Cancer Ge-
nome Atlas (TCGA) and found that 22 (5.2%) of the tumors
matched the DepMap GCN2-dependency signature by more than
80% (SI Appendix, Fig. S9A). Heatmap analysis showed that these
transcriptomes were distinct from those of tumors predicted to be
the least GCN2-dependent (SI Appendix, Fig. S9B). Clinically,
patients with tumors predicted to be GCN2-dependent received
pharmacological therapy quicker than patients with a low depen-
dency signature (P = 0.0095), developed new tumors faster (P =
0.005), and were more likely to receive both pharmacological
therapy (P = 0.008) and radiotherapy (P = 0.015) for these new
tumor events. We then repeated the process for DepMap Central
Nervous System (CNS) cell lines and found that a 40-gene signature
identified 53 out of 697 TCGA glioblastomas/gliomas (7.6%) as
GCN2 dependent (SI Appendix, Fig. S10A). Similar to melanoma
patients, they were more likely to receive adjuvant therapy (P =
0.004) and to start both pharmaceutical therapy (P < 0.001) and
radiotherapy (P = 0.05) quicker than those with low dependency
signatures. Finally, 7 of 361 (1.9%) TCGA hepatocellular carcinomas
highly matched a 58-gene signature for GCN2 dependency (SI Ap-
pendix, Fig. S10B). To identify shared molecular features of predicted
GCN2-dependency across different cancers, we compared enriched

KEGG pathways and found that 17 were communal (SI Appendix,
Fig. S11A). Of those, “Cytokine-Cytokine Receptor Interaction”
stood out as the most highly ranked pathway in skin (SI Appendix,
Fig. S11B) and liver and as the third highest ranked in CNS (Table
S13). This is biologically relevant because TGF-β pathway genes
significantly contributed to the enrichment, which, together with our
RNA-sequencing data on GCN2iB-treated MM cells (Fig. 5C and
Table S11 and SI Appendix, Fig. S6E), demonstrates a functional
link between TGF-β signaling and GCN2 in several malignancies.
Moreover, commonly enriched pathways such as “Protein Diges-
tion and Absorption” and “Nitrogen Metabolism” are composed of
genes encoding molecules with diverse roles in amino acid transport
and biosynthesis, in line with the primary role of GCN2 as a regulator
of amino acid homeostasis. Thus, patients with different cancer types
that are predicted to have GCN2-dependent tumors share molecular
hallmarks that may facilitate stratification for GCN2-targeting
therapeutic approaches.

Discussion
Here, by applying an integrated and temporal systems-level
“multiomics” approach, we delineate the global cellular pro-
cesses by which cancer cells recover from therapy-induced pro-
teotoxic stress, as occurs in vivo in patients treated with PIs (20,
21, 24). Our extended and synchronous profiling of mRNA and
protein expression, metabolite levels, and mitochondrial function
reveals a layered chart of the intricate and surprisingly pro-
tracted mechanisms that are triggered by a brief burst of pro-
teasome inhibition (SI Appendix, Fig. S12). We find that the
resolution of initial injuries by early stress responses is accom-
panied by the staggered emergence of new challenges and further
corrective measures, resulting in sustained waves of biological
processes. The temporal patterns and functional connections of
these mechanisms (Fig. 1 D–F) support a model in which at least
some of the challenges that arise in recovering cells are directly
linked to the mechanisms of stress resolution. As such, the cellular
vulnerabilities that are coupled with the recovery process rep-
resent dynamic trade-offs that are distinct from other forms of
therapeutically exploited vulnerabilities such as synthetic lethal-
ity (48), collateral lethality (49), or drug-induced synthetic le-
thality that is based on persistent phenotypic changes (50).
The enhanced dependency of recovering cells on GCN2 likely

represents one such example. Although levels of some amino acids,
such as glutamine and aspartate, dropped to below baseline in the
early aftermath of proteasome inhibition, they reached their nadir
in later stages of recovery. Moreover, ISR activation and thus de-
pendency on GCN2 signaling became particularly apparent during
recovery. The restoration of protein synthesis in recovering cells is a
likely explanation for the increased demand for amino acids during
stress resolution, and GCN2 blockade in that context is predicted to
render the finely tuned attenuation of protein synthesis by the ISR
inadequate, allowing protein synthesis to overshoot cellular capac-
ity. Given that protein synthesis depends on degradation (16), our
findings that GCN2 inhibition led to increased proteasome subunit
expression in recovering cells is compatible with this notion, which is
also supported by transcriptome analyses that show enrichment of
protein synthesis pathways during recovery (SI Appendix, Fig. S2 B
and C). Future studies should therefore address the question if
inadequately controlled protein synthesis, which has previously been
linked to increased cell death in response to perturbations of the
ubiquitin-proteasome system (51–54), is indeed a major mechanism
by which GCN2 inhibition perturbs recovery from PIs. Our obser-
vations indicate that the role of GCN2 goes beyond regulating the
availability of amino acids as protein building blocks. As such, the
profound effects of GCN2 inhibition on lipidic metabolites in re-
covering cells hint at a central role in energy metabolism and are
broadly in accord with previously observed functional links be-
tween GCN2 and lipid homeostasis (55). While our findings
identify GCN2 as a prototypic recovery-associated vulnerability
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in PI-treated MM cells, they also suggest that a clinically relevant
proportion of solid cancers could be amenable to GCN2 inhibition
without prior PI treatment, that these cancers may be identifiable by
gene-expression signatures, and that they share molecular charac-
teristics linked to key functions of GCN2. While further studies will
need to refine the molecular features that define a cancer as GCN2
dependent, our data can form the basis for a drug target discovery
pipeline to identify stress-independent targets in subsets of cancer
types by means of routine transcriptome analyses.
With a view to a potential clinical application of GCN2 in-

hibitors, it is worth noting that genetic GCN2 depletion, or its
systemic inhibition, is largely well tolerated in murine systems,
unless mice receive diets that lack essential amino acids (43, 56, 57).
In contrast, inhibition of another eIF2-α kinase, PERK (EIF2AK3),
has shown promising antitumor effects but is linked to considerable
toxicity in mice (58, 59). Further downstream, mitigation of the ISR
with Integrated Stress Response Inhibitor (ISRIB), a compound
that antagonizes translational reprogramming caused by eIF2-α
phosphorylation, has been shown to prevent breast cancer cells
from attaining stem-cell–like properties that are required for
disease progression (60). Moreover, ISRIB perturbs proteostasis
and triggers cytotoxic effects in prostate cancer cells (61). In
conjunction with our findings, these studies and others on ER
stress (62) highlight the importance of processes linked to eIF2-α
in regulating cancer cell fate.
Tumor-promoting roles of GCN2 and its potential as an an-

ticancer drug target have been reported before (43, 63–66), but
its relation to proteasome inhibition and role in MM has remained
largely undetermined (67, 68). While proteasome inhibition has
been shown to trigger lethal amino acid scarcity in yeast, mam-
malian cells, and flies (15, 51), amino acid depletion has not been
a widely accepted mechanism of action of PIs in MM, possibly
because it becomes most apparent only when cells begin to re-
cover from proteasome inhibition. Our findings suggest that the
ability of MM cells to trigger a GCN2-dependent AAR may
contribute to PI resistance, which has been linked to a variety of
mechanisms (14, 69). Intriguingly, PI resistance has also been
linked to the suppression of 19S proteasome subunits (70–72), and
our observation that the expression of several 19S subunit mRNAs
dropped below baseline levels in recovering cells could indicate a
first step toward resistance development via this mechanism or the
persistence of cells with lower 19S subunit expression before
treatment. Our finding that GCN2 inhibition markedly increased
expression levels of 19S subunits in recovering cells tentatively
suggests that GCN2 inhibition could counter this therapeutically
unwanted 19S suppression.
Reduced expression of 19S subunits has also been linked to

altered mitochondrial energy metabolism as a cause of PI re-
sistance. Induced suppression of the 19S subunit PSMD2 reduces
the acute PI-induced drop in OXPHOS, thereby promoting pro-
teotoxic stress tolerance and PI resistance (73). Our findings that
mitochondrial respiration was even more suppressed during re-
covery than during acute stress raises the question whether this
state triggers increased or decreased mitochondrial vulnerability.
This is particularly relevant in comparison with acutely stressed
cells, in which the combination of increased mitochondrial gene
expression with suppressed protein levels (Fig. 3 A–D) suggests a
considerable level of mitochondrial stress. Our observations on
how mitochondrial stressors affected viability and ATF4 transcript
levels are to some extent compatible with a higher level of mito-
chondrial vulnerability in recovering cells than in acutely stressed
cells or unstressed cells, and the effects of metformin on the cel-
lular metabolome we observed support this interpretation. How-
ever, future studies need to define the apparently complex role of
mitochondria in the resolution of PI stress in more detail if any
therapeutic benefit is to be derived. In this respect, it is worth
noting that metformin has been linked to reduced progression of
the myeloma precursor condition, monoclonal gammopathy of

undetermined significance, to overt myeloma (74). The profound
metabolic perturbations triggered by metformin in cells recov-
ering from PI treatment can provide the basis for further in-
vestigations into combination therapies to suppress myeloma
progression.
One of the most striking metabolic changes in the wake of a

brief burst of proteasome inhibition that we observed is that
glucose consumption and intracellular abundance are reduced
even more in cells that are recovering than in acutely stressed
cells. These changes are accompanied by a decrease in expression
of the glucose transporter, GLUT1, and up-regulated expression
of TXNIP, a major suppressor of glucose uptake, in recovering
cells (Fig. 2G). While the precise mechanisms of action underlying
these dynamic changes remain to be determined, it seems plau-
sible that the increased generation of lactate contributes to the up-
regulation of TXNIP and suppression of glucose uptake during
recovery (30, 31). Intriguingly, TXNIP expression has also been
linked to mitochondrial function (75, 76) and is enhanced in re-
sponse to amino acid depletion (77), suggesting it could be a major
metabolic signaling node during PI-stress resolution. Despite
activation of the ISR and increased expression of amino acid
transporters, cells also failed to recover glutamine levels during
recovery. It therefore remains to be established if the scarcity of
two of the most important sources of energy and carbon, glucose
and glutamine, somehow provides an advantage to recovering
cells or is a surprisingly well-tolerated bystander effect. It will also
be intriguing to investigate in more detail why the reduction in
mitochondrial respiration in recovering cells is so protracted. Our
findings indicate that cells recovering from acute PI-induced stress
enhance fatty acid catabolism and increase cellular energy gen-
eration via β-oxidation (SI Appendix, Fig. S12). This metabolic
shift could, at least partly, be linked to the increase in proliferation
following cell-cycle arrest during acute stress. A similar metabolic
state, which is characterized by minimal glycolysis and high de-
pendency on fatty acid oxidation, has been described in rapidly
cycling germinal-center B cells (78). Preclinical observations sug-
gest that the reliance of some cancers on fatty acids to generate
energy may be exploited therapeutically by means of pharmaco-
logical or dietary interventions (79, 80). It is therefore tempting to
speculate that such approaches could also be applied in the con-
text of PIs in MM patients, particularly as our observations on the
effects of metformin and GCN2 inhibition also link fatty acid
metabolism to stress recovery in PI-treated MM cells.
In summary, our work demonstrates that temporal multiomics

approaches can reveal metabolic vulnerabilities tied to cellular
recovery from chemotherapy, paving the way for new routes to
optimize cancer therapies.

Materials and Methods
A detailed description of all materials and methods used in this study (cell
culture and reagents, cell viability assays, quantitative real-time PCR, immu-
noblotting, RNA-sequencing, TMT labeling proteomics, metabolomics, Sea-
horse analysis, biomathematic modeling and clustering, statistical analyses,
bioinformatic analyses, availability of datasets and code, supplementary ref-
erences) is available in the online SI Appendix. Human mesenchymal stromal
cell (hMSC) samples were deidentified prior to use in this study and obtained
from the Imperial College Healthcare Tissue Bank (ICHTB, Human Tissue Au-
thority license 12275). ICHTB is approved by the UK National Research Ethics
Service to release human material for research (12/WA/0196). Bone marrow
aspirates were obtained from healthy pediatric stem-cell donors, and written
informed consent for the use of hMSC for research was obtained from the
donors’ parents.

Data Availability. RNA-sequencing, proteomics, metabolomics, and code data
have been deposited in Zenodo (https://zenodo.org/record/4010524) and are
accessible.
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