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Abstract

The objective of this research was to develop a roster-based optimisation system for limited

overs cricket by deriving a meaningful, overall team rating using a combination of individual

ratings from a playing eleven. The research hypothesis was that an adaptive rating system ac-

counting for individual player abilities, outperforms systems that only consider macro variables

such as home advantage, opposition strength and past team performances. The assessment of

performance is observed through the prediction accuracy of future match outcomes. The expec-

tation is that in elite sport, better teams are expected to win more often. To test the hypothesis,

an adaptive rating system was developed. This framework was a combination of an optimisa-

tion system and an individual rating system. The adaptive rating system was selected due to its

ability to update player and team ratings based on past performances.

A Binary Integer Programming model was the optimisation method of choice, while a modified

product weighted measure (PWM) with an embedded exponentially weighted moving average

(EWMA) functionality was the adopted individual rating system. The weights for this system

were created using a combination of a Random Forest and Analytical Hierarchical Process. The

model constraints were objectively obtained by identifying the player’s role and performance

outcomes a limited over cricket team must obtain in order to increase their chances of winning.

Utilising a random forest technique, it was found that players with strong scoring consistency,

scoring efficiency, runs restricting abilities and wicket-taking efficiency are preferred for lim-

ited over cricket due to the positive impact those performance metrics have on a team’s chance

of winning.

To define pertinent individual player ratings, performance metrics that significantly affect match

outcomes were identified. Random Forests proved to be an effective means of optimal variable

selection. The important performance metrics were derived in terms of contribution to winning,

and were input into the modified PWM and EWMA method to generate a player rating.



The underlying framework of this system was validated by demonstrating an increase in the

accuracy of predicted match outcomes compared to other established rating methods for cricket

teams. Applying the Bradley-Terry method to the team ratings, generated through the adaptive

system, we calculated the probability of teami beating teamj .

The adaptive rating system was applied to the Caribbean Premier League 2015 and the Cricket

World Cup 2015, and the systems predictive accuracy was benchmarked against the New

Zealand T.A.B (Totalisator Agency Board) and the CricHQ algorithm. The results revealed

that the developed rating system outperformed the T.A.B by 9% and the commercial algorithm

by 6% for the Cricket World Cup (2015), respectively, and outperformed the T.A.B and CricHQ

algorithm by 25% and 12%, for the Caribbean Premier League (2015), respectively. These re-

sults demonstrate that cricket team ratings based on the aggregation of individual player ratings

are superior to ratings based on summaries of team performances and match outcomes; vali-

dating the research hypothesis. The insights derived from this research also inform interested

parties of the key attributes to win limited over cricket matches and can be used for team selec-

tion.
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Chapter 1

Introduction to Sport Analytics

The growth of sport analytics and the need for meaningful sport related statistics has emerged

in recent decades due to the large volume of monetary resources that is increasingly being

invested in a single player or team. The rise in player salaries and salary caps over the last 25

years provide ample evidence of the growth of sport analytics, with investors, franchises, clubs

and other stakeholders wanting to determine the true value of their investment. For example,

in the National Football League (NFL) there has been an increase of approximately 950% in

player salaries since the 1980’s, and an increase of 288% in salary cap since 1994 [77]. With

global sports revenue estimated to grow by US$145.3 billion over the 2010-2015 period [27]

and winning teams earning significantly larger revenue than that of losing teams, there is a

strong incentive for managers and coaching staff of sport teams to succeed. Given the large

investment of resources and the stakes involved, coaches and managerial staff cannot solely rely

on subjective views and personal beliefs to make team and player selection decisions. Solutions

must be augmented with objective approaches by implementing analytical techniques.

Purpose of Research

The explosion in the sporting industry in terms of popularity and revenue is evident in cricket.

Cricket has seen a huge global growth in revenue in recent years, and transformed into a sport-

ing juggernaut due to the advent of T20 cricket. This is a relatively new short form format,

1
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where teams each face up to 20 overs. A match typically concludes in three hours, which

increases spectator appeal. The Economist reported that global cricket will generate total rev-

enues of approximately $2.5 billion between 2014-2022 [2]. Moreover, the Indian Premier

League (i.e. India’s domestic T20 Competition) has a brand valuation of $3 Billion [39], while

viewership of the Big Bash T20 league, Australia’s domestic T20 competition, increased by

17% from 2015 to 2016 [1]. This rapid growth within the sport, and the accessibility to unique

datasets and commercially-sensitive models motivated this research.

Formally, sport analytics is defined as “the management of structured historical data, the ap-

plication of predictive analytic models that utilize such data, and the information systems used

to inform decision makers and enable them to help their organizations in gaining a competi-

tive advantage on the field of play” [7, p.1]. It is important to distinguish sport analytics from

collecting quantitative data. Quantitative data collection, in sport, is the measurement and

storage of the behaviours or actions of a team or a player, while analytics is the use of data to

inform decision makers [11]. An early example of data collection within sports dates back to

the 1850’s with the publication of cricket averages in magazines. Although the collection and

recording of numerical data within sports has been conducted for quite some time, the applica-

tion of quantitative and statistical methods to this data is still in its infancy. Much of the early

work on sports analytics revolved around sports that are popular in the United States, especially

American Football and Baseball [11]. However it was not until the 1960’s that the practice of

sports analytics emerged, initially within baseball in the United States [11].

Given the myriad of numerical data generated by sports it is paramount that meaningful infor-

mation is extracted from the data. The results generated from applying statistical techniques

to sport related data are called sport statistics, which differs from sport analytics in the sense

that sports statistics are the outcomes generated from the analytical techniques applied to the

data. According to [13] sports statistics fall into two categories: 1. statistics that can be di-

rectly observed from a score sheet, known as performance indicators, and 2. statistics that are

not directly observable from a score sheet, known as performance outputs. Sport statistics are

utilised to make player selection decisions, develop training regimes and determine optimal

strategies. There is a breath of academic literature applying various statistical techniques to

myriad sports, for example discriminant analysis was utilised in [34] to identify performance
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metrics that significantly distinguish between winning, losing and drawing team in the Europe

Champions League. In [9] it was claimed that traditional win/loss and points scored ranking

models applied to American Football fail to produce satisfactory rankings. The study therefore

developed a hybrid paired comparison model which outperformed competitor models, pro-

ducing robust results under model misspecification. Further, a modified least squares ranking

procedure was developed in [44] to rank division 1 American men’s college basketball teams

using game outcomes. The results showed that the predictive accuracy of the modified least

squares (76.3%) method outperformed that of the basic least squares (74.2%).

Due to the nature of human contest, sport lends itself to fluctuations and discrepancies in game

outcomes, this in turn generates spectator interest. This outcome volatility is predominately

due to variation in performance between individual players and teams. Therefore coaches,

managers, fans, media and other interested parties utilise analytical approaches to understand

the root of this variation, and handle and reduce its effect in order to produce ‘better’, more

consistent results. Moreover these analytical techniques allow the user to rank and rate player

and team performances. In general, sport rating systems provide an objective evaluation of a

team or individual based on prior performances, and are implemented for player comparisons,

improving the player/ team selection process and betting purposes. A rank refers to ordi-

nal placement of ratings, while “ratings come from a continuous scale such that the relative

strength of a team or individual is directly reflected in the value of its rating” [59, p.2].

1.1 Overview of Sport Rating Systems

Formally, a sports rating system “assigns each team a single numerical value to represent that

team’s strength relative to the rest of the league on some predetermined scale” [59, p.2]. Sport

rating systems have had a long history dating back to the early 1930’s. However, these systems

were primarily implemented within popular sports in the United states. Despite the long history,

sport rating systems have recently experienced a tremendous explosion; predominately due to

the increasing volume of monetary resources injected into sports and the rising popularity of

sports betting. Global sports revenue is estimated to grow by US$145.3 billion, over the 2010-

2015 period, at an annual compound growth rate of 3.7% [62]. Moreover “the regulated sports
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betting market is forecasted to reach $70 billion in 2016, representing a 20% increase from

2012” [41, p.5]. These claims were reinforced in [51, p.1] stating that “in the case of growing

popularity of online sports betting, the analysis and forecasting of competitive sports has been

receiving increasing interest”.

Sport ratings are beneficial to numerous parties, especially athletes, coaches and managers who

utilise such systems to track form, progress and use the ratings as a motivational tool. “These

ratings are typically derived by suitably aggregating the competitors’ previous performances

and providing predictive power in forecasting tasks” [51, p.3]. Using a common framework, a

survey of major world sports rating systems was presented in [74]. The study stated that sport

rating systems have three steps:

1. Weigh the observed results to provide competition points - this is the most important

factor in determining points for competitor i for a given competition.

2. Combine the competition points to produce seasonal value.

3. Aggregate the seasonal value to produce a rating.

Types of sport rating systems

According to [71] sports rating systems, in general, fall into two categories:

1. Earned Ranking

Earned Ranking systems utilise past performances to provide a suitable method for se-

lecting either a winner or a set of teams that should participate in a playoff [71]. The

earned ratings are assigned an ordinal rank to produce team rankings. The majority of

international sports adopt earned ranking system.

2. Predictive Ranking.

Predictive Ranking systems utilise past performance to “provide the best prediction of

the outcome of future games between two teams” [71, p.1].
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It was stated in [72] that sport rating systems can be separated into three distinctive types

depending on how new ratings are calculated for each rating system: 1. Adjustive systems 2.

Accumulative systems and 3. subjective systems.

Adjustive systems

Adjustive systems, also known as adaptive systems, “provide the best predictors for fu-

ture performances because each adjustment follows from a predictor-corrector action

in which a rating for team i can increase, decrease or stay the same, as each new re-

sult is compared to each prediction based on information available prior to the competi-

tion” [72, p.8]. Such systems cause ratings to fluctuate, depending on performances, and

account for Leapfrogging1. Adaptive systems are adopted by sports such as golf, cricket,

chess, football and rugby. According to [72] an adjustive system for competitor i has the

following form:

rni = rn−1i +K[wni − P (rn−1i , rn−1j ,W,On−1)], (1.1)

where rni represents rating for competitor i after competition (i.e game) n, derived by

adjusting the previous rating, rn−1i , for competition i, by a multiple K. The adjustment,

K, depends on, wni , which represents the difference between the actual performance of

competitor i in competition n, (i.e. wni ), and the predicted performance P (...) which

is based on competitor i′s previous ratings. Competitor i′s and opponent j′s previous

rating is affected by W and On−1, defined as weightings and other factors present in

competition n− 1, respectively.

Accumulative systems

Accumulative systems are “running sums” rating methods that are non-decreasing over

a defined time-frame. These systems are predominately adopted by athletic sports such

as gymnastics, power-lifting and cycling. According to [72] an accumulative system for

1A situation in which a player who can not participate in certain matches, due to injury, is exposed to being
‘over-taken’ by team mates who can play more games, and therefore have the opportunity to earn more points.



Chapter 1. Introduction to Sport Analytics 6

competitor i has the following form:

rni =
n∑
k=1

fi[w
k
i ,W,A,O

k] (1.2)

where rni represents competitor i′s rating after competition n, based on past perfor-

mances. “The function fi for competitor i operates on wki which is the performance

of i in competition k, using W , which is a weighting procedure used to convert perfor-

mances to points” [72, p.7]. The performance points are adjusted by an ‘ageing’ factor,

A, and Ok represents other results in competition k, used to adjust i′s point score. The

factors W and A are dependent on the sport to which the system is applied.

Subjective systems

Subjective systems consist of a panel of experts (i.e. judges) who rank the competitors

and then combine the individual ratings to produce the overall ranking. Subjective sys-

tems are formally adopted by sports such as kick-boxing, mixed martial arts and boxing.

1.2 Analytics in Cricket

One sport which has recently seen an exponential rise in the use of statistics to make informed

and strategic decisions regarding player and team performance is cricket. The very core of the

sport is entwined with numerical values that translate ultimately to a match result. Cricket data

has been recently explored using data mining and knowledge management tools with some suc-

cess [66]. Data collection and data analysis has been conducted on cricket since the 1850’s and

1960’s, respectively. Given the rich sports data environment and its increase in popularity over

the past decade, cricket has recently seen an increase in analytical literature and the adoption

of predictive methodologies at the professional level. It was noted by [53, p.1] that “during the

past decade a large number of papers have been published on cricket performance measures and

prediction methods”. Player performance has been analysed with the help of simple statistical

measures, for example using augmented scatterplots it was found, in [49], that medium and

slow (spin) bowlers, and fast bowlers tended to appear in different regions on the graph. The

author illustrated that ‘good’ fast bowlers tended to have a low number of balls per wicket (i.e.
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low strike rate) and a high number of runs per ball (i.e. high bowling average). While ‘good’

medium and slow pace bowlers (i.e. spinners) tended to have a low number of runs per wicket

(i.e. low bowling average) and a high number of balls per wicket strike rate (i.e. high strike

rate). Applying the method to the Indian Premier League (2008) bowling data the scatterplot

enabled the author to rank various bowler-types.

1.3 Formats of Cricket

Cricket is a sport consisting of 11 players per team, the role of each player is either a batsmen,

bowler, all-rounder or wicket keeper (i.e. keeper). International Cricket has three distinct

formats 1. test matches, 2. one dayers and 3. Twenty-twenty (T20). The latter two formats are

regarded as limited overs cricket due to restrictions imposed on the number of overs allotted

to the batting and bowling side, and the number of overs an individual may bowl during an

innings. In one day cricket each batting team is allotted 50 overs, while in T20 cricket each

batting team is allotted 20 overs. Additionally restrictions are imposed on the number of fielders

that may reside in particular areas of the cricket ground at any given time during an innings.

Tests matches are regarded as the purist form of cricket with the longest format. Matches are

typically scheduled for 5 days. Unlike limited overs format test matches do not limit the amount

of overs allotted to each side, nor does the format impose fielding or bowling restrictions.

1.4 Intent of Research

The objective of this research is to develop a roster-based optimisation system for limited overs

cricket by deriving a meaningful, overall team rating using a combination of individual ratings

from a playing eleven. The research hypothesis is that a team rating system accounting for

individual player abilities, outperforms systems that only consider macro variables such as

home advantage, opposition strength and past team performances. The assessment of system

performance is observed through the prediction accuracy of future match outcomes. This is

based on the expectation that in elite sport, better teams are expected to win more often.
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1.5 Structure of Thesis

Given the growth of online sports betting, and the analysis and forecasting of competitive

sports, the following chapter discusses various sports ratings systems that were identified in

the academic literature, derived using mathematical and statistical techniques, at both the in-

dividual and team level. The literature review will be followed by Research objectives and

methodology which formally define the research questions and describes the adopted method-

ology. Subsequently, data extraction and processing procedures are described. Ensuing chap-

ters are dedicated to data and statistical analysis. The final chapter discusses the model results

and concludes with the optimal team rating system.



Chapter 2

Literature Review

This chapter provides a review of academic literature outlining the application of statistically

derived rating systems for various sports , at both the individual and team level. The chapter

has been partitioned into four segments: 1. Team rating systems for non-cricket sports, 2. Team

rating systems for cricket, 3. Individual rating systems for cricket and 4. Individual rating

systems for non-cricket sports.

2.1 Team Rating Systems for Non-Cricket Sports

In [78] linear modelling techniques were applied to [American] college football data (2004-

2006) to develop a predictive model for the outcome of ‘bowl’ football matches. Regressing on

six predictors (scoring margin, offensive yards per game, defensive yards per game, strength of

schedule, defensive touch-downs per game and turnover margin) the authors found all predic-

tors to be practically and statistically significant for match outcome, with the model explaining

22% of variation. Team ratings were calculated by building a predictive model using previous

season data and ‘bowl’ game outcomes. The amount of points a team received was based on

the 95% confidence interval (c.i.) for the expected outcome for a single game. A team would

receive 1 point if the c.i. included 0, 2 points if the c.i. included values > 0 and 0 points if the

c.i. included values < 0. A teams ratings would then be generated by aggregating these points

across all games. Applying this method to the Bowl College Series competition a correlation

9
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of 0.60 was found between the predicted and actual (end-of-season) ratings.

A common practice in American College Football is the use of computer models to produce

team rankings, however these computational models often receive considerable criticism due to

their tendency to heavily weigh margin of victory. To counter this weighing issue a penalised

maximum likelihood approach was proposed in [60]. The result was a ranking process that

attempted to reflect the opinion of human pollsters. The author began by assuming a normal

distribution with mean θi and variance 1
2
, for the day-to-day variation in the intrinsic perfor-

mance level of each team i. “Treating the performance level as random is consistent with the

fact that even good teams can be ‘upset’ by weaker teams” [60, p.243]. The model assumed

that a team’s intrinsic performance level is independent of its opponent’s level and that the team

with the greater performance level, on the day, wins. Therefore given these assumptions the

probability that team X defeats team Y was Φ(θx−θy), where parameter θi is the mean perfor-

mance level, for team i. The developed likelihood approach reproduced the thought process of

human pollsters, penalised undefeated team’s by ensuring the MLE for an undefeated team was

finite, producing rankings which agreed with human pollsters. Moreover the model accounted

for all game outcomes in which teams were from different divisions since ignoring such events

could lead to controversy if a teams only loss was to a team from a lower division. Applying the

model to 1998 American College Football data and comparing the proposed model outcomes to

computer-based outcomes, it was found that the penalised maximum likelihood approach out-

performed two of the three [computer-based] models adopted by American College football.

In [36] a method of predicting the distribution of scores in international soccer matches was

developed. The author treated each team’s goals scored as independent Poisson variables de-

pendent on the FIFA team ratings and the match venue. This was achieved by using a Poisson

regression model based on two assumptions: 1. The number of goals scored by a team in a

soccer match is Poisson distributed and 2. It is independent of the number of goals scored by

the opposing team [36]. The Poisson regression implemented current FIFA ratings, opponent’s

FIFA rating and a parameter which changed according to venue (i.e. home, away and neutral)

as predictors. The author calculated the expected number of goals scored per team, and using

these as means the marginal probabilities for each team’s Poisson distribution of goals scored

was calculated. Using independence, the mean and marginal probabilities were multiplied to
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produce the probability of each individual match result [36]. Using the latest FIFA ratings to

calculate the expected number of goals estimated through the regression analysis, it was pos-

sible to generate two Poisson random variables for every game, and run a simulation for the

entire tournament. After running the simulation, the author aggregated the probabilities for

each of the World Cup matches to calculate the expected number of wins, draws and losses

for each team. From output it was established that the raw FIFA ratings were slightly poorer

predictors than the adjusted Poisson ratings generated through simulation, concluding that a

Poisson assumption for goals scored was sufficient.

In [16] a generic rating system was developed, generating outputs known as ‘Team Lodeings’.

The output “measures the relative performance of sports teams and the competitive balance

of competition” [16, p.4]. The lodeings framework enabled the authors to measure a teams

performance relative to the opponents within the same division. This allowed for meaningful

team comparisons. Applying the framework to the 2004 New Zealand National Provincial

Rugby Championship revealed that the ratings engine produced suitable comparisons of team

performance across divisions. The authors showed that the standard deviation of the ratings

provided good representation of the competitiveness of a given sports league. Moreover, it

was found that a competitive league results in teams having similar winning percentages, and

therefore a smaller standard deviation. The method was externally validated by comparing the

standard deviation of team ratings to the standard deviation of winning percentage, a strong

positive correlation of 0.81 was found between the two variables. Applying the ratings engine

to 23 domestic competitions across 7 different sports, it was found that soccer was the most

competitive sport, followed by Basketball and American football, while Rugby was found to

be the least competitive with 4 out of the bottom 5 least competitive leagues.

Implementing the lodeings algorithm developed in [16] and re-calibrating the results, a method

to measure the relative performance of team’s across divisions was developed in [47]. The au-

thor applied the methodology to the NBA, as it naturally splits into two divisions (i.e. Western

and Eastern). Simulations were run on 3 groups. The first group contained matches played

between the Eastern conference teams; the second contained matches played between West-

ern conference teams; while the third group contained matches played between teams across

conferences (i.e. interaction group). Applying the lodeings simulation to the first and second
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group produced ‘within conference’ ratings, while simulations on group 3 produced ‘between

conference’ ratings. Additionally ‘overall NBA’ ratings were produced by running the sim-

ulation when the groups were not defined. The author established strong links between team

lodeings, winning percentage and final standings. Correlations> 0.80 existed between ‘within’

and ‘between’ conference lodeings’ and final winning percentage, and ‘overall NBA’ lodeings.

Next, a method to develop a recalibration equation was established by adopting Generalised

Linear Models. This was established by regressing ‘overall NBA’ team lodeings (Y ) on team

lodeings across the three groups (X ′is). Using the regression equation to re-weight the ‘within’

conference and ‘between’ conference lodeings the author was able to re-calibrate the ‘overall

NBA’ lodeings, allowing for meaningful comparisons of team performances across divisions.

2.2 Individual Rating Systems for Non-Cricket Sports

In [24] multiple linear regression was applied to rate tennis players using results from an Aus-

tralian domestic doubles competition. Using indicator variables to tag the individual players

the author fitted a regression model to ‘games-up per set played’ as a linear function of the

two players involved and found the model to be statistically significant with an R2 of 0.074.

Next, percentage of games won by opposition and ‘set weakness’ were added to the regression

model. The model produced was practically and statistically significant with an R2 of 0.26.

However given the large amount of unexplained variation in the model, an analysis consider-

ing the ability of individual opponents was conducted. Using separate player ratings a larger

regression model was considered, incorporating a constant for home advantage. The home ad-

vantage coefficient of 0.51 was significant with a p-value of 0.026. The two sets [of ratings]

had an almost perfect linear relationship suggesting that the method of calculating ratings using

only the data available, to clubs, provide reasonable estimates of a players’ relative ability. The

author then assessed the difficulty of playing in certain positions (i.e. 1 or 2) by summing the

ratings of the actual players who played in those positions. An exponential smoothing method

was implemented to estimate a players rating at the end of the season. A correlation of 0.85

between the exponential smoothed ratings and regression ratings indicated that the smoothing

method produced reasonable results. Additionally, given that the regression ratings were a sin-

gle rating for the entire season’s performance, and the smoothed ratings were an estimate of the
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players ratings at the end of the season, indicated that the smoothing method was able to give

reasonable ratings. “A comparison of the ratings of the pair of participating players gives the

expected set-margin” [24, p.1389], “if the players do better than predicted, their ratings goes

up; worse than predicted and their ratings goes down” [24, p.1389]. Therefore:

Predicted setmargin = PlayerA rating + PlayerB rating − OpponentA

rating −OpponentB rating (2.1)

Updated player rating = previous player rating + α(actual setmargin−

predicted setmargin), (2.2)

where α was a smoothing constant between 0 and 1, optimised such that the best fit to the

predicted set of results was produced. Each refinement in the method showed an increase in

the correlation of the [end of season] exponentially smoothed ratings and the least squares

regression ratings [24], reinforcing the use of exponentially smoothed ratings to rank tennis

players.

In [25] various heuristic ranking methods were assessed to produce player rankings in round

robin tournaments. The aim was to find the optimal heuristic method to determine the most

appropriate player ranking. The optimal method was evaluated on computational time and

number of violations. Under the conventional tournament framework, each match is assumed

to result in a decision. A tournament T is represented by an n× n matrix A(T ) = (aij), where

aij =

1, if player i defeats player j

0, otherwise
(2.3)

The study began by evaluating Kendall heuristics whereby players are ranked according to the

number of opponents each defeats. However a disadvantage associated with this method is its
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failure to break ties among players, meaning that a complete ranking can not be obtained. Next,

the study evaluated the Iterated Kendall (IK) method which is an algorithmic extension of the

Kendall scores. The method begins by computing the Kendall scores by finding the row sums

of A(T ), and then ordering the players according to these scores. “If no ties are produced, the

resulting ranking will produce no violations and the procedure terminates” [25, p.138]. If they

exist, ties are broken by considering the sub-matrix of A(T ) containing only rows and columns

of the k tied players,and perform the ranking as stated above [25]. Next, the study assessed

the P -connectivity heuristic method which claims to remedy the unbreakable tie problem. The

method “assumes that the 1-connectivity matrix is A = A(T ) and the p-connectivity matrix is

pij , the (p+ 1)-connectivity matrix, ((p+ 1)ij), is derived from” [25, p.137]:

(p+ 1)ij =

( n∑
k=1

pik +
n∑
k=1

pjk

)
× aij

“Each time a new matrix is derived, the row sums are computed. At any stage where there are

no ties among these sums, the procedure terminates and the players are ranked according to

these row sums. If any two row sums are tied, p is increased by 1 and the next p-connectivity

matrix is computed” [25, p.137]. However the p-connectivity method produces a violation rel-

ative to the actual outcomes of the tournaments, whereby player i defeated player j, yet player

j ranks above player i according to the heuristic. To overcome these violations incurred by

the p − connectivity method the Hamiltonian Path method was introduced. The Hamiltonian

algorithm was applied to transform non-Hamiltonian rankings into a Hamiltonian path, which

produces a ranking,R, such that if for any i (i = 1, 2, ..., n) the player ranked in the ith position

has defeated the player ranked in the i + 1 position. However it was found that the Hamilto-

nian path algorithm only determines if two adjacent players can be switched [25]. Finally the

Generalised Iterated Kendall (GIK) method was evaluated. The method applies a re-scoring

procedure which takes the ‘new’ sub-tournament (only includes all tied players) and attempts

to resolve the tie by to finding a player who defeated the last player put in the ranking. “If such

a player exists, it is advantageous to put that player next, and then immediately change his place

with the previously last ranked player” [25, p.140]. However if the tie is not resolved than an



15 2.3. Team Rating Systems for Cricket

attempt is made to rank the players such that there is a reduction in the number of violations.

This ensures a reduction in the overall number of violations of 1. Each heuristic method was

tested across 3 groups, (n = 10, 40, 100), where n = number of players, and it was found that

the GIK method was the optimal heuristic technique, producing the least amount of violations

and lowest computational times for 2 out of the 3 groups (n = 40 and 100).

2.3 Team Rating Systems for Cricket

In [15] it was realised that the method in which limited overs cricket results (i.e. margin of

victory) are recorded complicate the ability to generate meaningful team ratings, for example

“if the team that batted first wins the margin of victory is expressed in terms of the differential of

runs scored. However, if the team batting second wins, than the margin of victory is expressed

as the number of remaining wickets for the second innings batting team” [15, p.1]. As there was

no meaningful mapping function between these two forms of margin of victory, team ratings in

cricket are based on win/loss records. To resolve this issue the study developed a method for

creating meaningful performance based team ratings for cricket utilising a margin of victory

that was solely runs based. This was achieved by developing a method for calculating the

margin of victory for when the team batting second wins. The method estimated the number of

runs that would have been scored had the team batting second continued until their resources

were exhausted. The underlying philosophy was the same as that used by Duckworth & Lewis

(1998). Using this framework a score projection was carried out if both resources had been

exhausted using T2 = C2

R2
, where C2 is team two’s actual score and R2 is the (Duckworth-

Lewis) resources remaining. It was found that the score projections did not produce margins of

victory that were significantly different from those produced when the team batting first wins.

Logarithmically transformed score ratios (i.e T1
T1+T2

, where T1 is the total score for team 1) were

used in creating team ratings which were regressed against the winning percentages in order

to deduce a linear transformation that would increase the spread of the ratings between 0 and

1. These score ratios were then input into the team lodeings algorithm developed to quantify

relative performance. The performance of the ratings was validated by drawing comparisons

with the ratings produced by the International Cricketing Council (ICC), a correlation of 0.91

indicated that the team ratings generated by the proposed performance based rating system was
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valid.

In [23] a dynamic programming model was applied to one day cricket to calculate, at any stage

of an innings, the optimal scoring rate, an estimate of the total number of runs to be scored

in the first innings and an estimate of the probability of winning in the second innings. Given

that the objective of the team batting first is to score as many runs as possible off their allotted

resources (i.e. wickets and balls), at any stage of the game the aim is to maximise the expected

score with the remaining resource. The author produced the following first innings formulation:

fn(i) = max
R

[pd ∗ fn−1(i− 1) +
R

6
+ (1− pd) ∗ fn−1(i)],

where fn(i) represents the maximum expected score in the remaining n balls and i wickets in

hand, pd denotes the probability of dismissals1, and R = 6r denotes the runs rate per over. The

author calculated the average number of balls faced per dismissal, and showed that “a team

should try to score slightly faster than they expect their average rate for the rest of the innings

to be, and if wickets are lost, slow up, rather than the current practice of scoring slower than

average and speeding up if wickets are not lost” [23, p.333].

Since the team batting second knows the total scored by the first innings batting team, the aim

for the second innings batting team is to maximise the probability of achieving a certain score,

therefore the author introduced a variable, S, denoting the number of runs to go. “Each ball, a

batsman either goes out with probability pd and the team still has S runs to score with one less

wicket in hand and one less ball, or scoresX runs with probability px and so the team has S−x

runs to score with one less ball to go and the same number of wickets in hand” [23, p.334]. The

author produced the following second innings formulation:

pn(s, i) = max
R

pd ∗ pn−1(s, i− 1) +
∑

0≤x≤6

px ∗ pn−1(S − x, i),

where pn(S, i) is the probability of scoring at least another S runs with n balls and i wickets

remaining.
1Even though pd depends on batting style, skill state of the bat, the bowler, run rate etc., all factors apart from

run rate were ignored in the dynamic program.
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The first-innings formulation allowed the author to develop an ‘optimal scoring table’ outlining

a team’s optimal scoring rate (i.e. runs per over) to obtain a given expected total, with i wickets

in hand and n balls remaining. The second innings formulation allowed the author to develop a

‘probability scoring table’ outlining the probability of the second innings batting teams scoring,

S runs with i wickets in hand and 300 balls remaining.

In [8] multiple linear regression techniques were applied to determine the relative batting, bowl-

ing strength and common home advantage, for each team, for the first innings of an international

test match. A teams batting and bowling ratings were utilised to produce an overall team rating.

The authors focused on the first innings as teams attempt to optimise their performance to es-

tablish a substantial first innings lead which provides the opportunity to control the match [8].

A teams first innings score in a test match played between the batting team i and the bowling

team j on ground k, was modelled as:

Sijk = A+ αi − bj + hijk + εijk (2.4)

“The response variable Sijk signifies a team’s score, the intercept A represents the expected

score between average teams on neutral ground, hijk represents home advantage and αi and bj

signify the batting and bowling ratings of team i and j, respectively” [8, p.659]. Sijk was log-

arithmically transformed and, applying an inverse transformation to the resultant parameters,

produced estimates for the batting and bowling ratings for which the product equalled 1. A

multiplicative combination of these individual ratings provided a measure of a team’s overall

strength. “A multinomial logistic regression model was adopted to determine which factors

associated with a teams first innings performance significantly affected match outcomes” [8,

p.664]. The predictors were common home advantage, result of the toss, the teams relative bat-

ting superiority over the oppositions bowling (i.e. αi
βj

) in the third innings and the team’s relative

batting superiority over the oppositions bowling in the fourth innings. The results illustrated

three key findings: 1. the tendency of the home team to win, 2. the winning advantage that is

gained by establishing a first-innings lead, and 3. a large advantage in batting second. There

was also a clear indication that the probability of winning a test match is highly influenced by

the relative difference in strength of the team in the fourth innings, but not the third innings.

The overall strength of a team was treated as a combined effect of its first-innings batting and
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bowling attributes. Analysing the effect of establishing a first-innings lead, it was found that

the average lead that the home team needed to establish to have a better than even chance of

winning was 157 runs. Conversely, if the team batting first was the away team it was found that

the away team needed a lead of 292 runs to have a 50% chance of winning, confirming a clear

home advantage.

A fair method for resetting the target for interrupted overs in one-day cricket was developed in

[35]. The authors recognised that the batting side has two resources at their disposal from which

to score runs: wickets in hand and overs remaining, and the number of runs that maybe scored

from any position depends on the combination of these resources. The target score set for team

2, when an interruption has occurred during the second innings, is reflective of the relative

resources remaining compared with team 1. A two-factor relation was established between

the proportion of total runs which maybe scored and the two resources: Z(u,w) = Z0(w)[1−

exp b(w)u]2, where b(w) is the exponential decay constant and Z0(w) is the asymptotic average

total score from the last 10 wickets. The average proportion of the runs still to be scored in an

innings, with u overs bowled and w wickets down, was then calculated via: P (u,w) = Z(u,w)
Z(N,0)

.

This calculated the proportion of the combined scoring resources remaining in an innings, when

u overs are left andw wickets down, enabling the authors to produce a table of proportions from

which the correction to an interruption maybe made for any target score. Applying the method

to hypothetical and real world examples it was found that the framework produced sensible and

fair targets for all interruptions.

In [20] a Markov chain approach was developed to evaluate the expected performance of a

cricket teams batting order in an innings. Realising that the interaction between bowler and

batsmen is the main factor dictating the dynamics of run production, the author modelled the

game as a sequence of one-on-one interactions. The authors created a multidimensional ma-

trix, M , with entries (b, r, w, b1, b2), representing the number of balls, runs scored, wickets

down, the striking and non-striking batsmen, respectively. It was claimed that, in general, only

one of seven states can occur to which a given situation will commonly transition on a single

ball bowled: (1) the probability a batsman is dismissed and zero runs are scored, pd, (2) the

probability that zero runs are scored, p0, (3) the probability that one run is scored, p1, (4) the

2Commercial confidentiality prevents the disclosure of the mathematical definitions of these functions.
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probability that two runs are scored, p2, (5) the probability that three runs are scored, p3, (6)

the probability that four runs are scored, p4, (7) the probability that six runs are scored, p63.

Given these states “it was possible to compute the probability of being in a given situation, for

each number of balls bowled, by multiplying the matrixM , representing the set of probabilities

after the b − 1 balls, by the probability of each of the events” [20, p.497]. For example, at the

beginning of a match the matrix, M , entries are (0, 0, 0, 1, 2) = 1. This represents the state in

which there have been 0 balls bowled, 0 runs scored, 0 wickets down, batsman number 1 at the

strikers-end and batsman number 2 at the non-strikers. All other entries of M (0, r, w, b1, b2)

are zero. “These values were obtained in the general case by multiplying each non-zero entry of

M (b− 1, r, w, b1, b2) by each of the state probabilities and placing the result in the appropriate

location in the matrix M” [20, p.497]. Simulation results in a ‘runs distribution’ table (i.e. esti-

mates for p0,..,pd) representing the probability of any given number of runs having been scored.

“Summing the product of each possible number of runs and its probability of being the result

for the game gives the expected number of runs for the batting order considered” [20, p.497].

Applying this method to the 2005 Australian national team a ‘runs distribution’ table was gen-

erated for each player. The players were then ranked in terms of batting ability by determining

a teams expected runs if the team was made up of only 1 player occupying all 11 positions

in the batting line-up. Using these rankings the author computed the expected team total with

the goal of determining the ‘optimal’ batting line-up (i.e. batting line-up producing the highest

expected runs). The results indicated that the optimal batting line-up had a minimum and max-

imum expected number of runs of approximately 219 and 235, respectively. Moreover the best

batting order produced at least 70 runs more than the worst batting order.

2.4 Individual Rating Systems for Cricket

In [50] a Poisson Hidden Markov Model (HMM), in conjunction with reliability analysis, was

utilised to evaluate individual batting performances of one day cricketers. The number of runs

scored by a batsmen, Xn, for game n = 0, 1, 2, .., followed a conditional Poisson distribution

with a mean that depended on the underlying batting performance, Yn. The model parameters

were the means, and the transition matrix P = Pi,j , where Pi,j = P (Yn = i|Yn−1 = i), repre-

3Rare events such as fives and run-outs on run scoring balls were ignored.
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sents the one-step transition probability from state i to j. A forward-backward EM algorithm

was implemented to compute the data-likelihood. Implementing a uniform prior a Bayesian ap-

proach in combination with MCMC sampling enabled samples and inferences to be drawn from

the posterior distribution. The appropriate number of performance states, k, for each player was

identified by deducing the posterior distribution using a MCMC parallel sampling technique.

Next, batting performance was evaluated via reliability analysis using the Poisson HMM and

batting average as a performance measure. Each batsmen was treated as a type of system that

was expected to perform adequately. Applying the method to the top 20 ODI batsmen (2014)

it was found that the posterior estimates of the batting average provided a more meaningful

[summary] measure of batting performance compared to the traditional batting average, as the

HMM accommodated not-out scores, over-dispersion and serial dependence in the data.

In [17] a mixed distribution, called the Ducks ‘n’ Runs distribution was proposed. The dis-

tribution consisted of a beta distribution to model zero scores (i.e. ducks) and a geomet-

ric distribution to model non-zero scores (i.e. runs). It utilised runs scored and contribu-

tion to evaluate individual batsman in an innings. The suitability of the probability distri-

bution was demonstrated, at a macro level (i.e. similar batsmen based on batting position)

and micro level (i.e. individual batsmen), using data from New Zealand first class batsmen

over a four year period (1994-1998). At the macro level scores were grouped into 20 bins

(0, 1 − 2, 3 − 6, 7 − 10, 11, 20, 21 − 30, ...., 151 − 200, > 200) and the observed proportion

of scores were compared with expected probabilities. A Q-Q plot illustrated strong linear re-

lationship between the observed and expected instances of scores indicating the the ‘Duck n

Runs’ model was a good approximation for batting scores. At the micro level the probability

distribution model for individual scores was fitted to all individuals and was used to calculate

the proportion of Ducks, numbers of 50’s and number of 100’s an individual was expected to

score. The results showed that all experiment-wise p − values were less than 5% across all

three measures, indicating that the ‘Duck’n’Runs’ distribution adequately models individual

batting scores. Control charts based on quartiles of individual batting scores, were developed,

to monitor an individuals batting performance. It was found that the control charts were able to

detect significant changes in batting performance which suggested a change in an individuals

‘form’.
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In [30] a Bayesian simulation and Stochastic Dominance, a technique used to analyse securi-

ties and portfolios, approach was applied to investigate the contribution of individual batsmen

to overall team performance. Using a Bayesian approach, the author was able to replace the

‘not-out’ scores with a conditional average, representing an optimal estimate of the score the

batsmen would have obtained had the ‘not-out’ innings been completed. “In every instance of

‘not out’, the batsman’s score in that innings is replaced by the Bayesian estimate” [30, p.506].

The adjusted data was then analysed using Stochastic Dominance technique4. The utility func-

tion of a batsmen was characterised according to first-order Stochastic Dominance rules- “The

first derivative of the utility function, with respect to runs scored, of an ODI batsmen was as-

sumed to be positive” [30, p.503], indicating that more runs are preferred to less. The author

then adjusted the individual batting averages due to the bias introduced by the conventional bat-

ting average formula. Graphically representing the cumulative probability of individual batting

performances for 5 cricketers (4 batsmen and a bowler) revealed that the specialist batsmen

curves dominated the curves for the specialist bowlers, indicating that batsmen have a higher

probability of scoring a particular number of runs than bowlers.

In [37] time series clustering analysis was used to map the test career progression of Australian

cricketing legend Sir Don Bradman, acknowledged as the greatest Batsman of all time with an

unparalleled career batting average of 99.94, from 80 innings. However part of his career was

interrupted when all international cricket was suspended due to World War II. Given this ‘dis-

ruption’ in his test career the authors utilised time series clustering to characterise Bradman’s

test career and compared him to other ‘great’ batsmen to test whether or not Bradman was de-

nied his prime. The selected clustering method was based on global characteristics measures

“as it does not require many conditions to be true before it can be utilised, relative to other

clustering techniques” [37, p.3]. Additionally the approach clusters global features extracted

from individual time series and can be applied on different length time series. The performance

measure used to compare batsman was average ‘contribution’ per innings. A [scaled] average

contribution was then modelled using weighted least squares regression. This smoothed stan-

dardised data was then fitted to a polynomial function, for each batsman, and the parameters of

the model were used to generate meaningful clusters. The results showed that Bradman’s ca-

4The problem of portfolio choice is that of selecting a portfolio that maximizes the utility of the investor.
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reer progression was most similar to West Indian legend Brian Lara, indicating that Bradman’s

peak performance would have occurred in the 12th to 14th years of his career (1939-1941),

coinciding with World War II. Imputing Bradman’s likely performances (i.e. batting average)

for 1939-1945 the authors estimated his batting average to be 105.41, which was significantly

higher at the 5% significance level than Bradman’s actual [career] average of 99.94. The au-

thors concluded that Bradman was indeed denied his prime.

In [5] a multinomial logistic regression model was fitted to session by session test match data

to calculate match outcome probabilities. These probabilities were used to measure the overall

contribution of each player to match outcome based on their individual contribution during

each session. The model assumed a multinomial distribution: Y ∼MN(p1, p0, p−1,
∑
pi = 1)

where p1, p0 and p−1 represent the probability of a win, draw and a loss, respectively. The fitted

predictors were lead, ground effect and total wickets lost for each team (W1 and W2). Using

multinomial regression models the authors were able to predict match outcome probabilities

given the match position at the end of each session t, (t = 1, 2, 3, ..., 15). Next a hypothetical

position at the end of session t was defined, in which the batsmen had scored no runs, and

match outcome probabilities were generated. Additionally, a hypothetical position at the end-

of session t was defined, in which bowlers had not taken any wickets, and match outcome

probabilities were generated. A players overall contribution during a given session was assessed

by using the difference between the hypothetical match outcome probabilities and the actual

match probabilities. The batting probability differences were observed with respect to ‘not

losing’ and bowlers with respect to winning [5]. “These probability differences were then

distributed to batsman according to their share of the runs scored in the session, and to bowlers

according to their share of wickets taken in the session” [5, p.687]. An individuali′s batting

contribution in session t was evaluated via:

Ci,t,bat = Ct,bat ×
ri,t
rt
,

where ri,t is the runs scored by player i in session t and rt is the total runs scored by his team

in session t. An individual, i, bowling contribution in session t was evaluated via:

Ci,t,bowl = Ct,bowl ×
∑n

j=1 Zitjαj

Zt
,
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where Zitj represents the total number of wicket taken by player i during session t for wicket-

taking contribution j, j = {1, 2, 3}, where j = 1 corresponds to a wicket taken by the bowler

with no fielder involvement, j = 2 corresponds to catches taken by a fielder and j = 3 corre-

sponds to run-outs. The αj represents the share of points for a wicket awarded to the fielder.

The net contribution of player i in the match is then the sum of contributions from all sessions.

However it wad found that the contributions rating system took little account of contribution

after a point when the win or draw probability of any team is close to unity. To overcome

this problem the author used the contributions as one component of a weighted average rating

system, while the other was raw runs and wickets in the match. Points gained were placed on a

‘runs-like’ scale by multiplying the net player contribution by the average runs per match based

on test matches from 1877-2007. Team ratings for each nation were calculated by combining

the individual player ratings and the final summed value represented the nation’s overall team

rating.

In [54] the limitations of conventional batting and bowling performance measures was recog-

nised. It was claimed that the Duckworth-Lewis methodology could be used to evaluate player

contributions for any stage of an innings, and performance metrics producing context based

measures were developed. “At any stage of an innings, the worth of a player’s contribution, per

ball can be evaluated using equation Z(u,w) = ZoF (w)(1 − exp[−bu/F (w)])” [54, p.806].

This function is interpreted as the proportion of runs accumulated with w wickets lost relative

to no wickets lost and, hypothetically, infinitely many overs remaining. F (w) is a positive de-

creasing step function with F (0) = 1. Z(u,w) represents the average further runs obtained in

the u remaining overs when w wickets have been lost, and Z0 and b are positive constants. For

example if there are i balls remaining and w wickets have been lost then the expected runs, ri,

from ball i will be either ri = Z(i, w) − Z(i − 1, w) or ri = Z(i, w) − Z(i − 1, w + 1) [54],

depending on whether the batsmen survives the next ball. If the batsmen scores Si runs from

ball i the batsmen’s net contribution, ci for ball i is either ci = Si − [Z(i, w)− Z(i− 1, w)] or

ci = si − [Z(i, w) − Z(i − 1, w + 1)]. The author then calculated the proportion of resources

left with u overs left and w wickets down, depending on whether the batsmen survives the ith

ball. The proportion resources consumed on the ith ball is either pi = P (i, w) − P (i − 1, w)
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or pi = P (i, w) − P (i − 1, w + 1)5. Next, the batsmen’s average run contribution per unit

of resources consumed to the team’s total was assessed by
∑
Si
pi

, while a bowlers average runs

contribution per unit resource consumed was measured by
∑

(Si+hi)∑
pi

, where hi represents the

number of extras conceded by the bowler from ball i. Applying these measures to the 2003 VB

series final (Australia vs. England) it was shown that the Duckworth & Lewis based contribu-

tion measures were less susceptible to distortions compared to traditional measures.

In [61] a regression tree technique was applied to New Zealand youth test match data (1986-

2008) to identify fast bowlers likely to play test cricket, based on New Zealand age-group

performances. A regression tree was implemented as a predictive model to account for the

multi-collinearity and complex interactions among the performance metrics. The model found

balls bowled and strike rate to be practically and statistically significant predictors for a inter-

national test career. Results revealed that the regression tree correctly classified 80% of the fast

bowlers who went onto represent New Zealand at the test level. Additionally, a Lorenz curve

based on the significant metrics showed that within the top 25% of fast bowlers approximately

75% had played international test cricket, illustrating adequate discrimination between success-

ful and unsuccessful [fast] bowlers. A residual logistic regression technique was adopted to

rank the bowlers in terms of their probability of success (i.e. playing international test cricket).

Applying this technique to New Zealand youth cricket performances (1986-2008) the residual

regression tree model correctly ranked and classified 93% of the fast bowlers involved in the

study.

5P (i, w) is defined as the proportion of resources consumed from the ith ball with w wickets left.
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2.5 Literature Review Findings

Through the literature review process the author identified a scarcity in literature surrounding

team rating systems, utilising individual ability. This lack of academic depth revealed an inad-

equacy in understanding, lack of demand and a literature gap. Given the gap in the literature

the author established an entry point in the market for this research and attempts to address the

literature gap. The primary focus is to develop a novel method to generate the optimal team

using individual player ability, while the secondary focus is to identify a method that accurately

measures a teams ability to win, given individual player abilities. Given these objectives the

research centred on the development of an adaptive-predictive rating system, characterised by

utilising past player performances, and accounting for the long and short term variability of a

team’s performance.

An adaptive method was preferred as the ratings produced by such systems are recalculated

whenever new results are obtained. Specifically, adaptive systems update player and team rat-

ings “based on historic performances upon availability of data about current performances” [51,

p.3] and can be tailored to incorporate the distinctive features of cricket (i.e. batsmen, bowlers,

etc.). Given these findings, the following chapter formally defines the research objectives and

methodology adopted to develop an adaptive-predictive rating system. Moreover chapter 3

distinguishes the academic contribution of this research from existing work and attempts to ad-

dress the scarcity in the literature surrounding team rating systems, utilising individual ability.
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Chapter 3

Research Objectives and Methodology

The literature review revealed extensive published research surrounding team and individual

rating systems, across various sporting disciplines. However the scarcity of literature surround-

ing team rating systems, based on individual ability, reflects a historical lack of access to data

and computing resources. This has resulted in a gap in the literature. Moreover given the lack

of literature applying modelling techniques to predict match outcomes for limited overs cricket,

the growing popularity of sports betting within the sport highlights the potential demand for this

research. Given this gap in the literature the following research objectives were established:

3.1 Research Objectives

The primary objective of this research was to develop a roster-based optimisation system (i.e.

adaptive rating system) for limited overs cricket, using individual player ratings. The goal was

to build an adaptive rating system that selects a cricket team (i.e. n = 11 players), based on

a set of criteria, from a playing squad (i.e. n > 15), such that the optimal team produces the

greatest team rating. For example if team A has a 15 ‘man’ squad the optimisation system

should select a cricket team which optimises the team’s overall rating, using individual ratings

of the selected players, across a set of key roles and responsibilities. Consequently, the optimal

team was defined as the set of 11 individual players that produce the greatest probability of

winning for team i against any given opponent j. An adaptive rating method was the system

27
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of choice because it updates player and team ratings based on historic performances. Ratings

fluctuate according to performance. Additionally it was established that adaptive systems were

favoured by object sports, such as rugby, cricket, soccer etc. [73].

The secondary research objective was to ensure that the developed rating system accurately

predicted match outcomes (i.e. a system with high predictive power) and could outperform

the predictive power of well-established and recognised predictive sporting algorithms. This

serves as a validation of the individual player rating system. However applying the adaptive

rating system across the two competitions (i.e. CPL and CWC2015), the author encountered

a problem: on occasion the ‘optimal’ team generated by the optimisation model would differ

from that selected by coaches and managers; meaning the ‘optimal’ team rating would not

relate to the playing team. To counter this issue, rather than using the optimal team rating,

the author simply selected the player ratings of those chosen by coaches, and aggregated the

ratings to generate a team rating. Even though this did not represent the optimal team rating, it

did provide a quantitative indication of the strength for the playing team, and demonstrates the

value of the combining individual metrics for a team rating.

The author hypothesised that a team-based [adaptive] rating system, accounting for individual

player performances, should outperform rating systems that only consider ‘macro’ variables,

such as opposition, venue, past [team] performances, home advantage etc. As previously men-

tioned, no research discussing the development of a team rating measure, utilising individual

player ratings [within cricket], was identified during the literature review process, persuading

the author to undertake this research.

Research Milestones

Before adopting an optimisation model four key tasks required completion:

1. Identify the batting and bowling metrics that significantly contribute towards a team’s

ability to win (i.e. winningness).

2. Identify an individual rating system that accurately derives a player’s rating, as a function

of significant performance metrics.
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3. Identify a method to calculate a team’s overall rating, as a function of individual player

ratings.

4. Identify a method that calculates the probability of team i beating team j utilising the

rating of both teams.

3.2 Research Methodology

Given the research objectives the following research methodology was applied:

1. Since the primary research objective was to develop an adaptive rating system that pro-

duces the ‘optimal’ cricket team using individual ratings, and given the definition of ‘op-

timal’ - the set of 11 individual players that produce the greatest probability of winning

for team i against any given opponent j- the author was required to identify individual

performance metrics that significantly impact a team’s ability to win (i.e. percentage

wins, Y ) a limited overs cricket match. Additionally, the secondary research objective

required the developed system to accurately predict match outcomes (i.e. win or loss)

to validate the primary research objective. This meant significant performance metrics

in terms of percentage wins, also referred to as ‘winningness’, had to be identified. The

research requirements solidified the use of winningness as the dependent variable to iden-

tify the significant performance metrics. The fundamental philosophy underpinning this

approach is the expectation that (a) better teams are composed of better players and (b)

better teams tend to win more often.

2. Evaluate different individual rating methods that utilise performance metrics to derive

player ratings. The ‘optimal’ player rating method will produce the greatest predictive

power (i.e. produces the largest proportion of correct match outcomes) when filtering

the individual ratings through the adaptive system to generate a team rating measure.

Three individual ratings methods were evaluated: (1) Principal Component Analysis (2)

Analytical Hierarchy Process and (3) Product Weighted Measure.

• The product weighted measure ranking (PWM) system required power coefficients,

i.e. weights, to be assigned to each significant performance metric when calcu-
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lating individual player ratings. Additionally given different metrics have varying

effects, for each player-type on winningness, a method to establish appropriate met-

ric weights was identified. Identifying an approach to accurately calculate these

weightings was critical to the implementation of the PWM ranking system.

– The author introduced a novel method combining the Analytical Hierarchy

Process (AHP) and Random Forest technique to calculate these weights. The

approach combines prior expert knowledge, gathered from the AHP, with ob-

jective inferences drawn from the Random Forest technique (chapter 8, section

8.6.3).

3. Identify and modify an [existing] optimisation system to select the ‘optimal’ cricket team

(i.e. 11 players), defined as: the set of 11 individual players that produces the greatest

probability of winning for team i against any given opponent j.

4. The optimal team rating was calculated by aggregating individual player ratings. This

aggregation approach was justified in [30], the paper stated that cricket is a sport charac-

terised by one-on-one interactions between batsmen and bowlers, and individual player

abilities establish the outcome of this interaction. Furthermore match outcomes are de-

fined by the sum of interactions between batsmen and bowler. Therefore summing the

individual player ratings, for a given team, provides a fair indication of team strength.

5. The probability of team i beating team j was derived through pairwise comparisons.

Since the individual ratings and team ratings were measured on a ratio scale the Bradley

and Terry model for comparing winning probabilities from ratings was implemented:

πi,j =
Ratingi

Ratingi +Ratingj

6. The predictive accuracy of the adopted optimisation model + selected individual rating

system (i.e. adaptive system) was benchmarked against the T.A.B1 and CricHQ’s2 pre-

dictive system.

1Totalisator Agency Board in New Zealand.
2A cricket technology industry pioneer with headquarters in Wellington, New Zealand.
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3.3 Previous Research

The research adopted a Binary Integer Programming [optimisation] model, however the author

identified previous research in which such a system had been applied for team selection within

cricket ( [42], [68]). However the research methodology outlined in [42] and [68] suffered

many issues. The following research weaknesses were identified:

1. Ad-hoc metric selection

The performance metrics utilised to establish individual player ratings were subjectively

chosen with no justification.

2. Unsuited for all-rounders

Equal weights were allocated to an all-rounders batting and bowling ability when de-

riving player ratings. This leads to inaccurate player ratings because even though all-

rounders are well-rehearsed in both batting and bowling, they still possess a dominant

skill and therefore should be classified as either batting or bowling all-rounders, and their

abilities should be weighted accordingly. Additionally the framework did not consider

situations in which an all-rounder only contributed through either batting or bowling, but

not both. In this case the method failed to produce an all-rounders rating as the individual

rating equation required an all-rounder to bat and bowl during a match.

3. Ad-hoc method of developing optimisation model constraints

The model constraints were formulated in an ad-hoc fashion, leading to inaccurate op-

timal teams generated by the model. For example it is common [cricketing] knowledge

that T20 cricket is a batsmen dominated game. Therefore when constructing an optimal

T20 team the model constraints should be formulated such that the optimisation method

produces a team containing greater batting talent than bowling talent.

4. Lack of team rating measure

Given optimal team A and optimal team B, as suggested by the model, the research

provided no method of comparing the strength of the two teams. For example given

optimal team A vs. optimal team B, what is the probability that team A beats team B?

who is stronger?



Chapter 3. Research Objectives and Methodology 32

5. Lack of validating the optimal team

The research provided no method of validating whether or not the team produced by the

optimisation model was ‘optimal’. Furthermore, operationalised concept, ‘optimal’ was

not defined.

6. Performance metrics were subjectively allocated weights

The authors implemented a product weighted measure ranking system to derive individ-

ual player ratings, however the weights (i.e. power coefficients) allocated to each per-

formance metric, for each player-type (i.e. batsmen, bowlers, all-rounders and keepers),

were ‘subjectively’ chosen. The performance metrics were allocated equal weights, pro-

ducing inappropriate player ratings because different performance metrics have varying

effects on individual player-types, across formats.

7. Lacking of testing different individual rating systems

Individual player ratings were derived using the product weighted measure, however

the variability of the ‘optimal’ team across various individual rating methods was not

examined. Moreover, the reasoning for the product weighted measure being identified as

the ‘optimal’ individual player rating method was not described.

3.4 Software and Hardware

Analyses and statistical programming were executed using the SAS language and R (Rgui 64-

bit v3.0.2; R Core Team, 2015). R is an S-PLUS statistical programming environment for

statistical computing and graphics. The choice of software was determined by the extensibility

for modelling packages and the need for flexible object-oriented data manipulation. By using

R, which is free, open-source and readily available over the Internet, all procedures carried out

can be reviewed and replicated. Formatted tables and figures were generated through R using

LaTeX markup language, MiKTeX typesetting system and Pandoc file converter. All research

was carried out on a desktop computer equipped with dual Xeon quad core CPU 2.4GHz, 32GB

RAM, running 64-bit Windows 10.
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Data Extraction and Processing

The analysis conducted throughout this research required end-of-match scorecard data for lim-

ited overs cricket matches. Scorecard data outlines each players batting and bowling perfor-

mance statistics in the first and second innings of a limited overs cricket match. This data is

readily available from the ESPN Cricinfo website (www.espncricinfo.com)1. An automated

process using the SAS language was developed to extract and parse the scorecard data, and

provide a more convenient data structure. The process extracted relevant details on a match-

by-match basis and stored the data in a tabular form for easy access; appendix B illustrates

data structure after the scorecards were extracted. Since this research focused on limited overs

cricket both T20 and one day data was required.

1. T20 scorecards were extracted for each match from the 2015 season of the Indian Pre-

mier League (IPL) and Caribbean Premier League (CPL), i.e. two major domestic T20

competitions.

2. One day scorecards were extracted for each match from the 2011 and 2015 Cricket World

Cup (CWC) competition, i.e. one day international competitions.

The IPL and CWC2011 datasets were implemented during the analysis phase (i.e. training

sets). The training sets were utilised to identify the performance metrics that significantly
1This data was obtained with permission from ESPNCricinfo.com.
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effect winningness (Chapter 6). The CPL and CWC2015 scorecards were utilised to validate

the reliability and predictive power of the developed adaptive rating system (i.e. test set). Table

4.1 illustrates the contents of a cricket scorecard.

Table 4.1: Scorecard elements

Player Info Game info Batting metrics Bowling metrics

Player Name Cricinfo ID Dismissal Overs

Player ID Innings Runs Scored Maidens

Role Minutes played Runs Conceded

Order Balls Faced Wickets

Fours Hit Economy Rate

Sixes Hit Boundary 4’s

Strike Rate Boundary 6’s

Extras

Dots

4.1 Data Manipulation

The IPL dataset contained scorecards from 60 games (1591 player observations), while the

CWC2011 contained scorecards from 49 games (1475 player observations). The following

steps were applied to the two scorecard datasets.

After extraction the IPL and CWC2011 scorecards were split into two separate sets:

Dataset 1: Batting metrics

Contained match-by-match player observations with their associated batting metrics and

biographic information (i.e. player name, role etc.), for each match. This dataset con-

tained all player observations where role = batsman, which is coded in the data as 1.

Dataset 2: Bowling metrics

Contained match-by-match player observations with their associated bowling metrics

and biographic information (i.e. player name, role etc.), for each match. This dataset

contained all player observations where role = bowler, which is coded in data as 2.
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Since each player in the two datasets [for both competitions] contained multiple match ob-

servations, each performance metric was aggregated and averaged across the entire season by

player ID. The output produced season performance statistics, for each player, in the IPL and

CWC2011 competitions (Appendix C). Table 4.2 outlines the performance metrics that were

calculated2.

Table 4.2: Performance Metrics

Batting metrics Bowling metrics

Batting Average Economy Rate

Batting Strike Rate Strike Rate

Average Contribution Bowling Average

Percentage Boundaries hit Percentage Boundaries conceded

Runs Scored Dot Balls

Balls Faced Balls Bowled

Total Boundaries Percentage Dots

Sixes Runs Conceded

Fours Wickets

Games Played Games Played

Number of wins Fours Conceded

Percentage wins (Y) Percentage wins (Y)

Sixes Conceded

Number of wins

Total Boundaries

Total Maidens

Next, a player-type (i.e. batsmen, bowler, batting all-rounder, bowling all-rounder or wicket

keeper) was assigned to each player. Additionally, each player was tagged to a team. A players

‘player-type’ was established by:

1. The position (i.e. order) in the batting or bowling line-up a player, on average, occupied.

For example ‘pure’ batsmen, those who specialise in batting, generally bat in the top

order of a batting line-up (i.e. order = 1-4), while ‘pure’ bowlers, those who specialise

in bowling, generally bowl during the early stages of an innings (i.e. order = 1-4).
2Definitions of the performance metrics can be found in Appendix A.
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2. Manually checking a players biography via ESPNCricinfo. Wicket-keepers and all-

rounders were manually obtained through player biographies.

Next, all players classified as batsmen, wicket-keepers and batting all-rounders, across the

IPL and CWC2011 datasets were entered into a single dataset, while the bowlers and bowling

all-rounders were entered into another dataset. Subsequently the IPL and CWC2011 batting

metrics and the corresponding players, across the IPL and CWC2015 datasets were combined

into a single dataset, referred to as the batting dataset. The same was applied to the bowling

metrics, referred to as the bowling dataset. The batting dataset contained 321 observations (i.e.

players) and 14 columns (i.e. metrics) while the bowling dataset contained 238 observations

and 21 columns. The intuition was that the batting and bowling metrics that significantly effect

winningness in limited overs cricket, are the same across formats. Although the effect size and

significance of each metric, for each player-type, varies across formats.

4.2 Data Limitations

Through data collection and processing, limitations were identified in the extracted scorecards.

A major limitation to the data was missingness, for instance a number of IPL scorecards failed

to record extras, fours conceded, sixes conceded and/ or minutes played. These scorecard

inconsistencies produced misalignments in the data, as the SAS extraction process did not ac-

commodate for occasions where ESPNCricinfo failed to record metrics. The ‘missing’ metrics

were obtained using ball-by-ball commentary data from ESPNCricinfo.com.

The difference between scorecard and ball-by-ball data is that the former presents an overall

view of match result, while the latter provides information on what happened during each ball of

a match. To extract the ball-by-ball data the author developed an additional SAS process which

parsed the associated commentary log for each match. The process translated commentary

data into numerical data, producing a more convenient data structure; Appendix D illustrates

data structure after extraction. The SAS script extracted the relevant details on a ball-by-ball

basis, and stored data in a tabular form for easy access. This was then summarised into a

scorecard format and stored in a tabular form, as shown in Appendix B. The ‘ball-by-ball’ based
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scorecards were merged with the scorecards containing no missing metrics, and commenced

processing the scorecards, i.e. calculating the appropriate performance metrics for each player-

type and splitting/ merging the dataset into batting and bowling metric datasets.
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Chapter 5

Exploratory Data Analysis and Regression

Diagnostics

This chapter evaluates the characteristics of the analysis datasets and establishes validity of the

regression assumptions. The data outlined in the previous chapter is used to detect outliers, de-

termine the presence of multicollinearity and interrelationships among the predictor variables,

as well as assessing the size, strength and direction of these relationships.

5.1 Summary Statistics

Running summary statistics on the analysis datasets yielded missing values (N/A), however

no discrepancies were found within the summaries. Removing missing value observations

produced batting and bowling datasets with 321 and 195 observations, respectively. It should

be noted that minimum values of zero were observed for the sixes hit, fours hit, percentage

wins, number of wins, total balls bowled, total maidens, total wickets and total sixes conceded

within the datasets. A Cook’s distance test revealed influential observations (i.e. outliers) that

would substantially change the estimate of coefficients, leading to inaccurate conclusions in a

regression analysis.

39



Chapter 5. Exploratory Data Analysis and Regression Diagnostics 40

5.2 Multicollinearity and Interrelationships

Using the car and asbio packages in R, variance inflation factors (VIF) and scatterplot/ correla-

tion matrices were produced, respectively. The presence and strength of multicollinearity and

interrelationships among the batting and bowling metrics were determined.

5.2.1 Variance Inflation Factors (VIF)

Running the VIF function on model (5.1) produced an ‘alias’ error, indicating the presence

of linearly dependent batting metrics (i.e. perfect multicollinearity)1. Conducting an ‘alias’

analysis revealed that total balls and total boundaries were linearly dependent across the batting

metrics. Removing total boundaries (i.e. nullifying alias errors) from the model illustrated

strong multicollinearity between the total runs, total balls, total dismissals and innings played

metrics.

Winningness = batting average× β1 + strike rate× β2 + total runs× β3

+ percenatge boundaries× β4 + total balls faced× β5

+ total boundaries× β6 + sixes hit× β7 + fours hit× β8

+Games played× β9 + total dismissals× β10

(5.1)

An alias analysis was also conducted on model (5.2), since running the ‘VIF’ function on

the model revealed the presence of perfect multicollinearity. The alias analysis found that

balls bowled and boundaries conceded were linearity dependent, across the bowling metrics.

Removing both boundaries conceded and balls bowled from the model revealed strong mul-

ticollinearity between all metrics except games played, total maidens, total overs and total

wickets.

1VIF values > 10 indicate poor regression coefficient estimates due to multicollinearity.
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Winningness = economy rate× β1 + strike rate× β2 + bowling average× β3

+ percenatge boundaries× β4 + dot balls× β5

+ balls bowled× β6 + percentage dot× β7 + runs conceded× β8

+ wickets× β9 + games played× β10

+ sixes conceded× β11 + fours conceded× β12

+ boundaries conceded× β13 + total overs× β14

+ total maidens× β15

(5.2)

5.2.2 Scatterplots and Correlation matrix

A scatterplot and correlation matrix for the batting metrics illustrated strong positive relation-

ships between the total dismissals, strike rate, percentage boundaries, total runs scored, total

balls and games played metrics. The relationships between these metrics produced correla-

tion values, r, ≥ 0.70. Moreover, all relationships among the batting metrics were statistically

significant at the 5% level. These results illustrate strong interrelationships among the batting

metrics.

A scatterplot and correlation matrix for bowling metrics illustrated strong positive relationships

between the total balls bowled, total overs and total dots metrics. The relationships between

these metrics produced correlation values, r, ≥ 0.70. Out of the 120 bowling metric rela-

tionships 105 were statistically significant at the 10% level. These results illustrate a strong

interrelationships among the bowling metrics.

5.3 Regression Assumptions

A regression analysis was conducted on the batting and bowling dataset to identify performance

metrics that are practically and statistically significant contributors to team “winningness” i.e.

percentage wins. The validity of the regression analysis was tested by examining the validity



Chapter 5. Exploratory Data Analysis and Regression Diagnostics 42

of the following regression assumptions:

1. Independence of errors

2. Normality of Residuals

3. Constant variance of residuals

4. Residuals Outliers

5.3.1 Independence of Errors

Assumption (1) was tested by conducting a Durbin-Watson test, using the durbinwatson() func-

tion from the ‘car’ package in R. The Durbin-Watson test tests whether or not the residuals are

serially correlated (i.e. lag one autocorrelation errors). The hypotheses tested are H0 : ρ = 0

(i.e. autocorrelation of zero) vs. H1 : ρ 6= 0. The test statistic can vary between 0 and 4 with

a value of 2 meaning that the residuals are uncorrelated. A value greater than 2 indicates a

negative correlation between adjacent residuals, whereas a value below 2 indicates a positive

correlation” [38, p.874].

The Durbin-Watson test, for the batting metric regression analysis, generated a p−value above

the 5% (p− value = 0.8) confidence threshold, suggesting that the null hypothesis, H0, cannot

be rejected, indicating no serial correlation among the residuals (i.e. independence of errors at

lag one). The D-W test statistic for the batting metric regression model was 1.97, indicating

that the independence of errors assumption holds.

The Durbin-Watson test, for the bowling metric regression analysis, generated a p − value

below 5% (p−value = 0.002), suggesting that the null hypothesis should be rejected, indicating

lag one serial correlation among the residuals. The D-W test statistic for the bowling regression

model was 1.57. The result shows that the independence of error assumption fails.

5.3.2 Normality of Residuals

A Quantile-Quantile (Q-Q) plot of residuals tests the assumption of ‘normally distributed resid-

uals’. Residuals that follow a straight line indicate normally distributed errors, while any trends
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other than a ‘straight line’ indicate a violation in the assumption.

The Q-Q plot of batting regression residuals showed the residuals deviating from a straight-line

trend (figure 5.1), suggesting that the normality assumption had been violated. Additionally

a Shapiro-Wilks test produced p − value less than 5% for the set of residuals reinforcing the

claim that the residuals are not normally distributed.

Figure 5.1: Batting Metric Q-Q plot

The Q-Q plot of the bowling regression residuals showed the residuals deviating from a straight

line trend (figure 5.2), suggesting that the normality assumption had been violated. Addition-

ally a Shapiro-Wilks test produced a p−value less than 5% for the set of residuals, reinforcing

the claim that the residuals are not normally distributed.

5.3.3 Constant Variance

The ncvTest function [library(car)] was implemented to evaluate homoscedasticity. The func-

tion implements the Breush-Pagan test, with hypotheses: H0 : constant error variance vs. H1

non-constant error variance.

The Breush-Pagan test generated p − values below 5% for both the batting and bowling re-
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Figure 5.2: Bowling Metric Q-Q Plot

gression residuals, suggesting a rejection of the null hypothesis, H0, in favour of the alternative

hypothesis, H1, indicating that the variance of the residuals is non-constant. Spread-level plots

[absolute studentised residuals residuals vs. fitted values] illustrated decreasing trends (figure

5.3 and figure 5.4), reinforcing the claim that the constant variance assumption had been vio-

lated. Additionally the residuals were plotted against the performance metrics which confirmed

a violation in the equal variance of residuals assumption.

Figure 5.3: Batting Metric Spread
Plot

Figure 5.4: Bowling Metric Spread
Plot
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5.3.4 Residual Outliers

Assumption 4 was tested using the outlierTest() function [library(car)] which reports the “Bon-

ferroni p − value for studentised residuals in linear and generalised linear models, based on

a t-test for linear models and normal-distribution test for generalized linear models” [3]. The

Bonferroni correction measure tests each of the, n, residuals to determine whether or not it is

an outlier [45]. The hypotheses tested were: H0 : No residuals outlier effect vs. H1 : Residuals

outlier effect. The test generated Bonferroni p − values above 5% for both batting and bowl-

ing regression residuals, which suggested a failure to reject the null hypothesis indicating no

residual outlier effect.

5.4 Chapter Remarks

The regression diagnostics suggest that a regression analysis, to identify significant “winning-

ness” metrics, would produce invalid results due to violations in the constant variance, nor-

mality of residuals and independence of errors assumptions. Additionally the strong presence

of multicollinearity and interrelationships among the performance metrics suggests that re-

gression results would be invalid and subject to scrutiny and criticism. Since the presence of

multicollinearity and interrelationships can produce distorted standard errors of regression co-

efficients, the succeeding chapter assesses several non-parametric and parametric dimension

reduction techniques which account for multicollinearity and interrelationship issues. This en-

sures the author identifies performance metrics that significantly effect ‘winningness’ among

cricketers, for limited overs cricket.
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Chapter 6

Establishing Significant Performance

Metrics

This chapter is dedicated to identifying performance metrics that significantly affect a team’s

ability to win (i.e. winningness), for individual cricketers1. Due to the issues of multicollinear-

ity, interrelationships between the performance metrics and the high dimensionality of the data,

several dimension reduction techniques are introduced to handle these issues and identify per-

formance metrics that significantly affect a player’s contribution to team winningness. To en-

sure that statistically significant and important metrics are identified two areas of statistical

dimension reduction are considered: (1) Classical Parametric techniques: Principal Compo-

nent Analysis, Linear Discriminant Analysis, Stepwise Regression and Hierarchical Variable

Clustering, and (2) Non-parametric techniques: Regression Trees and Random Forests. Whilst

a preliminary regression analysis could have produced an assessment of significance for each

metric by evaluating the statistical significance and effect size, such analyses generate unreli-

able and inaccurate results, when there is multicollinearity and interaction effects. Additionally,

given the multitude of performance metrics and the research requirement to produce a highly

predictive, practically meaningful, team rating system, an accurate means of assessing variable

significance was paramount for research success.

1Players are nested within teams and this will also be addressed

47
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Variable selection is a process whereby a heuristic or algorithm identifies the variables that best

accomplish a given modelling objective such as explanatory value and prediction accuracy.

The three main strategies in variable selection are ‘wrappers’, ‘filters’ and ‘embedded meth-

ods’ [43]. With wrappers, the variable importance measures of a supervised learning machine,

trained to predict a response variable, are used to determine variable selection in subsequent

models. Filters, in contrast, assess importance during a ‘pre-processing step’ separate from

the response variable, while embedded methods are automated and self-contained within the

model. Due to the issue of multicollinearity and the high dimensionality of the data, vari-

ous variable selection techniques are introduced to minimize the presence of such effects and

reduce the number of performance metrics that are implemented when evaluating individual

player ratings. The succeeding section will provide a brief technical introduction to the pro-

posed dimension reduction techniques, followed by an application section.

The aim of this chapter is to identify the performance metrics that significantly affect win-

ningness for individual cricketers, this could be a problem due to the nesting of players within

teams. Achieving this goal addresses issue no. 1 (Chapter 3, Section 3.3).

6.1 Classical Parametric Techniques

6.1.1 Principal Component Analysis

Principal Component Analysis is a dimension reduction technique used in multivariate statis-

tics. It is most useful when there is a high degree of correlation in the predictors (i.e. perfor-

mance metrics). “The objective of the analysis is to take p variables, X1, X2, ..., Xp, and find a

linear combinations of these to produce indices, Z1, Z2, ..., Zp, that are uncorrelated” [58, p.76].

These uncorrelated multi-attribute, Z, components are orthogonal linear combinations of the

original, p, variables, measuring different ‘dimensions’ in the data. The primary goal is to pro-

duce components such that the majority of the variance in the indices will be so small as to

be negligible, while a small number of Z components explain the largest proportion of varia-

tion [58]. According to [58] the steps to produce Principal Components are as follows:
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1. Standardise the variables X1, X2, ..., Xp such that X ∼ N(0, 1)2.

2. Calculate the covariance matrix C. This is the correlation matrix if step 1 has been

completed. The covariance matrix is used when variables are on similar scales, while the

correlation matrix is used when variables are on different scales.

3. Identify the eigenvalues λ1, λ2, ..., λp and the corresponding eigenvectors ai; {i = 1, 2, ..., p}.

“The coefficient of the ith principal component are then given by ai, while λi is its vari-

ance” [58, p.80]. Order the eigenvectors by descending eigenvalues to establish the order

of significance3.

4. “Discard any components that only account for a small proportion of the variance in the

data” [58, p.80].

5. The significant components (i.e. accounting for a large proportion of variation), Zi, are

expressed as a linear combination of the predictor variables⇒ Zi = λ1x1 + λ2x2 + ˙...+

λixi.

6.1.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is “ based on the idea of finding a suitable linear combina-

tion of the original variables” [58, p.13], with the intention of preserving class discriminating

information. Compared to PCA, LDA attempts to provide more class separability by iden-

tifying decision regions between classes using available measurements. Additionally, in the

presence of ‘class’ information, supervised approaches, such as LDA, are considered superior

(i.e. more effective) than unsupervised techniques [80]. The technique attempts to establish

maximum class discrimination by identifying a projection matrix which maximises the be-

tween class variance (sb) and minimises the within class variance (sw), using a function known

as Fisher’s criterion. The main objective is to find “an optimal transformation (projection)

by minimizing the within-class distance and maximizing the between-class distance simulta-

neously, thus achieving maximum class discrimination” [80, p.1]. According to [55, p.3] the

2It is not necessary to have normality.
3A property of eigenvectors of a matrix is perpendicularity meaning that the data can be expressed in terms of

the orthogonal eigenvectors, instead of the x and y axes.



Chapter 6. Establishing Significant Performance Metrics 50

steps to conduct a Linear Discriminant Analysis are as follows:

1. Start by calculating, g, the class mean vectors:

x̄i =
1

Ni

Ni∑
j=1

xi,j,

where x̄i represents the mean vector for class i (i = index of the class), Ni represents

the number of observations in class i and xij , {j = 1, 2, ..., Ni}, represents the jth

observation in class i = {1, 2, ..., g}.

2. Calculate a grand mean for the entire dataset:

x̄ =
1

N

g∑
i=1

Nix̄i =
1

N

g∑
i=1

Ni∑
j=1

xi,j

3. Calculate the between class scatter matrix:

Sb =

g∑
i=1

Ni(x̄i − x̄)(x̄i − x̄)T

4. Calculate the within class scatter matrix:

Sw =

g∑
i=1

Ni∑
j=1

(xi,j − x̄i)(xi,j − x̄i)T

5. Find the projection matrix,Φlda. Since the determinant of a covariance matrix establishes

the amount of class variance, the projection matrix, Φlda can be written as:

Φlda =
|ΦTSbΦ|
|ΦTSwΦ|

,

where Φ = [φ1, φ2, ..., φm] represents the full projection, and the φi’s are vectors defin-

ing the direction of one of the new axes. Using this transformation the data-points are

converted into a new axis system.
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6.1.3 Stepwise Regression

Stepwise regression is a variable ‘filtering’ technique which implements a combination of the

forward selection and backward elimination variable selection techniques. The “stepwise re-

gression algorithm is forward selection followed by backward elimination” [67, p.418]. The

technique selects variables by testing various combinations of the variables and evaluates each

combinations R2, and the associated p− value for each variable.

Forward Selection

The forward selection technique starts with the null model and iteratively adds predictors (i.e.

performance metrics) to the model and tests variable significance. The predictors with p-values

less than αcrit, for example 5% significance level, are retained in the model. The forward

selection procedure stops when all variable p-values are less than αcrit (i.e. keep adding vari-

ables into the model until none of the remaining variables are ‘significant’ to the model). The

p−value identifies which performance metrics should be retained or removed from the model.

The predictors with the greatest amount of model contribution are retained. Model contribution

is defined as the set of predictors (i.e. performance metrics) that produce the R2 or the lowest

Akaike Information Criteria (AIC).

Backward Elimination

The backward elimination procedure starts with all predictors in the model, Y = β0 + β1 +

... + βr−1Xr−1 + ε, and removes the predictors with p-values greater than αcrit and refits the

model. This process is continued until all p-values are less than αcrit. The predictors with the

least amount of model contribution are eliminated.

The Backward elimination procedures are as follows:

1. Hypothesis tests (H0 : βj = 0 vs. H1 : βj 6= 0, j = 1, 2, ..., r − 1) are carried out with

the corresponding lowest partial F -test (i.e. Fl) or t-test (i.e. tl) value being compared
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with the preselected significance value, F0 and t0, respectively [76].

2. Variable Xl is deleted from the original model if Fl < F0 or tl < t0, and retained

otherwise.

Stepwise Regression

Stepwise regression is a modification of the forward selection method in that after each step in

which a variable is added, all the candidate variables in the model are checked for statistical

significance, if significance is achieved the variable is retained in the model, otherwise it is

removed.

1. The algorithm starts with the null model and adds in a single variable using the forward

selection method.

2. After each new variable is added into the model the Stepwise regression performs back-

ward elimination,. The smallest partial F-value, Fl, is compared to the preselected signif-

icance, F0; if Fl < F0 then the variable is deleted, otherwise it is retained in the model.

3. The procedure will continue until no variables can be eliminated from the new original

model and all next best candidate variables can not be retained in the new original model

[67].

The final optimal model minimises the AIC and/ or maximises the adjusted R2 value. A draw-

back of the stepwise regression is the stopping criteria only produces a single model whereas

there may be a variety of models with a similar goodness-of-fit [67]. An additional drawback is

that the forward selection method only selects independent variables that maximise the squared

partial correlation coefficient with the dependent variable [10].

6.1.4 Hierarchical Clustering Trees

Clustering methods are an unsupervised learning technique which replaces a group of similar

variables by a clustering centroid [56] - an average across all points in the cluster. Clustering
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methods can be broken down into 2 sub-groups: (1) Hierarchical methods and (2) Partitioning

methods (i.e. K −means clustering). However, only hierarchical clustering will be discussed.

Partitioning methods were not implemented during the analysis as partitioning algorithms re-

quire the user to specify the number of clusters, defeating the purpose of determining a suitable

number of clusters.

Hierarchical clustering methods construct clusters by recursively partitioning in either a top-

down or bottom-up fashion, producing a sequence of nested partitions [56]. Usually the value

measuring similarity between each pair of documents is stored in a n×n similarity matrix [56,

p.935]. These recursive methods can be divided into 2 sub-groups: (1) Agglomerative - assigns

each object as its own cluster, these objects are successively merged (i.e. clustered) until a

desired result is obtained, and (2) Divisive - all objects start off as one cluster, the cluster is

then successively divided into sub-clusters until a desired result is obtained. “The merging and

division of clusters is performed according to some similarity measure, chosen so as to optimise

some criteria, such as sum of squares” [56, p.278]. The clusters are divided and merged based

on one of three hierarchical approaches which measure the distance between points and define

inter-group similarities:

1. Single-link: “The distance between two clusters is considered to be equal to the shortest

distance from any member of one cluster to any member of the other cluster” [56, p.279].

2. Complete-link: “The distance between two clusters to be equal to the greatest distance

from any member of one cluster to any member of the other cluster” [56, p.279].

3. Average-link: “The distance between two clusters is considered to be equal to the average

distance from any member of one cluster to any member of the other cluster” [56, p.279].

Hierarchical Clustering procedure

Given a datasetD, with n observations to be clustered, and anN×N distance matrix, the basic

process of hierarchical clustering is as follows:

Step 1

Agglomerative: Assign each item as its own cluster, so that if there are N items, there
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are N clusters. Let the distances (i.e. similarities) between the clusters be the same as the

distances between the items within the clusters.

Divisive: Assign all data-points into one cluster, so that there is one cluster containing

all data-points.

Step 2

Agglomerative: Finds the closest pair of clusters and merge into a single cluster, so now

there is one less cluster.

Divisive: Find the most dissimilar objects in the cluster and divide into sub-clusters, so

now there is an extra cluster.

Step 3

Agglomerative: Merge the single (i.e. dissimilar) objects together and compute the dis-

tances (i.e. similarities) between the new cluster and each of the old clusters.

Divisive Compute distances (i.e. dissimilarities) between the new cluster and each of

the original clusters.

Step 4

Agglomerative & Divisive Repeat steps 2 and 3 until a desired 4 result is obtained.

6.2 Non-Parametric Techniques

6.2.1 Regression Trees

Regression trees, also known as Decision Trees, are a supervised classification learning tech-

nique made up of ‘decision nodes’ with each decision node containing an individual test func-

tion, fn(x), of discrete outcomes. Given an input the test function, fn(x), determines the

path or branch to follow, depending on the outcome. “Regression Trees organise these nodes

in a recursive, unidirectional, hierarchical fashion by repeated application of the test func-

tion” [26, p.16]. Tree ‘induction’ (i.e. training) starts with all data set observations at the ‘root’

node and corresponding test function. The function splits records into subsets that are input,

4In Hierarchical Clustering the desired result is user defined as the number of groups of (similar) objects that
best distinguish variable characteristics.
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via ‘branches’, to subordinate ‘leaf’ nodes, which in turn split records to lower nodes. The

output label of a leaf node constitutes the Regression Trees prediction.

The technique is a robust non-parametric alternative to classical parametric models and it cre-

ates models that are robust to the distorting influences of complex variable interactions and

interrelationships that would render a parameter model unreliable. Moreover, classical para-

metric models are replete with assumptions and distribution restrictions. Regression Trees,

however, are “immune to the potential model-defeating characteristics of these effects and are

a useful tool in identifying terms for the regression model to help the models perform bet-

ter” [32, p.27].

The technique applies binary recursive partitioning to the sample space which minimises the

training error to improve the fit. The recursive technique is a partitioning method “whereby

the data are successively splits along coordinates axes of the explanatory variables so that, at

any node, the split which maximally distinguish the response variables in the left and right

branches is selected” [28, p.686], these sequences of splits define a binary tree. The optimal

split (i.e. minimises the residual sum of squares) is found over all variables and all possible

split points that bring about the largest drop in the residual sum of squares. To produce better

statistical performance the full tree may be pruned using a ‘pruning’ technique, which “re-

cursively ‘snips’ off the least important splits based upon the cost-complexity measure [28],

such as the Gini index, Shannon’s Information and reduced error, which reflects the trade-off

between fit and explanatory power. These cost-complexity measures prune the tree based on

a given cut-off threshold, such as misclassification rate, information gained etc., for each de-

cision node. For each decision node if the criteria is not met the node and subsequent tree is

pruned. Overall pruning the regression tree reduces the complexity and over-fitting, increasing

predictive accuracy.

Bootstrap Aggregation

Bootstrap Aggregation, also known as bagging, takes an arbitrary classifier and aggregates

copies of that classifier to improve its performance. “Bagging predictors is a method of generat-

ing multiple versions of a predictor and using these to get an aggregated predictor” [18, p.123].
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The algorithm works as follows:

Given a dataset D = [(x1, y1), ..., (xn, yn)] ∼ (p) a new non-random xi is generated and a

prediction on Y , associated with a given x, is produced. Supposing there is a true underlying

function f(x) = y, a prediction on y is feasible for any given xi. The intuition behind bagging

is that for a collection of datasets a prediction on Y is generated on a particular x value. If each

dataset is independently drawn from p then the average of the predicted y′is, for i = 1, ..., n

datasets, will be close to the true value of Y . Given that only one dataset is accessible, a

bootstrap aggregation technique is implemented. The technique utilises the original dataset

and approximates p by randomly re-sampling, with replacement, n data points from D and for

each re-sampled dataset, m, a value for fm(x) associated with a particular value of x can be

generated. Supposing that f(x) is an unbiased estimator of the true prediction of y the error

can be measured according to a loss function, Φ(f(x) − y)2, and the corresponding ‘risk’ can

be measured by the expectation of the squared distance from the true value, E[(f(x)− y)2] =

E[(f(x)− E(f(x))2)] = σ2
y . Next a new, unbiased estimator, variable Z is generated, defined

as:

Z =
1

m

m∑
i=1

f(x)i

E[Z] =
1

m

m∑
i=1

(y) = y

(6.1)

The risk for each Z is computed via:

E[(Z − y)2] = E[Z − E[(Z)2]]

= σ2
y(Z) = σ2

y

(
1

m

m∑
i=1

f(x)i
)

=

(
1

m

)2

σ2
y

( m∑
i=1

f(x)i
)

=

(
1

m2

)
σ2
y

( m∑
i=1

f(x)i
)

=
1

m
σ2
y(f(x)). �

(6.2)
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Notice that the expected loss/ risk, Z =
σ2
y

m
, is dependent on m, therefore as m tends towards

infinity the expected loss tends towards zero. The intuition is that p is approximated by the

empirical distribution, p̂, and the uniform bootstrapped samples are drawn from p̂.

6.2.2 Random Forest

A ‘wrapper’ feature selection technique, Random Forest, is a [meta-learning] ensemble tech-

nique consisting of a collection of uncorrelated and unpruned regression trees. Random Forests

“are a combination of tree predictors such that each tree depends on the values of a random vec-

tor sampled independently and with the same distribution for all trees in the forest” [19, p.5].

Random Forest splits base-classifier Regression Trees on a random sub-sample of variables.

“The generalization error for forests converge asymptotically to a limit as the number of trees

in the forest become larger” [19, p.5].

The Random Forest algorithm:

1. Given a dataset D = [(x1, y1), ..., (xn, yn)] the Random Forest technique constructs Ti

regression trees using a bootstrapped sample Di, for i = 1, ...B, where B is the number

of bootstrapped samples.

2. Using Di, regression tree Ti is constructed such that at each node a random subset, m,

of features is selected, and only splits on the m features from that particular subset are

considered.

3. After the B trees have been constructed a ‘majority vote’ is taken over T1, ..., TB to

generate an aggregated predictor. Due to the law of large numbers random forests do

not over-fit. The disadvantage of a single regression tree is that it has high variance and

is highly sensitive to the particular arrangement of the data points. Averaging over an

ensemble of trees reduces the variance, leading to increased performance and reduced

error.
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6.3 Dimension Reduction Application

6.3.1 Principal Component Analysis

Principal Component Analysis was applied to identify a small number of Z components that

adequately explained a large proportion of the variation in the analysis datasets5. If such re-

sults are obtained the components would then be used to produce ‘new’, Z ′
p, variables which

are linear combinations of the eigenvalues (obtained from the eigenvectors) and the original

performance metrics.

Applying the method to the batting dataset it was found that two components explain approx-

imately 82% of data variation, with the first component explaining 66% of variance. These

findings were reinforced by examining a scree plot which indicated that approximately two

components sufficiently explained the variation. However, two major issues were encountered

with these results.

1. The metric coefficients within the components varied in directions producing contradic-

tory components. For example, the batting strike rate coefficient would be positive, while

the batting average would be negative, generating counter intuitive components.

2. The new, Z ′
p, variables lacked interpretability, this was a major drawback as the research

required results that were understandable and easily communicated to coaching, man-

agement staff and other non-technically inclined interested parties.

Applying the method to the bowling dataset it was found that three components explained 82%

of variation, with the first two components explaining 71% of variance (48% and 23%, re-

spectively). These findings were reinforced by a scree-plot which indicated that approximately

three components adequately explained data variation. However the result of this analysis also

suffered from interpretability issues and counter-intuitive results.

Given these problems it was concluded that PCA was an inappropriate dimension reduction
5Principal Component Analysis was executed using the principal() function in library(psych). The components

were based on the correlation matrix.
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technique to ascertain the significant performance metrics. However given the findings it was

assumed that approximately two-five performance metrics, across batsmen and bowlers, would

be adequate, as the PCA results suggest that a range of 3-5 components adequately explain

winningness among cricketers.

6.3.2 Linear Discriminant Analysis

Linear Discriminant Analysis requires a “class” variable to discriminant against6. Accordingly

a ‘class’ attribute was added to each observation across the two datasets based on the players’

world ranking. The rankings were extracted from the official International Cricketing Council

(ICC) website [4].

Five “classes” were established with the following classification criteria:

1. A player ranked in the top 20 was classified as class = 1

2. A player ranked between 21-50 was classified as class = 2

3. A player ranked between 51-75 was classified as class = 3

4. A player ranked between 76-100 was classified as class = 4

5. A player ranked above > 100 was classified as class = 5

The LDA equation applied to the batting datasets was:

Discriminant Function (i.e Class) = batting average× β1 + strike rate× β2

+ total runs× β3 + percenatge boundaries× β4 + total runs× β5

+ total balls faced× β6 + total boundaries× β7 + sixes hit× β8

+ fours hit× β9 + inning played× β10 + total dismissals× β11

(6.3)

6Linear Discriminant Analysis was applied using the lda() and partimat() function in the library(MASS) and
library(klaR), respectively.
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The LDA equation applied to the bowling datasets was:

Discriminant Function (i.e Class) = economy rate× β1 + strike rate× β2

+ bowling average× β3 + percenatge boundaries× β4 + dot balls× β5

+ balls bowled× β6 + percentage dot× β7 + runs conceded× β8

+ wickets× β9 + games played× β10 + sixes hit× β11

+ fours hit× β12 + boundaries conceded× β13 + total overs× β14

+ total maidens× β15

(6.4)

To test the predictive accuracy of the LDA technique both the batting and bowling datasets

were randomly split into training and test sets. Once a batting and bowling model was trained

it was applied to the test set to determine the prediction accuracy.

Applying LDA to the batting dataset it was found that players in class 1 and 2 tended to have

greater batting averages, percentage boundaries and total runs metrics, compared to those

in class 5. These findings were reinforced by assessing the accuracy of the predictions, the

following classification accuracy was found established:

Table 6.1: Batting Metrics LDA classification accuracy

Class 1 2 3 4 5

Prediction Accuracy 0.61 0.41 0.16 0.067 0.65

The results illustrate that the batting metrics are ‘adequate’ for discriminating players in class

1,2 and 5. Applying an LDA to the bowling dataset and assessing the accuracy of predictions

the following classification accuracy was established:

Table 6.2: Bowling Metrics LDA classification accuracy

Class 1 2 3 4 5

Prediction Accuracy 0.56 0.29 0.31 0.23 0.50

The results illustrated that the bowling metrics are adequate for discriminating players in class

1 and 5. partimat() plots could not be generated due to the number of performance metrics and
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margin size issues. However observing the data, bowlers in class 5 tended to have lower strike

rates, economy rates and percentage boundaries compared to those in classes 1-4.

The LDA results did not establish performance metrics that significantly contribute towards

winningness. Rather the technique revealed the metrics that significantly contribute towards a

players world ranking. The LDA results were not meaningful in the context of this research

and do not provide a means of distinguishing metric significance. As previously mentioned

the significance of each metric must be evaluated in terms of winningness, as the research

objectives were geared around producing an adaptive rating system which accurately predicts

match outcome.

6.3.3 Stepwise Regression

The stepwise regression model7 applied to the batting dataset was:

Winningness (i.e. percentage of wins) = batting average× β1 + strike rate× β2

+ total runs× β3 + percenatge boundaries× β4 + total runs× β5

+total balls faced× β6 + total boundaries× β7 + sixes hit× β8

+fours hit× β9 + inning played× β10 + total dismissals× β11

(6.5)

The final model results showed that total runs scored, total dismissals, sixes, batting average,

balls faced and strike rate were significant metrics and produced the greatest AIC value. A

regression analysis, using the results suggested by the stepwise regression, indicated that all

performance metrics were statistically significant at the 5% level. However only strike rate,

total runs and total dismissals were practically significant. Additionally the significant metrics

only explained 22% of the variation in the model.

7Stepwise regression was executed using the StepAIC function in library(MASS).
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The stepwise regression model applied to the bowling dataset was:

Winningness = economy Rate× β1 + strike rate× β2 + bowling average× β3

+ percenatge boundaries× β4 + dot balls× β5 + balls bowled× β6

+ percentage dot× β7 + runs conceded× β8 + wickets× β9

+ games played× β10 + sixes hit× β11 + fours hit× β12

+ boundaries conceded× β13 + total overs× β14 + total maidens× β15

(6.6)

The final model results showed that games played, total dots, total maidens, total runs con-

ceded, total wickets and total sixes were significant metrics and produced the greatest AIC

value. A regression analysis, using the final model results, indicated that all performance met-

rics were statistically significant at the 5% level. However only games played, total dots, total

runs conceded and total wickets were practically significant. Additionally the significant met-

rics explained an inadequate amount of variance (r − squared = 18%).

The stepwise regression results were unreliable as such parameter classical techniques are ill-

equipped to handle multi-collinearity and interaction effects. Additionally the analyses were

unable to produce a practical and parsimonious model. However the stepwise regression did

provide insightful results, stating that scoring efficiency (i.e. strike rate), scoring consistency

(i.e. total runs scored), and run restriction (i.e. total runs conceded and total dots) are key

‘winningness’ metrics.

6.3.4 Hierarchical Cluster Analysis

Applying a Hierarchical Clustering technique to the batting dataset produced a dendogram with

four distinct clusters8,9. The dendogram illustrated that the four clusters focused on scoring

efficiency, scoring consistency, scoring volume and games played. A stability of partitions plot

was generated to establish the appropriate number of clusters. The stability plot was produced

by taking, B = 50, bootstrap samples of 321 observations and creating 50 dendograms. “The

8Hierarchical clustering was executed using the hclustvar() function in library(ClustOfVar).
9Clusters are formed by optimising the squared Pearson correlation.
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partition of these B dendograms are compared with the partitions of initial hierarchy using the

corrected Rand index” [21, p.7], which measures the similarity between cluster10. The stability

plot showed that four clusters produced the smallest mean adjusted rand criterion reinforcing

the claim that four key features characterise batting metrics.

Applying the method to the bowling metrics produced a dendogram with five distinct clusters.

A stability plot (B = 50) showed that five clusters produced a small mean adjusted rand cri-

terion, indicating that five key features characterise bowling metrics: (1) run restriction (2)

wicket-taking efficiency (3) balls bowled (4) total wickets and (5) boundary prevention.

The clustering results provided insight into the relationship between performance metrics and

identified the key features of the batting and bowling metrics. However the analysis produced

very little in terms of establishing significant winningness metrics.

Parametric Reduction remarks

The following inferences were drawn from the parametric analysis:

1. Evidence suggests that there are three to four performance metrics that adequately ex-

plain variance in winningness, among limited overs cricketers.

2. The batting and bowling metrics adequately discriminate between high and low quality

players.

3. Four key features characterise the batting metrics: (1) scoring efficiency, (2) scoring

volume (3) scoring consistency and (4) games played.

4. Five key features characterise the bowling metrics: (1) wicket-taking efficiency (2) run

restriction (3) volume of balls bowled (4) boundaries conceded and (5) total wickets.

5. The stepwise regression indicated that strike rate, batting average and total runs were sig-

nificant contributors to winningness. Interestingly these three metrics are geared around

scoring efficiency, scoring consistency and scoring volume. Moreover, these results indi-

cate that winningness is highly influenced by the efficiency, consistency and magnitude
10Stability plots were produced using the stability() function in library(ClustOfVar).
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at which runs are accumulated. Moreover, the results indicated that among the bowling

metrics wickets, boundary prevention and run restriction were significant contributors to

‘winningness’.

Given the large presence of multicollinearity and interaction effects among the metrics, and the

inability of classical parametric technique to handle high degree of multicollinearity, the lack of

statistically robust and valid results were expected. As a consequence of the conflicting results,

and the lack of variance explained, the capability of non-parametric reduction techniques to

handle the issue of multicollinearity and interactions effects were evaluated.

6.3.5 Regression Trees

Applying a regression tree analysis to the batting metrics found that total runs scored, total dis-

missals, balls faced, total boundaries, batting average and strike rate significantly contribute

towards winningness11,12. Additionally the rsq.rpart() plot of the regression tree illustrated

that 13 splits produced the greatest r−squared ≈ 0.35. However, the regression tree produced

counter intuitive results. The results suggested that lower strike rates lead to greater winning-

ness. Therefore the regression tree was pruned, using a cp (complexity parameter measure) of

0.035 (i.e. 3 nodes), as suggested by the relative error plot. The pruned tree illustrated that three

splits produced an r − squared ≈ 0.18. However, the results produced were counter-intuitive

stating that lower strike rates and greater dismissals lead to greater winningness.

The application of a regression tree analysis to the bowling metrics found that total balls

bowled, total dots, total runs conceded, total wickets, strike rate, economy rate, total bound-

aries, percentage boundaries and percentage dots significantly contribute towards winningness.

The rsq.rpart() plot illustrated that 15 splits produced the greatest r− squared ≈ 0.60. How-

ever, again, the regression tree results were counter-intuitive. Pruning the tree (cp = 0.05, nodes

= 3) revealed sensible results, illustrating that lower economy rates lead to greater winningness.

The pruned tree illustrated that five splits produced an r − squared ≈ 0.40.

11Regression trees were created using the rpart function in library(rpart).
12The method parameter was set to anova as the response was a continuous variables and specifies a splitting

criteria based on within-node residual sum of squares.
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However due to a regression trees susceptibility to high variance and sensitivity to the particular

data-point arrangement, a random forest technique was applied.

6.3.6 Random Forest

Applying the Random Forest technique to the batting datasets, using the importance() [li-

brary(randomforest)] function13, the five most important metrics were:

1. Strike Rate

2. Balls Faced

3. Batting Average

4. Total Runs Scored

5. Percentage Boundaries

Interestingly these important metrics are associated with scoring efficiency (i.e. strike rate and

percentage boundaries), scoring consistency (i.e. batting average) and scoring volume (i.e. total

runs scored). Moreover four out of the five metrics (strike rate, percentage boundaries, batting

average and runs scored) were identified as statistically and practically significant throughout

the application of classical techniques. Applying the random forest technique to the bowling

dataset, the five most important metrics were:

1. Economy Rate

2. Bowling Average

3. Strike Rate

4. Percentage Boundaries

5. Percentage Dots

13Random forests were applied using the randomforest function in library(randomforest). The ‘ntree’ param-
eter was set at 5000, indicating 5000 trees were grown ensuring that every input row was predicted a sufficient
number of times. The importance function produced an influence score for each performance metric indicating its
importance to the model.
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Figure 6.1: Batting Metrics Random Forest

Figure 6.2: Bowling Metrics Random Forest
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Interestingly out of the five features that characterise bowling metrics, only three were regarded

as important for “winningness”: wicket-taking efficiency (strike rate and bowling average),

boundary prevention (i.e. percentage boundaries) and run restriction (i.e. economy rate and

percentage dots). The results show that reducing the number of runs conceded and increasing

the rate at which wickets are taken are significant to winningness.

6.4 Summary of Dimension Reduction results

Table 6.3: Summary Table of Dimension Reduction Results

Summary of Results

Method Batting Metrics Bowling Metrics

PCA N/A N/A

LDA

batting average economy rate

percentage boundaries strike rate

total runs percentage boundaries

Stepwise Regression

strike rate total dots

total runs total runs

total dismissals total wickets

Hierarchical Clustering
strike rate economy rate

percentage boundaries percentage boundaries

total runs strike rate

Regression Tree
strike rate economy rate

total dismissals

Random Forest

strike rate economy rate

balls faced bowling average

batting average strike rate

total runs percentage boundaries

percentage boundaries percentage dots

Table 6.1 shows the significant/ important batting and bowling performance metrics established

by each technique. Based on a combination of the results of the six dimension reduction tech-
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niques the following performance metrics were selected to evaluate a individual player ratings

(i.e. chapter 8):

Table 6.4: Significant performance metrics

Batting metrics Bowling Metrics

Strike rate Economy rate

Percentage Boundaries Percentage boundaries

Batting average Strike rate

Total Runs Bowling Average

Total Balls Faced Percentage Dots

6.5 Performance Metric Validation: Lorenz Curve and Lin-

ear Discriminant Analysis

A Lorenz curve was implemented to validate metric performance and examine discriminatory

power14 of the selected performance metrics. A Lorenz curve graphically “relates the cumu-

lative proportion of income units to the cumulative proportion of income received when units

are arranged in ascending order of income” [48, p.719] . Applying this method to the batting

and bowling dataset, the players represent the cumulative percent of people in the population

and percentage wins represent the cumulative percentage of events. The gap between the curve

and the line of equality represents (i.e. AUC) the disparity between larger income groups and

smaller income groups. In this case the gap represents disparity between high and low percent-

age wins15 (i.e. winningness), and measures the classifiers (i.e. important performance metrics)

discriminatory performance.

Applying a Lorenz curve to the 5 most important batting metrics produced an area under the

curve (AUC) of 0.64 (figure 6.3), illustrating ‘good’ discrimination between players with high

and low percentage wins. A Lorenz curve for the five most important bowling metrics produced

an AUC of 0.63 (figure 6.4), illustrating ‘good’ discriminatory power.
14Lorenz curves were generated using the rocr function in library(ROCR).
15High percentage wins ≥ 65; low percentage wins < 65.
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Figure 6.3: Batting Metrics Lorenz
Curve

Figure 6.4: Bowling Metrics Lorenz
Curve

Applying a Linear Discriminant Analysis there was a slight improvement in predictive accu-

racy across the 5 classes, from those results reported in tables 61. and 6.2.

Table 6.5: Linear Discriminant Analysis Accuracy

Class 1 2 3 4 5

Batting Predictions 0.62 0.27 0.09 0.10 0.68

Bowling Predictions 0.56 0.29 0.31 0.23 0.50

These results reinforce the selected metrics as good winningness metrics and influential to a

players rating.

6.6 Chapter remarks

This chapter identified the performance metrics that have a significant effect on “winningness”.

Consequently, this chapter remedied research flaw no. 1 (Chapter 3, section 3.3). Interest-

ingly, the significant batting metrics are geared around scoring efficiency, scoring consistency

and scoring volume, while the significant bowling metrics are geared around wicket-taking ef-

ficiency and run restriction. The validity of the 5 most important batting and bowling metrics

was established by an AUC of 0.64 and 0.63, respectively. Given that practically and statisti-

cally significant metrics have been established, optimisation methods, individual rating systems

and forecasting techniques are now considered.
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Chapter 7

Optimisation System

This chapter summarises the framework and the mathematical formulation of the adopted opti-

misation technique. The aim of this chapter is to determine an optimisation system that identi-

fies the best players for a team utilising individual ratings, across each player-type, based on a

set of player and team constraints.

Formally “an optimisation algorithm is an iterative numerical procedure for finding the values

of the vector x that maximises or minimises the objective function f(x) subject to constraints

c” [65, p.100]. The goal of any optimisation problem is to identify values of the unknown

variables which optimise the objective function, based on a set of constraints.

7.1 Mathematical Formulation

The mathematical formulation of an optimisation problem has three key components:

1. Decision Variables; x - A vector of unknown parameters (i.e one or more variables) on

which to make a decision, and defines the ultimate decision of the optimisation.

In the context of this project the decision variable is binary:

xij =

1, if player j is selected for role i

0, otherwise
(7.1)

71
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2. Constraints; c - “A vector of constraints which the unknown parameters must satisfy”

[65, p.60] and limits the values to a feasible region.

In the context of this project model constraints are based on team construction for limited

overs cricket. The constraints specify team balance, in terms of the number of bowlers,

batsmen, all-rounders and keepers selected in the optimal team.

3. Objective Function - “A quantitative measure of performance of the system, more com-

monly known as the objective function which is typically minimised or maximised” [65,

p.48]. The objective function mathematically represents a measure for the ‘goodness’ of

values for the decision variables.

Given these components an optimisation problem can be written as:

min
x∈R

f(x) or max
x∈R

f(x) s.t c1 (7.2)

In the context of this project the overall team rating is required to be optimised (i.e. maximised),

therefore the best players (i.e. players with highest rating) in each category (i.e. player-type)

are required to be selected, subject to model constraints (i.e. team and player-type constraints).

7.2 Determining the optimisation system

There are various factors to consider when defining an optimisation problem. The following

section discusses four general issues that may arise:

1. Is the optimisation problem discrete or continuous or a combination of the two?

• In discrete (or combinatorial) optimisation the model variables are either binary

or integer, drawn from a finite set of feasible solutions. “The optimal solution to

such problems is derived from a finite set of feasible solutions, that is, a vector of

integers” [65, p.61].
1The domain of x is not necessarily R. In fact, in this problem, each x can only take 0 or

1.
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• In continuous optimisation the model variables adopt a continuous range of values,

usually real numbers. “The optimal solution to such problems is derived from an

infinite set of feasible solutions, that is, a vector of real numbers” [65, p.61]. Models

with continuous and discrete variables are Mixed Integer programs.

2. Is the optimisation problem stochastic or deterministic?

• Stochastic optimisation problems arise when the model is subject to randomness,

that is, the model is not fully specified, at the time of formulation.

• “Deterministic optimisation problems are models that are fully specified, that is,

there is no unknown quantity at time of formulation” [65, p.61].

3. Is the optimisation constrained or unconstrained?

Constrained optimisations refer to problems in which the objective function is optimised

with respect to [unknown] parameters in the presence of constraints. These constraints,

on the unknown parameters, must be satisfied for the objective function to be feasible.

According to [65] a constraint could simply be:

1. A boundary placed on a variable declaring that a variable must take integer value

2. A general linear constraint

3. A non-linear inequality

4. Is the local solution also the global solution?

According to [65] many computer algorithms only identify local solutions, with no in-

built functionality to check for global solutions. “However, many non-linear functions

have several local minimums in which case one would be interested in which one of

these local minimums is also the global minimum, which is, the best solution of all such

minima” [65, p.61].

7.3 Binary Integer Programming

As mentioned previously the optimisation method for this research required the implementation

of a binary decision variable, assigning a value = 1 to selected players and value = 0 otherwise
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(i.e. not selected). Since the adaptive rating system requires selecting players associated with

the largest individual ratings, given a set of team and player-type constraints, a maximisation

objective function is implemented.

Given the binary nature of the decision variable:

xij =

1, if player j is selected for role i

0, otherwise
, (7.3)

a Binary Integer Programming Model (BIPM) was adopted. “In such a model each decision is

modelled with binary decision; setting the variable equal to 1 corresponds to making the ‘yes’

or ‘selected’ decision, while setting it to 0 corresponds to going with ‘no’ or ‘not-selected’

decision” [12, p.76]. The BIPM technique utilises a branch and bound algorithm to solve the

optimisation problem.

7.4 Branch and Bound Algorithm

The Branch and Bound algorithm “finds the optimal solution to an integer program by effi-

ciently enumerating the points in a sub-problem’s feasible region” [79, p.476]. Essentially,

searching the complete space of solutions for a given problem, for the best solution. Branch

and Bound algorithms are most commonly used tool for solving discrete (or combinatorial)

optimisation problems, specifically large scale NP-hard (non-deterministic polynomial-time)

[discrete] optimisation problems.

The method begins by solving the Linear Program (LP) relaxation of the integer program [79].

The solution to the integer problem (IP) is considered ‘optimal’ if the decision variables assume

integer values to the LP relaxation. However if the optimal solution to the LP relaxation are not

all integers values then the algorithm partitions the feasible region of the LP, in an attempt to

establish more information regarding the location of the optimal solution. An arbitrary variable,

x1, is selected, that is fractional in the optimal solution to the LP relaxation [79]. The algorithm

then branches on the arbitrary value and creates two additional sub-problems, sub-problem 2
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and 3, known as nodes. “The constraints associated with any node of the tree are the constraints

of the LP relaxation + constraints associated with the arcs leading from sub-problem 1 to the

node” [79, p.480]. If the optimal solution to the sub-problems does not yield an all integer

solution, then the sub-problems are used to create a new set of sub-problems. This process

continues until: 1. further sub-problems can not yield any useful information, in this case the

sub-problem is fathomed, or 2. when an optimal all integer solution has been obtained.

7.4.1 Binary Integer Programming Framework

The BIPM objective function:

Z = max
n∑
i=1

ni∑
j=1

cijxij (7.4)

where cij2 represents the player rating for player j in role i, {i = 1, 2, 3, 4},

where role i =



1, if batting ability

2, if bowling ability

3, if all-rounder ability

4, if wicket keeping ability

(7.5)

Decision Variable:

xij =

1, if player j is selected for role i

0, otherwise
(7.6)

The decision variables are binary identifiers for player-type i and player j, where (i = 1, 2, 3, 4)

and (j = 1, 2, ..., ni).

2The player rating coefficient, cij , calculations are outlined in chapter 8
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7.4.2 Model Constraints

Given the flaws associated with the optimisation constraints outlined in [42] and [68], con-

straints that were specific to T20 and one day cricket were formulated. That is, constraints

that accurately reflect a team’s composition and the type of talent required to win limited overs

cricket matches were assessed.

Constraints that were team and player orientated were formulated. Taking into account the

number of batsmen, bowlers, all-rounders, wicket-keepers and number of players required to

build a limited overs cricket team. Given the requirements of a cricket team the following

model constraints were formulated:

1. Team Constraint∑4
i=1

∑ni
j=1 xij = 11 - 11 players must be selected in the optimal team.

2. Selection Constraint∑4
i=1 xij ≤ 1 - Restricts players from being selected twice in the optimal team.

3. Batsmen Constraint∑
j(x1j + x3j) ≥ X - Ensures atleast X batsmen (i.e. specialist batsmen or batting

all-rounders) are selected.

4. Bowler Constraints∑
j(x2j + x3j) ≥ X - Ensures atleast X bowlers (i.e. specialist bowlers or bowling

all-rounders) are selected.

5. Keeper Constraint∑
j(X4j) = 1 - Ensures a keeper is selected in the optimal team.

6. All-rounder Constraint∑
j(x3j) ≥ 0 - An all-rounders is automatically selected if the number of batsmen,

bowlers and wicket-keepers exceed the allowable limits.

It was assumed the performance metrics that significantly influence team winningness are the

same across formats (Chapter 3). However, the effect of each performance metric on winnin-
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genss varies across formats. For example if batting metrics have a greater effect on winningness

for T20 cricket relative to one day format, then T20 teams would prefer to have a ‘batting’ heavy

team than a ‘bowling’ heavy or balanced team. Given such [team] variation across formats, the

model constraints (i.e. batsmen, bowlers and all-rounders) required objective identification3.

The constraints were formulated such that the ‘optimal’ team produces the greatest probability

of winning.

7.4.3 Establishing Model Constraints

Given that model constraints are team orientated rather than individual player constraints, per-

formance metrics that contribute significantly towards winningness at the team level, as op-

posed to the individual level, were established. The analysis datasets as described in chapter 4

were utilised, however the recorded performance metrics were aggregated and averaged on the

‘team’ variable. This manipulation step created IPL and CWC2011 datasets, containing both

batting and bowling metrics with team level observations (Appendix E).

Applying a random forest technique to the CWC2011 team dataset the top 10 important perfor-

mance metrics, for one day cricket, were: 1. percentage boundaries (bowl), 2. economy rate, 3.

bowling average, 4. total wickets, 5. strike rate (bowl), 6. batting average 7. total boundaries,

8. total dots, 9. total runs scored 10. games played. The results indicate that bowling metrics

are of greater importance than batting metrics, for winningness, among one day teams. The

results show that seven out of the top ten metrics are bowling orientated, and are predominately

geared around run restrictions and wicket-taking efficiency (interestingly the top metrics were

geared to run restriction and wicket-taking efficiency) illustrating that strong run restricting and

efficient wicket-taking abilities are necessary to increase a teams chance of winning a one day

cricket match. The results indicate that model constraints, for one day cricket, should be for-

mulated such that the optimal team has a greater bowling focus than batting focus. Additionally

it can be inferred that bowling all-rounders are preferred over batting all-rounders, for one day

cricket.

3Keeper constraints remain the same, regardless of format, as a wicket-keeper is always required.
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Figure 7.1: CWC Team Random Forest

Applying a random forest technique to the IPL team dataset the top 10 important performance

metrics, for T20 cricket, were: 1. strike rate (batting) 2. total runs scored 3. Total fours

(batting), 4. percentage boundaries (bat), 5. total boundaries 6. batting average, 7. percentage

boundaries (bowl), 8. economy rate, 9. total dismissals (bat), 10. total maidens. These results

indicate that batting metrics are of greater importance than bowling metrics for winningess

among T20 teams. The results show that seven of the top ten metrics are batting orientated, and

are predominately geared around scoring efficiency and consistency. It is revealed that batsmen

with high scoring efficiency and scoring consistency are necessary to increase a teams chance

of winning a T20 cricket match. Moreover, the results indicate that the model constraints, for

T20 cricket, should be formulated such that the optimal team generated by the optimisation

system has a greater batting focus than bowling focus. Additionally it can be inferred that

batting all-rounders are preferred over bowling all-rounders, for T20 cricket.
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Figure 7.2: IPL Team Random Forest

Based on these findings the following model constraints were developed for T20 and one day

cricket:

Table 7.1: Player-type Constraints

Player-type T20 One Day

Batsmen
∑

j(x1j + x3j) ≥ 7
∑

j(x1j + x3j) ≥ 5

Bowler
∑

j(x2j + x3j) ≥ 4
∑

j(x1j + x3j) ≥ 6

All-Rounders
∑

j x3j ≥ 0
∑

j x3j ≥ 0

Wicket-Keeper
∑

j x4j = 1
∑

j x4j = 1

These model constraints obey the findings established above. The T20 constraints persuade

the model to produce an optimal team with a heavy focus on batting ability, while the one

day constraints persuade the model to produce an optimal team with a heavy focus on bowling

ability.
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7.4.4 Optimisation Formulation

Given these findings a Discrete Deterministic Constrained optimisation model with the follow-

ing framework was adopted:

1. Objective Function

Z = max
4∑
i=1

ni∑
j=1

cijxij (7.7)

where cij is player rating for player j in role i,

where role i =



1, if batting ability

2, if bowling ability

3, if all-rounder ability

4, if wicket keeping ability

(7.8)

2. Decision Variable

xij =

1, if player j is selected for role i

0, otherwise
(7.9)
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3. Model Constraints

Table 7.2: Overall model constraints

Constraints T20 One Day

Team
∑4

i=1

∑ni
j=1 xij = 11

∑4
i=1

∑ni
j=1 xij = 11

Player
∑4

i=1 xij ≤ 1
∑4

i=1 xij ≤ 1

Batsmen
∑

j(x1j + x3j) ≥ 7
∑

j(x1j + x3j) ≥ 5

Bowler
∑

j(x2j + x3j) ≥ 4
∑

j(x2j + x3j) ≥ 6

All-Rounders
∑

j x3j ≥ 0
∑

j x3j ≥ 0

Wicket-Keepers
∑

j x4j = 1
∑

j x4j = 1

7.5 Chapter Remarks

This chapter identified an appropriate optimisation model for the adaptive rating system and

objectively established the model constraints. Consequently, the chapter identified a solution

to research flaw no. 3 (Chapter 3 , section 3.3). The following chapter assesses three individual

rating systems, and identifies the system producing the most accurate team ratings and the

greatest proportion of correct match outcomes. This is achieved by filtering the individual

player ratings through the optimisation model and calculating the optimal team rating.
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Chapter 8

Evaluating Individual Rating Systems

This chapter discusses and evaluates three individual player rating systems that were identified

during the literature review process. The chapter outlines the adaptive rating system developed

for predicting match outcome in the CPL2015 and CWC2015 competitions. The objective of

this chapter is to establish the optimal individual rating system to implement into the adaptive

rating system (i.e. optimisation system + individual rating system). The optimal [individual]

rating method is defined as the system that produces the greatest predictive accuracy, observed

as the largest proportion of correct match outcomes when integrated into the adaptive system.

The ‘optimal’ individual rating system was identified by adopting the procedure outlined on

the following page (section 8.2).

8.1 Optimal team rating using individual player ratings

The optimal team rating was calculated by aggregating individual player ratings. This aggre-

gation approach was justified in [30]. It was stated that cricket is a sport characterised by

one-on-one interactions between batsmen and bowlers, and that a players ability establishes

the outcome of this interaction. Moreover the match outcome is defined by the interactions

between batsmen and bowlers, therefore summing the individual player ratings provides a fair

indication of team strength.

83
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8.2 Establish the optimal team and optimal team rating

The development of the optimisation framework, the appropriate model constraints and the

identification of important performance metrics, enabled implementation of the adaptive system

to establish the optimal team and the associated team rating. However the ‘optimal’ individual

rating system needed to be established first. The following process was applied to the Caribbean

Premier League 2015 (CPL) and Cricket World Cup 2015 (CWC2015) competitions:

1. Extract scorecard data from the CPL and CWC2015 competition, once each team has

played at least three games. This three game ‘buffer’ generates ratings that are indicative

of a players ‘true’ underlying ability, since during the early stages of a competition play-

ers may be ‘rusty [that is, not performing near their potential due to reduced recent game

time].

2. For each competition split the scorecard data into four datasets (i.e. batsmen, bowlers,

all-rounders and keepers) and calculate each players season performance metrics1.

3. Calculate each players individual ratings, based on their player-type, by applying one of

the following three individual rating systems (section 8.6 discusses method of applica-

tion).

(a) Analytical Hierarchy Process with Technical Order Preference by Similarity to

Ideal Solution (AHP-TOPSIS) and Analytical Hierarchy Process with Complex

Proportion Assessments (AHP-COPRAS)

(b) Product Weighted Measure

(c) Principal Component Analysis

4. Split the players by their respective team and merge by team. This creates a dataset for

each team containing each players individual rating by player-type (Appendix F).

5. Input each teams player rating dataset through the Binary Integer Programming model

and generate the optimal team. The output dataset contains 0’s (i.e. not selected) and 1’s

(i.e. selected).
1The performance metrics calculated for each player-type are outlined in chapter 4, section 4.1.
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6. Calculate the optimal team rating by summing the ratings of the selected players.

7. Apply the Bradley-Terry model to calculate the probability of team i beating team j.

πi,j =
Ri

Ri +Rj

This seven step iterative process was applied after every match played in the CPL and CWC2015

competition. At the end of every match individual player ratings were updated and the opti-

mal team rating, for each team, was reproduced, using the adaptive system (i.e. adaptive team

rating system = optimisation model + individual ratings). “This rating process represents an

adaptive system as it updates player and team ratings based on historic performances upon the

availability of data about current performances” [51, p.3]. Moreover, it was stated that adaptive

systems provide the most suitable rating measures [73].

8.2.1 Bradley-Terry Model

The Bradley-Terry model predicts the outcome of a comparison. Given a pair of individuals

i and j drawn “The Bradley-Terry model assumes that in a contest between two players, say

player i and player j, (i, j ∈ {1, ..., k}), the odds that i beats j is αi
αj

, where αj and αi are

positive valued parameters which might be thought of as representing ‘ability’” [40, p.1]. The

model estimates the probability team i beats team j (i.e. pairwise comparison) using:

p(i > j) =
pi

pi + pj
, (8.1)

where pi represents the relative ability (i.e. ratings) of object, or team in this instance, i. The

outcome of a match depends on the current ability of the two competitors. It was stated in [51]

that the outcome of many sporting disciplines can be determined by pairwise comparisons,

and that the outcome of a match or game is dependent on the current ability of the two teams.

Applying the Bradley-Terry methodology to the team ratings produces the probability of team

i beating team j, addressing issue no. 4 (chapter 3, section 3.3).
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The following sections of this chapter discusses the mathematical aspects of the three individ-

ual rating systems and the steps implemented to derive respective player ratings. Then each

rating system is applied to the CPL and CWC2015 competitions. The ratings are then filtered

through the optimisation model to generate the optimal team and the associated team rating.

The accuracy of each adaptive system (i.e. optimisation system + individual rating method)

will be benchmarked against the predictive accuracy of the CricHQ algorithm2 and TAB out-

comes. The T.A.B was utilised as a benchmarking tool as it incorporates collective opinion

and subjectively evaluates risk, while the CricHQ algorithm incorporates objective measures

to evaluate risk. Moreover, since the CricHQ algorithm incorporates ‘macro’ variables such as

past match results, venue and opposition, it was possible to test the research hypothesis: team

based ratings system that consider ‘micro’ variables (i.e. individual player ability) should out-

perform rating systems that only consider ‘macro’ variables. The predictive accuracy of the

adaptive system will validate:

1. The player and team rating system

2. The model constraints

3. The use of the important performance metric

4. The aggregation method applied to generate team ratings

8.3 Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) is a multi-criteria decision making tool developed by

Thomas Saaty [64]. Given a user defined pairwise comparison matrix, the AHP translates the

matrix into a vector of relative weights for each criterion element (i.e. performance metrics)

using a mathematical model. The pairwise comparison matrix provides a numerical compari-

son of each attribute with respect to the other attributes being evaluated. These matrix entries

are determined using the fundamental AHP scale (table 8.1) and are based on prior experience

or expert knowledge. Applying the AHP to the pairwise comparison matrix translate the sub-

jective weights into objective weights, representing the importance of the attribute relative to
2 [15] outlines the algorithm.
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the other attributes. Moreover the method implements a consistency measure for each attribute

to ensure that the ‘user’ defined weights are consistent and reduces bias in the decision making

process. “ The aim is to provide the decision maker a precise reference in order to make ad-

equate decisions and reduce the risk of making biased decisions by decomposing the problem

into a hierarchy of more easily comprehended sub-problems” [70, p.74]. According to [6, p.4]

the follows steps are computed to conduct an AHP:

1. Compute the value of criteria weights

The user defines an n×n pairwise comparison matrix, A, where n represents the number

of evaluation criteria (i.e. performance metrics) 3. Each aij entry evaluates the impor-

tance of performance metrics i with respect to j. The entries aij and aji must satisfy:

aij×aji = 1, while criteria with the same level of importance must satisfy: aij = aji = 1.

The importance of criteria i relative to j can be established via the fundamental scale of

the AHP:

Table 8.1: Fundamental Scale of AHP

Value of aij Interpretation

1 i and j are equally important

3 i is slightly more important than j

5 i is more important than j

7 i is strongly more important than j

9 i is absolutely more important than j

2. Synthesis Judgement

Derive the normalized pairwise comparison matrix, Anorm, by equating the sum of col-

umn entries to 1. The entries in matrix Anorm are computed as:

āij =
aij∑n
j=1 aij

∀ j = 1, 2, . . . , n

3The evaluation criteria were the significant performance metrics outlined in table 6.2 (chapter 6).
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3. Create a criteria weight vector

wi =

∑n
j=1 āij

n
∀ i = 1, 2, . . . , n

A relationship exists between the pairwise comparison matrix A and the weights vector,

w, such that Aw = λmaxw. The maximum eigenvector λmax can be found by computing

a consistency check:

CVi =

∑n
j=1 aij × wj

wj
, ∀ i = 1, 2, . . . , n

and dividing the summation of consistency check values by, n, the number of criteria:

λmax =

∑n
i=1CVi
n

4. Consistency check of pairwise comparison matrix

The λmax parameter enables the derivation of a consistency ratio (CR) which validates

the consistency of the estimated vector:

CI =
λmax − n
n− 1

CR =
CI

RI

n 2 3 4 5 6 7 8 9 10

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51

The random index4 (RI) is dependent on n. If CR ≤ 0.1 then the values of subjective

judgement (i.e. pairwise comparison matrix) and the weights generated in step 3 are

regarded as acceptable.

4The random index (RI) is a predetermined table produced by Thomas Saaty.
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8.3.1 TOPSIS

Developed by Hwang and Yoon [22], TOPSIS is a multi criteria decision making tool which

evalutes various options (i.e. players) based on their similarity (i.e. distance) to the optimal

solution by generating weights using the AHP and loading the weights into the TOPSIS process.

Formally, TOPSIS “ is a multiple criteria method to identify solutions from a finite set of

alternatives. The basic principle is that the chosen alternative should have the shortest distance

from the ideal solution and the farthest distance from the negative-ideal solution” [46, p.1138].

The ‘optimal’ alternative (i.e. player) has the shortest geometric distance from the positive

ideal solution and the longest geometric distance from the negative ideal solution. According

to [6, p.5] the following steps are computed to conduct an AHP-TOPSIS:

1. Form a decision matrix:

D =



C1 C2 C3 . . . Cn

L1 x11 x12 x13 . . . x1n

L2 x21 x22 x23 . . . x2n
...

...
...

... . . . ...

Lm xi2 xi3 . . . . . . xmn


where L1, L2, ..., Lm represents each player and C1, C2, ..., Cn represents the criteria.

Moreover, i represents the criteria (i.e. performance metric) index {i = 1, ...,m}, m is

the number of alternatives (i.e. players) index. In the context of this research, D, rep-

resents the season performance metric dataset (Appendix C). xij represents performance

metric j for player i.

2. Normalise the decision matrix:

rij =
xij√∑m
i=1 x

2
ij

where rij represents the relative performance of player i, (i = 1, ...,m) for performance

metric j, (j = 1, .., n).
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3. Construct the weighted normalized decision matrix:

Multiply, r, the normalized decision matrix by the associated weights, wj , representing

the AHP weight for performance metric j:

vij = rij × wj

4. Determine the positive and negative ideal solution:

Determine the worst alternatives and the best alternatives

Positve Ideal Solution; A+ = {v+1 , v+2 , ..., v+n }

v+j = [(max vij|j ∈ J), (min vij|j ∈ J ′)]

Negative Ideal Solution; A− = {v−1 , v−2 , ..., v−n }

v−j = [(min vij|j ∈ J), (max vij|j ∈ J ′)]

J = {j = 1, 2, ..., n|j} is associated with the benefit criteria and J ′ = {j = 1, 2, ..., n|j}

is associated with cost criteria.

5. Calculate the separation measure:

Calculate the distance between the largest alternative i and the worst alternative:

S+
i =

√√√√ n∑
j=1

(v+j − vij)2

Calculate the distance between the alternative i and the best condition:

S−i =

√√√√ n∑
j=1

(v−j − vij)2,
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where i = 1, 2, 3, ...,m

6. Calculate the relative closeness to the ideal solution:

Measure the relative closeness of each player to the ideal solution:

Ci =
S−i

S+
i + S−i

The larger the Ci the better the performance of the alternatives (i.e. player). This step

calculates the similarity to the worst solution.

The disadvantage of the AHP-TOPSIS is that it either maximises or minimises performance

metrics. The technique lacks the ability to evaluate both maximising and minimising perfor-

mance metrics.

8.3.2 COPRAS

COPRAS is a multi-criteria decision making tool utilised to evaluate both maximizing and

minimising criteria values. Introduced in [81] to solve various problems in the construction

industry, “The COPRAS method uses a stepwise ranking and evaluating procedure of the alter-

natives in terms of significance and utility degree.” [63, p.24]. The technique generates weights

using the AHP and inputs them into the COPRAS method. According to [63, p.25-27] the

following steps are computed to conduct an AHP-COPRAS:

1. Form a decision matrix:

D =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
... . . . ...

xd1 xd2 xd3 . . . xdn


where d represents the number of players and n represents the number of performance

metrics.
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2. Normalise the decision matrix:

rij =
xij√∑n
i=1 x

2
ij

3. Construct the weighted normalized decision matrix:

Multiply, r, the normalized decision matrix by the associated weights, wij , which were

calculated through the AHP:

vij = rij × wj

4. Calculate sums, Ri, of attributes values for which larger values are preferred:

Pi =
K∑
j=1

vij,

where K is the number of attributes which must be maximized (i.e. beneficial criteria).

5. Calculate sums, Rj , of attribute values for which smaller values are preferred:

Rj =
n∑

j=k+1

vij,

where n − k is the number of attributes which must be minimized (i.e. non-beneficial

criteria).

6. Calculate the relative weights of each alternative, Qi:

Qi = Pi +

∑n
j=1Rj

Rj

∑n
i=1

1
Rj

Note: Qi refers to player i and performance metric j.
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7. Calculate the utility degree of each alternative, Ni:

Ni =
Qi

Qmax

× 100%

8.4 Product Weighted Measure

The Product Weighted Measure (PWM) was proposed in [29]. The author developed four

individual rating methods for the four different player-types (i.e. batsmen, bowlers, all-rounders

and keepers). The method produces raw ratings for each player and then calculates the actual

ratings relative to other players within their player-type. The rating calculations for each player-

type are calculated as follows:

8.4.1 Batsmen Ratings

Batting ratings were calculated using eqn. 8.2 and eqn. 8.3:

U1j = (Y α1
1j )(Y α2

2j )(Y 1−α1−α2
3j ), (8.2)

where U1j represents the raw ratings for batsmen j using batting performance metrics Y1j Y2j

and Y3j , while α′is represents the importance weightings allocated to each performance metric

(see subsection 8.6.3). The batting performance metrics (Y1j, Y2j and Y3j) vary across formats,

please refer to table 8.2 and 8.3 to see which metrics were utilised. The raw ratings, U1j , were

then scaled to produce actual batsmen ratings relative to other batters in the league:

C1j =
U1j∑n
j=1 U1j

× n, (8.3)

where n represents the number of batsmen in the competition.
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8.4.2 Bowler Ratings

A bowlers rating was calculated via eqn. 8.4:

U2j = (Y α1
4j )(Y α2

5j )(Y 1−α1−α2
6j ), (8.4)

where U2j represents the raw ratings for bowler j using bowling performance metrics, Y4j , Y5j

and Y6j . The bowling performance metrics (Y4j, Y5j and Y6j) vary across, please refer to table

8.2 and 8.3 to see which metrics were utilised. The optimisation model outlined in the previous

chapter incorporates a maximisation objective function and ‘low’ values of Y3j , Y4j and Y5j ,

indicate ‘good’ bowlers. As such the U2j values were scaled, such that higher values represent

‘good’ bowlers, using a technique outlined in [42]:

1. V2j = K − (
U2j∑n
j=1 U2j

), where K is a positive value such that K − (
U2j∑n
j=1 U2j

) > 0

2. The bowler ratings were defined as: C1
2j =

V2j∑n
j=1 V2j

×n2,where n2 represents the number

of bowlers in a competition. This transformation ensured that higher ratings represented

a better bowler.

Moreover, to ensure that the bowler ratings, C1
2j , had an equivalent variance compared to the

batting ratings, the bowler ratings were scaled using a technique outlined in [52]:

Cp+1
2j = Cp

2j

σC1
σ
p
C2 (8.5)

where σC1 and σpC2
represents the standard deviation of the batting ratings and standard devi-

ation of the bowler ratings for the pth iteration, respectively. To ensure equivalent spread of

the batting and bowling ratings, equation 8.5 is an iterative process which stops when it has

converged to an accepted lower limit, therefore Cp+1
2j = C2j .
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8.4.3 All-rounder Ratings

All-rounder ratings were calculated by multiplicatively combining their batting and bowling

ratings:

C1
3j = (Cβ

1j)(C
1−β
2j ), (8.6)

where C1j and C2j represents the batting and bowling ratings, respectively, and β represents the

weightings associated with the batting and bowling ratings. The scale adjusted measure (eqn.

8.5) was also applied to the all-rounder ratings, C3j to ensure equivalent spread.

8.4.4 Wicket-Keepers Ratings

Wicket-keepers were treated as batsmen and therefore their ratings were calculated using the

method specified in section 8.4.1. Due to data limitations wicket keeper metrics such as byes

and catches could not be utilised to derive ratings.

8.5 Principal Component Analysis

The coefficients of the first component, for each player-type, are used to weight each of the

performance metrics,
∑m

j=1

∑n
i=1 λixij , where λi represents the component coefficient for per-

formance metric i and xij represents the value for metric, i, for player j. The steps to conduct

a PCA were outlined in Chapter 6, section 6.1 (page 49).
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8.6 Application of Individual Rating Systems

The following performance metrics were utilised to rate each player-type across formats5:

Table 8.2: Performance metrics for one-day cricket by player-type
One Day

Batsmen Bowlers All-rounders Wicket-Keepers

Batting Average Economy Rate Batting Average Batting Average

Total Runs Scored Percentage Boundaries Total Runs Scored Total Runs Scored

Batting Strike Rate Bowling Strike Rate Batting Strike Rate Batting Strike Rate

Economy Rate

Percentage Boundaries

Bowling Strike Rate

Table 8.3: Performance metrics for T20 cricket by player-type
T20

Batsmen Bowlers All-rounders Wicket-Keepers

Total Runs Scored Economy Rate Batting Average Total Runs Scored

Percentage Boundaries Percentage Boundaries Percentage Boundaries Percentage Boundaries

Batting Strike Rate Bowling Strike Rate Batting Strike Rate Batting Strike Rate

Economy Rate

Percentage Boundaries

Bowling Strike Rate

8.6.1 Analytical Hierarchy Process

A relevant application of the AHP in a sporting context was applied to 16 soccer teams in

Israel’s National League to predict team rankings [70]. Using facility quality, coach level,

player levels, fans, previous season performance and current performance, an expert defined

pairwise comparison matrix was created and AHP weights, for each criteria, were generated.

AHP-TOPSIS and AHP-COPRAS were applied to rank IPL (2012) players [33].

The AHP pairwise comparison matrices for each player-type for each competition were devel-

oped by ex first-class cricketer and Wellington Firebirds selector, Jason Wells6.

5The individual rating methods were applied to each player by player-type after every game in the CPL and
CWC2015 competition.

673 First class matches and 81 List A games between 1989 and 2001.
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AHP-TOPSIS to rank Batsmen, Bowlers and Wicket-Keepers

As mentioned, the TOPSIS method finds solutions from a finite set of alternatives that simul-

taneously minimise the distance from an ideal solution and maximises the distance from a

negative ideal solution [69]. To determine the ideal solution for batsmen and wicket-keepers

the positive ideal solution, A+, was implemented since their performance metrics were bene-

fit criteria (i.e. higher values represent better batsmen). The negative ideal solution, A−, was

applied to rate bowlers since their performance metrics were cost criteria (i.e. lower values

represent better bowlers) ⇒ the idea is to reduce cost. The relative closeness, Ci, represents

player i′s rating at the end of match k, for each competition.

AHP-COPRAS to rank all-rounders

The AHP-COPRAS technique was utilised to evaluate projects (i.e. players) with criteria (i.e.

metrics) that must be maximised and minimised to produce sensible ratings. Given these as-

pects the technique was applied to all-rounders, as both batting (i.e. benefit criteria) and bowl-

ing (i.e. cost criteria) performance metrics identify an all-rounders ability. The degree of utility,

Ni, represents each players rating at the end of match k, for each competition. Higher Values

of Ni indicate better all-rounders.

8.6.2 Principal Component Analysis

The PCA ranking method was utilised in [57] to rate batsmen and bowlers in the IPL (2012).

The author claimed that if the first principal component explained at least 70% of variation, the

component coefficients could be used to weigh the associated player performance metrics and

produce a player rating, representing a type of weighted average, Ri = λ1x1 + λ2x2 + λ3x3 +

˙...+. However, the methodology outlined in [57] ignored all-rounders and wicket-keepers, and

the performance metrics implemented were selected in an ad-hoc manner. A new principal

component analysis was conducted on each dataset (i.e. batsmen, bowlers, all-rounders and

wicket-keepers), across the two competitions after every match.
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8.6.3 Product Weighted Measure

The Product Weighted Measure (PWM) was developed and applied in [29] to rank batsmen,

bowlers, wicket-keepers and all-rounders in international one day cricket. However the perfor-

mance metrics used to rank the players were selected in an adhoc manner, and the weightings,

α, were subjectively chosen. As mentioned previously the importance of each performance

metrics on winningness varies across T20 and one day cricket. It was established that T20

cricket is a batsmen orientated game, with greater preference for highly scoring efficient bats-

men. Given the difference in importance of each performance metrics across formats, the author

introduced a novel method for determining the appropriate weightings, α, for each important

performance metric, for each player-type, across formats.

Random Forest + AHP Weightings

The system for determining the appropriate weightings, α, is outlined as follows:

1. Identify the order of importance for each performance metric, for each player-type, across

the two formats. The order of importance for each performance metric is established by

the random forest(RF) importance plot, for each player-type, across formats.

2. Use the RF order of importance plot to create an n × n pairwise comparison matrix,

for each player-type, where each entry, aij represents the importance of criteria i with

respect to j. The relative importance of each performance metric, aij , follows the logic

(i.e. importance order) established by the random forest importance plot. For example,

if percentage boundaries are of greater importance to winningness than batting average,

among batsmen, the relative importance of percentage boundaries vs. batting average >

1. A pairwise comparison matrix was produced for each player-type and their associated

performance metrics, across T20 and One Day cricket. The T20 and one day pairwise

comparison matrices, for each player-type, can be found in appendix F7. The order of

importance for each performance metric, across each format, was established through

the Random Forest importance plot in chapter 7 (figure 7.1 and figure 7.2).
7As mentioned in chapter 7 wicket-keepers are treated as batsman, across both formats, therefore the batsman

and keepers comparison matrices are identical.
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3. Run the AHP on the pairwise comparison matrices and generate the weights associated

with each performance metric for each player-type8. The following α weightings were

generated:

Table 8.4: AHP performance metric weightings by player-type for one-day cricket

One Day Cricket, alpha, weightings

Performance Metrics Batsmen Bowlers All-rounders Wicket-Keepers

Batting Average 0.35 - 0.35 0.35

Total Runs Scored 0.38 - 0.38 0.37

Batting Strike Rate 0.27 - 0.27 0.28

Percentage Boundaries - 0.32 0.35 -

Bowling Strike Rate - 0.27 0.27 -

Economy Rate - 0.41 0.38 -

Table 8.5: AHP performance metric weightings by player-type for T20 cricket
T20 Cricket, alpha, weightings

Performance Metrics Batsmen Bowlers All-rounders Wicket-Keepers

Total runs scored 0.33 - 0.34 0.33

Percentage Boundary (batsmen) 0.30 - 0.30 0.30

Batting Strike Rate 0.37 - 0.36 0.37

Percentage Boundary (bowler) - 0.30 0.35 -

Bowling Strike Rate - 0.33 0.27 -

Economy Rate - 0.37 0.38 -

The weightings represented in table 8.3 and 8.4 align with findings established in the previous

chapter (section 7.4, page 77-79), stating that a winning T20 team requires players with high

scoring efficiency, high scoring consistency and high run restricting ability. A winning one day

team requires players with high run restriction ability, high wicket-taking efficiency and high

scoring consistency.

The weightings, β, allocated to an all-rounders ability were dependent on the type of all-rounder

being evaluated, for example, if the player being ranked was a batting all-rounder, C1 (i.e.

batting rating), received a weighting of 0.60, while bowling all-rounders had a bowling rating,

C2, weight of β = 0.60. The logic behind this modification was that even though all-rounders

8AHP was executed using the ahp() function in library(pmr).
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are capable of batting and bowling, majority of all-rounders are stronger in one aspect relative

to the other, and therefore should be recognised accordingly.

8.6.4 Application Results

Applying the individual rating methods and optimisation system (i.e. adaptive system) across

the CPL and CWC2015 competitions, and applying the adaptive rating system, for each match,

the following results were produced9.

Table 8.6: Adaptive System Accuracy of match predictions

Adaptive System Results

Competition PWM AHP PCA

Cricket World Cup 2015 76% 65% 35%

Caribbean Premier League 2015 70% 61% 30%

Table 8.4 represents the accuracy of each adaptive rating system. The accuracy was calculated

via:

System Accuracy =
number of correct outcomes

total matches played

8.7 Optimal team vs. Playing team

Applying the adaptive rating system across the two competitions, highlighted that on occa-

sion the optimal team generated by the optimisation model would differ from that selected

by coaches and managers; meaning the ‘optimal’ team rating would not relate to the playing

team. To counter this issue, rather than using the optimal team rating, the player ratings of

those selected by coaches, were aggregated to generate a team rating. Even though this did not

represent the optimal team rating it did provide an indication of strength of the playing team.

9The adaptive system was ‘run’ for 23 CPL matches and 34 CWC2015 matches.
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8.8 Adaptive Rating System flaws

8.8.1 PCA ranking flaws

The results of the adaptive system utilising the PCA method produced the worst prediction

accuracy. The reason for poor results was that in majority of the matches, across CPL and

CWC2015, the PCA method was not applicable, as the first component failed to explain at

least 70% of the variation, predominately for bowlers and all-rounders. Additionally, on occa-

sion, the component coefficients had a counter-intuitive direction effect, for example in some

instances coefficients associated with the economy rate, λER, would have a positive effect (+),

while strike rate and percentage boundaries would have negative coefficients (-). This pro-

duced counter-intuitive rankings as all component coefficients were required to have the same

direction effect, across each player-type.

8.8.2 AHP-TOPSIS and AHP-COPRAS flaws

Although the results produced by the adaptive system utilising AHP-TOPSIS and AHP-COPRAS

were considerably better the methods frequently produced rankings that either over or under

rated a players ability.

8.8.3 Product Weighted Measure flaws

Although the adaptive system utilising the PWM produced the best predictive accuracy the

author did identify method flaws. Similar to the AHP-TOPSIS and AHP-COPRAS, the system

had the tendency to ‘over-rate’ players with strong performance metrics, especially during the

early stages of a season. If a player had an abnormally good start to the season relative to the

others within their player-type the ratings produced were too high. To counter this issue the

performance metrics were scaled and bound between 0 and 1.

Another flaw to the PWM was that it failed to produce ratings for all-rounders who only par-

ticipated in either a batting or bowling capacity. It was found that during the early stages of a
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season each player only has a few opportunities to fulfil their role; for example an all-rounder

may only need to bat or bowl, but not both. This creates situations where an all-rounder can

significantly contribute towards a match outcome, but ratings are not produced as only one

ability was utilised. This produced under-rated players and teams. To counter this issue the

PWM was modified as follows:

1. If a batting all-rounder has not taken a wicket, during the season, the players batting

rating, C1, is regarded as their all-rounder rating.

2. If a bowling all-rounder has not batted, during the season, but did bowl, the players

bowling rating, C2, is regarded as their all-rounder rating.

As a validation method the modified PWM was applied to CPL and CWC2015 matches, the

method offered slight improvements, predicting correctly 74% and 82% of matches, respec-

tively, outperforming the TAB and CricHQ algorithm.

Predictive Systems

Competition TAB CricHQ Adaptive System

Cricket World Cup 2015 71% 76% 82%

Caribbean Premier League 2015 49% 62% 74%

8.9 Forecasting Methods

Since the PWM ratings are generated relative to the sum of the other ratings, for a given

player-type, this enables the ability to track player performance on a match-by-match basis,

and assesses a players progression as the season matures. This increases the adaptive nature of

the developed rating system. The time-stamped ratings enabled the application of forecasting

methods to player ratings. An area for future research is exploring optimal forecasting methods.

In [31] Exponentially Weighted Moving Average (EWMA) control charts were applied to in-

dividual batting performances. The study results appeared to produce sensible performance

predictions. Moreover, exponential smoothing was applied in [24] to predict tennis player rat-

ings. It was found that exponential smoothing produced predictive player ratings. [17] utilised
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control charts to monitor batting performances of New Zealand domestic cricketers, and found

that control charts such as EWMA accurately forecasted a batsmen’s form.

8.9.1 Exponentially Weighted Moving Average

According to [75] the formal definition for EWMA test statistic is given by:

zt = αx̄t + (1− α)zt−1,

where α is a constant weight, representing the level of importance placed on current observa-

tions, x̄t is the sample mean at time t, and zt−1 is the test statistic from time t − 1. “Expo-

nentially Weighted Moving Averages (EWMA) are known for exhibiting optimal properties for

some forecasting and quality control applications” [75, p.1]. The technique averages the data

and allocates less and less importance to older observations. In the context of this research

EWMA is adopted to forecast player and team ratings and measure their quality (i.e. form).

EWMA Application

The EWMA methodology was embedded into the developed adaptive system allocating an α of

0.72. This method predicted a players rating for the following match, and filtered the predicted

ratings through the optimisation system to generate a forecasted team rating. Applying this

method to the CPL and CWC2015 matches the following predictive accuracy was established:

Predictive Systems

Competition TAB CricHQ Adaptive System

Cricket World Cup 2015 71% 76% 86%

Caribbean Premier League 2015 49% 62% 80%

8.10 Chapter Remarks

Given the predictive accuracy of the modified PWM + EWMA individual rating method, it

was established as the optimal player rating method. Moreover, the results generated by the
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adaptive rating system validate the optimisation framework, model constraints, the utilisation

of important performance metrics and the aggregation method applied to generate the optimal

team rating.

This chapter identified an appropriate method to derive the optimal team rating as a function

of individual player ratings. Moreover a technique was established to calculate the probability

of team i beating team j, as a function of overall team ratings. Finally a technique to produce

appropriate weights, to allocate to each [important] performance metric for the PWM rating

system, was established. Consequently, this chapter remedied research flaw no. 2, 4, 5, 6 and 7

(Chapter 3, section 3.3, page 31-32).

The work presented throughout this chapter has been accepted for the 13th ANZIAM MATH-

Sport Conference under the authorship of Patel, Bracewell and Rooney to be published in 2016.



Chapter 9

Future Research, Discussion and

Conclusion

9.1 Further Research

Although the developed adaptive rating system produces high predictive accuracy there are

situations in which the system falls short. Future research may address these model flaws:

1. Undefined Ratings for bowler and all-rounders with no wickets

During the early stages of a season a bowler is less likely to take wickets due to the

bowling opportunities received or “rusty” playing ability. However because a bowlers

and an all-rounders ratings are a function of a ‘wicket-taking’ metric (i.e. bowling strike

rate, bowling average etc.), if these player-types fail to produce wickets their ratings

would be undefined (i.e. N/A). However just because a bowler does not take a wicket it

does not mean the player has failed to make a significant impact or contribution to the

team rating. As seen in Chapter 7 a bowlers ability to restrict runs is considered more

important than wicket-taking efficiency in terms of winningness for one day cricket.

Utilising reject inference (a technique primarily found in Banking and Finance journals

for building credit scorecards) [14] developed a method of inferring a bowlers strike rate,

given that the player has not taken a wicket. Therefore its is suggested that future itera-
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tions of the adaptive rating system implement the reject inference technique to generate

strike rate for non-wicket taking bowlers, enabling the derivation of a players rating.

2. Comparing teams across divisions

Applying the adaptive system to the Cricket World Cup 2015 the author identified two

stages in which the model produced the least number of correct match outcomes:

1. The early stages of the competition where players have not played a sufficient num-

ber of games in order for the individual rating system to produce appropriate ratings,

or ratings that are indicative of a players true ability.

2. During the post round robin matches (i.e. quarters, semi-finals and finals) in which

teams across pools (i.e. divisions) compete. It was found that the modified PWM +

EWMA method produced ratings relative to other players within their player-type

and division, and therefore comparing players and teams across divisions is inap-

propriate. To rectify this issue the author suggests adopting the recalibration method

developed in [47]. This method allows the comparison of players and teams across

division, by accounting for the strength of each division and appropriately recali-

brates ratings. Adopting such methods would allow the user to apply it to competi-

tions with a divisional structure such as the NATWEST T20 competitions (i.e. UK

T20 competition) potentially increasing the predictive power of the adaptive rating

system.

9.2 Discussion

The lack of academic literature surrounding team rating systems utilising individual abil-

ity within cricket, the absence of the application of predictive techniques to forecast

match outcome and the growing popularity of sports betting, established an entry point

in the market for this research. This research successfully developed a roster-based op-

timisation model (i.e. adaptive rating system), for limited overs cricket. The developed

system incorporates an optimisation framework and individual player rating system.

The research hypothesised that a team based [adaptive] rating system, accounting for

individual player performances would outperform systems that only consider ‘macro’



107 9.2. Discussion

variables such as opposition, venue, past performances home advantages etc. An adaptive

system should possess greater ability to account for a larger proportion of variation in

match outcomes. The results presented through this research validated the hypothesis.

Although the application of a Binary Integer Programming technique for optimal team

selection within cricket had been previously researched ( [42], [68]), the research frame-

work lacked depth and statistical rigour:

1. Model constraints and performance metrics were selected in an ad-hoc fashion.

2. Inability to validate the ‘optimal’ team generated by the optimisation technique.

3. Inability to generate the probability of winning.

4. Inability to generate an overall team rating measure.

Through this research each issue was addressed in an objective manner and validated

through application. Moreover addressing these issues the author developed an adaptive

rating system which successfully incorporates an individual rating system with an in-

built forecasting technique, and an optimisation system that generates the optimal team.

The ‘optimal’ individual rating system was established by applying 3 different systems

and evaluating each systems predictive accuracy.

Applying the adaptive system to the Caribbean Premier League (2015) and Cricket World

Cup (2015) revealed its ability to outperform well-known predictive algorithms. The re-

sults validate the choice of performance metrics that were used to evaluate a players

rating, the weights allocated to each performance metrics, for each player-type, and the

optimisation constraints that were formulated, reflecting the team make-up required to

win a limited overs match. Moreover the adaptive system was regarded as successful, as

“a successful predictive system can select the correct outcome 17% better than for ran-

dom chance in professional sports” [73, p.38]. Given that the developed system generated

predictive accuracy well above this threshold, the research was considered successful.

Given Cricket’s exponential growth into a multi-billion dollar industry, it has become

more critical than ever to introduce analytical methods for team selection. The adaptive

system is useful for decision making among coaching and managerial staff, in terms of

player selection, and can be implemented to identify the optimal team for limited overs
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cricket. The adopted forecasting method is the differentiating factor of the developed

system as it accurately depicts a players projected rating/ performance for the upcoming

match and enables the coaching staff to make selections accordingly. Moreover, the

system allows coaching staff to evaluate an opponents projected performance, at both the

team and individual level.

9.3 Conclusion

Due to the nature of human contest, sport lends itself to fluctuations and discrepancies in

game outcomes. This in turn generates interest. However, given the monetary growth of

the sporting and sports betting industry over the past decade, there are strong incentives

for managers, coaches and players to accurately measure and monitor performance, and

understand the root cause of match outcome fluctuations. Key stakeholders can not solely

rely on subjective views and personal beliefs to make team and player selection decisions.

One sport which has recently seen an exponential rise in the use of objective rating sys-

tems to make informed and strategic decisions regarding player and team performances

is cricket. Cricket is an ideal sport to isolate individual team member contribution with

respect to winning. This is due to the volume of digital data available, combined with the

relatively isolated nature of the batsman versus bowler contest observed per ball.

The objective of this research was to develop a roster-based optimisation system for

limited overs cricket by deriving a meaningful, overall team rating using a combination

of individual ratings from a playing eleven. The research hypothesis was that an adaptive

rating system accounting for individual player abilities, outperforms systems that only

consider macro variables such as home advantage, opposition strength and past team

performances. The assessment of system performance is observed through the prediction

accuracy of future match outcomes. This is based on the expectation in elite sport that

better teams are expected to win more often. To test the hypothesis, an adaptive rating

system was developed. This framework was a combination of an optimisation system and

an individual ratings system. The adaptive rating system was selected due to its ability to

update player and team ratings based on past performances.

A Binary Integer Programming model was the optimisation method of choice, while a
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modified product weighted measure (PWM) with an embedded exponentially weighted

moving average (EWMA) functionality was the adopted individual rating system. The

weights for this system were created using a combination of a Random Forest and Ana-

lytical Hierarchical Process. The model constraints were objectively obtained by identi-

fying the player’s role and performance outcomes a limited over cricket team must obtain

in order to increase their chances of winning.

Utilising a random forest technique, it was found that players with strong scoring con-

sistency, scoring efficiency, runs restricting abilities and wicket-taking efficiency are pre-

ferred for limited over cricket due to the positive impact those performance metrics have

on a team’s chance of winning. These practically significant variables reinforce the rel-

evance of the findings as they intuitively make sense. In order to define pertinent indi-

vidual player ratings, performance metrics that significantly affect match outcomes were

identified. Random Forests proved to be an effective means of optimal variable selection.

The important performance metrics were derived in terms of contribution to winning, and

were input into the modified PWM and EWMA methods to generate a player rating.

The underlying framework of this system was validated by demonstrating an increase in

the accuracy of predicted match outcomes compared to other established rating methods

for cricket teams. Applying the Bradley-Terry method to the team ratings, generated

through the adaptive system, calculated the probability of teami beating teamj .

The adaptive rating system was applied to the Caribbean Premier League 2015 and the

Cricket World Cup 2015, and the systems predictive accuracy was benchmarked against

the New Zealand Totalisator Board Agency (TAB) and the CricHQ algorithm. The results

revealed that the developed rating system outperformed the TAB by 9% and the commer-

cial algorithm by 6% for the Cricket World Cup (2015), respectively and outperformed

the TAB and CricHQ algorithm by 25% and 12%, for the Caribbean Premier League

(2015), respectively. These results demonstrate that cricket team ratings based on the ag-

gregation of individual player ratings are superior to ratings based on summaries of team

performances and match outcomes; validating the research hypothesis. The insights de-

rived from this research also inform interested parties of the key attributes to win limited

over cricket matches and can be used for team selection. This demonstrated that rating
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systems that consider micro variables generate greater predictive accuracy than systems

that only consider macro variables.

The results show that cricket team ratings based on the aggregation of individual playing

ratings with attributes weighted towards winning limited over matches are superior to

ratings based on summaries of team performances and match outcomes. Given the adap-

tive systems predictive ability to reasonably predict the result of a limited overs cricket

match, based on the combination of individual player ratings, this research was consid-

ered successful. Moreover, this research achieved all supplementary aims; specifically

the development of a roster-based optimisation model, for limited overs cricket, using

individual player ratings. In addition, this thesis exploited a unique data set and a pro-

prietary algorithm to make an original contribution, and provided directions for future

research.
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