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1 

Student Writing and Mathematics Learning 

Mal Shield 

The use of writing as an aid to mathematics learning has been the subject of a 
large number of teaching and research publications in the past fifteen years. Before 
examining a range of these studies, it is necessary to consider the background to 
these types of learning activities. While writing has always been an integral part of 
mathematics learning, it has usually been restricted to the symbolic recording and 
reproduction of algorithms and proofs, usually in a highly repetitious manner. In 
the research considered in this chapter, the term writing is used to describe 
deliberate tasks involving more extended forms which include prose as well as 
symbolic expressions and diagrams. The use of writing has been a focus of interest 
in teaching and learning in most subject areas. The earlier "writing across the 
curriculum" concept has more recently been replaced with the idea of "writing to 
learn." While the earlier approach focused on the conventional forms of writing in 
each particular field, writing to learn generally uses less formal writing with the 
aim of having learners use language to develop their understanding of the subject 
material (Connolly, 1989). Even in a field like mathematics with its well developed 
forms of exposition, the use of natural language is an important component of a 
writing to learn approach. The focus is on the benefits to learning derived from the 
process of writing rather than on the final written product. 

Emig (1977) argued that the process of writing allowed students to engage in 
formulating, organising and evaluating ideas. Harley-James (1982) cited several 
reasons why writing benefits student learning. These included the focusing of 
thoughts and providing for more complex thought because the language is made 
visible, and assisting in the translation of mental images into language. Rose (1989) 
and others attribute a range bf benefits for students from participating in learning 
through and about writing. These benefits include building on their own 
experiences, developing language abilities especially writing fluency, being active 
participants in the classroom, becoming personally engaged in the learning and 
facilitating communication with the teacher. The importance of developing 
communication in mathematics in all its forms has been highlighted in recent 
curriculum documents; for example both the Curriculum and Evaluation Standards 
for School Mathematics (National Council of Teachers of Mathematics, 1989) and A 
National Statement on Mathematics for Australian Schools (Australian Education 
Council, 1991) have specific sections related to communication and the use of 
writing. 

There is considerable agreement that understanding in mathematics should be 
thought of in terms of networks of internal representations (Hiebert & Carpenter, 
1992) and that learning with understanding involves making meaningful 
connections among external and internal representations of new concepts and 
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representations of existing lmowledge (Baroody & Ginsburg, 1986). Skemp (1976) 
had earlier described such understanding as "relational" and contrasted this with 
what he termed "instrumental" understanding which is characterised by a 
knowledge of many discrete mathematical processes which can be applied in very 
limited situations. Given the apparent benefits of a writing to learn approach listed 
above, it is not surprising that it has attracted the attention of mathematics 
educators seeking to move mathematics learning away from the instrumental 
"tell-show-do" approach (Baroody & Ginsburg, 1990). 

The products of student writing may be placed in one of two main categories 
described by Britton, Burgess, Martin, McLeod and Rosen (1975) as "transactional" 
and "expressive." Transactional writing is the writing of a participant in a 
discourse with the purpose of informing, persuading or instructing. In the case of 
classroom writing, the audience is usually the teacher and such writing has been 
used extensively in summaries, essays, reports and assignments. Expressive 
writing is a more reflective process described by Oaks and Rose (1992) as "thinking 
aloud on paper" (p. 14). It allows the learner to consider personally the meaning 
and significance of current activities. One example is known as "free writing" 
which allows the learners to generate thoughts and explore feelings for their own 
benefit with no real sense of an external audience. Expressive writing is usually 
associated with the use of a journal and may also occur in letter writing. It is often 
not possible to classify a piece of writing as purely transactional or expressive. It is 
more useful to consider a transactional-expressive continuum along which a text 
may be placed. Powell and Lopez (1989) argued that writing for the purpose of 
learning with understanding needs to be located somewhere on this continuum 
away from the purely transactional end. 

Studies of Writing in Mathematics Learning 

For this review, a selection from the large number of case studies on the use of 
writing activities in the learning of mathematics will be examined. These studies 
generally lack a coherent and systematic method of analysis but generally claim 
substantial benefits to student learning of mathematics. One of the difficulties of 
investigating the benefits of the use of writing to learn is that there are so many 
ways in which writing may be used and so many potential benefits which may be 
realised. Following the review of these studies, the work of four groups of 
researchers who have attempted more rigorous approaches to the study of the use 
of writing activities in mathematics will be discussed. 

Small-Scale Case Studies 
A large number of studies based on the use of writing activities in one or a 

small number of mathematics classes has been reported. These studies report a 
wide variety of approaches to the inclusion of writing activities. Many of the 
studies have simply accepted the general outcomes of writing to learn outlined 
above and assumed that similar outcomes are· befug 'realised in mathematics 
classes, without any basis for analysis of the writing to substantiate these claims. 
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Anecdotal evidence has often been used to support the efficacy of writing as a 
strategy for learning mathematics. As stated by Powell and Lopez (1989): 

A number of mathematics educators have asserted that writing facilitates 
mathematics learning: however, little evidence of students' conceptual 
development or increased mathematical maturity has been proffered to support the 
reasonableness of this assertion. (p. 160) 

While these small-scale case studies have not really demonstrated an increase in 
student understanding of mathematics as a result of the use of writing activities, 
they have, however, provided reasonable evidence of other benefits to learning 
including the increased dialogue between teacher and student and the exposure of 
student misconceptions which might otherwise have been hidden for a longer 
time. For this discussion, the selection of studies will be divided into two groups, 
those which focus predominantly on journal writing and those concerned with a 
variety of writing tasks aimed at eliciting mainly transactional responses. This 
division is based more on the stated focus of the study in question rather than the 
nature of the writing reported. While journal writing is often associated with the 
expressive end of the continuum, much of the writing reported to have been 
included in journals is purely transactional. 

Journal Writing 
There is some variation in the definition of journal writing apparent in the 

writing in mathematics learning literature. In general, journal writing requires a 
regular series of writings throughout a course and these are kept in some sort of 
notebook dedicated to the purpose. However, within this broad category, much 
variation is possible. Nahrgang and Petersen (1986) described a journal as a 
"diarylike series of writing assignments" (p. 461). Mcintosh (1991) called such a set 
of tasks a learning log and differentiated this from a journal which she described as 
less formal and more communicative. The conception of a journal enunciated by 
Borasi and Rose (1989) was one in which "students can write down any thoughts 
related to their mathematics learning" (p. 348). 

Nahrgang and Peterson (1986) made use of journal writing with their college 
mathematics classes. The writing tasks formed part of the students' assessment for 
the course. Journal entries were made by students in response to specific prompts 
such as: "Discuss the following statement: 'Factoring and finding a product are 
reverse processes'" (p. 463). Nahrgang and Peterson observed that this task 
encouraged students to link the idea of factorisation with a number of ideas from 
earlier learning such as multiplication and division, and simplifying expressions. 
They believed that such writing could contribute to both "the understanding of 
mathematics concepts and the ability to express that understanding" (p. 465). 

Journal writing was used as part of a calculus course by Mett (1989). She 
recognised the need to instruct the students in what to write in their journals at the 
beginning of the course, providing guidelines and examples of journal entries. 
Students were instructed to consider three aspects in the writing: a summary of 
new material learned in class; a discussion of individual work outside class; and an 
analysis of connections, difficulties, and open questions. The journals were 
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collected weekly and contributed ten percent of the marks for the course grade. 
Other than the initial guidelines and examples, no specific prompts were given, 
students being expected to write as new material was introduced into the course. 
Mett was able to recognise the thought processes and the meaning making of her 
students in their writing. The examples provided demonstrated that students were 
using some expressive writing in the form of personal reflections rather than 
simply transactional, textbook-like expositions. 

In working with college students, Paik and Norris (1984) and Powell and 
Lopez (1989) introduced journal writing into courses on business statistics and 
developmental mathematics respectively. Both groups provided the students with 
a set of questions to write about in their journals. These questions were clearly 
aimed at having students elaborate their knowledge of what they were learning in 
a transactional way. The following are the questions used by Paik and Norris. 

(1) What are the new terms I learned today? State the definitions. 

(2) What other things have I learned? 

(3) Why do we need such concepts? 
r· 

(4) What are the relationships among them? 

(5) What are the examples and counter-examples? (What it is and what it is not.) 

(6) Imagine real-life adaptations or applications relevant to the material. (p. 249) 

Using a control group I experimental group design, Paik and Norris 
demonstrated a difference in achievement in favour of the experimental Gournal 
writing) group although statistical significance was not achieved. Powell and 
Lopez reported the development in the way one selected student expressed his 
mathematical ideas, noting that towards the end of the semester the writing 
approached a textbook style. 

Mcintosh (1991) used her version of journal writing when working with junior 
high school students. Her instructions to students on journal writing included an 
invitation to write the following items. 

New words or new ideas or new formulas or new concepts you've learned 

Profound thoughts you've had 

Wanderings, musings, problems to solve 

Reflections on the class 

Questions-both answerable and unanswerable 

Writing ideas (p. 431) 

Among other tasks, Kennedy (1985) used what he termed "logs" with his 
lower-secondary mathematics classes. These writing tasks were very similar to 
those classified as journal writing by other authors. In their logs, "the students are 
writing to themselves about what they're learning" (p. 59). Kennedy noted the 
need to develop a trusting environment with students so that they could convey 
their feelings and ideas without fear of ridicule. He made the claim that such 
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writing "opens a door to awareness and understanding not just of math, but of 
how they think and learn" (p. 61). 

Transactional Writing 
The writing tasks in the studies discussed in this section generally require the 

student writers to describe or explain mathematical ideas, although some s!udies 
also include a small element of expressive writing. Miller and her colleagues 
(Miller & England, 1989; Miller, 1990, 1991a, 1991b) have written extensively about 
the use of writing "prompts" in mathematics classes. In the form of questions, 
these elicit expository writing which is mainly of a transactional style although 
some of the prompts also seek to have the students express their feelings about the 
mathematics they are learning and about the class in general. Miller described four 
types of prompts, namely contextual, instructional, reflective and miscellaneous. 
Reflective prompts were further categorised as requiring analysis or clarification. 
The following examples of prompts were provided in Miller and England (1989). 

contextual-Do you think that algebra is an important subject for you to study? 

instructional-Tell me what you think the goals or purposes of today's class were. 

reflective (analytical)-Remember when you learned how to ? Imagine 
that you are writing a note to your best friend to explain how to do this. Write your 
note assuming that your friend really wants to know how to and that he/ 
she must rely on you and only you for an explanation. 

reflective (clarify)-What would you identify that you have done which has helped 
you the most or contributed most to what success you have had so far in this class? 
Please explain as fully as possible. 

miscellaneous-What is your favourite single digit number? (pp. 301-302) 

The main study reported (Miller & England, 1989; Miller, 1990) involved three 
classes of algebra (year 9) students in the United States. As with many studies of 
this type, there was no attempt to measure changes in the students' thinking 
although the likelihood of this was noted. The main objective of this study was to 
investigate the use of writing as a channel of communication between students and 
their teacher. A considerable amount of anecdotal evidence for the effectiveness of 
this communication was presented. 

Davison <;1nd Pearce (1988a) have also written widely about the use of writing 
in junior high school mathematics classes. They proposed five types of writing that 
might be considered for use in mathematics classes. These were: direct use 
(copying); linguistic translation (changing mathematical symbols into words); 
journals (summaries and explanations); applied use (problem writing); and 
creative use (project report). Although no evidence was provided, the authors 
made the reasonable claims that the use of such writing tasks would improve 
students' abilities to communicate mathematically and may assist in breaking 
down the image of mathematics as a rigid set of rules and procedures. From 
empirical studies involving interviews with teachers (Pearce & Davison, 1988) and 
surveys of the content of textbooks (Davison & Pearce, 1988b ), they concluded that 
writing was little used in mathematics classes and that there was very little 
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encouragement provided in the textbooks for students to write, other than the 
usual symbolic manipulation. 

Evans (1984) was a fifth grade teacher involved in the San Diego Area Writing 
Project. She reported on and provided examples of three types of writing tasks, 
explanations of how to do something, definition writing, and ''troubleshooting." In 
this project, students answered standardised tests on arithmetic and geometry 
before and after working on units in which the writing tasks were a significant 
element. One class used the writing activities while a control class .in the same 
school covered the same mathematical content without the writing activities. While 
all students made gains after taking the units, the gains made by the writing class 
were greater than those of a control class. Of particular note was the result that 
lower achieving students in the writing class made the largest gains. Gains were 
reported as changes in the test scores and no statistical comparisons were shown. 
Evans claimed that writing "gives us one more tool to help our less capable 
students grow and learn" (p. 835). 

In a potentially useful union, one reported study (Venne, 1989) involved the 
collaboration of a mathematics teacher and an English teacher with a year 9 algebra 
class. Again the evidence provided was in the form of a few anecdotes. Some useful 
writing appeared to take place when students were asked to write about verbal 
interpretations of symbolic equations. In the main task reported from the study, 
students had to write what was called a "six-paragraph explanation of the 
solution" (p. 66) of a pair of simultaneous equations in two unknowns. For this 
task, students were provided with a model and one "typically good" response was 
quoted. It is difficult to reconcile the author's claim that such writing is somehow 
creative and conveys some idea of understanding with the quoted example. 
Clearly the task with its model required the students to simply verbalise the 
algorithm with no attempt to explain why any of the steps are valid or why they 
are needed. Such a restricted genre is likely to reinforce the view of mathematics 
already possessed by many students. 

Other studies relying on anecdotal evidence have reported on interesting 
approaches to transactional writing tasks. Burns (1988) suggested ways to use 
writing in support of word problem solutions. Keith (1988) discussed the use of 
"short explorative writing assignments" (p. 714) which included, among others, 
summaries, visual image translation and synopsising tactics for solving a problem. 
She particularly noted the diagnostic value of such writing and stressed the need 
for positive teacher responses to such student writing. LeGere (1991) had students 
write a personal mathematics history at the commencement of her course and 
included other tasks such as writing about a problem students were experiencing 
difficulties with and writing to prompts like "so far in this class ... "Morgan (1992) 
reported on the creation of a magazine containing the reports of lower-level grade 
9 students about the investigations they were pursuing in class. This format 
appeared to provide a sense of audience for the writers. Morgan noted that most of 
the students did not use diagrams or colour in their final reports, although these 
would have been appropriate. She attributed this to the expectations which 
students have about what is included in mathematical presentations. 
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Two Analyses of Journal Writing 
Borasi and Rose (1989) recognised the fact that most of the evidence cited in 

studies of writing to learn mathematics up to that time had been anecdotal. They 
set out to develop a systematic method for the analysis of journal writing in the 
context of a college mathematics course, Algebra for Professional Programs, taught 
by them. The purpose of journal writing was explained to students at the start of 
the course and students were expected to write in their journals each night. The 
journals were collected by the teachers every second Friday and returned to the 
students the following Monday with personal written comments from one of the 
teachers. When several students expressed difficulty with knowing what to write 
about, thirty-six suggested ideas were supplied including: "Respond to a particular 
class topic; Reflect on math ideas or feelings about math; Describe your favourite 
math class" (p. 351). Students were sometimes also given specific writing topics for 
their journals during class time. At the conclusion of the course, students were 
asked to write in response to the following questions: 

1. How has writing in your journal affected your learning of mathematics? 

2. How do you feel about journal writing for this course? 

3. What are the benefits of journal writing for mathematics classes? 

4. How could journal writing be changed to be more effective? (p. 351) 

Twenty-three complete sets of journals and post-course question responses 
were collected. Borasi and Rose (1989) established a framework for a content 
analysis of this large data source by reviewing the literature on writing to learn. 
This theoretical framework guided the "manual" search of the data and the 
interpretation of recurring patterns in the students' responses in a version of 
grounded theory methodology (Glaser & Strauss, 1967). The result of this analysis 
was what Borasi and Rose called a "taxonomy of potential benefits of journal 
writing" (p. 352) which is summarised below. 

Potential benefits as the students write their journal: therapeutic value; increased 
learning of mathematical content; improvements in learning and problem-solving 
skills; reconceiving one's conception of mathematics. 

Potential benefits as the teacher reads the journals: better evaluation and 
remediation of individual students; responses to feedback on the course; long-term 
instructional improvements. 

Potential benefits as students and teacher dialogue in the journals: development of 
more individualised teaching; creation of a supportive class atmosphere. 

As the taxonomy was built up, the continuing search of the data provided the 
necessary empirical evidence to support the categories and the claims made about 
them. Borasi and Rose (1989) argued that the value of this writing experience was 
dependent on how much students could be enticed to write expressively rather 
than simply reporting final forms of mathematics in a transactional way. They also 
remarked on the value of the teachers' responses but noted the considerable 
individual differences amongst the students and the teachers in their responses to 
journal writing. 
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The Borasi and Rose (1989) analysis provided clear evidence of the value of 
journal writing in the learning of mathematics, albeit in the limited context of one 
particular tertiary mathematics course. Moreover, this study provided researchers 
in the field with a detailed framework to use as a basis for the further investigation 
of journal writing in other mathematics learning contexts. 

Waywood and his colleagues (Clarke, Waywood & Stephens, 1993; Waywood, 
1992) devised an alternative approach to the analysis of student journal writing in 
mathematics. In an experiment involving approximately 500 students over a four
year period in one Victorian secondary school, these researchers examined, among 
other aspects of writing, the development of students' mathematical thinking and 
beliefs which might be fostered by the use of journal writing. In the school at the 
time of the investigation, journal writing contributed 30 percent of the assessment 
marks in mathematics. 

A number of useful classifications were developed in this research. Waywood 
(1992) described the writing processes in which students might engage during 
journal writing as "summarising, collecting examples, questioning and discussing" 
(p. 37). Within each of these categories there were four sub-categories which 
enabled a detailed description of the processes evidenced in each student's writing. 
In conjunction with these four categories, a set of progress descriptors for assessing 
journals was developed. For example, for the category exemplification, two of the 
descriptors were: 

Able to use examples to show how a mathematical procedure is applied. 

Able to choose examples that summarise important aspects of a topic, idea, or 
application. These examples are fully annotated to show their relevance. (p. 39) 

From the pattern established for a student using the progress descriptors, a 
global progress categorisation of the student's journal writing into one of three 
modes, namely recount, summary, or dialogue could be established. Parts of the 
definitions of these modes reported in Waywood (1992) are reproduced below. 

RECOUNT When students are writing in this mode, they interpret the tasks in 
terms of concrete things to be done: to write a summary means record: ... 

SUMMARY When students are writing in this mode they interpret the tasks as 
requiring involvement. The involvement is utilitarian. Describing gives way to 
stating and organising ... Journals show students trying to form an overview ... 

DIALOGUE When writing in this mode, students see the task as requiring them to 
generate mathematics .... Summaries are about integrating; questions are about 
analysing and directing; examples are paradigms; and discussing is about formulating 
arguments (p. 38) 

With further analysis of the students' journals, and also analysis of questionnaires 
for students and teachers developed for the purpose, Clarke, Waywood and 
Stephens (1993) confirmed and elaborated the nature of these progress modes and 
formulated a detailed description of student thinking associated with each. They 
were able to establish a general trend that, as experience with this type of journal 
writing increased, the students' writing tended to progress through the modes. 

-
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These descriptions provide a useful basis for considering the types of mathematical 
activities which may help to move students from the recount mode through to the 
dialogue mode. The authors also noted the link between the students' writing and 
their perceptions of their learning of mathematics. 

A Linguistic Approach 

In a British study into the writing of reports of mathematical investigations, 
Morgan (1996) made use of the work of Halliday (1973) in a linguistic analysis of 
student writing. Morgan was interested in the difficulties that students have in 
writing, for assessment purposes, reports that their teacher-assessors would 
consider appropriate. Halliday's framework propose::l three metafunctions of 
language, namely the ideational, interpersonal and textual functions. 

The ideational function addresses the nature of mathematics and mathematical 
activity, including the role of people in its creation and use. Morgan (1996) noted 
that the use of symbols and typical manipulations of mathematical objects in texts 
provided a certain view of mathematics and that the presentation was often devoid 
of any human agency, the use of non-active verbs contributing to this perception. 
The interpersonal function addresses the roles and relationships of the author and 
reader, and how the two are constructed as individuals by the text. Mathematics 
textbooks usually are written with an authoritative tenor which is sometimes also 
evident in student writing. Morgan discussed the use of personal pronouns (I and 
we) which "may indicate the author's personal involvement with the activity 
portrayed in the text" as well as "implying that the reader is also actively involved 
in the doing of the mathematics" (p. 5). The use of words such as consider, suppose 
and let also serve to bring the reader into the discussion. Morgan noted that a 
student writer who adopted the authoritative style of a textbook may be 
considered arrogant by the assessor, and that student writers often made use of 
personal pronouns. The textual function considers the way the text is constructed. 
Mathematical text often uses logical reasoning in providing a progressive account 
of the development of an argument. It also includes the functions of the various 
parts of the text such as definitions and examples. Morgan noted that 
teacher-assessors of student texts may be influenced by the lack of logical structure 
in some of the writing. 

A Text-Analysis Approach 

In an ongoing study of student transactional writing in lower secondary school 
mathematics classes, this author (Shield, 1994) developed a scheme for the detailed 
analysis of the mathematical content of such writing. This is in contrast with the 
macro types of descriptions discussed and used by Borasi and Rose (1989) and 
Waywood (1992). The aim of this analysis was to better appreciate the thinking 
being expressed by the students in their writing to enable consideration to be given 
to advancing this thinking. Applications of the analysis have been reported in 
Shield and Swinson (1994) and Shield (1996). 

As the writing under consideration was intended to explain a concept or 
procedure, the features of an explanation identified by Leinhardt (1987) in 
describing teachers' lessons were used as a starting point. The features used were: 
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1. Identification of the goal. 

2. Signal monitors indicating progress towards the goal. 

3. Examples of the case or instance. 

4. Demonstrations that include parallel representations, some levels of linkage of 
these representations, and identification of conditions of use and non-use. 

5. Legitimisation of the new concept or procedure in terms of one or more of the 
following-known principles, cross-checks of representations, and compelling 
logic. 

6. Linkage of new concepts to old through identification of familiar, expanded, and 
new elements. 
(pp. 226-227) 

These features were combined with the general construct of the "elaboration" of a 
concept or procedure to produce a set of descriptors for the parts of a written 
explanation. The term elaboration has been used, particularly in the study of 
reading processes, to describe the linking and integration of information being 
read. For example, Hamilton (1989) described elaboration as follows: 

Elaboration can be defined as any enhancement of information that clarifies the 
relationship between information to be learned and related information, e.g., a 
learner's prior knowledge and experience, contiguously presented information. (p. 
205) 

A number of investigations (Hamilton, 1990; Mayer, 1980; Reder, 1980) have shown 
how elaborative processing by learners improves comprehension and retention of 
new material in a variety of contexts. It has also been demonstrated that 
elaborative processing during learning enhances the problem solving ability of the 
learner in the domain of that new knowledge, apparently because the richly 
elaborated knowledge base provides more options for the generation of ideas in 
the problem context. 

Van Dormolen (1985) devised a set of descriptors in a discussion of 
mathematics textbooks and the way mathematical ideas are expressed in them. As 
part of his description, van Dormolen noted the existence of "general expressions 
that have to be learned as knowledge" (p. 146). These are usually statements of 
definitions, rules or procedures and are often signalled in the text in ways 
including the use of bold type or by enclosure in a box. Van Dorm olen called these 
"kernels." Verbal and symbolic statements in the text are described in terms of their 
"aspect of mathematics" and "level of language." The following is a summary of 
the categories within these features. 

Aspects of mathematics: 
(a) theoretical-theorems, definitions, generalisations; 
(b) algorithmic-explicit "how to do" methods; 
(c) logical-the way we are allowed to handle the theory; 
(d) methodological-heuristic "how to do rules"; and 
(e) communicative--conventions, how to name a diagram, write a proof. 
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Levels of language: 
(a) exemplary-demonstrative, related to a specific example; and 
(b) relativ.e-generalised, not related to a specific example. 
Within each level, the language may be procedural or descriptive. 

11 

In the study by Shield (1995), over 300 examples of transactional writing by 
year 8 students in four classes in two schools were examined over a two-year 
period. Although a variety of writing tasks were used, the writing examples all 
essentially consisted of the explanation of a concept or procedure. Some of the 
many examples of student writing reported in studies by other authors were also 
included in the analysis. The analysis involved an examination of the way students 
elaborated the main idea (kernel in van Dormolen's terms) which was expressed as 
a definition or general statement of the procedure. The features of an explanation, 
aspects of mathematics and levels of language were used to guide the analysis 
using grounded theory methodology (Glaser & Strauss, 1967). It was not expected 
that student writing would actually resemble a teacher's explanation or a textbook, 
but it could be expected to exhibit some of these features as well as other 
unexpected features. 

The following discussion of the analysis uses the terminology outlined earlier. 
One of the most notable results of the analysis was the consistency of the writing 
styles of the students, both within this particular study and in the examples from 
other studies. The student writing usually centred on a specific symbolic 
demonstration of the procedure, generally accompanied by a verbal description of 
the procedure in exemplary language (related to that specific example). A kernel in 
relative (generalised) language was present in approximately half the writing 
examples. In particular writing tasks, the other elaborations present depended on 
the mathematical topic. For example, most students included a number line in their 
letters about adding directed numbers, although the links between this 
representation and the symbolic demonstration were often not made clear. A 
notable characteristic of most of the writing was the expression of a purely 
algorithmic aspect of mathematics with only very rare attempts to explain why a 
procedure was used or to justify any of the steps. A small number of examples 
included links between the new procedure and prior knowledge as in writing 
about highest common factor. Five of the twenty-six students in that class recalled 
the definition of a factor before demonstrating how to find a highest common 
factor. 

In terms of the features of an explanation of a specific mathematical procedure 
or concept, the elaborations listed below were used by students in their writing. No 
order of presentation in a student writing example is implied by the order of the 
list. None of the examples examined contained all of these elaborations and some 
such as legitimisation occurred rarely. 
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Kernel 

Goal statement 

Demonstration 

Legitimisation 

Link to prior 
knowledge 

Practice exercises 

SHIELD 

definition or general statement of the procedure 

identification of the concept or procedure being 
explained 

a worked example of the concept or procedure 
elaborated with: 
(a) symbolic representation; 
(b) verbal description; 
(c) diagrammatic representation; and 
(d) statement of convention 

justification for the procedure or part of it using 
known principles 

extensions of prior knowledge, reference to 
everyday experience 

set of questions to be answered by the reader by 
modelling on the demonstration 

As a demonstration of the analysis, the following example of student writing is 
examined. The year 8 student was asked to write a letter to an absent friend to 
"explain all about highest common factors." 

Dear Jessy, 

Well I know you've been away for a few weeks and Mrs ------ gave me the job to 
explain about highest common factor and lowest common multiple. Well let me 
start with HCF. A factor is smaller than the number you start off with. The factors 
are numbers which can divide into the number evenly for e.g., 16 = 1, 2, 4, 8, 16. Do 
you see. HCF is highest common factor, so you take two numbers 12 and 16 and you 
list the factors. When you've done that you look and see the highest factor both of 
them have otherwise you always have one. 

e.g., 12-1, 2, 3, 4, 6, 12 

16-1,2, 4, 8,16 .. ~ 

They both have 4 so your answer is 4. Get it. 

In the analysis of this example, the conversational remark in the first half of the 
first sentence is ignored. The second half of this sentence expresses the goal of the 
presentation. The kernel is stated in the two sentences which precede the symbolic 
demonstration. Apart from "12 and 16" which doesn't really enter into the 
statement, the kernel is stated in relative language and expresses an algorithmic 
aspect of mathematics. The demonstration is also algorithmic and is accompanied 
by some verbal elaboration. Before the kernel there is a link with prior knowledge 
in the discussion of factors. 

The example analysed above is more elaborate than many collected at the same 
level. The writer was able to express the procedure in general terms and 
demonstrate it with a worked example, as well as provide a link with the key prior 
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concept in case the reader did not remember it. This example illustrates the type of 
algorithmic writing with a lack of justification which is typical of much of the 
reported transactional writing. 

This method of analysis of transactional writing in mathematics provides the 
possibility of assisting students to advance their mathematical thinking in a similar 
way to the analysis of journal writing by Clarke, Waywood and Stephens (1993). 
The purpose of the ongoing research of this author is to ascertain whether raising 
the awareness of teachers and students of the features of mathematical writing can 
assist in the development of student mathematical thinking. It is hypothesised that 
writing tasks in which students have to express mathematical ideas in terms of 
specific examples and in general terms, and in which they have to elaborate these 
ideas by linking them with prior knowledge (both mathematical and everyday) 
and with multiple representations, and then justify their statements, will lead to a 
deeper understanding of mathematics. However, it is already apparent that the 
processes involved are complex and that many aspects of the context of the 
learning including the students' and teachers' beliefs about mathematics and its 
learning play a part in determining the success of writing tasks. 

Conclusion 

Research into the use of writing in mathematics learning has progressed during 
the past ten years. From a mass of classroom studies at all levels of education 
relying on little more than the general outcomes from other writing areas and 
anecdotal evidence, research has moved towards the establishment of theoretical 
positions from which more definitive conclusions may result. The continuation of 
this trend is important if the potential value of writing as a tool for learning 
mathematics is to be realised. 

Shepard (1993) addressed the issue of the role of writing in conceptual 
development from a theoretical standpoint. He adapted the work of a number of 
cognitive psychologists to describe learning in three phases, namely initial, 
intermediate and terminal. Within each phase, writing categories were described 
with indications of the types of writing tasks which would be appropriate. The 
following two examples come from the initial and intermediate phases. 

Report: summarising account of description (from memory) of an event taken from 
direct experience-no inferences made beyond the information given. 

Low-level analogic: true generalisations are made but organisation and/or 
relationships are not perceived. (p. 290) 

These descriptions bear some resemblance to those developed by Waywood (1992). 
Shepard's aim was to provide teachers and researchers with guidance for 
designing writing assignments in mathematics which could assist in moving 
students from the rote memory of algorithms towards a more abstract and 
integrative type of thinking. In a reply to Shepard's article, Davis (1993) took issue 
with the underlying assumptions of this approach to learning through writing. The 
debate about theoretical positions will continue. 
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Thus far there had been little attention given in the research to the question of 
the effects of the learning context on the way students write about mathematics. In 
a study at the Grade 6 level, Ellerton (1988) had students write letters to imaginary 
absent friends about the mathematics studied during the previous three weeks. 
The content of the letters reflected the classroom experiences of the writers who 
came from four classes taught by four different teachers. For example, the letters 
from a class where the focus was on algorithmic detail reflected this approach 
while those from a class in which mathematics was integrated across the whole 
curriculum wrote more generally over a wide range of topics. In a study by this 
author (Shield, 1995), the writing of two classes of Grade 8 mathematics students 
was examined over a six-month period in which they were experiencing an 
elaborative approach to mathematics involving regular hands-on activities, 
drawing and writing. The students' beliefs about mathematics and its learning 
were also investigated. Over the period of the study there was no discernible 
change in their writing about mathematics which always centred on algorithms 
with little elaboration. This was also reflected in their beliefs about mathematics 
and its learning. It was concluded that in spite of the broader approach of their 
current teacher, their writing reflected their beliefs based on the previous seven 
years of mathematics instruction reinforced by textbooks and examinations. 
Perhaps any approach to the use of writing activities in mathematics needs to be 
part of a long-term change in the overall approach to the subject. 

In Australia, there has been much development of the idea of a "genre 
approach" as a g~neral strategy for the development of writing in various subject 
areas. In such an approach, learners are introduced to the various forms of writing 
used in particular fields and are made aware of the characteristics of such writing. 
The study by Verine (1989) discussed earlier is an example of such an approach, 
although the restricted nature of the genre provided in that study was of 
questionable value to student learning. Genre theorists, for example Kress (1982) 
and Christie (1993), argue that rather than constricting students' writing and 
thinking, the provision of a range of genre models in a field provides students with 
writing choices that they did not have previously. The students develop a greater 
facility to exercise linguistic choices which enables them to sometimes create new 
genres in response to their present contexts. The writing reported in most of the 
studies reviewed. in this chapter was generally of a restricted form with some 
resemblance to typical mathematics textbook presentations so the introduction of 
new forms may be useful. 

There are many opportunities for further research into the use of writing in the 
learning of mathematics. While research in this field has matured somewhat, there 
is still much scope for the development of theoretical positions which may form a 
basis for the fruitful application of writing in mathematics classrooms. There is a 
need to further consider the applicability of research on writing in other fields to 
writing in mathematics learning. The work of the genre theorists provides one 
possible line of further research. The identification and development of suitable 
genres is a major task in itself. Pimm (1987) posed a range of questions which are 
still current: 
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In conclusion, considerable attention needs to be paid to questions of how children 
record mathematics spontaneously, and what they find worthwhile to record in a 
particular context where both the purpose and need to record are clearly imposed 
by the constraints of the situation. In particular, what are the purposes to which 
disembodied language in the form of written records is put, and how might these 
purposes be conveyed to pupils? What do pupils find useful to record? Is the 
audience clear and known? Is the purpose known? What conventions are operating 
which govern the form in which the records should be written? These and many 
other questions seem to me to be central to an understanding of the place of writing 
in mathematics. (p. 137) 
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Mathematics and Language 

Ramakrishnan Menon 

Many people believe that mathematics and language have very little in 
common, and might even insist that mathematics competency and language 
competency are negatively correlated. All too often, such beliefs arise from 
personal experiences (that is, friends who are "good at" mathematics but not at 
language and vice versa), and seldom from credible research studies. But now, with 
the ever-increasing emphasis on the importance of communication in mathematics, 
and the skills to access, select and interpret information, more and more studies on 
mathematics and language are being undertaken. In particular, there is a growing 
body of literature on writing to learn mathematics, arising out of the writing to 
learn movement. As well, numerous studies on the role of discourse (both oral and 
written) in the mathematics classroom have emerged recently, including the use of 
language to assess mathematics. In this chapter, I will draw both from theoretical 
considerations and research studies to explore the interrelationships between 
mathematics and language, as well as to suggest some implications for the 
classroom and for further research. 

Language and Thought 

Whether language shapes thought or thought shapes language has been a 
continuous debate. The Whorfian hypothesis (Wharf, 1956) suggests that language 
~onditions thought, and that different cultures might have different concepts of, 
say, time and space. For example, because some American Indian languages like 
the Hopi Indian language, (and some Australian Aboriginal languages), do not 
consider time in a linear sense (e.g., do not express temporal ideas using spatial 
metaphors), Hopi mathematics would be quite different from the mathematics we 
are accustomed to. 

According to Ellerton and Clements (1991), the implication of the strong form 
of the Whorfian hypothesis seems to be that "any attempt to teach mathematics to 
speakers of non-Western languages is a waste of time because their language has 
shaped their minds in ways that preclude the accommodation of Western ideas" 
(p. 23). While this strong version of the hypothesis is no longer accepted, a weaker 
version of the hypothesis has found favour. 

This latter version draws on Vygotskian ideas to suggest that prior linguistic 
experience has to be accommodated or modified before concepts are crystallised 
and internalised. As well, while many mathematical concepts may be universal, 
some may not be (Bishop, 1988)-the concepts would depend on the language the 
learner uses to build those concepts and different world views might give rise to 
different, yet consistent mathematical systems. 
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Speaking from a slightly different perspective, Layzer (1989) states that 
"Whorf's argument assumes that natural science derives concepts like time and 
change from natural language. I think the reverse is true" (p. 126). He argues that 
although mathematics may begin by trying to make sense out of experiences, 
mathematics not only lends precision to natural language, but creates concepts that 
can be adequately expressed only in its own "unnatural-and hence universal
idiom" (p. 127). Even so, after creating these concepts, "we can talk about them in 
ordinary language" (p. 127). 

Whether one agrees with the notion that language shapes thoughts or vice 
versa, there is no denying that language and thought are related. As Vygotsky 
(1962) says, "the child's intellectual growth is contingent on his mastering the 
social means of thought, that is, language" (p. 51). 

But what are the links between mathematics and language, and how can 
language help or hinder mathematics learning? Before exploring some of these 
issues, let me discuss some links between writing and learning, as both the 
"writing to learn" (WTL) movement and the "writing to learn mathematics" 
(WTLM) movement are relatively recent phenomena, and researchers have shown 
increasing interest in these areas. 

Learning and Writing 

According to Emig (1983), writing is a unique mode of learning because it 
"connects the three major tenses of our experiences to make meaning" by 
"shuttling among past, present, and future" using the "processes of analysis and 
synthesis" (p. 129). She goes on to say that there is a marked correspondence 
between learning and writing, as both give self-provided feedback, generate and 
connect concepts, are integrative, active, personal, and self-rhythmed. Writing is 
also multirepresentational, in that it uses Bruner's enactive, iconic and symbolic 
modes of representation concurrently (or at least contiguously), with the hand, 
brain and eye all working in concert. 

Writing has gone from an emphasis on a finished polished product to writing 
as a process-product, where drafts and redrafts are essential. The "whole 
language" movement (for example, Shanahan, 1991), which is currently in vogue, 
encourages learning through actively using language, rather than merely learning 
the rules of correct grammatical use. 

Smith (1982), in discussing how language and writing help learning, says that 
writing helps us find out what we know and think because "language creates as 
well as communicates" (p. 67). Illdeed, the very act of writing engenders thinking 
(Boyer, 1987; Elbow, 1981; Fulwiler, 1987; Luria & Yudovich, 1971; Zinsser, 1988). 

In short, the proponents of writing to learn suggest that writing helps thinking 
in two ways: one, by the process of writing, one's thinking becomes clearer; and 
two, because it is a more permanent record, writing allows one to look more closely 
at, and revise what is written. 

However, not all types of writing function to clarify and generate concepts. For 
example, Mayher, Lester and Pradl (1983) caution that "writing that involves 
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minimal language choices, such as filling-in-blanks exercises or answering 
questions with someone else's language--the textbook's or the teacher's-are of 
limited value in promoting writing or learning" (p. 78). 

Writing to Learn Mathematics 

Initially, it seems odd to associate writing, especially informal writing, with all 
its imprecision and hesitations, with the learning of mathematics, a subject 
considered precise, abstract and symbolic. This view is not surprising, given that 
"most children are very good at learning and using language-they make 
remarkable achievements in this domain before they commence schooling and in 
the absence of formal instruction-while very few children take so readily to 
mathematics" (Durkin, 1991, p. 4). Even so, the relatively recent phenomena of 
WTLM has spawned much research (Connolly, 1989; Ellerton & Clarkson, 1992; 
Menon, 1995a, 1995b, 1996; Porter & Masingila, 1995; Rose, 1989), ranging from 
students at the elementary school level to those at college level. For example, Porter 
and Masingila (1995) examined "the effect of WTLM on the conceptual 
understanding and procedural ability of students in an introductory college 
calculus course" (p. 325). 

There is even a model of learning, the Adaptive Control of Thought (ACT) 
model, that links writing to mathematical problem solving (Kenyon, 1989). This 
model was a result of integrating ideas from computer science, information 
processing and linguistics (Anderson, 1983). In this model, learning is associated 
with two types of memory: declarative memory, where knowledge such as 
propositions, spatial images and temporal strings are stored; and production 
memory, where skills based on the construction and addition of procedures 
originating from other procedures and propositions are stored (Kenyon, 1989, 
p. 75). 

According to Kenyon, there is a relationship between the ACT learning model, 
the three (recursive) phases of writing-namely the prewriting or planning phase, 
the composition phase and the rewriting phase-and the mathematical problem 
solving approach. When faced with a problem, a search is initially executed to 
access propositions from declarative memory and procedures from production 
memory. So, when one is at the prewriting or planning phase, one is attempting to 
understand what is being asked and what are the attendant conditions of the 
problem. A memory search (from both types of memory) for strategies and similar 
problems takes place at this initial phase of writing. Also, during this exploratory, 
prewriting phase, possible strategies are planned and a strategy is selected from 
both types of memory. 

In the second phase-composition-the writing is more organised and 
cohesive in order to execute the strategy selected. This phase is analogous to the 
actual solving of the problem when a certain approach is implemented, for 
example, by using some known procedures. If the strategy selected does not lead to 
the desired solution, phase one is repeated, similar to the rejection of a procedure 
that did not lead to the desired solution and a search for another procedure. 
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In the third phase-rewriting-the writing resembles that of the transactional 
mode, as there is more clarity and focus because of the expected audience. This 
phase is similar to checking the reasonableness of the solution of a problem after 
which it may be either rewritten in order to communicate the solution to someone 
else or an attempt at a more elegant solution is made. Hence the ACT model of 
learning seems to link writing, learning and mathematics learning, albeit more 
specifically to mathematical problem solving. 

Mildren (1992), too, suggests a link between writing and problem solving. He 
points out that just as learning language through expository essay writing involves 
"topic choice, planning and structuring text, organising information, drafting, 
revising, and editing" (p. 34), learning mathematics through problem solving 
involves "defining the unknown, determining what information one already 
knows, designing a strategy or plan for solving the problem, reaching a conclusion 
and then checking the results" (Bell & Bell, 1985, p. 212). 

So far, some links between writing and problem solving in mathematics have 
been discussed. Other ideas and research results about WTLM will be briefly 
discussed later in the section on written discourse. Now I turn to some cautions 
about too uncritical an acceptance of WTLM. 

The trivial type of mathematics that is reflected in some students' writing in 
mathematics (Caughey & Stephens, 1987; Ormell, 1992; Pengelly, 1990) is one area 
of concern. In addition, Pimm (1987) cautions that there are some disadvantages to 
using writing as a tool to learn mathematics. For instance, because of the effort 
required or spent in making the handwriting legible and clear, one may lose sight 
of what one was trying to express in the first place. As well, writing may interrupt 
our flow of thoughts, and it is usually very difficult to anticipate what assumptions 
need to be made explicit to the "uninformed" reader. Despite these concerns, there 
is sufficient empirical and theoretical evidence to support WTLM. 

Mathematics Learning and Language Learning 

Some Language Functions Common to Both Language and Mathematics 
Laborde (1990) states that "the functions of language in the context of the 

mathematics classroom are those that have been recognised for a long time in the 
development of thought: Language serves both as a means of representation and as 
a means of communication" (p. 53). Some of the basic functions of language are to 
label, classify and compare and these are important both for making sense of the 
world and also in learning mathematics. 

According to Sharron (1987), the classification of objects is a "complex 
operation which, depending on the sort of task, might require analytical 
perception, spontaneous comparative behaviour, the pursuit of logical evidence, 
systematic exploration, the conservation of constancies, and so on" (p. 68). 
Moreover, "it is through comparison that children move from the act of simple 
recognition of an object or event to establish relationships between them" (p. 63). 

For example, to abstract the concept of a chair, some sort of classification into 
categories of things having the features of a chair have to be differentiated from 
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those that do not have the features of a chair. Then, in order to communicate to 
someone else that something is a chair, a label ("chair") has to be used. Also, when 
one differentiates a chair from a non-chair, one is comparing. 

But the language functions of labelling, classifying, ordering, comparing and 
locating are not limited to language-they are common to mathematics as well. 
Indeed, in mathematics, such distancing and disembedding from the concrete is 
even more pronounced. For example, after using concrete referents such as the 
Dienes blocks for place value of numbers, one is expected to be able to manipulate 
the numbers, as if the numbers themselves were "concrete." Similarly, while seven 
apples can be seen and touched, the abstract concept of seven cannot be so seen 
and touched. Moreover, to understand "seven" more comprehensively, it has to be 
seen as, among other things, as one more than 6, one less than 8, etc.-that is, as a 
set of relationships and interlinked associations. 

Generally speaking, while language represents tangible things, at least in the 
early stages, mathematics emphasises relationships and abstract ideas, even at the 
early stages: but both are used for a number of similar functions, such as 
classifying, labelling and so on. Moreover, just as language allows us to distance 
ourselves from, and extend, our experiences, concrete or otherwise, and to 
communicate to others, so too, can we use mathematical language to explain and 
extend mathematical concepts. 

Linking Language Learning to Mathematics Learning 
While "mathematics is not a natural language in the sense that English and 

Japanese are" (Pimm, 1987, p. 207), and learning language through immersion in 
language is different from learning mathematics through an artificial and 
temporary immersion into school mathematics (Mcintosh, 1988), nev:ertheless 
language learning ideas can help mathematics learning (Menon, 1995c). For 
example, in language learning, a child moves from holophrases (such as "Mummy 
candy") to complete sentences ("Mummy, please give me some candy") through an 
interlanguage (Corder, 1981), such as "Mummy give candy." The interlanguage is 
not regarded as an error, but a necessary intermediate stage the language learner 
goes through, before attaining language competence. Similarly, in mathematics 
learning, a child can move through (possibly imprecise) everyday language (such 
as the "top" number of a fraction) to appropriate mathematics terminology (such 
as the "numerator" of a fraction). 

In addition, the skills of listening, reading, speaking and writing are 
emphasised in language learning. According to Capps and Pickreign (1993), such 
skills should also be emphasised in mathematics learning. They suggest that 
mathematics instructional time should include exposure to, .and reinforcement of, 
new mathematics terminology by listening to, as well as speaking, writing and 
readi<1g the new words. Research also shows that specific instruction in 
mathematical terminology can clarify mathematical concepts (Garbe, 1985; 
Nicholson, 1989). 

According to Del Campo and Clements (1987), listening and reading are 
receptive skills, while speaking and writing (as well as drawing, performing and 
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imagining) are expressive skills. Mathematics teachers tend to neglect the expressive 
skills, which "are more active, such as drawing triangles or explaining why the 
triangle is isosceles," and tend to overemphasise receptive skills, which "are more 
passive, such as identifying given figures as quadrilaterals or triangles" (Menon, 
1995c, p. 1). Del Campo and Clements (1987) suggest that expressive tasks help 
children understand and remember mathematics concepts better. 

Just as the teaching of communicative competence is associated with 
communicating effectively in context rather than merely learning grammatical 
rules and practising repetitive structural patterns, so, too, has context been shown 
to be important to meaningful mathematical learning (Capps & Pickreign, 1993; 
Menon, 1995a). For example, Menon (1995a, 1996) and Silverman, Winograd and 
Strohauer (1992) cite instances of students able to construct and solve meaningful 
word problems-an expressive task-situated in their own experiential context. 

Even when learning mathematics with the help of computers, minor changes in 
the problem-solving context show gender differences in performance (Light, cited 
in Munro, 1992). For example, a king searching for his crown proved a more 
conducive context for boys than that of a picnic context, which proved more 
successful with girls. 

The current approach to language learning is based on communicative 
competence (for example, Widdowson, 1990), rather than on the memorisation of 
rules. Similarly, it is widely accepted nowadays that communicating mathematical 
ideas is an important component of mathematical competence (National Council of 
Teachers of Mathematics, 1989). In particular, Borasi and Agor (1990) argue that 
many of the approaches to second language learning might be usefully modified to 
mathematics learning. For instance, by having students interpret rather than 
actually plot and draw a graph, students are using mathematics meaningfully rather 
than concentrating on the mechanics of plotting accurately-similar to using 
language in context, rather than just learning the rules of grammar. 

Bilingualism and Mathematics 
Research on bilingualism and mathematics has many issues to consider. First of 

all, while bilingualism is usually taken to mean that a certain level of proficiency is 
attained in both the first language, Ll, and the second language, L2, in practice 
there are many "bilingual" programmes where the L1 proficiency is satisfactory 
but that of L2 is very low. Secondly, there are difficulties associated with 
understanding the language (L2) the teacher uses to teach mathematics and also 
that of the word problem itself. Moreover, the dissimilarities between the 
mathematics register and everyday (Ll) language is compounded for bilinguals. 
As well, the L1 of the student may have no equivalent of a mathematical term or 
concept used in L2, which may be the language of instruction. 

To explain the interaction between language and cognitive development in 
bilinguals, Cummins (1981) came up with a theoretical framework and proposed 
two hypotheses (Cummins, 1979): the first suggests two thresholds of linguistic 
competence-the lziglzer threshold for those whose high competence in both 
languages will benefit cognitive growth and the lower threshold for those with low 
competence in both languages will impede cognitive progress. His second 
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hypothesis, that of developmental interdependence, proposes that cognitive 
development is affected by competence in both L1 and L2, and that L2 competence 
is dependent on L1 competence. In other words, if L1 is encouraged and valued, 
then L1, L2 and cognitive development are enhanced. 

While research on bilingualism is not completely unequivocal about the effects 
of bilingualism on the mathematics competency of bilinguals, there is some 
research evidence attesting to the positive effects of bilingualism (Dawe, 1983). For 
example, Flores (1995) indicates that children's higher-order thinking skills were 
enhanced when instructions and discussions were in the children's Ll, Spanish. 
Such research results indicate that learning more than one language facilitates 
abstract mathematical reasoning, given that a certain level of proficiency is attained 
in both the first language, Ll, and the second language, L2 (Clarkson, 1991; Secada, 
1988; Zepp, 1989). For a more comprehensive treatment of research in bilingualism 
and mathematics, please refer to Brodie (1989), and Ellerton and Clements (1991). 

Difficulties Associated with the Mathematics Register 

Just as different forms of language are used in different contexts (i.e., informal 
language used among close friends compared to the formal language used in an 
inauguration speech), the mathematics register is employed by those involved in 
mathematics to convey specific and appropriate meanings in mathematics. 
Unfortunately, to the uninitiated, the mathematics register confuses more than it 
enlightens. For exatnple, Otterburn and Nicholson (1976) found that children were 
unable to explain various mathematical terms that were routinely used by teachers. 
Six ways whereby such difficulties arise are described next. 

Register Confusion 
Durkin and Shire (1991) show that ambiguity arising out of the use of similar 

words in different contexts hinders the learning of mathematical concepts, even 
though such misinterpretations diminish (but not completely disappear) with age. 
For example, words such as "odd, real, and right" have different meanings in 
everyday contexts compared to mathematical contexts. The book "Speaking 
Mathematically," by Pirnm (1987), is replete with examples where students fail to 
distinguish between the registers of ordinary and mathematical English (for 
example, a right-angled triangle and a left-angled triangle). 

Another, related, difficulty is the inconsistent way in which mathematics is 
communicated to the learner. As Carter, Frobisher and Roper (1994) state, "The 
language that teachers use to assist pupils in their learning of mathematics is 
frequently a barrier to that learning" (p. 125). For example, students tend to use the 
teacher-stated rule that area is "length times breadth" for a rectangle, to the area of 
a triangle. As well, counting objects "by touching one object after another and 
matching the touch with a number word" (p. 125) causes confusion as "ordinality, 
that is the order of touching the objects, is used to determine the cardinality of the 
number of objects so touched" (p. 126). That is, even though only one object is 
touched when saying "one," "two," and so on, each object, though one in quantity 
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is given a different cardinal name. As another example, Hanselman (1997) believes 
that terms such as reduce, cancel, invert and multiply can confuse the student and 
"should be treated like foul language and banned from premature use in the 
mathematics classroom" (p. 154). 

It is also the case that teachers commit the sin of omission rather than that of 
commission when they assume the teacher-used mathematical terminology 
conveys the same meaning to the learner as to the teacher. For example, Otterbum 
and Nicholson (1976) found that children were unable to explain various 
mathematical terms that were routinely used by teachers. 

Over-Extended Metaphors 
Walkerdine (1988) believes that metaphors allow one to relate to familiar 

"discursive practice," and enable one to conceptualise something through the 
mental imagery brought about by the metaphor, rather than physically 
manipulating concrete objects. For example, the fraction ~ could be thought of as 
"four pizzas divided equally among three people," without actually having to 
manipulate pizzas. Pimm (1987), too, states that metaphors both construct and 
extend meaning in mathematics. He distinguishes between two types of 
metaphors-the extra-mathematical metaphor, which explains mathematical concepts 
in terms of everyday objects and experiences (e.g., a graph is a picture, an equation 
is a balance); and the structural metaphor, which involves "a metaphoric extension 
of ideas from within mathematics itself" (p. 95), such as a spherical triangle and the 
slope of a curve. Because metaphors evoke powerful images by alluding to certain 
commonalities, they also tend to mask differences, making it all too easy to assign 
the metaphor with all (or most of) the characteristics of the original, literal 
meaning. Hence the problem of "overgeneralising" or in this case, "extending" the 
metaphor inappropriately. 

For example, the expression "spherical triangle" is not a sphere-shaped 
triangle, as would be expected from the ordinary, adjectival use of "spherical" in 
"spherical container." Pimm gives another example of a metaphor-that "a 
complex number is a vector" (p. 105)-that might distort meaning. He says that 
while it is helpful to think of a two-dimensional plane to represent addition and 
subtraction of complex numbers, it tends to distort the concept of complex 
numbers when used for multiplication of complex numbers, as a complex line 
would be more appropriate here. Similar examples are cited by Gibbs and Orton 
(1994) who state that the metaphor "an equation is a balance" breaks down for 
quadratic equations, but is appropriate for linear equations; and by Kuchemann 
(1981), who states that the metaphor "algebra is a shorthand" may lead pupils to 
think that letters represent objects, rather than numbers, especially if, for example, 
the letter "a" is used for apples and the letter "b" for bananas often enough by the 
teacher. 

Structural Differences 
Other than lexical ambiguities associated with the difficulties in transferring 

from the everyday register to the mathematical register, the linguistic structure of 
everyday language can pose problems. For instance, Laborde (1990) notes that 
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"linguistic features of natural language can affect the transition of a situation from 
natural language into an algebraic statement" (p. 61). Researchers have shown that 
many tertiary students cannot translate relationships expressed in everyday 
language into corresponding mathematical expressions (Clement, Lochhead & 
Monk, 1981; Mestre & Lochhead, 1983). Translating word statements to algebraic 
equivalents has been noted to be especially problematic. 

For example, students were asked this (classic) problem: "There are six times as 
many students as professors. If S represents students and P represents professors, 
write an equation connecting Sand P." Most students translate it as 65 = P, rather 
than S = 6P, as a solution to this problem. One explanation for this error is that the 
linguistic structure of the problem statement, where the expression "six times as 
many students" precedes the word "professors," could have influenced students 
into following the left-to-right order of the "everyday" sentence. 

Levels of Language 
Another factor associated with the transfer from the everyday to the 

mathematical register is the difference in levels of language required as one 
progresses from the colloquial to the mathematical (Freudenthal, 1978, pp. 
233-242). New concepts are exemplified by exemplary or demonstrative language first. 
Later refinement leads to relative language and finally to functional language. 
Examples of these levels of language are as follows: 

a. Demonstrative (pointing out instances, without explanations): Half is like this part 
here. 

b. Relative (using words to indicate relationships or procedures): When something is 
cut into two equal parts, each part is called a half. 

c. Functional (generalisations or relationships between relationships): The common 
fraction i is the same as the decimal fraction 0.5 because one out of two equal parts 
is equivalent to five out of ten equal parts. 

The levels suggested by Freudenthal form a continuum ranging from personal 
referents to more abstract ones. In other words, according to Freudenthal, one first 
uses referents from one's own experiences (for instance, by pointing to or showing 
an example of a rectangle, when asked "What is a rectangle?") before moving on to 
using referents or abstractions that are further removed from idiosyncratic 
experiences (for instance, by stating the necessary and sufficient conditions for a 
quadrilateral to be a rectangle). While the levels of language might be a good way 
to analyse the language used in explanations of mathematical ideas, it would be 
wrong to assume that these levels of language progressively reach higher levels as 
one understands the concepts better. As Freudenthal (1978) himself explains, "most 
of us understand more language than we can speak" (p. 234). 

According to Feuerstein-whose work was mainly with socially-handicapped 
underachievers-some children do not bother to express themselves clearly 
because they assume everyone else automatically understands what they are 
thinking (cited in Sharron, 1987, p. 65). This assumption is called "egocentric 
communication," and interestingly enough, was demonstrated in 1984, at a 
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conference in Oxford University on Feuerstein's work, by a group of psychologists 
and educational administrators who were asked to give a set of clear unambiguous 
directions, which, if followed correctly, would result in the drawing of a completed 
geometric pattern. Not one person in this group succeeded completely in 
communicating to a partner the correct way to draw the pattern! Indeed, "the 
majority found that the instructions, when they were comprehensible at all, 
resulted in anything but the required figure" (Sharron, 1987, p. 66). 

Furthermore, Feuerstein (cited in Sharron, 1987) has found that, contrary to 
popular belief in the power of manipulatives to enhance mathematical concepts, 
"the extra emphasis in special education on physical manipulation of objects to aid 
learning is an extra obstacle-motoric acts frequently get in the way of children's 
attempts to formulate strategies abstractly" (p. 66) and by "simply inhibiting 
gestures like pointing or touching, which children with bad spatial orientation 
prefer because it is easier than thinking more abstractly about space, great 
improvements can occur" (p. 60). The implication seems to be that Freudenthal's 
demonstrative level of language might actually inhibit children from building up 
an internal reference system. 

Linguistic Form and Semantic Structure of Word Problems 
Another area extensively studied is the difficulties students have with word 

problems. It has been shown that the level of difficulty of a word problem is a 
function of not only the mathematical content of the problem, but also of "its 
linguistic form and semantic structure" (Gibbs & Orton, 1994, p. 102). Researchers 
from various parts of the world have consistently shown that students have great 
difficulties in understanding a problem because of the language involved, and not 
just because of the mathematics content of the problem (Clarkson, 1991; Clements 
& Ellerton, 1993, 1995; Lean, Clements, & Del Campo, 1990; Marinas & Clements, 
1990; Newman, 1977). For example, consider the following two word problems: 

Problem 1: Leo has 3 cookies. Mei Lee gave him 4 more cookies. How many cookies 
does Leo have now? 

Problem 2: Leo has 3 cookies. Mei Lee has 4 more cookies than Leo. How many 
cookies does Mei Lee have? 

Problem 1 is conceptually easier than Problem 2, although both use the word 
"more" and the numbers 3 and 4, and both give rise to the equation 3 + 4 = 7. 

One of the most influential studies in this area was that of Newman (1977). 
Briefly, the Newman study involved individually interviewing students who 
initially had their answers wrong to certain word problems, asking them certain 
specific questions as they worked through the problems they had got wrong 
earlier, and, on the basis of the verbal answers provided by the students, to classify 
their errors according to a hierarchy (errors in reading, comprehension, 
transformation, process skills, and encoding). 

Newman (1977, 1983) has drawn attention to not only the influence of language 
factors on mathematics learning, but also to the inappropriateness of many 
assessment procedures and remediation programmes for mathematics in schools 
(Ellerton & Clements, 1992). Orr's (1987) work, which documents black children's 
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difficulties with mathematics and science due to differences in Black English and 
the standard English, further supports the notion that language factors play a very 
important part in the understanding of word problems. 

It has also been shown that in certain languages, "the structure of the counting 
words reinforces the place-value of the numbers in a logical and consistent way," 
(Gibbs & Orton, 1994, p. 103). For example, the Chinese equivalent of the English 
"teen numbers" is "ten and three, ten and four," and so on, for "thirteen, fourteen," 
etc., and Fuson and Kwon (cited in Durkin & Shire, 1991) conclude that children 
using such a consistent place-value system are more facile at addition and 
subtraction. Adetula (1990), too, has shown that children perform better on word 
problems that are presented in the first than in the second language. 

The "Cognitively Guided Instruction" programme by mathematics educators 
at the University of Wisconsin (Fennema, Carpenter & Peterson, 1989), recognises 
the importance of the difficulties students have with the semantic structure of word 
problems. Then, by making teachers acutely aware of these difficulties, the 
programme has succeeded in teachers modifying their teaching approach, 
resulting in their students making significant improvement in understanding word 
problems. 

Language Used in Mathematics Tests 
The role of language in testing has been explored by some researchers (see, for 

example, Davis, 1991). Results from such research indicate that children generally 
interpret the test tasks contextually. For example, if children interpret it as 
something for which the teacher requires an answer, they will give an answer, 
however nonsensical the question. Examples of questions are "which is heavier, 
red or yellow?" (Hughes & Grieve, cited in Davis, 1991), and "If there are 60 adults 
and 10 children as passengers in a bus, what is the age of the bus driver?" (Menon, 
ongoing research). It has been shown (Donaldson; Light; Pratt; Samuel & Bryant, 
all cited in Davis, 1991) that children who are supposed to be non-conservers on 
Piaget's well-known conservation tasks, can conserve if the experimenter modifies 

a) the question, 
b) the way it is put to the child (for example by not repeating the question), or 
c) the task itself (for example, by making the transformation accidental or 

incidental, rather than being the main focus of the task). Davis (cited in Davis, 
1991) manipulated the phrasing of the instructions on a number of tasks given to 
five-year-olds, and found that children's answers varied according to the phrasing, 
and that the task was seen as requiring a "mathematical" response only if explicit 
mathematical terminology was used. 

Discourse in the Mathematics Classroom 

On the importance of discourse in the classroom, Pimm (1991) says that 
"extemalising thought through spoken or written language can provide greater 
access to one's own (as well as for others) thoughts, thus aiding the crucial process 
of reflection, without which learning rarely takes place" (p. 23). Menon (1995b ), for 
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example, found that oral discourse in the mathematics classroom could help the 
motivation and mathematical understanding of underachieving elementary school 
level children. According to Hicks (1995), discourse mediates learning, because, 
through meaningful classroom discourse, children realise what counts as 
legitimate knowledge in that discipline. Boucher (1998), Kazemi (1998) and 
Lampert (1988, 1990) have also documented children being empowered to do 
mathematics through such meaningful classroom discourse. 

Numerous mathematics educators have focused on discourse in the 
mathematics classroom, and have concluded that when mathematics is taught for 
understanding as opposed to teaching a set of procedures, what constitutes 
legitimate mathematics knowledge changes from the external authority of the text 
or teacher to the internal authority of the learner. Indeed, there is sufficient research 
evidence to indicate that meaningful discourse improves performance on 
standardised mathematics tests (Hiebert & Wearne, 1993), as well as enhances 
understanding of mathematical concepts (Ball, 1991; Yackel, Cobb, Wood, 
Wheatley & Merkel, 1990). 

Research on oral discourse in the mathematics classroom shows that 
meaningful discussion can take place only on the basis of shared assumptions and 
mutual understanding, or as Richards (1991) calls it, on the basis of consensual 
domain. Pirie and Schwarzenberger (1988) state that even non-mathematical talk 
does not necessarily inhibit meaningful mathematical discussion. Other 
researchers have examined group discussions (Perret-Clermont, cited in Cazden, 
1988), discussion between pairs of students (Yackel, Cobb & Wood, 1991), 
teacher-led and student-centred whole-class discussions (Adams & Price, 1995; 
Miller, 1993), and genres of classroom discourse (Mousley & Marks, 1991), 
including the use of language demonstrating the asymmetric power relationship 
between teacher and students (Pimm, 1987). 

According to such research, discussion allows for reformulation, precision, 
clarification, justification and ownership of ideas. For example, defining a 
mathematical term imprecisely or ambiguously to someone can give rise to 
examples contrary to what is expected by the one who gives the definition, and the 
need to justify oneself during explanations to others can give rise to queries for 
clarification or for the examination of unstated assumptions. 

In spite of the many advantages of oral discourse in the classroom, Pirie (1991) 
warns of some disadvantages as well. For example, one's flow of thought might be 
interrupted, either when listening or when pausing to elaborate to others. Also, 
group discussions are only effective if a number of factors affecting group 
dynamics are taken into consideration. For example, Gibbs and Orton (1994) state 
that as groups can be formed on the basis of very different criteria (friendship, 
mixed-ability and so on), care must be taken when forming groups "as there are so 
many different intentions" (p. 109). 

Because the research on written discourse in the mathematics classroom is 
relatively abundant, it will takE! too much space to describe them in detail. So, I will 
summarise, very briefly, the major findings and point to references that will give 
further details. Most of the relevant research has examined student-generated 
questions as well as journal writing, written explanations (with and without 
diagrams) and other forms of expressive writing (for example, Menon, 1996; Mett, 
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1987; Mildren, 1992; Morrow & Schifter, 1988; Rose, 1990; Selfe, Petersen & 
Nahrgang, 1986; Silverman, Winograd & Strohauer, 1992; Walter, 1988; Waywood, 
1991; Wilde, 1991). The researchers are unanimous in their support of writing to 
learn mathematics, and list benefits such as the following: more student ownership 
of learning, monitoring and diagnosing of learning, lessening of student anxiety, 
enhancement of motivation and reflection. 

Implications for Teaching 

While it has not been possible to discuss comprehensively the factors linking 
mathematics and language in this chapter, nevertheless the following implications 
for teaching mathematics can still be made. 

1. Discussing and teaching mathematics terminology enhances conceptual 
understanding of mathematics (Garbe, 1989; Miller, 1993). 

2. Student-constructed problems help students understand mathematics better 
(Menon, 1995a, 1996; Silverman, Winograd & Strohauer, 1992; Walter, 1988). 

3. Language learning ideas can be used to learn mathematics (Borasi & Agor, 
1990; Capps & Pickreign, 1993; Greenes, Schulman & Spungin, 1992; Menon, 1995c). 

4. Group discussions can be effective for the learning of mathematics if a 
number of factors affecting group dynamics are taken into account (Davidson, 1990; 
Gibbs & Orton, 1994; Wood & Yackel, 1990) 

5. A variety of written tasks can be used in WTLM to cater for specific 
pedagogical needs in the mathematics classroom (Mildren, 1992; Rose, 1990; Selfe, 
Petersen & Nahrgang, 1986; Waywood, 1991; Wilde, 1991). 

6. The language used in mathematics tests and word problems have a profound 
effect on the understanding and achievement of students (Clements & Ellerton, 
1995; Hughes, 1986; Marinas & Clements, 1990; Newman, 1977). 

Further Research 

. Let me first touch briefly on the methodology usually employed in the research 
on language and mathematics, before suggesting lines of inquiry for. further 
research. Most of the recent research on language and mathematics has tended to 
be of a qualitative type. Perhaps this is to be expected, as the researchers are more 
aware that methods employed for the natural sciences-such as holding certain 
factors constant while varying others-may not be appropriate for dealing with 
human behaviour that may only be described by ambiguous and overlapping 
meanings (Chambers, 1991). 

FJr example, although Selfe, Petersen a:nd Nahrgang (1986) used an 
experimental design and multiple measures (including qualitative ones) for their 
study of college students' journal writing in the analytic and calculus courses, they 
report that the qualitative data gave them: more indication of student 
understanding than did the quantitative data. 
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Yet another reason for using a qualitative paradigm when dealing with 
research on mathematics and language is because discourse is basically 
sociolinguistic, and sociolinguistic research is predominantly, if not exclusively, 
qualitative in nature. 

While there has been a lot of research in mathematics and language, there is 
still much to be done. I now briefly discuss some general approaches that might be 
used for research on language and mathematics and also list some questions that 
might be suitable for further study. 

Ellerton and Clements (1991) posited a theoretical framework to show the 
interface between mathematics and language "consistent with the multifaceted 
nature of relationships between mathematics, school mathematics, and language" 
(p. 19) encompassing culture, communication, curriculum theory, mathematics, 
classroom discourse, sociolinguistics, natural language, psycholinguistics, etc., and 
also mentioned some other models which might be used as a basis for discussion 
on language and mathematics. While the model proposed by Ellerton and 
Clements emphasises the complexity of the issues involved, it does not help 
directly in the design and interpretation of research in language and mathematics. 
However, it does alert would-be researchers in this area not to address issues in 
isolation. 

Another line of inquiry is that suggested by Hicks (1995), who uses discourse 
analysis as a basis of her recommendations for research. She suggests an 
interdisciplinary focus, with members of a team of researchers working in 
collaboration. While her suggestion of working collaboratively holds promise, her 
suggestion of allowing and encouraging differing discourses that "could be seen as 
diverse paths to the construction of academic knowledge, rather than as evidence 
that individual children either did or did not 'possess' disciplinary knowledge" 
(p. 84) might not be well received by mathematics teachers and mathematics 
education researchers. Indeed, some might consider research on such discourse as 
evidence of trivial mathematics in, say, WTLM (for example, Caughey & Stephens, 
1987; Ormell, 1992; Pengelly, 1990). 

For example, if students were to be asked to write whatever they knew about 
fractions, some would use words and draw diagrams to accompany symbols for 
fractions, others might just give a personal narrative, perhaps identifying certain 
cartoon characters with specific fractions and so on. While not denying that 
students are learning something in the latter case, the disciplinary (mathematical) 
knowledge engendered by the personal narrative discourse genre might be called 
into question. 

A more fruitful suggestion is to study "how discourse mediates the 
·construction of knowledge in classrooms" (Hicks, 1995, p. 87). For example, 
questions on how to enhance mathematics learning through classroom discourse, 
what is the teacher's role, and what is the student's role in such discursive 
practices, are all worthy of study. 

What is suggested, therefore, is that it might be useful to use the three lenses of 
teaching, learning and discourse-construction if one wants to answer questions on 
knowledge-construction in a specific discipline such as mathematics, and 
especially to studies on mathematics and language. 
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Some other questions worth pursuing might be: 
1. How does justification of a process contribute to a deeper understanding of 

the concepts involved? And what sort of justification is legitimate in mathematics? 
2. How does one progress from everyday English to a mathematical register? 
3. What types of discourse changes take place during the construction of 

consensually-validated knowledge? What are the contributions of individuals to the 
discourse, and how do these change over time? 

4. If mental imagery is considered a form of communication, how can it help 
develop mathematical concepts? 

5. What communicative strategies are used by successful problem solvers? 
6. What effect do computers have on discourse patterns for the learning of 

mathematics? 
7. Which patterns of interaction (computer-pupil and pupil-pupil) facilitate 

mathematics learning? 

Conclusion 

In this chapter, I have drawn both from theoretical considerations and research 
studies, to explore the interrelationships between mathematics and language, as 
well as to suggest some implications for the classroom and for further research. 
While the topic of mathematics and language is too vast and complex to allow for a 
comprehensive treatment, especially when limited to a chapter in a book, I hope 
the interested reader (that elusive character!) has been given a glimpse of the many 
exciting possibilities in this field. 
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The Role of Scaffolding in the Teaching 
and Learning of Mathematics 

Jennie Bickmore-Brand 

This paper will outline the components of scaffolding as they might be 
demonstrated in mathematics teaching. The discussion will be based on recent 
research that looked at two teachers teaching mathematics to upper primary 
students and the differences in their scaffolding techniques. The paper will analyse 
lesson transcripts, and share personal reflections by each teacher on the difficulties 

··~ they experienced as they endeavoured to develop students' mathematical concepts 
. and associated mathematical language. 

Relevant Literature When Discussing Scaffolding 

Scaffolding has been identified as one of the seven teaching/learning 
principles (Bickmore-Brand, 1989). The premise behind this teaching/learning 
principle is that in order for learning to take place, the learner has to connect the 
information in some way to what s/he already knows (Cobb & Steffe, 1983; Steffe 
& Cobb, 1988). The consequence of such a procedure is that knowledge will be 
idiosyncratically processed and stored by each individual (Bickmore-Brand, 1989). 
This principle has been well established by educational research (see for example, 
Bickmore-Brand, 1989; Bruner, 1983; Goodman, 1983; Kelly, 1955; Piaget & 
Inhelder, 1969; Vygotsky, 1962). 

Connecting to What is Known 
According to Kelly (1955), we construct our concept of the world and test it 

against the real world. This learning is a tensely active process, and new 
knowledge may often challenge our existing knowledge. Our ability to 
accommodate new information or experiences into existing conceptual structures 
will depend upon how dearly we hold onto our constructs (Bawden, 1985; Papert, 
1980). Individual differences in how we view the world will also be influenced by 
how varied our life's experiences are and whether they provide an appropriate 
source for new constructs. Copeland (1984) recognised that children do not 
necessarily "see" or "remember" or "copy" what they are exposed to but 
reconstruct it for themselves. For this reason "truth" is considered to be derived 
from a variety of paths of action, and so any one construction may be equally as 
valid as another (von Glasersfeld, 1983). 

Constructivists believe that the learner will feel a sense of "ownership" of the 
mathematical knowledge when it is actively linked to his or her own world-



THE ROLE OF SCAFFOLDING IN TEACHING AND LEARNING MATHEMATICS 39 

"When someone actively links aspects of his or her physical and social 
environments with certain numerical, spatial and logical concepts a feeling of 
'ownership' is often generated" (Ellerton & Clements, 1991, p. 56). With regard to 
early childhood teaching, Van den Brink (1988) recommended that "people" 
contexts rather than "object" contexts need to be employed. In this way, the 
concept development can be linked to a familiar context such as toys, animals or 
people. 

Ausubel (1968), in the epigraph of his book Education psychology: A cognitive 
view, said "If I had to reduce all of educational psychology to just one principle, I 
would say this: The most important single factor influencing learning is what the 
learner already knows" (p. vi). 

Inability to Connect With the Learner 
Clements and Del Campo (1990) are concerned that teachers should attempt to 

assist students to create links between the language and symbols of the 
mathematics studied in school, and the real-world context. The literature on the 
teacher or learner's inability to connect what the learner already knows to the 
classroom is well documented (Balacheff, 1991; Bero, 1994; Cobb, 1985; Ellerton & 
Clements, 1987; Pengelly, 1990; Sierpinska, 1996; Steffe & Cobb, 1988; van 
Dormolen, 1993). This is particularly the case in the learning environments of 
second language, languages other than English, Aboriginal and disadvantaged 
learners (Bishop, 1992; Carraher, 1991; D'Ambrosio, 1991; Enemburu, 1989; Saxe, 
1988). 

Behind the idiosyncratic processing of information lies the self-generation of 
rules. Through hypothesising and testing, the learner discovers or self-generates a 
concept (Green, 1988). Some of these self-made rules can interfere with the 
development of other rules which may have more currency. In the process the 
learner identifies which attributes can be generalised to newly encountered 
examples, and is able to discriminate between examples and non-examples 
(Tennyson & Park, 1980). 

It is inevitable that the learner will make mistakes in this process but Goodman 
(1983) preferred to conceive of these errors as "miscues" or as "misperceiving" and 
considered them as opportunities, as a window might be, to look into the learner's 
mind. A similar idea was echoed in the constructivist literature pertaining to 
science teaching which was concerned with reconstructing students' 
misconceptions, or distorted preconceptions (Posner, Strike, Hewson & Gertzog, 
1982). 

Research on students' conceptions (Ausubel, 1968; Bawden, 1985; Kelly, 1955; 
Solomon, 1987) indicated that students' beliefs about the nature of the world is 
based largely on their experience and that even when presented with 
scientifically-based and rational explanations, many have difficulty "letting go" of 
their old beliefs and adopting a new perception. This notion of "cognitive conflict" 
(Ellerton. & Clements, 1991) had its origins in Piagetian understandings of 
cognitive development. In order for students to change their ideas about a concept, 
they must either feel dissatisfied with their own knowledge, or become attracted to 
the benefits of entertaining a shift in thinking. Bickmore-Brand (1993) cites an 
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example where at the end of a lesson on volume using sand and water trays and 
containers of various sizes, a six year old student made the statement that volume 
was the knob on the radio you used to make the noise louder. This aptly illustrates 
the nature of schemas. Skemp (1986) described schemas in the following way: 

A schema is of such value to an individual that the resistance to changing it can be 
great, and circumstances or individuals imposing pressure to change may be 
experienced as threats-and responded to accordingly. Even if it is less than a 
threat, reconstruction can be difficult, whereas assimilation of a new experience to 
an existing schema gives a feeling of mastery and is usually enjoyed. (p. 42) 

Skemp was therefore suggesting that assimilation of a new concept is more 
likely to occur when the learner modifies an existing schema rather than 
reconstructs a concept completely. 

Connecting With the Language of the Classroom 
The linguistic term "register" has been described by Halliday (1978) as a "set of 

meanings that is appropriate to a particular function of language, together with the 
words and structures which express these meanings" (p. 195). The language of the 
classroom contains a variety of registers. 

Clements (1984) stated/that children are likely to experience more difficulties 
with the language in the"fuathematics classroom than almost any other place they 
are likely to frequent. Discussions in the past decade (see Hunting, 1988; Marks & 
Mousley, 1990; Reeves, 1986; Watson, 1993) about the relationship of language to 
mathematics frequently deal with the highly specialised vocabulary of 
mathematics which involve a reinterpretation of everyday language 
(Bickmore-Brand, 1993). 

Clements and Lean (1988) have emphasised the importance of learners making 
connections between familiar concepts, the formal mathematical language, and the 
manipulation of symbols (p. 222). 

Familiar 
real world 

concepts 

Symbol 
manipulation 

Figure 1: Establishing Links in Cognitive Structure (Clements & Lean, 1988, 
p. 222). 
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It is possible that unless these links are made students learn only fragmented pieces 
of information which are associated with what can be termed "school 
mathematics." Thus a major concern is that "if links are not initially drawn by 
children between their informal knowledge and the written symbols, children may 
develop separate systems of arithmetic, one that operates in school and one that 
operates in the real world, and they will not readily see the connections between 
them" (Grouws, 1992, p. 83; see also Carraher, Carraher & Schliemann, 1987; Cobb, 
1988; Ginsburg, 1982; Lave, 1988). Research continues to explore how these 
relationships can best be developed within the school setting (for example, Bero, 
1994; Bickmore-Brand & Gawned, 1990; Chapman, 1993; Clements & Del Campo, 
1989, 1990; Gawned, 1990; Harris, 1991; Reeves, 1990; Watson, 1990). 

Specialist vocabulary. Pimm (1987) described the notion of mathematics as a 
language as a metaphor for understanding mathematics in linguistic terms, for 
structuring "the concept of mathematics in terms of language" (p. xiv). His later 
work (1991) draws attention to the difference between written and spoken 
mathematics, the former relying on complex symbol systems and the latter which 
uses "natural" language, which assists the student to reflect on and to "conjure and 
control" the mental images in mathematics (p. 23). 

Mathematics has its own specialised vocabulary as well as making use of 
standard words in non-standard ways. Students are often unable to adapt to the 
use of different semantic structures (Carpenter, Hiebert & Moser, 1981) or are 
distracted by an unfamiliar syntax (Goldin, 1992), even when similar information 
has already been provided. 

Success in school mathematics. The above discussion is not to suggest that the 
language used in the classroom should be reduced to looking a:t vocabulary alone. 
Being successful in school is attributed by Lemke (1988) to learning how to think 
and talk appropriately and fluently, in the mathematics register. 

It is not "superior intelligence" that makes for academic success in science or other 
fields. It is superior fluency in using the language of the subject: superior mastery of 
its genres, of its thematics, and of the techniques of combining these flexibly in 
practical use. (Lemke, 1988, p. 98) 

As learners grapple with the terminology and associated concepts, they will 
continue to connect the new information with what they already know. Hodge and 
Kress (1988) noted that learners shift between what they describe as "less 
mathematical language" and "more mathematical" language. Chapman (1992) 
talked about being "less" or "more" mathematical as expressed as part of a 
continuum. Walkerdine (1982, 1988) refers to these shifts as being along the 
continuums of metaphoric and metonymic axes of mathematical discourse. The 
teacher in the role of scaffolder can assist students to make these shifts. 

Scaffolding the Learner to Make the Connections 
When one thinks of scaffolding the association of a framework, usually of 

interlinking steel pipes, or bamboo if you are in Asia, supporting the construction 
of a building or extension, may come to mind. This supporting structure is usually 
slightly above the actual building in progress and gets successively taller as the 
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construction develops. Thi~ can be a useful conceptualisation for the notion of 
scaffolding because it cap~res the tailoring of the support around the "needs" of 
the construction site. j 

Vygotsky (1962) isrecognised as the founder of the label "scaffolding" when it 
is used to refer to the specific interactions which occur between adult/ expert and 
child/learner. Scaffolding is based on the assumption that, with adult/ expert 
support, learners can be stretched beyond what they might normally achieve 
without such support. He believed that the children would not have been able to 
develop in the same way just by virtue of age or maturation. Scaffolding is 
essentially a hand-holding strategy, tailored to meet the needs of the individual, 
and can be provided at any stage when assistance might be beneficial for the 
learner's development. There is no expectation that the learners will become 
independent learners independently. 

Vygotsky used the term "zone of proximal development" to describe the way 
in which instruction can lead the child to focus on particular aspects of learning, in 
a joint problem-solving context which eventually can be independently handled by 
the child. The same idea can also be identified in the self concept work of the 
psychologist, Luft (1969), where he describes a dual process-of self-disclosure by 
an individual on the one hand and, on the other, of receiving feedback which helps 
individuals to reach their potential. 

Since the aim of scaffolding is to build on what the child appears to know in 
order to stretch the child, the nature and form of scaffolding will vary, as will the 
time needed for scaffolding to be in place. The roles and responsibilities of the 
teacher and the student will vary, as will the joint construction of meaning, and the 
power of the teacher's modelling. The self-destructive nature of scaffolding enables 
the teacher or "expert" to continue to "raise the ante" of the discussion and 
regulate its predictability. 

The Social Construction of the Teaching Situation 
Some students are able to complete particular tasks when they follow along 

with the teacher, but they have difficulty tackling the same tasks for homework. 
According to Palincsar and Brown (1989), this difference could be attributed to the 
fact that many teachers provide prompts and clues as they complete tasks in the 
classroom. Although such prompts and clues may not be specifically directed to a 
particular student, but rather to the class in general, they lie within what Palincsar 
and Brown described as "band width." The students' learning is being socially 
supported by the culture established in the classroom by the teacher. 

Chapman (1992) argued that "the relatively less successful student relies on the 
transformational language shifts between less mathematical language and more 
mathematical language" (p. 5). She provided examples of how the teacher might 
deve1op this with a student: 

The essence of Arthur's answer is correct, but the teacher puts it into a more 
"proper" sentence structure. Stuart's term "the same" is restated by the teacher as 
"the same amount". The speakers are apparently making sense with each other as 
they develop a more mathematical way of talking. (p. 46) 
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In this example a dialectic model is operating where the student's learning is 
socially constructed. Austin and Howson (1979) made special note of the 
"language of the teacher," and referred to the importance of the teacher's role in 
helping to develop fluency in the mathematical language register. 

Independent studies by Cairney (1987) and Zubrich (1987) examined how the 
adults/experts tailored their dialogue in an effort to create a shared construction of 
meaning. The above writers were influenced by Bruner's (1978) concept of 
scaffolding as a temporary framework providing a platform for the next step 
toward more "adult" communication. Bruner observed mothers who tried to 
prevent their children from "slipping back," by at the same time demanding more 
complex performances in their language (Lehr, 1985). 

Ninio and Bruner (1978) have been particularly influential in their advocacy of 
scaffolding. They describe details of a dyad involving a mother with a young 
infant, in which the two are seen jointly constructing meaning, in spite of the major 
differences in language abilities of the two. In other words, the mother's 
scaffolding is at a level the child can manage and in the context of a presumably 
mutually satisfying interaction. As Holzman (1972) described interactions of this 
type: "The child finds out by the response of the adults what he is assumed to 
mean by what he is saying" (p. 321). Wells (1981) termed this a "negotiation of 
conversational meaning" (cited in Lehr, 1985, p. 667), when he observed the same 
interaction patterns in classrooms. 

Scaffolding Can Act as a Framework or Platform for the Next Step in the 
Learning 

Evidence that scaffolding is taking place is not always reflected in dialogue, but 
can take the form of a protocol. In fact, this is probably the most familiar form of 
scaffolding used in mathematics classrooms, for example, Polya's (1981) four-phase 
framework for problem-solving. Such a framework is used by some teachers as a 
scaffold to help students develop appropriate problem-solving skills. 

A teacher's questioning of students tends to be one of the most readily 
available forms of scaffolding in the classroom. Apart from questions which are 
designed to test students' understanding, questions can, as suggested by Ainley 
(1988), perform three functions: (a) "structuring," which can activate students' 
existing knowledge in order to connect with new information; (b) "opening-up," 
which suggests further exploration such as "What would happen if ... ?";and (c) 
"checking," which encourages students to reflect on their own logic and processing 
such as "Do you agree with ... ?" (p. 93). Ultimately the learners may be in a 
position to ask these questions of themselves or other learners, which leads into the 
next discussion on "the switching of roles of learners and teachers." 

Interactionists (see, for example, Bauersfeld, 1988, 1992, 1995; Voigt, 1985, 1994, 
1995) discussed the various assumptions, patterns and routines occurring during 
classroom discourse. Certain kinds of classroom interactions, such as "funnelling," 
focusing, reciting and "concrete-to-abstract" practices can have a profound effect 
on the quality and extent of the learning occurring in the classroom (Bauersfeld, 
1995; Brousseau, Davis & Werner, 1986; Bruner, 1996; Krummheuer, 1995; Voigt, 
1985, 1995). When these classroom interactions are sensitive to the learner's 
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conceptual understandings and build on these, they have the potential to act as a 
scaffold for the learner. 

The Switching of Roles of Learners and Teachers 
The notion of "turn taking" between teachers and learners has been explored 

by Stern (1975) and Snow (1976). Wells (1981) also noted this feature of turn taking 
and the instructional role the adult takes on during a dialogue. It is hoped that the 
questioning and responses of the "expert" will enable the learner to eventually 
internalise this form of dialogue and ultimately ask these questions of themselves 
(Scallon, 1976; Staton, 1984). In this way learners have been able to draw upon the 
teacher's language as a resource (Kreeft, 1983-84) and the scaffold can self-destruct. 

Tizzard and Hughes (1984) pointed out that the role of the adult/ expert/ 
teacher should be viewed as a flexible one in which the learners may be 
encouraged to adopt the teacher's language while the adult takes on a more 
passive and non-directive role. 

Taylor's (1992) study of a Year 12 mathematics teacher noted the difficulty a 
teacher had in adopting a "teacher as learner" role, and attempts to refine his 
"teacher as informer" role. According to Taylor, this teacher was unable to adjust to 
the role of "teacher as learner" because of personally constraining beliefs about his 
"technical curriculum rationality" which appeared to keep him in the role of 
"teacher as controller." There was, however, some shift from "teacher as 
transformer" to "teacher as interactive transformer." Alro and Skovsmose (1996) 
emphasised that the negotiation of meaning in a classroom where the teacher has 
an "absolutist" view of mathematics may be more concerned with students 
clarifying the meaning they suppose is in the mind of the teacher or textbook, 
rather than constructing mathematical meaning for themselves. 

In classrooms where co-operative teaching/learning procedures have been 
adopted, students' dialogue attempts to bridge the gap between their peers' 
knowledge and that of the content being presented (Dansereau, 1987; Singer, 1978). 

The Teacher Regulates the Level of Difficulty for the Learner 
Research carried out by Snow (1983) and Thomas (1985) analysing adult-child 

discourse suggested that an adult will often continue and extend the topic that the 
child introduces. In order to regulate the level of difficulty of the interaction for the 
child, the adult will use a predictable structure to the dialogue to allow for more 
complex concepts to be discussed (Clark, 1976; Snow, 1983; Thomas, 1985). The 
adult will be aware of what the child can do and will insist on certain levels of 
performance, they "raise the ante" and gently increase the challenge. Other writers 
have contributed along the same lines in regard to this idea of adjusting the level of 
difficulty between teacher and students during classroom interactions (see for 
example, Bruner, 1983; Cambourne, 1988). 

The Self Destructive Nature of Scaffolding 
Bruner (1986) described the teacher/student interactions of scaffolding as "the 

loan of consciousness that gets the children through the zone of proximal 
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development" (p. 132); Inevitably the adult/expert gradually withdraws, and as 
the child/learner develops genuine understanding of the concept, the scaffolding 
is taken away or no longer used-it self-destructs (Cazden, 1983). 

There are differing views on who is in control of removing the scaffolds. 
Cambourne and Turbill (1986) perceived that the control for the learning is 
exercised by the learner and not the adult (this view was influenced by Graves 
(1983) and by Harste, Woodward and Burke (1984)): "As learning occurs the 
scaffolds are removed by the children and others serving a different function may 
be erected" (Cambourne & Turbill, 1986). Alro and Skovsmose (1996) described 
classroom discourse as being very much in the control of the teacher, who 
determines what children may discuss in the mathematics classroom and frames 
the knowledge and how it will be handled. 

Regardless of whether it is the child who is in control of the self-destruct aspect 
of scaffolding or the adult, there is no doubt that some modelling of the language 
will have to be present in the child's environment. As Herber and Nelson-Herber 
(1987) commented: "Students should not be expected to become independent 
learners independently. Rather they should be shown how to become independent, 
and this showing how should be a natural part of instruction" (p. 584). Noddings 
(1990) suggested that although students inevitably perform constructions, the 
mathematics that they produce may not necessarily be adequate, accurate or 
powerful. 

Predictable Routines as Part of the Classroom Culture 
In an attempt to maximise the effectiveness of scaffolding, Applebee and 

Langer (1983) proposed that the structure of an activity be made more explicit. This 
can be achieved if the context is predictable (Bruner & Ratner, 1978; Cambourne, 
1988; Ninio & Bruner, 1978; Wells, 1981) and the questioning and modelling is 
structured so that the children have an opportunity to internalise it, and can 
eventually function without the external support. The professional development 
package for secondary teachers titled Stepping Out (Education Department of 
Western Australian, 1996) provided detailed guidelines for teachers to develop 
scaffolds in this way. For example, these guidelines provided writing frameworks 
to help teachers make explicit what they expect of students in relation to a given 
piece of work. The guidelines also suggested ways in which teachers can provide 
support for students as they attempt to interpret text. 

Mousley and Marks (1991) discussed the use of similar writing frameworks in 
the mathematics classroom. For example the "procedure" genre (Martin, 1985) is 
recognisable in mathematics texts-"First write ... ," "Now take away ... ," "Have 
a look to see which pronumeral is easiest to ... " (p. 5). Martin (1985) commends the 
practice of having students write in these genres because "such a task enables 
students to clarify both the nature of mathematical processes and the logical orders 
in which these might be carried out ... Students need to develop greater control of 
the more sophisticated expository genres that are valued in mathematical culture" 
(p. 6). 

Halliday (1981) has included "structure" as one of his five criteria for the 
application of scaffolding in the classroom, where he believes that the framework 
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of an activity should be predictable enough to provide support for the students. In 
a similar way, Halliday advocates that the modelling and questioning components 
of an activity should take on a recognisable "routine." 

The notion of "routines" was discussed by Trevarthen (1980) when he pointed 
out that "the routines of action and the rules behind them are accepted because of a 
co-operative motive, but they do not create the motive" (cited in Searle, 1984, p. 
482). Routines should not be used to justify making children restructure their 
experience to fit their teacher's structure. Learners should have transformational 
freedom in deciding how to arrive at and express the concept (Chapman, 1992). 

The power of the scaffold is, first, in the perception of the teacher's role and 
relationship with the learner. Second, but no less important, it is in the teacher's 
own conceptual understanding of what is being taught and his/her ability to 
assess the students' response in relation to their concept development. A close look 
at two different scaffolding styles in this chapter aims to explore how this might 
look in two different classrooms. 

An Investigation of Scaffolding Practices in Two 
Classrooms 

The Learner-Centred Classroom 
The first teacher in the study, Lyn1, could be described as learner-centred. Her 

teaching approach towards mathematics was an integrative thematic programme 
and dealt with topics about which her students were keenly interested, for 
example, they set up their own small business making art and craft products for 
sale during lunch times, they planned the most cost efficient route and form of 
transport for their class trip to a campsite at Collie some 250 km away in the 
country, and they ran the school Sports Day as a Mini Olympics and drew to scale 
the marking layouts for the events to be held on the school oval. The topics could 
last up to a whole term (13 weeks) in duration and crossed into other subject areas 
during the day. Lyn believed that connecting the curriculum to the background of 
the learners was important. She wanted her students to see that school, and in 
particular mathematics, was relevant to their own everyday lives. She wanted to 
ensure that the links that Clements and Lean (1988) discussed were explicit in her 
classroom. · 

The following transcript has been taken from a small-group discussion in 
which Lyn tried to develop students' understanding of fractions so that they could 
solve a problem which a small group was having with working out how many 
sandwiches would be needed for a class party. Each time a child had not quite 
grasped the idea she tried to give a "concrete" demonstration of the idea. 

Teacher-Lyn stops at one group who are working on sandwiches. 
Teacher-Lyn: So you'll have to write something about bread. How many loaves 

of bread you will need. 

1 . In order to more readily identify the difference between the two classrooms each has been 
assigned a different font, i.e., Lyn and Michelle. · · 
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Joe: We're going to have sandwiches and cut them like this (makes 2 diagonal 
cuts with his hands). How much bread will we need? 

Teacher-Lyn: Right. How many slices in a loaf of bread? 
Ben C: 24. 
Teacher-Lyn: I was going to say 24 as well. Right so if you get 24 and you put one 

on top of the other (demonstrates with her hands) so that's ... ? 
Joe: Twelve. 
Teacher-Lyn: Twelve Sandwiches. If you do them into ... ? (makes a diagonal cut 

with her hands). 
Joe: Halves. 
Ben C: No quarters (makes 2 diagonal cuts) 
Teacher-Lyn: Quarters. So there'll be 4 lots of 12 ... 
William: 48. 
Teacher-Lyn: 48 sandwiches. 
Ben C: Not everybody would eat it so you'd be able to have 24 quarters. 
Teacher-Lyn: Is that for 2 loaves of bread? 
Joe: Mrs? 
Teacher-Lyn: Remember we said there were 12 slices (demonstrates by drawing 

square with her fingers), and we cut those 12 into 4 
William: 24. 
Teacher-Lyn: You've got 24 slices but when you make them into double sides 

(demonstrates with hands) that reduces it to how many stacks (demonstrates 
with hands) of bread? 

William: 12. 
Teacher-Lyn: Right. Now if you cut that 12 into lots of4 how many is that? 
William: 48. 
Teacher-Lyn: And you've got 2 loaves of bread. (pause) What's 48 plus ... ? 
Joe: 48. 
Ben C: 90, 92 
Teacher-Lyn: Not 92, 48 and 48. What's 8 and 8? 
William: 16. 
Teacher-Lyn: 16. So it's ... ? 
William: 96. 
Teacher-Lyn: And if there's 32 of us approximately, how many will each child 

have? Approximately? 
William: They'll have about half. 
Teacher-Lyn: How many 30s in 96? 
Ben C: 3. 
Teacher-Lyn: About 3. Would it be 3 whole sandwiches or just three quarters of 

a sandwich? So each can have about one round of sandwiches. 

Later, the group reported back to the class: 
Teacher-Lyn: So you decided what to do about your sandwiches? 

Ben C: Some people don't like sandwiches, but we decided that you could get 3 !4 

of a sandwich each and we needed 2 loaves of bread. 

47 

Lyn has attempted to develop the students' fraction knowledge in a context which 
is purposeful for the students. In addition, the concept has been tempered with a 
critical numeracy understanding of the skills they are using. In the end the final 
mathematical calculations are tempered by the realities of life-"Some people 
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don't like sandwiches." 
Lyn operated in a "teacher as interactive transformer" (Taylor, 1992) when she 

appeared to take her cue from the students. When the students signalled some 
need-"How much bread will we need?" (Joe), she seemed to clarify the need in the 
first instance-"How many slices in a loaf of bread?" (Teacher-Lyn), and then suggest a 
further application which might extend the students' thinking- "So if you get 24 
and you put one on top of the other?" (Teacher-Lyn). 

The timing of Lyn's assistance was usually after she had allowed the students 
to develop their own approaches and arrive at a finished product at their own 
level. The students had been working in small groups on a food item of their own 
choice in planning to cater for their class party. 

Lyn's dialogue leads the students to focus on a particular aspect of learning 
(addition of fractions) and uses a joint-problem-solving context which eventually 
enables the students to handle the task independently (Vygotsky, 1962). Lyn's 
questioning covers the three broad functions suggested by Ainley (1988): 
"structuring" when she initially draws upon what the students know, 
"opening-up" in order to assist the students to consider solutions, and "checking" 
in order to reflect on the logic of what they have been thinking. This dialectic 
model where the teacher's language is responsive to the students' is further 
developed below, drawing on the scaffolding features (see italics) described in 
Bickmore-Brand and Gawned (1990). 

Lyn "structures" the dialogue by restating the task when she opens with "So 
you 'II have to write something about bread. How many loaves you will need." Notice the 
student's (Joe) response is assertive and he is obviously clear about the task at 
hand. The teacher is there to provide relevant information and does not play a 
"teacher as controller" (Taylor, 1992) game of withholding information that the 
students feel they have to worm out of her. Lyn provides "structure" by elaborating 
on the context and accompanying her discussion with ge$tures (makes a diagonal 
cut with her hands) when ambiguity might have occurred in the communication. 
She uses clarification in order to ascertain whether she is on the same wavelength as 
the students or not, "Quarters. So there'll be 4 lots of 12." She "opens up" by 
including a rhetorical question as a prompt, "Is that for 2 loaves of bread?" Lyn 
"checks" by reflecting back to the students their thinking processes to that point in 
order for them to stand back a little from the ideas and analyse them-"Remember 
we said there were 12 slices . . . " Lyn is jointly constructing the solution with the 
students. Where the students do not seem to be moving forward so readily she 
requests information-"And you've got 2 loaves of bread (pause) Whats 48 plus ... ? ", 
which then enables the students to continue to process the ideas. She provides 
information for comparison so that students can decide on the logic of the choice
" Would it be 3 whole sandwiches or just three quarters of a sandwich?" Note, however, 
there is an absence of mathematical terminology except for the use of "diagonal." 
The language Lyn uses emphasises everyday associations with which the students 
would probably be familiar, e.g., "one round of sandwiches." 

Trevarthen (1980) pointed out that routines can act as a scaffolding framework 
for students. Lyn would often provide a framework in the form of a routine for the 
students to build their confidence. In the transcript example the students were 
planning for a class party which involved the repetition of adding up lists of 
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grocery items under certain categories, e.g., chips, drinks, sweets, etc., and 
therefore had an in-built routine. Trevarthen (1980) was concerned that routines 
were acceptable in classrooms because of their cooperative motive not because the 
routines created the motive. 

This paper began with the discussion of the individuality of the construction of 
knowledge. Lyn valued the idiosyncratic way students solved problems and 
discussed how frameworks too can be flexible. 

It's very important to provide them with a framework, but in maths it's difficult 
because you can provide them with the framework because there is not really just 
one right way in coming to that, there may be for instance in addition, there may be 
different ways a child sees to calculate, different ways they remember their number 
facts, different links that they make, so it's important that you model and scaffold a 
variety of ways. 

Lyn encouraged her students to work in pairs and to use their own methods. In 
this way students who had recently learned a skill were in a position to mentor 
other students and as the following comment shows, it wasn't always the same 
students being the "expert." 

Just recently a very slow child, a child who has difficulty in learning could actually 
make a rectangular and triangular prism, and the very bright ones in maths, in 
number, could not get it to work, and so the less able student normally who was 
seen by the group as the less able student became the peer tutor and so that was 
wondeiful-and this child doesn't speak very much at all. But I could say "Go and 
see James." 

Although whole class demonstrations of frameworks or protocols by her alone 
were rare it can be seen by the interaction patterns in these lessons how inclusive 
Lyn was of the class members (see Table 1). The pattern of interactions also 
indicates the hand-holding or joint-construction nature of scaffolding. 

Lyn's focus was on assisting her students to access the content of her classroom 
and therefore her choice of topics and her interactions with her students attempted 
to be inclusive. 

The Content-Centred Classroom 
The second teacher in the study, Michelle, could be described as 

content-centred. She believed that students needed to be prepared for high school 
and University study. Michelle's lessons progressively covered the content set out 
by the WA Education Department for the upper primary year level she was 
teaching. The children were ability grouped in an attempt to streamline the 
delivery of the content. Michelle had one of the top ability groups. The students 
covered topics within the major strands of Number, Space and Measurement, e.g., 
equivalent fractions, regular polygons, and conversion of centimetres to metres. 
These topics at times lasted one lesson period (45 minutes) or at others were built 
up over several days. 
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Table 1 
Student-Teacher Interactions in Whole Class Discussions: Lyn 
(taken from field notes class maps from 7 lessons) 

Students 4Mar llMar SMay 13May 10Jun 

1:5en 1:5 ./</ "' "' "' "'"'"' WillB ,/ ,/ ,/ 

Bene ,/ ,/ ,/,/ 

Olivia D ,/ ,/,/ ,/ ,/,/,/ 

BenE ,/ ,/ ,/ 

LouiseG ,/ ,/ 

Chris G ,/ ,/ ,/ 

ReuvenG ,/,/ ,/,/ ,/ ,/,/ 

StephenH ./,/,/ ,/,/ ,/,/,/ ,/,/ ,/,/ 

DeanJ ,/,/ ,/ ,/ ,/ 

MatthewJ ,/,/ ,/ ,/ ,/ 

MelanieK ./,/,/ ,/,/ ,/,/ ,/,/ ,/,/,/ 

AaronK ,/ 

Melissa L ,/ ,/,/ ,/,/ 

StuartM ,/ ,/,/,/ ,/ ,/ ,/,/ 

CarmenO ,/ ,/ ,/ ,/ 

OliverP ,/,/ ,/,/ 

Victoria P ./,/,/ ,/,/,/ ,/,/ ,/,/,/ ,/ 

BlakeS ,/,/,/ ,/ ,/ ,/ 

Brenda S ,/,/ ,/,/ ,/,/ ,/,/ ,/ 

MarkS ,/ ,/ 

PaulS ,/,/,/ ,/,/,/ ,/,/,/ ,/ 

PaulT ,/,/,/ ,/ ,/ 

JoeW ,/ ,/ ,/ 

TimW ./.ttl ,/ ,/ ,/,/ 

ChrisW ,/ ,/ ,/ 

Number of 
students 
interacting 19 15 20 19 20 
Total 
interactions 39 23 30 28 30 
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30Jul SAug 

,/,/ ,/,/ 

,/ ,/ 

,/,/ 

,/ 

,/ ,/ 

,/,/,/ ,/ 

,/,/,/ ,/,/,/ 

,/ 

,/ 

,/ ,/,/ 

,/,/ ,/ 

,/ ,/ 

,/ ,/ 

,/,/ ,/ 

,/ ,/ 

,/ ,/,/ 

,/,/ ,/,/ 

,/,/,/ ,/ 

,/ ,/ 

,/,/,/,/ ,/ 

,/ ,/ 

,/ 

,/ 

,/ 

21 20 

34 27 

· Michelle specifically referred to mathematical processes in her suggestions to 
assist the students. She believed that being successful in school could be enhanced 
by thinking and talking appropriately in the language of the mathematics register 
(Lemke, 1988). The transcript from one of Michelle's lessons begins with dialogue 
which related to a difficulty the class had been having with equivalent fractions. 
Her remediation hints focused on trying to have the children grasp the pattern or 
protocol she had in mind in her attempt to reshape the (mis)conceptions students 
may hiwe had. This is particularly evident in Michelle's responses to Georgia. 

This excerpt from a lesson transcript shows how Georgia continues to retain 
her misconstruction of the concept even when Michelle is attempting to lead her 
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through in what Michelle feels is a systematic and logical way. The lines which 
show Georgia's struggle have been coded (###). Note how Michelle responds to 
Georgia at these points. 

Teacher-Michelle: All right, are you ready? Right girls eyes this 
way please. What we will be doing today is a continuation of 
what we did Monday and yesterday. Yesterday we were looking 
at equivalent fractions and we were working out how to find 
equivalent fractions of a simple fraction such as a third 
without actually having to draw those large graphs every time 
you need to work out an equivalent fraction. What is that way 
that we came up with yesterday? Do you remember we saw a pat
tern between the different numbers? For instance we could tell 
instantly how many sixths is a third. Gabrielle? 

Gabrielle: Two. 
Teacher-Michelle: And how did you get two sixths? 
Gabrielle: Urn two thirds is six and once two is two? 
Teacher- Michelle: Right you realised that whatever the denominator 

was multiplied by, the numerator was then multiplied by the 
same number. One times two is two. What else did we say to 
prove that one third does actually equal two sixths? We came 
up with a way to prove that two sixths was equal to a third. 
Do you remember what we said yesterday? We said that we know 
if I had two sixths of a cake I would have just the same amount 
as someone that had one third ... and what was that way Georgia? 

Georgia: Because in the top number goes into the bottom number three 
times and in the second fraction the top number goes into the 
bottom number three times as well. 

Teacher-Michelle: That's in this instance but it doesn't always 
happen. I was actually talking about this little thing here 
that we talked about yesterday, what did we say about that 
number Angela? 

Angela: That you times it by ... you can ... it's a whole number and 
you can say two ... it's a whole number ... 

Teacher-Michelle: Right you're saying two halves of two is a whole 
number right so you're saying two halves is one. One third 
multiplied by two halves equals two sixths. And all we are 
doing is multiplying a third by? 

Class: One. 
Teacher-Michelle: And we know whatever number we multiply by one we 

end up with the same number. Because ten times one is ten. 
Twenty- five times one is? ... Pardon? 

Class: Twenty-five. 
Teacher-Michelle: OK So that's what we looked at yesterday. Now I 

know some of you had a little trouble with that so the plan 
today is to put you to work at your desk and then I'm going 
to mark the homework that you did last night and Mrs Bick
more-Brand will also mark your homework last night, individ
ually so that we can see that you really understood what we 
talked about yesterday. 

Child: But I didn't get it. 
Teacher-Michelle: That's right you can talk about that when you 

talk about your homework. Right for today, we are going to do 
the same thing in reverse OK? We talked about one third and 
two sixths being equivalent fractions. Can anybody tell me 
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other fractions that are equivalent to one third? ... Right? Re
becca? 

Whole class on equivalent fractions continues for a further 20 
minutes. 

Teacher-Michelle: If any one would like to see me having marked 
those eight come over to me now. Georgia, come and see me. 
Bring your work. Everyone else quite happy to continue along? 
... Come and sit down let's have a look Georgia. What is the 
major problem? 

###Georgia: Oh I haven't got one. I wanted to ask you something 
else. Shall I do it? 

Teacher-Michelle: I'll just mark your homework for you. How did 
you find this. 

Georgia: Oh it's easy. I think. 
Teacher-Michelle: Did it take you very long. 
Georgia: No. About five minutes. 
Teacher-Michelle: Well tell me your system? 
Georgia: Well. I think I do it differently, but if you say twenty 

four, Three goes into twelve four times, so times four by four 
and you get sixteen. 

Teacher-Michelle: Right so whatever you have done to the denomi-
nator you ... 

Georgia: Do to the numerator. 
Teacher-Michelle: Have done to the numerator. 
###Georgia: Oh gosh. 
Michelle: Oh dear what have we done down here? Let's have a look. 

One half is equivalent to two quarters which is equivalent to 
three sixths. 

###Georgia: And they're all halves and I thought. Oh no. 
Teacher-Michelle: Tell me how you came about six eighths and that 

will identify the problem. 
Georgia: I put two, four, six, eight, ten, twelve. And seeing's 

how you times it by two there and timesed by two to get six 
and then added two and then added two. I did it completely 
wrong. 

Teacher-Michelle: Why did you add two? 
###Georgia: I don't know. Because I was supposed to be timesing 

two. No. Yeah. No. 
Teacher-Michelle: Can you tell me what each of these are supposed 

to be equivalent to in the lowest term? 
Georgia: A half. 
Teacher-Michelle: A half, good girl, so that's the lowest term 

fraction. So six eighths we know is not equivalent to a half. 
Georgia: It would be six twelfths, eight sixteenths and ten twen

tieths. 
Teacher-Michelle: Eight sixteenths and ten twentieths OK. But 

those aren't the next three equivalent fractions, because the 
next one is going to be ... eighths. You've got halves, quarters 
and sixths, and so the next one would need to be eighths. The 
bottom line, the denominators are going up in multiples of? 

###Georgia: Two that's how I did there. I thought. 
Teacher-Michelle: So this one then should be tenths. And this one? 
Georgia: Twelfths. 
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Teacher-Michelle: Twelfths. Let's fill them in. How many eighths 
is equal to a half? 

Georgia: Four. 
Teacher-Michelle: How many tenths is equal to a half? 
Georgia: Five. 
Teacher-Michelle: And? Six twelfths. Can you understand that? So 

let's go to this one look at the denominator and the pattern 
that the denominator is making. What are the next three dE · 
nominators? 

###Georgia: It would be twenty. 
Teacher-Michelle: No it's going five, ten, fifteen? 
Georgia: Twenty, 
Teacher-Michelle: Twenty, twenty-five? 
Georgia: Thirty. 
Teacher-Michelle: Mm. The lowest term fraction that we're looking 

for? 
###Georgia: Two, four, six, eight, ten, twelve, fifteen? 
Teacher-Michelle: Let's have a look at it. It's making a pattern, 

but is eight twentieths equal to two fifths? 
Georgia: (pause) 
Teacher-Michelle: Let's work it out. How many fives in twenty? 
Georgia: Four 
Teacher-Michelle: Four. Two fours are? 
Georgia: Eight. 
Teacher-Michelle: Is your pattern working? Let's check for the 

next one. How many fives in twenty five? 
Georgia: Five. 
Teacher-Michelle: Five tens? 
Georgia: Fifteen. Goes. Is ten. 
Teacher-Michelle: Good, so can you tell me the next answer? 
Georgia: Urn five into fifteen, thirty goes two, two times six is 

twelve. 
Teacher-Michelle: Good your pattern worked. 
###Georgia: It wasn't really what I was thinking. 
Teacher-Michelle: It doesn't always work in a nice pattern like 

that. So you need to be careful and always relate these equiv
alent fractions back to the lowest term fraction. OK. Under
stand that? I'll leave the next four to do by yourself tonight 
and show me tomorrow. 

53 

Using Ainley's (1988) questioning framework together with Bickmore-Brand 
and Gawned's (1990) scaffolding features (see italics), Michelle's dialogue pattern 
can be revealed to be qualitatively different to Lyn's. 

Michelle initiates the whole class discussion by "structuring" and stating the 
task at hand-"What we will be doing today is a continuation of what we did 
Monday ... "As the interaction between Michelle and the students unfolds she uses 
clarifying statements to reflect back to the students what they have been trying to 
express. Due to the importance to this task of building on previously discussed 
processes Michelle repeatedly "structures" during the interaction-"Do you 
remember what we said yesterday?" ... and later "Right for today, we are 
going to do the same thing in reverse OK?" and when working with Georgia
"Tell me how you came about six eighths and that will identify the 
problem." Because there is a protocol that is being developed with the students, 
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examples of "opening up" have limited parameters-"! would have just the 
same amount as someone that had one third ... and what was that way 
Georgia?" and later "Can anybody tell me other fractions that are 
equivalent to one third?" 

There is a clear message that Michelle is trying to assist her students to 
approach the task in a certain way that will reflect a "system" and the focus on the 
task is more important than the student's (mis)conceptions-when Georgia says 
"Two that's how I did there. I thought, " Michelle continues to develop the 
pattern she is working with. Georgia appears to momentarily appreciate Michelle's 
pattern but when asked "So let's go and look at the denominator and the 
pattern that the denominator is making. What are the next three 
denominators?" (Teacher-Michelle) Georgia once again flounders. Ausubel 
(1968), Bawden (1985), Kelly (1955) and Solomon (1987) all commented how 
difficult it is for people to let go of their previous beliefs and constructs. 

Although this class was ability grouped, there were still students working at 
different levels. This dialogue took place after considerable classroom work on 
fractions throughout the year using a certain system, which clearly, now in August, 
after another series of lessons on fractions, students are still struggling with. In this 
transcript Michelle started at a point where many of the students were 
experiencing difficulties. She used this base of the students' understanding to 
develop scaffolding to support their concept development. As the lesson 
progressed, however, Michelle attempted to ensure that the students' 
understanding corresponded to her understanding. 

Michelle was gently trying to impose her own approach to this fraction topic. 
Implicit in this tactic was the assumption that she could persuade Georgia to 
understand the way she was using pattern to develop equivalent fractions. 
Towards the end of the dialogue she was using expressions like "Good, your 
pattern worked" (in spite of Georgia's protests that "it wasn't really what I 
was thinking"). Thus although Michelle appeared to take account of the child's 
approach early in the dialogue, her later reference to "your pattern" did little more 
than reinforce the fact that she was imposing hers. 

Wells (1981) would describe this interaction as a "negotiation" of 
conversational meaning. However, it reflects the interaction patterns Lehr (1985) 
refers to in classroom discourse and recognisable in Taylor's (1992) terms where the 
teacher operates with "technical curriculum rationality." Michelle herself admitted 
"I did feel very constrained to the syllabus to a very large extent. I 
think maths being very sequential and developmental, you do need to make 
sure prior knowledge is developed before you work on to more complex 
concepts. Therefore it's important to follow and complete the year's 
work." 

In a classroom where the content takes precedence over the individual's 
processing the teacher-student interactions reveal certain patterns. Table 2 indicates 
that the number of students interacting in whole class discussions in Michelle's 
class is limited when compared with Table 1 of Lyn's class. The joint construction in 
Michelle's class is not concerned with building a shared understanding which 
takes into account students' particular interpretations. Michelle overtly altered the 
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children's everyday non-mathematical language to more precise mathematical 
terminology. She also introduced the more abstract terminology of "lowest tenn" 

and reinforced "denominator" and "common factor." 

Table 2 
Student-Teacher Interactions in Whole Class Discussions: Michelle 
(taken from field notes class maps from 7 lessons) 

Students 28 Jan 16Mar 6Apr 3Jun 9Jun 
Larne tl t! ./././ ./ 

Elizabeth B ././ ./ ./ 
GenevieveC ./ 
Rebecca C ././ ./ 
Gabrielle C ././ ././ 
EmmaC ././ ./ 
Angharad D ./ ././ ./ 

SusanG ././././ ./ 
Gabrielle H ./ 
Emily K ././ ././ 
Olivia K ././ ././ ./ 
Carla L ./ ././ ././ 
AmyM ./ 
ElizabethM ././ ./ 
AngelaM ./ ./ 
Georgia M ./././ ./././ ./ ././././ ././././ 
Adeline M 
NaomiM ././ 
Linda N ./ ./ 
Carrie P ./ ././././ 
Catherine R ././ ././ ././ 
Rebecca S ././ ./ ./ 
LynleighS ./ ./ ././ ./ 
Kylene T ./././ ././ 
Chantelle V ./ ./ ./ ././././ 
Melissa W ./ ././ ././ 
Rebecca W ././ 
Alana W ./ ././ 
LeanneT ./ 
Number of 
students 
interacting 15 18 8 13 11 
Total 
interactions 24 32 10 26 20 

18Jun 10 Jul 

./././ 

./././ 

././ 
./././ 

./ 

./ ././ 

././ ./ 

./ ./././ 

././ 

././ 

././ 

9 5 

18 10 
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Specific frameworks for problem-solving were a feature of Michelle's 
classroom discourse. The children had in the back of their books a checklist for 
problem-solving. 

1. What is the problem?-state the problem in your own words. 
2. Solving the problem-all the working out. 
3. Solution-sentence. (Polya, 1981) 

In their text book there was also a similar model (Addison Wesley, p.T8). r 

1. Understand the question, 
2. Find the needed data, 
3. Plan what to do, 
4. Find the answer, 
5. Check back. 

The students were regularly taken through lessons which developed strategies 
including the following. 

1. Guess and Check. 
2. Draw a Picture. 
3. Make an Organised List. 
4. Make a Table. 
5. Work Backwards. 
6. Look for a Pattern. 
7. Use Logical Reasoning. 
At the end of twelve months of classroom observations in both classes the 

students were given a novel question in a Post Interview to solve out aloud ("On 
what day and in what year will your 21st birthday fall?"). There was no discernable 
evidence that Michelle's class had been taught any specific strategies within these 
problem-solving frameworks. In fact the results suggested a highly idiosyncratic 
approach to problem solving for both classes. 

The Role of Teacher as Scaffolder in Developing the Mathematical Register 
The ways in which each teacher has chosen to scaffold her students are 

qualitatively different. Both teachers have relied on constructing situations in 
which they can provide a framework for mathematical skill and concept 
development. They both use the students' peers in the construction of the 
scaffolding, although this has qualitative differences. Both teachers started with a 
problem or concept which was targetted specifically for the child/ class. 

The differences lie in how each scaffolding dialogue was constructed. Michelle 
signalled her preferred pathway for the development of a concept, and although 
clearly aware of a child's misunderstanding continued to drive on with a 
predetermined method for approaching that skill or concept. Lyn, however, 
continued to shape and develop a skill or concept down a pathway which is jointly 
constructed between her and the child/ class. She worked with their ideas as they 
came up, for example, Joe wanted the sandwiches cut diagonally, and Ben 
suggested quarters. Her explanation of a skill or concept continued to be reworked 
in an effort to refine the communication of the idea rather than presenting a system 
for approaching the task. 
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Michelle continued to "raise the ante" in terms of regulating the difficulty of 
the concept development. Increased demands were placed on the students to apply 
their conceptual understanding of fraction concepts. Lyn tended to focus on the 
immediate conceptual difficulty the children were facing as they tried to solve the 
problem they were tackling. 

These examples are limited in what they can demonstrate in terms of the 
degree to which the children are developing their mathematical language and use 
of mathematical proformas. Michelle made greater use of mathematical 
terminology during her exchanges with students. She was observed not only 
introducing new vocabulary, and explicitly using this mathematical vocabulary in 
her own discourse, but she monitored the mathematical vocabulary students were 
using, as can be seen in the following interaction. 

Michelle: Now of those fractions this one's special and it has a 
special name called? (Pause) Does anybody know? 

Child: A lowest term? 
Michelle: A lowest term fraction. Why do you think it would be 

called a lowest term fraction? 
Child: Because it can't go any lower than that? 
Michelle: The denominator can't go any lower than the three. 

Rather than the teacher generating a joint construction of mathematical 
meaning with the students through her discourse, the mathematical language is 
presented by Michelle as an "expert" who controls the language being used by the 
students. This, in fact, had a positive result when the students were asked to 
perform the Progressive Achievement Test and Placement Test J assessments. 
Michelle's students seemed less hindered by the language being used in the test 
items than Lyn's students. 

Lyn, however, tended to focus on mathematical language when it appeared to 
be responsible for the children's misunderstanding. Sometimes Lyn was able to 
identify an everyday word for which the children needed to adjust their range of 
meanings. The vocabulary the teacher introduced was readily accessible to the 
children, e.g., diagonal, halves. The students in Lyn's class did have difficulty with 
some of the language on Placement Test J. For example, the majority of her class 
had difficulty with items involving the solving of algebraic-type problems 
containing subtraction, multiplication and division ([ ] -10 = 9; 10 x 4 = [ ] x 10; 
[ ] + 2 = 9), and with the question "What is the product of 1 I 4 and 1 I 3?" Carpenter, 
Hiebert and Moser (1981) also observed the inability of students to use unfamiliar 
syntax of mathematics even though the processes would have been familiar to 
them. 

The lack of emphasis upon the language of mathematics was quite obvious in 
Lyn's classroom discourse. Although she was ke~n to clarify any confusion 
students may have had in everyday words that have different interpretations in 
different contexts (for example, timetable) Lyn was less overt in her use of 
mathematical vocabulary. During her interaction with the students, her words 
shifted between everyday and mathematical language, as this lesson transcript 
excerpt shows. 
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Lyn: And if there's 32 of us approximately, how many will each child have? Ap-
proximately? 

William: They'll have about half. 
Lyn: How many 30s in 96? 
Ben C: 3. 
Lyn: About 3. Would it be 3 whole sandwiches or just three quarters of a sand

wich? So each can have about one round of sandwiches. 

In the whole class discussion which followed the above interaction, Lyn could be 
seen giving the students the freedom to adopt her suggestions or those from her 
classmates, or to continue to negotiate with them (about the number of sandwiches 
required). In general, Lyn's classroom discourse showed her to be less directive and 
more passive, regularly allowing students to take the lead. 

Overall, Michelle and Lyn adopted different scaffolding styles, with Michelle 
diagnosing a child's misunderstanding of a mathematical skill or concept and 
imposing strict mathematical language. She seemed unable or unwilling to adjust 
her own language or methodology to embrace that of the child's, or to allow 
alternative ways of approaching a solution. Lyn tried to use scaffolding to help to 
shape the skill or concept around the child's understanding. Lyn's own language, 
however, did not always lead students to a refining of their mathematical 
language. 

This chapter has therefore identified a dilemma concerning each teacher's 
approach. If scaffolding takes the form of the language of the teacher taking on the 
learner's language and developing it, through interaction, so that the learner 
becomes increasingly more conversant with the mathematical register (Halliday, 
1978), then neither teacher in this study appeared to be doing this. Michelle used 
the mathematical register, but this was imposed onto the learner's own language. 
Lyn was sensitive to the learner's own vocabulary but rarely helped students to 
develop this into a mathematical register. Clearly the mathematical language was 
not signalled to the students as being more valued than their own language. This 
was not the case in Michelle's class, where the mathematical register was valued as 
the preferred discourse. 

Bickmore-Brand and Gawned (1990) identified three types of scaffolding 
techniques: 

• Task Focused"'-this style tends to adhere to the formal requirements of the 
task. 

• Child Focused-this style supports the children in whichever way they 
choose to explore the task. 

• Multi-Focused-this style provides support in order to meet the needs of the 
particular child at each point during the task when a shared focus is seen to be 
beneficial (pp. 51-52). 

It would appear from the discussion of the two .teachers in this paper that 
Michelle could be classified as Task Focused, and Lyn as Child Focused. The 
concept of being Multi-Focused is useful as a model because, while it 
acknowledges the idiosyncracity of the student's own approach to a task, it also 
enables the student to be supported with the loan of the language of the "expert". 
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This chapter showed both teachers supporting their students when they were 
having trouble doing tasks independently. Lyn's way of providing support was 
characterised by the use of mentor support, which may have been her own or that 
provided by other students. Michelle provided scaffolds which were 
predominantly in the form of routines or frameworks. The discourse in the two 
classrooms in this paper has provided insights into the different ways in which 
each teacher developed mathematical language to support the mathematical 
concept under discussion. 

Summary 

Over the last twenty years, teachers have been confronted with various 
movements including mastery learning, discovery learning, problem-solving, and 
constructivism. Teachers, therefore, are faced with the dilemma of deciding what is 
most appropriate for them as teachers, and for their classroom. At one end of the 
spectrum teachers are to leave children to deduce the strategies and mathematical 
concepts for themselves, at the other end concepts and strategies are to be taught 
by direct instruction followed by sustained practice by the children. Scaffolding, 
however, would appear to utilise components from each. Lemke (1988) stressed the 
need for academic success involving the accomplishment of the language of the 
subject area and therefore this is usefully included in teachers' scaffolding 
discourse. If scaffolding is to have a place in the mathematics classroom it needs to 
assist students to deduce strategies and mathematical concepts for themselves, 
while at the same time enabling their own language to be refined toward 
developing appropriate communication skills. 
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Gambling and Ethnomathematics in 
Australia 

Robert Peard 

This project began from an idea from reading Peter Carey's novel Oscar and 
Lucinda in which Carey (1987), writing a story set in early Australia, commented 
that the colony developed as if it were founded on gambling. I have had an interest 
in the cultural aspects of mathematics, self-generated mathematics, and the 
mathematics learned out-of-school for some time. In addition I have carried out 
research into the teaching and learning of probability and for a long time have had 
an interest in games of chance and the mathematics of gambling. Thus, it seemed 
natural for me to combine all of these interests into the one study. 

Overview of the Study 
The study explored how the social backgrounds of a group of students 

contributed to their intuitive knowledge in probabilistic reasoning, and influenced 
their processing of the associated mathematics. A group of Year 11 students who 
came from families for whom the phenomenon of track gambling formed an 
important part of their cultural background was identified. Another group 
consisting of students in the same mathematics course but from families for whom 
the phenomenon of gambling in any form was totally absent from their social 
backgrounds was identified. 

The research employed a qualitative methodology in which a 
phenomenographic approach was used to investigate the qualitatively different 
ways in which individuals within the two groups thought about concepts 
involving probabilistic reasoning, and processed tJ:\e related mathematical skills 
and concepts. The cognitive processes involved in the applications of probabilistic 
and related mathematical concepts in a variety of both gambling and 
non-gambling situations were studied in order to determine whether this 
culturally-based knowledge could be viewed as a type of "ethnomathematics." 

Data were obtained through individual structured interviews which enabled 
patterns of reasoning to be compared and contrasted. Analyses of these data 
enabled intuitive mathematical understandings possessed by the gamblers not 
only to be identified but also to be linked with their social backgrounds. Also, 
differences between how individuals in the two groups processed probabilistic and 
associated mathematical knowledge were determined. This research complements 
and extends existing knowledge and theories related to culturally-based 
mathematical knowledge. Implications for further research, for classroom teaching, 
and for curriculum development in the study of probability in senior secondary 
mathematics classes will be made. 
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Ethnomathematics 

The term "ethnomathematics" can be applied to that particular informal, even 
unconscious mathematics, that is implicit in the everyday activities and ways of 
thinking of any of the reasonably well-defined cultural or sub-cultural groups 
represented by students in secondary mathematics classes. For example, children 
who regularly assist parents who are small business proprietors would be expected 
to engage frequently in activities involving calculations, classification and 
measurement which would not be unlike the activities of the students in the 
present study. 

In this sense then, the typical secondary mathematics class represents the 
coming together of a whole range of different kinds of ethnomathematics: there is 
the ethnomathematics of sport; of music; of small business operation; of track 
gambling activities; and so on. The problem for the curriculum developer, text 
book writer, teacher and examiner is how best to identify and take advantage of the 
intuitive, unconscious understandings brought in to the learning environment by 
students from backgrounds that include these interests. Ethnomathematics has 
been defined by D'Ambrosio (1985) as: 

The mathematics which is practised by identifiable cultural groups, such as national 
tribal societies, labour groups, children of a certain age bracket, professional classes 
and so on. (p. 45) 

In this study the term was taken to mean the inherent mathematical ideas that arise 
naturally out of cultural practices and norms and, in particular, the probabilistic 
skills and concepts that arise from the cultural practices of a segment of the school 
population whose social background includes gambling. These students might 
reasonably be expected to bring these skills and concepts with them to the school 
environment. Borba (1992) sees ethnomathematics as: 

A field of knowledge intrinsically linked to a cultural group and its interest, being 
in this way tightly linked to its reality ... and being expressed by a language, 
usually different from the ones used by mathematicians. (p. 134) 

The members of one of the two cultural subgroups of this study are identified 
through a common social interest in the field of track betting. This common interest 
includes betting on horse racing, dog racing, and trotting events both on and off 
track. The term "ethnomathematics" is used in the context of the definition given 
by D'Ambrosio (1985) who argued that its identity 

depends largely on focuses of interest, on motivation, and on certain codes and 
jargons which do not belong to the realm of academic mathematics. (p. 45) 

Nunes (1992, p. 557) observed that D'Ambrosio's use of the term 
ethnomathematics refers to forms of mathematics that vary as a consequence of 
their being embedded in cultural activities whose purposes are other than the 
doing of the mathematics. This working definition is in keeping with that 
employed by other researchers in the field. 
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Zepp (1989), in noting that the term is difficult to define precisely, suggested 
that it is useful to consider what the term is not. He suggested that: 

It is not a collection of interesting folk games, measuring techniques, or counting 
systems used by various "primitive" cultures ... nor is it a doctrine which states 
that differing races have differing mathematical abilities. (p. 211) 

Graham (1988), in researching the ethnomathematics of some groups of Aboriginal 
children in Australia, used the term to refer to "the mathematical understanding 
that the Aboriginal children bring to the educational encounter . . . the 
mathematical relationships inherent in their own culture" (p. 121). Gerdes (1988) 
used the same definition to describe the intuitive mathematics of a native culture in 
a post colonial society. Carraher, Carraher and Schliemann (1985) in Brazil used the 
term "ethnomathematics" to refer to "the everyday use of mathematics by working 
youngsters in commercial transactions" (p. 21). 

Lampert (1986) and Leinhardt (1988), in separate studies, focused on what 
students know before instruction as a result of interaction with their social 
background in an endeavour to determine what "understanding mathematics" 
means to students who are being taught new aspects of mathematics. 

It is well established that many people experience a "psychological blockage" 
when it comes to learning mathematics. One of the objectives of the present study 
was to incorporate certain principles arising from the study of ethnomathematics 
into the curriculum in order to help overcome this "psychological blockage" that is 
so common in mathematics. 

Gambling as Ethnomathematics 
Track gambling is an identifiable cultural practice within the Australian social 

context. When I was a high school teacher I often taught students who were 
seemingly poor at mathematics, but who could readily perform computations in 
gambling contexts, particularly those in track gambling contexts. The extensive 
interest in gambling in Australia and these observations suggested to me as an 
academic that I should research this more thoroughly. Questions arose such as: Is 
gambling a form of ethnomathematics within Australian society? What intuitive 
mathematics do gamblers bring to the learning environment with them and what 
are the implications of this for those involved in mathematics education? Thus the 
term "ethnomathematics" is used in this study with some flexibility which is 
entirely appropriate since, as Bishop (1988, p. 180) has said, "the term 
ethnomathematics itself is not well defined." 

Gambling and Probability in Mathematics Education 

The topic of gambling has not been well researched in any academic area, and 
until recently gambling has not been considered as a suitable topic for academic 
research. While probabilistic reasoning has recently become a subject of research in 
mathematics education, much of the earlier research of the understanding of the 
topic and the processing of the related concepts has been in the domain of 
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psychology. International research into the topic of gambling has been done mostly 
by psychologists. 

"Chance and Data" incorporates the study of probability and is now an 
important component of mathematics curriculums at all levels of instruction. The 
mathematics of gambling is now included in many modern mathematics syllabus 
documents (See for example A National Statement on Mathematics for Australian 
Schools, Australian Education Council, 1991). There is a clear need for research into 
probabilistic reasoning and related mathematical concepts which I decided to 
approach from the following perspectives: 

1. The activities of gambling are inherently mathematical in nature. 
2. Gambling is widespread within Australian culture. 
3. There is an established need for research into ethnomathematics and self
generated mathematics. 
4. Probability is now established as a topic in the school curriculum but there is 
a paucity of research into the probabilistic reasoning of secondary school 
students. 

The Inherent Mathematical Nature of the Activities of Gambling 
Many of the activities involved in track gambling are inherently mathematical 

in nature. These include the calculation of expected returns and winnings at 
various odds, comparing odds, relating odds and probabilities, calculating 
numbers of combinations, the concept of mathematical expectation and notions of 
fair and unfair situations. Epistemological considerations arising from the activities 
of track betting and other mathematical skills and concepts such as fraction 
concepts, proportional reasoning and concepts in combinatorics were therefore 
included in the study. Probabilistic reasoning, including that involved in gambling 
and games, is part of general mathematical activity, and investigations in 
mathematics include those of experimental probabilities. 

Historical Considerations 
An examination of aspects of the historical development of probability theory 

and probabilistic reasoning is useful in order to understand how it evolved from 
gambling practices and why it is commonly reported that the teaching and 
learning of the topic is difficult. Epstein (1977) commented: 

Throughout the entire history of man preceding the Renaissance, all efforts towards 
explaining the phenomena of chance were characterised by comprehensive 
ignorance of the nature of probability. (p. 92) 

According to Epstein, the first reasoned considerations relating to chance came in 
the sixteenth century. Cardano (1501-1576) is credited with the first attempt to 
organise the concepts of chance into a cohesive discipline. Before Cardano, the 
connection between gambling and mathematics was not overtly realised, despite 
the prevalence of gambling in many societies for many centuries prior to this. 

It is known that dice games were played for gaming purposes by the Egyptians 
as early as 2000 BC. Nevertheless a mathematical theory of probability did not 
emerge until the seventeenth century in Europe. This theory developed from the 
need of gamblers to quantify chance occurrences. Gamblers can rightfully claim to 



70 PEARD 

be the godfathers of probability theory, since they are responsible for provoking the 
stimulating interplay of gambling and mathematics that provided the impetus for 
the study of probability. For several centuries, games of chance constituted the only 
concrete field of applications of probabilistic methods and concepts. Fermat and 
Pascali are together credited with being the first to place the theory of probability 
within a mathematical framework. 

Kendall (1970) noted that with the advent of Christianity came the belief that 
nothing happens without cause; nothing is random and there is no chance. This 
view prevailed and hindered the development of a theory of probability despite 
the noticeable advances in other branches of mathematics. He commented 
"humanity as a whole has not yet accustomed itself to the idea [of randomness]" 
(p. 32). 

The difficulty in making the connection between mathematics and chance can 
be readily appreciated when one considers that mathematicians as eminent as 
Leibniz (1646-1716) incorrectly concluded that the sums of 11 and 12 cast with two 
dice have equal probabilities. The famous mathematician d' Alembert erroneously 
assigned a probability of one-third to the probability of getting a head and a tail on 
the toss of two coins, presumably using an incorrect equally-likely sample space of 
three possibilities instead of four. d' Alembert also mistakenly thought that the 
outcomes of tossing a coin three times were different from those obtained in a 
single toss of three coins simultaneously. In addition to the lack of a mathematical 
framework on which to base a theory of probability, other notions inhibited 
understanding in the field. The notions of hidden cause, determinism, miracles and 
the like have all inhibited the development of the connection between mathematics 
and chance. 

In A National Statement on Mathematics for Australian Schools it is noted that there 
is an increasing emphasis on random models of the world rather than on an event's 
inevitable consequences that can be described by rules and equations. It is 
important to know that many events are the result of chance variation rather than 
deterministic causation so that it not always necessary to look for specific, often 
spurious, reasons to explain an occurrence. 

Gambling is Widespread Within Australian Culture 
The phenomenon of track gambling is widespread within Australian culture. 

Indeed, it can be argued that gambling is related to this culture in a unique way. 
Expenditure on Gambling. Evidence of the extent of gambling in Australia is 

furnished by considering the expenditure on gambling. All figures are of necessity 
either estimates or approximations and are constantly changing. 

Legal Betting. Fairly reliable estimates of the amount spent on this are available 
from a variety of sources. Haig (1985), has provided much data on the topic. He 
qualified his estimates with the recognition that difficulties in obtaining accurate 
estimates relate to "the omission of illegal betting, understatement of bets by 
licensed bookmakers and expenditure on miscellaneous activities which are not 
taxed" (p. 77). He has also noted that attempts to make comparisons of expenditure 
between countries are difficult owing to factors such as "inconsistent definitions 
and incomplete coverage" (p. 73). Nevertheless, Haig concluded that "the figures 
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indicate that Australia has the highest level of gambling expenditure per head of 
population of any country" (p. 74). 

Warneminde, writing in the Weekend Australian, August 14, 1991, reported that 
a study by a private data firm, Australian Gambling Statistics, estimated that 
Australians lost a total of $4400 million m 1989-90 in legal gambling activities. This 
figure represents $2380 for every Australian over the age of 18. He commented: 

There is statistical support for the reputation of Australians as a nation of people 
who like a bet. The evidence shows that we lead the world in our enthusiasm.(p. 81) 

Haig (1985) estimated that when the data were broken down into the various 
forms of gambling, 70 percent of all legal betting was on track events. However, 
more recent estimates suggest that this proportion is less than 50 percent. This 
decrease does not represent a dollar decrease in track betting, but can be attributed 
to the increase in expenditure associated with the introduction of casinos and an 
increase in the number of poker machines following their recent introduction in 
many states. Although casino and poker machine betting has continued to gain 
popularity and increased revenue over the last few years, track gambling 
expenditure has not decreased. 

Illegal Betting. Haig (1985) commented that "most illegal gambling is track 
betting, and it is likely that illegal gambling is higher in Australia than in other 
countries because of the relatively greater importance of track betting" (p. 74). Safe 
(1992) reported that the Queensland Criminal Justice Commission estimated the 
illegal off-course SP (starting price) market to be worth over $4 billion a year. 

Social Acceptance of Gambling 
In addition to statistics relating to expenditure, we find evidence for the 

widespread occurrence and acceptance of gambling in the quantity of newspaper 
space concerned with track racing and the time given to the broadcasting of track 
events and their results on radio and television. There is in Australia an acceptance 
of gambling as a "respectable" pastime that is not to be found in many other 
societies. Social scientist, Jan McMillen, of the Queensland University of 
Technology, cited by Warnemide (1991), observed: 

There has not been a well organised moral opposition to gambling in this country 
... we don't have the moral hang-ups of the USA where after the excess of the Wild 
West, it became viewed as a vice and subjected to prohibitions which still exist in all 
but a few states. (p. 81) 

Interest in track events is common in the USA, Britain and Ireland, but expenditure 
per head of population is much lower than in Australia. Many Asian countries are 
also tolerant of gambling, but with the exception of Hong Kong, little gambling is 
related to track events and, unlike Australia, it does not generate large amounts of 
government revenue. 

Gambling is an integral part of Australia's self-image. More recently 
mathematics educators such as Lovitt and Clarke (1988) have recognised that 
"gambling is widespread in our community" (p. 75) and have included a 
simulation of the operation of the TAB betting system in their Mathematics 
Curriculum and Teaching Program materials package. 
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Ethnomathematics and Self-Generated Mathematics 
Bishop (1991) maintained that all mathematical learning takes place in a social 

setting and that we need to be able to theorise about "interpersonal" as well as 
"intrapersonal" mathematical learning. He stressed that learning mathematics in a 
social context cannot be fully interpreted as an "intrapersonal" phenomenon 
because of the social context in which it occurs. Equally, "interpersonal" or 
sociological constructs will be inadequate alone since it is always the individual 
learner who must make sense and meaning of the mathematics. 

Glaeser (1983) noted that within modern society the ideas of probability are 
very common: 

When one starts to teach ... this subject ... [students] are certainly not without 
previous knowledge: ... everybody is familiarised with situations of betting, of 
drawing lots, or with decisions under uncertainty. (p. 313) 

Furthermore, there is much evidence that informal procedures learned outside of 
school are often extremely effective. Gay and Cole (1967), for example, showed that 
unschooled Kpelle traders estimated quantities of rice far better than educated 
Americans. They became convinced that it was necessary to investigate first the 
"indigenous mathematics," in order to be able to build effective bridges from this 
"indigenous mathematics" to the mathematics of the school. 

Eduardo Luna (in Gerdes, 1988) argued that the practical mathematical 
knowledge that children acquire outside the school is "repressed" and "confused" 
in the school. In a similar vein, Carraher and Schliemann (1985) have shown that 
children who have to make frequent and quite complex computations outside of 
school did so efficiently in out-of-school contexts, but were not successful with the 
same type of computation in a classroom context. 

The importance of the cultural context in mathematics education has formed a 
central theme of much recent research. A common ·element of projects in 
ethnomathematics and self-generated mathematics is that the legitimation of the 
learners' experiences is recognised as being of fundamental pedagogical 
importance. 

Ethnomathematics, Constructivism, and Mathematics Education 
The present study adopts the constructivist perspective that learners construct 

or invent knowledge on the basis of what they already know, and that much of 
what they already know has developed from cognitive interaction with factors in 
their social background. Other researchers have clearly shown that learners do 
invent useful strategies to solve novel problems. Constructivism acknowledges the 
relativistic nature of the constructions and recognises that constructed concepts are 
valued for how they can be used to deal with problems. Studies researching 
mathematics used in the workplace (Carraher et al., 1985; Cockcroft, 1982; Lave, 
1988; Scribner, 1984) have shown that such mathematics is often idiosyncratic. 
Cockcroft (1982) referred to "back of envelope" methods as opposed to formal 
algorithmic methods taught in school. The present research examines 
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context-specific procedures in probabilistic situations used by the gamblers to 
identify the context-specific intuitive knowledge required for such computations. 

Probability in the Secondary School Curriculum 
It was noted by von Glasersfeld (1987) that the nature of probability is 

pedagogically suited to the contemporary mathematics educator's belief that 
children are active constructors of their own knowledge. This, he maintained, is 
due to the experimental nature of the topic and its emphasis on inquiry. 

The importance of understanding probabilistic concepts in modem 
technological societies has been well established for some time now. It has been 
argued that it is essential that students be taught how to deal realistically with 
uncertainties otherwise they may respond to probabilistic situations with 
preconceived notions, emotive judgements and even a lack of awareness that 
chance effects are operating. Despite the recognition of the importance of 
probabilistic concepts by mathematics educators, the inclusion of probability into 
the mathematics curriculum is a relatively recent development. 

Mathematics educators such as Watson (1992) have expressed concern that 
recent initiatives in curriculum development "have been taken without the benefit 
of previous educational research in Australia on the learning of probability" (p. 1). 
She stated that: 

In Australian school systems teachers are currently implementing the Chance and 
Data curriculum using the best resources and advice they can get from educators 
and curriculum planners, all of whom are operating without the luxury of a local 
research base. (p. 5) 

She then argued that since probability is such a relatively new area of the 
curriculum, research is needed to "provide a fundamental structure" (p. 11) for 
teaching and learning. She concluded that in the wake of the publication of A 
National Statement on Mathematics for Australian Schools there is "an urgent need for 
research into the understanding of concepts related to probability" (p. 13). Watson 
(1992) also made the important point that the probability and statistics component 
of the mathematics curriculum is one part that is closely related to out-of-school 
experiences. 

The present research includes an examination of probabilistic concepts in real 
world, out-of-school contexts. An extensive review of the literature revealed that 
no comparable studies have been reported. With reference to gambling, only 
studies of adult gamblers by psychologists are reported (Ceci & Leiker, 1986a, 
1986b; Kahneman & Tversky, 1982). 

The Major Research Questions 

Following an extensive review of the literature related to ethnomathematics 
and probability three major research questions were formulated. These were: 
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Major Research Question 1 
Do Year 11 students of "Mathematics in Society" (a lower stream course in 

Queensland) whose social background includes extensive familiarity with track 
gambling (the "gamblers") have different intuitive probabilistic concepts and 
understandings from students for whom track betting is absent from their family 
and social background (the "non-gamblers")? 

Major Research Question 2 

What are the cognitive processes employed in the application of probabilistic 
and related mathematical concepts in traditional classroom situations and in 
out-of-school contexts involving track gambling? Do these processes differ 
between the two groups specified in the first major research question, and, if so, 
what are the differences in the ways individuals in the groups tend to process these 
concepts? 

Major Research Question 3 
Is the knowledge acquired by the "gamblers" as a result of socially induced 

cognitive interactions in gambling contexts sufficiently pervasive to be regarded as 
a form of "ethnomathematics"? 

The Research Methodology 

Since these questions called for research into (a) intuitive concepts and 
understandings, (b) the ways in which these concepts are applied and processed, 
and (c) the pervasiveness of such knowledge, it was recognised that the data 
needed for this study should be mostly qualitative in nature, and therefore it was 
decided that qualitative research methods would be employed. 

The aim of qualitative research in education according to Sherman and Webb 
(1988) is to understand "experience as nearly as possible as its participants feel it or 
live it" (p. 7). They claim that the function of qualitative research is "to interpret, or 
appraise, behaviour in relation to contextual circumstances" (p. 10). The present 
research examined the mathematical behaviour associated with the processing of 
probabilistic ideas in the social context of track gambling, and is therefore well 
suited to the use of qualitative methods. It was recognised from the outset that the 
chosen qualitative research methodology should permit every effort to be made to 
preserve advantages arising from high "standards of design, analysis and 
statistical reliability" (Lamon, 1972, p. 8). 

Generally speaking, qualitative research data are not suited to statistical 
analysis and it was not the intent of this investigation to make inferences regarding 
the populations from which the samples were selected. Nevertheless care in the 
identification of the population and the selection of the samples was taken since the 
study was expected to generate hypotheses which might be tested in later studies 
for their validity and degree of possible generalisation to the population from 
which the samples were selected. 
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The Research Populations 
It was shown that there is a large segment of Australian society for whom the 

phenomenon is part of their social background. It was the Year 11 students from 
families with this kind of background and who were attending schools in the 
Brisbane metropolitan region in 1991 who were regarded as forming one of the 
populations for the research which was carried out. The other population consisted 
of Year 11 students attending schools in the Brisbane metropolitan region in 1991 
from families for whom such gambling was completely absent from their social 
backgrounds. 

The Research Samples 
Two schools were identified in regions in which it could be reasonably 

expected that there would be an interest in social gambling within many families. 
Both schools are in the vicinity of racing tracks (horse, dog, and trotting), and 
student familiarity with track betting was confirmed. A questionnaire was 
administered to six classes each of approximately 25 students in order to identify 
students from the required social background. 

Gender Balance Within the Samples. In all of the schools used in this study, and in 
Queensland in general, "Maths in Society" courses contain approximately the same 
numbers of males as females. Consequently, it was not necessary to incorporate 
any special techniques in the methodology to effect gender balance of the samples. 

Balancing Achievement Levels. It was decided that in the sampling procedure 
attention would be paid to pupil achievement level. It was deemed essential that 
this be included in the sampling procedure since otherwise comparisons between 
gamblers and non-gamblers might be obscured by differing achievement levels. It 
would be inappropriate, for example, to compare only low achieving gamblers 
with high achieving non-gamblers. 

A deliberate decision was made to select approximately equal numbers of high 
and low achievers and to omit the middle level. In this way, differences between 
the levels would be more easily identified. In Queensland schools, all student 
assessment is school based and teachers are required to keep extensive and up to 
date records of student achievement. For the purposes of this research, it was 
decided that the classroom teacher would be asked to classify the student 
informally from personal knowledge and from teacher records as either a "High 
achiever" or a "Low achiever." 

Criteria for the Selection of" Gamblers." To be eligible for selection as "gamblers," 
the students had to indicate that they either attended track events themselves or 
had parents who were "very interested in" track events. Twenty gamblers were 
selected. 

Criteria for the Selection of "Non-Gamblers." To be eligible for selection as 
"non-gamblers" students had to indicate not only that their parents had "no 
interest at all" in track gambling but also that they themselves had no interest in 
any form of gambling, including games of chance involving the playing of cards or 
the rolling of dice. Since these activities are very common among most student 
populations it was decided to use a third school in which students would be less 
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likely to have these characteristics in their background. A Seventh Day Adventist 
High School was selected in order to obtain this part of the sample of 
non-gamblers. Although it was not a requirement for selection as a non-gambler to 
hold negative or hostile opinions towards gambling, there were nevertheless some 
students from this school from social backgrounds in which this was the case. 

Composition of the Samples: A Summan;. Ideally, as a result of the above 
procedures, we would expect two samples of 20 students and five students in each 
of the eight cells of Table 1. However, it was decided that since the criterion for 
gamblers as opposed to non-gamblers was the most important criterion in the 
selection, no prior rigid decision on the numbers in each cell of Table 1 would be 
made. 

Table 1 
Composition of Samples 

Code Group of Respondents 

High Achievement Low Achievement Total 

Male Female Male Female Male Female Total 

Gamblers 5 4 6 5 11 9 20 
Non-Gamblers 3 7 5 5 8 12 20 

Totals 8 11 11 10 19 21 40 

Data Gathering 
The major research instrument used for data gathering was the structured 

clinical interview (see Romberg & Uprichard, 1977). The flexibility of this was a 
factor in its selection, since as Ginsburg, Kossan, Schwartz and Swanson (1983) 
have stated, "it allows the interviewer to present problems and questions in a 
flexible manner and that this in tum allows for contingencies that may arise" (p. 
11). 

The use of the interview as an instrument for gathering data in probabilistic 
reasoning was specifically supported by Shaughnessy (1992) and Scholz (1991) 
who both reported that much of the research by cognitive psychologists on the 
acquisition of probabilistic concepts has methodological flaws, because tasks are 
posed in a multiple-choice, forced-answer format, where subjects' understanding 
of the tasks and their reasoning processes are not evident. The establishment of 
rapport with the student is another feature of the interview that Ginsburg et al. 
consider to be important. This is necessary in order to create an interpersonal 
relationship of trust in which the interviewer presents a non-judgemental and 
supportive attitude. 

The qualitative research methodology of the present study incorporated some 
of the techniques that Marton (1988, p. 154) described as "phenomenography." 
Marton noted that "interviewing has been the primary method of 
phenomenographic data collection" and that open-ended interview questions are 
particularly suited to situations in which the subjects need to be able to "choose the 
dimensions of the questions they want to answer." In the present research, this is 
done in order to determine "the qualitatively different ways in which people 
experience or conceptualise specific phenomenon" (p. 154). 
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Construction of the Major Research Instrument 
In order to study the broad questions formulated, a large set of specific 

interview questions was constructed. Each of the written questions was 
administered to interviewees one at a time, with discussion and probing of each. 
The students were encouraged to respond using whatever technique they chose; 
written pencil-paper, using a calculator, mental computation with verbal response, 
or a combination of techniques. Examples of questions asked and the student 
responses are given in the Results and Analysis. 

Data Analysis 
Responses to all items gathered were categorised according to the answer 

given, the technique of computation, the reasoning employed, or certain other 
identified criteria. Categories identified in the literature such as "incorrect additive 
technique," "correct functional technique," and any other identifiable categories of 
response were recorded in each student's file. Where necessary, special categories 
were constructed by the author. These responses were coded numerically and 
recorded on a spreadsheet. 

It was not the intent to attempt to analyse all the data coded on the 
spreadsheet. Rather the use of the spreadsheet in data analysis was to enable the 
selection of categories quickly and easily for comparison, for contrasting, and for 
pattern identification. All major analyses of data proceeded from examination of 
the raw data and the students' files. Although responses were coded numerically 
for ease of identification, all data were qualitative in nature so no scores or 
summations of marks were used. 

Results and Analysis 

Intuitive Probabilistic Concepts and Understandings 
The first major research question was concerned with Intuitive Probabilistic 

Concepts and Understandings and data relating to these were obtained from 
responses to various questions. One important example is Question l(b). Table 2 
illustrates the coding of the responses to this item for analysis. 

Question l(b) 
In each of the following situations, how much can be won on a track bet if: 

(i) $10 is bet at odds of 9:2 
(ii) $9 is bet at odds of 3:2 
(iii) $5 is bet at odds of 7:4 
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Table 2 
Coding and Results; Question l(b), (iii) 

Code Group of Respondent 
G-LA G-HA NG-HA NG-LA Total 

1. Correct Multiplicative 4 4 7 2 17 
2. Correct Scalar Additive 0 2 1 0 3 
3. Incorrect Traditional/Functional 0 1 0 3 4 
4. Double/Halve with Approximation 1 0 0 0 1 
5. Incorrect Additive 1 1 1 4 7 
6. Scalar Additive Approximation 5 1 1 1 8 

Totals: 11 9 10 10 40 

Analysis of data from Question l(b), (iii). There are 20 "exact" correct responses, of 
which 10 were from gamblers, and a further nine computational estimations 
resulting in a close approximation to the correct answer, of which seven were from 
gamblers. Thus the overall performance of the gamblers on this item was 
noticeably better than the non-gamblers. Furthermore, eight of the gamblers used a 
scalar additive technique which was used by only three of the non-gamblers. The 
reasoning employed by the gamblers in the approximation technique tended to be 
along the following lines: 

7:4 means bet 4 and get 7; So if I bet 5, I must get more than 7; 

To figure out how much more: 5 - 4 = 1; 

If 4 gets 7, then this extra 1 gets me more than 1 but less than 2. 

[This extra "scaled" amount is estimated then added, hence the terminology 
employed] 

So 5 gets me more than 8 but less than 9-closer to 9 than 8, about ($8.50 or $8.75 or 
$8.80). 

Intuitive Language 
The gamblers, in general, demonstrated a greater use of the above unitary 

strategy. When using either a unitary strategy, a scalar additive approach, or 
computational estimation strategies, the gamblers tended to use language in 
different ways from the non-gamblers. The intuitive knowledge possessed by the 
gamblers identified here clearly derives from their facility with the informal 
language of track gambling. An important educational issue is the extent to which 
the informal language and experiences of the students' personal gambling world 
were linked cognitively to the formal language, symbols and skills associated with 
school mathematics (Ellerton & Clements, 1991). 

Other instances of intuitive knowledge were observed related to the 
comparison of "odds" and the relationship between "odds" and probabilities. This 
was demonstrated in responses to Questions 4 and 5. 
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Question 4 
In each of the following track betting situations, which is the better of the 

two odds? That is to say which gives the greater return per $1 bet, or which is the 
greater ratio? 

Table 3 

(a) 2:1 or 3:1 
(b) 5:1 or 5:2 
(c) 4:3 or 9:7 

Coding and Results; Question 4(c) 

Code Group of Respondent 

G-LA G-HA NG-HA NG-LA Total 

1. Correct Traditional 4 5 3 4 16 

2. Constructs Algorithm; 

Less Outlay for $2 Win 3 2 0 0 5 
3. Scalar Additive with Approx. 3 1 0 0 4 

4. Incorrect/Not Applicable 1 1 7 6 15 

*Total Correct: 25 (18 Gamblers, 11 High Achievers) 

Analysis of data from Question 4. The results to this question are quite striking. 
Nineteen of the 20 gamblers were able to answer parts (a) and (b), and an 
astonishing 18 of these students were able to make a correct comparison in part (c) 
using some technique. By comparison, only seven of the non-gamblers could 
answer this correctly. By referring to the spreadsheet data, it can be seen that of the 
18 gamblers, 11 did not compare fractions confidently, and nine did not compare 
probabilities in a non-gambling context Thus it would appear that nearly all the 
gamblers demonstrated an intuitive understanding of the terminology and nature 
of "odds." This knowledge was demonstrated by only seven of the non-gamblers. 
However, of the 13 non-gamblers who did not make a correct comparison of odds, 
11 compared fractions correctly, and six compared probabilities correctly, 
indicating little intuitive knowledge of the concept of odds. 

Furthermore, when the data from Question 4(c) was examined, it was observed 
that five gamblers constructed a procedure that was number dependent (Code 2) in 
that they used other traditional school strategies for parts (a) and (b); and context 
dependent in the sense that they did not employ the strategy in other questions 
requiring proportional reasoning (See further in the Results and Analysis for 
Research Question 2). 

Question 5 
In a four horse race the odds for each horse are given as 2:1, 5:3, 5:1, and 25:1 
Which horse is thought to be most likely to win? 
List the odds in order of least likely to most likely. 
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Table 4 
Coding and Results; Question 5 

Code Group of Respondent 

G-LA G-HA NG-HA NG-LA Total 

1. Correct Multiplicative 5 7 7 2 21 

2. Correct, Intuitive 6 2 0 1 9 

3. Unable 0 0 3 6 9 

4. Incorrect Additive 0 0 0 1 1 

Totals: 11 9 10 10 40 

Total Correct: 30 (All20 Gamblers and 10 Non-Gamblers) 

Analysis of data from Question 5. The gamblers performed noticeably better than 
the non-gamblers (20 correct compared with 10). This may be attributed to the 
gamblers familiarity with the context. In those responses classified as "intuitive" 
(Code 2) the students recognised that 2:1 is greater than 5:3 but were unable to give 
a mathematically correct reason. Probing questions were then asked. A typical 
response of the eight gamblers in this category was "2:1 are higher odds because 
you get more than at 5:3." With further probing, using questions such as "Why do 
you get more?", this response could, in some instances, have been reclassified as 
unitary or equivalent proportional. Unitary reasoning involved the recognition 
that 5:3 returned "less than 2" for the one bet, while equivalent proportional 
reasoning involved explaining that "at 2:1, a bet of three would win more than 5." 

Thus, familiarity with the context would appear to have resulted in the 
intuitive understanding of some of the gamblers. Further probing questions 
showed that the gamblers tended to have an intuitive understanding of the 
relationship between "odds" and probability. Students were not asked to convert 
odds to numerical probabilities, but were required to demonstrate a knowledge of 
the relationship that the greater the odds, the less the probability of winning. While 
all the gamblers were able to list the odds in the correct order of likelihood, only 13 
non-gamblers were able to do this. 

Intuitive Understanding of Fairness and Expectation 
One of the major findings of the study related to the concept of mathematical 

expectation. The responses to Question 10 are presented for analysis to illustrate 
the differences between the gamblers and non-gamblers. 

Question lO(a) 
Suppose you and I play a game with one of these dice [show single die]. 
If on a single roll it is three or less you win, if it is more than three I win. 
If we each bet $1 and the winner gets the $2, would this be a fair game? 

Results from Question lO(a). Thirty-eight of the forty students recognized this as 
a fair game. Only two non-gamblers responded that they were unable to answer 
because they had no basis for making a decision in such a situation. 

Question lO(b), (i) 
Suppose we change the rules so that I win if it is a three or more. Is this still a 

fair game? 
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Results from Question lO(b), (i). 27 recognized the unfairness of this situation and 
the following extended probe was conducted in the interviews: 

Question 10(b ), (ii) 
Can we make the game fair somehow? 
Analysis of data from Question lO(b). Of the 27 who recognized that the game was 

no longer fair, 19 demonstrated some intuitive knowledge of expectation by 
recognizing that the game could still be made fair by changing the contributions of 
the players. These 19 were probed further: 

Question 10(b ), (iii) 
How much should I put in to make the game fair? 

TableS 
Coding and Results; Question lO(b), (iii) 

Code 

1.$2 

2. >$1, But Not Sure How Much 

G 

8 

6 

Group of Respondent 

NG Total 
2 10 

3 9 

Analysis of the data from Question lO(b), (iii). Of these 19 students, ten (eight 
gamblers) were able to recognise that since one probability is twice the other, the 
returns must be in that ratio, thus demonstrating an intuitive understanding of the 
basic multiplicative principle underlying mathematical fairness. Question 10(c) 
further probed the concept of expectation. The understanding of the 
"multiplicative" nature of the concept of expectation was researched in this section. 
By asking the probing question that reversed the roles of the players ("you" and 
"I"), this concept was examined in some detail for the few students who 
demonstrated such an understanding. 

Question lO(c) 
[If the answer to Question 10(b) is $2, continue with further questions] 
How much should I put in if I choose the numbers 1 through 5, leaving you just 

the6? 
[Repeat with drawing cards from a deck] 
How much should I put in if I choose spades leaving you the other three suits? 
How much if I choose a single card of any suit? How much if I choose a single 

specific card? 
[If correct, repeat the questions reversing the order of "you" and "I"] 
Results from Question lO(c). Of the 10 who responded correctly to the first part, 

six were able to answer all parts correctly. 

Analysis of Data Relating to the Concept of Expectation 
Table 6 summarises the above results, and also incorporates findings from the 

preceding analysis of all parts of Question 10, and data from the actual student 
transcripts. 
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In the table, students who seem to have no knowledge of mathematical 
expectation were regarded as being in Category 1. These students were unable to 
answer Question lO(b) and would tend to reason: "A game can only be fair if each 
player has the same chance of winning." Two "non-gamblers" admitted to having 
no basis on which to make decisions of fairness. 

Students allocated to Category 2 showed some intuitive knowledge of the use 
of expectation in the determination of fairness, answered Question lO(b) correctly 
and were able to recognise that a game could be made fair by varying the amounts 
paid, at least in simple situations. However, they were unable to answer the more 
complex questions that followed. 

Category 3 students demonstrated a thorough knowledge of the concept of 
mathematical expectation. This was demonstrated by the interviewees' correct 
responses to all questions in this section. To qualify for inclusion in this category, 
the student had to be able to demonstrate that in all of the situations, fairness could 
be established by each player contributing an amount that is in inverse relation to 
the probability (the constant product requirement). In addition, the students had to 
be able to compute the amounts correctly. 

Table 6 
Evidence of Knowledge of the Concept of Expectation 

Category Group of Respondent 

G-LA G-HA NG-HA 

1. No Knowledge Evident 3 4 7 

2. Some Knowledge of Concept 5 3 2 

3. A Thorough Knowledge 3 2 1 

NG-LA 

7 

3 

0 

Total 

21 

13 

6 

Expectation and school achievement. It can be also be seen from Table 6 that there 
is no strong relationship between the understanding of mathematical expectation 
and school achievement. 

Expectation and gender. In order to examine the relationship between knowledge 
of expectation and gender, Table 7 was constructed in which the data suggest that 
there is no strong relationship between the understanding of mathematical 
expectation and gender. 

Table 7 
Separation of the Data Relating to the Knowledge of the Concept of Expectation by Gender 

Knowledge Gender 

Female Male Total 

1. None 12 9 21 

2. Some 6 7 13 

3. Complete 3 3 6 

Total 21 19 40 
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Implications of the Results of the Analysis of Data Relating to Expectation 
These results have two important implications. First, the concept of expected 

return is not part of the regular school curriculum at this level-the students do not 
use the term "expectation" but construct a procedure that recognises the inverse 
relationship between probability and return. In this sense they are constructing 
knowledge in the manner described by the constructivists mentioned in the 
literature. 

Second, since there is a noticeable difference in this conceptual understanding 
between the two groups relating to gambling background without relating to either 
school achievement or gender, it may be conjectured that this understanding 
results from their familiarity with the related concept of "return on track bets at 
given odds." Further research may be necessary to test this hypothesis generated. 
Nevertheless, we may conclude that one field of probabilistic reasoning in which 
the gamblers demonstrated an intuitive understanding and the non-gamblers did 
not, was that of the concept of fairness and its relationship to mathematical 
expectation and expected return. 

Absence of Intuition 
Generally speaking,· students from both groups were able to quantify simple 

probabilities without difficulty, but the ability to compare probabilities related 
more to school achievement and to the ability to compare fractions in traditional 
school contexts, than to gambling background. There appears to be little, if any, 
difference between the two groups in intuitive understanding of basic simple 
probability. 

Data from the responses to items relating to compound probability pointed to 
similar conclusions to those reached by Brown, Carpenter, Kouba, Lindquist, Silver 
and Swafford (1988) that "knowledge of all but the simplest of probabilistic 
questions is extremely limited" (p. 242). The multiplicative nature of compound 
probability is not well understood by Year 11 students in any of the contexts, 
gambling or non-gambling and this inability does not relate noticeably to gambling 
background or school achievement. As Fischbein, Nello and Marino (1991) 
commented, there appears to be "no natural intuition for evaluating the probability 
of a compound event" (p. 534). 

Very few students in either groups demonstrated any intuitive understanding 
of the basic principles of combinatoric knowledge. Although the mathematics of 
track betting on the "quinella" and the "trifecta" involve combinatoric concepts, 
the gamblers showed no better intuitive understanding of these concepts than the 
non-gamblers. 

Results and Analysis of Data for the Second Major Research Question 
This question was concerned with the differences in the ways individuals in the 

groups tend to process probabilistic concepts. First, some generalisations can be 
made regarding overall responses. 

Comments on Responses According to Gender. An examination of the data showed 
that for most items there were no markedly noticeable gender effect on the quality 
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of responses. This is not unexpected, since, as was noted, there is no gender bias of 
achievement in this course at any of the schools involved in the study, or in the 
State in general. 

Comments on Responses According to School Achievement. The quality of responses 
to many items, especially the "traditional" classroom questions, showed a 
noticeable relationship with school achievement level. As would be expected, high 
achievers tended to perform better than low achievers. 

Triangulation of Results. The research question was concerned with differences in 
ways by which concepts are processed, the language used, and the computational 
techniques employed. In some questions (Question 1 for example) the numbers 
and concepts were the same but the context was different. The differences in 
context were accompanied by differences in the students' language and techniques 
of computation. These three difference all pointed to the same conclusion, namely 
that there are differences in the way in which individuals within the two groups 
process mathematical concepts. This is illustrated by the triangulation of the results 
of Question 1 (Figure 1) involving the concept of proportional reasoning. 

Concept: Proportional Reasoning 

Gambling 
Odds are 7:4 
$5 bet wins? 

1. Context 

Non-Gambling 
4kg costs $7 
Skg costs? 

Differences in the 
ways in which the concept of 

proportion is processed 

2. Use of Language +--------+ 3. Teclmique of Computation 
Gamblers Non-Gamblers Gamblers Non-Gamblers 
shorter odds in proportion unitary traditional 
gets me back equal ratio scalar additive 4:7 = 5: x 
returns . . . cost per kg ... estimation functional 

Figure 1: Triangulation of Results 

A different technique was also noted in the responses of five gamblers to 
Question 4(c). The reasoning employed was along these lines: 

4:3 is the same as 8:6; This means bet 6 win 8, 2 more than you bet; 9:7 means bet 7 
win 9, again 2 more than you bet. It is better to win the same amount for a lower 
outlay, so 4:3 are the better odds. 

Mathematically, this reasoning is correct although it is not referred to in the 
earlier extensive review of the literature on strategies employed in proportional 
reasoning. Its use by the gamblers in the present study was highly context 
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dependent, in the sense that none of the gamblers who used it in this context did so 
in any other contexts. Its use was also number dependent in the sense that none of 
the gamblers used it in parts (a) or (b). 

Results and Analysis of Data for the Third Major Research Question 
An answer to the third major research question was formulated bv the 

synthesis of data from the first two major research questions. This involved the 
recognition of the different practices, codes, jargons and styles of reasoning 
employed by the gamblers in the context of track gambling. Although this 
language, methods of computation and ways of thinking associated with track 
gambling are learned in the sense that they are acquired through participation in a 
particular sub-culture, they are not formally studied. Often their application is 
more an unconscious than a conscious act. 

The data support the conclusion that a form of ethnomathematics does exist. 
However, the practices and styles of reasoning were employed by only some 
individuals of the group and were not universal among the group members. Some 
of these individuals used number dependent strategies, such as a scalar additive 
strategy, effectively in both gambling and non-gambling contexts but these 
practices and styles of reasoning did not, in general, transfer to traditional school 
contexts, and therefore were of limited applicability. Nevertheless, it is contended 
that the practices and styles of reasoning do, in fact, constitute a type of 
ethnomathematics as defined by D'Ambrosio (1985). 

Conclusions and Recommendations 

Expectation and Fairness 
The possession of intuitive understandings of the important concept of 

mathematical expectation by a majority of the gamblers gave rise to one of the most 
noticeable differences between the two groups, and represents one of the major 
findings of the study. It is recommended that further research to test the following 
hypothesis be carried out: 

Familiarity with track betting situations which involve the computation of the 
return from placing bets at various odds leads to the development of intuitive 
understandings of the concepts of mathematical expectation and expected return. 

Implications. The results of the present research regarding the concepts of 
mathematical expectation and fairness have particular implication for curriculum 
development. These concepts feature prominently both in the Queensland senior 
mathematics syllabus and in the National Statement. In the past, the inclusion of 
these concepts has been confined to the more academic courses in senior secondary 
mathematics. This study has shown that these relatively sophisticated 
mathematical concepts can be understood, at least in part, by a good proportion of 
non-academic students. 

This finding provides strong support for the inclusion of these concepts in the 
mathematical education of all students, regardless of social background or prior 
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school achievement in mathematics. Further, it is possible that the use of gambling 
contexts to introduce and develop these concepts ·could prove to be highly 
effective. This is especially likely to be the case if the concepts are introduced in 
practical ways which link school mathematical concepts with meaningful practical 
activities. 

The Use of Language 
The use of a "gambling" language was another of the major differences 

between the two groups and represents another major finding of the study. 
However, strong links between this informal mathematics and the formal 
mathematics of the classroom were not necessarily present. The need to develop 
curricula aimed at fostering such links; and to provide appropriate professional 
development programmes aimed at helping teachers to create learning 
environments likely to assist students to make these links is therefore 
recommended. 

Mental Computation and Estimation 
The gamblers employed a number of mental computational techniques 

effectively in gambling contexts, exhibiting a strong number sense in these 
contexts. These techniques often incorporated computational estimation and 
approximation. However, the use of these techniques by the gamblers did not, in 
general, transfer to traditional non-gambling contexts. 

The findings from this study suggest that, provided students can establish links 
with their own personal worlds, then they are capable carrying out even 
complicated estimations and approximations. However, the challenge for 
educators is to develop approaches which are likely to result in students with 
isolated number sense skills being able to connect these skills with a much broader 
range of contexts. 

Gambling as a Form of Ethnomathematics 
It would be reasonable to argue that the special codes, jargons and 

computational practices of the gamblers do, in fact, constitute a form of 
ethnomathematics as defined by D'Ambrosio (1985). It has been noted that teachers 
and educators need to be take accotmt of the knowledge which children bring to 
the school environment as a result of their cultural backgrounds in general, and 
their out-of-school experiences in particular. The findings of this study have shown 
that in Australian society there are cultural practices in gambling that generate the 
development of intuitive knowledge in the area of probabilistic reasoning. These 
findings support the claim by Clements (1988, p. 5) that "often in Australia there 
are w1ique factors influencing how children learn mathematics." 

D'Ambrosio (1985) has noted that there is a need to incorporate features arising 
from the study of ethnomathematics into the curriculum in order to avoid the 
"psychological blockade" that is so common in school mathematics for many 
students. One of the features identified in the present study that might be 
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effectively used for this purpose is the informal mathematical language used by the 
gamblers, which seems to assist the communication and understanding of informal 
and formal probabilistic concepts. 

Teachers need to explore the relationship between the students' perceptions of 
probability based on their informal out-of-school experiences, curriculum design, 
and teaching methodology, with the aim being to maximise student learning. 
Towards this end, Ellerton and Clements (1991) call for teachers to provide 
classroom experiences that assist students to make the cognitive links between 
school mathematics and the personal worlds of the learners. 

It is not easy for teachers to develop an ethnomathematical approach to their 
teaching, however, because they themselves are the product of a mathematics 
education subculture which encourages them to emphasise isolated mathematical 
facts, skills, and outcomes. Ellerton and Clements (1991) have noted that 

often teachers think they are providing learning environments that encourage 
students to construct meaning in mathematics, when in fact, the children are, ever 
so subtly, being required to respond to teacher initiatives most of the time and are 
being led along comparatively rigid paths towards preset goals. (p. 15) 

The present research has shown that for many students the informal mathematics 
associated with gambling is part of their personal worlds, but rarely do curriculum 
developers and teachers take account of this. Mathematics education research is 
nothing more than an academic exercise unless mathematics educators take 
deliberate steps to make the results of such research known to those having 
teaching and curriculum development responsibilities for school mathematics in 
Australia. The challenge to mathematics educators suggested by this study is to 
make its findings known to curriculum developers and teachers so that ultimately 
more students will be able to link their personal worlds with the school 
mathematics they are expected to learn. 
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