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Abstract. Recent evaluations show that the current anomaly-based net-
work intrusion detection methods fail to detect remote access attacks
reliably [10]. Here, we present a deep bidirectional LSTM approach that
is designed specifically to detect such attacks as contextual network
anomalies. The model efficiently learns short-term sequential patterns
in network flows as conditional event probabilities to identify contex-
tual anomalies. To verify our improvements on current detection rates,
we re-implemented and evaluated three state-of-the-art methods in the
field. We compared results on an assembly of datasets that provides both
representative network access attacks as well as real normal traffic over
a long timespan, which we contend is closer to a potential deployment
environment than current NIDS benchmark datasets. We show that by
building a deep model, we are able to reduce the false positive rate to
0.16% while detecting effectively, which is significantly lower than the
operational range of other methods. Furthermore, we reduce overall mis-
classification by more than 100% from the next best method.

1 Introduction

We present a short-term contextual model of network flows that aims at improv-
ing detection rates of remote access attacks. Remote access attacks are used to
gain control or access information on remote devices by exploiting vulnerabilities
in network services, and are involved in many of today’s data breaches [1]. A
recent survey [10] showed that these attacks are detected at significantly lower
rates than more high-volume probing or DoS attacks. We present the construc-
tion of a short-term contextual model of network flows, and show how this model
handles suspicious behaviour. Our idea is to capture probability distributions
over sequences of network flows that quantify their overall likelihood, much like
a language model. We hypothesise that this improves the detection of low-rate
access attacks. Our model is based on deep bidirectional LSTM networks.

Recently, deep learning models such as LSTMs have been a popular tool in
network intrusion detection [2, 7, 12]. However, persistent failings in evaluations
have made it difficult to assess the performance and real-world applicability of
currently proposed methods to access attack detection, and have lead to a chaotic
and convoluted NIDS landscape [10].
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To avoid these pitfalls and demonstrate that our approach delivers a signif-
icant improvement in detection rates and real-world applicability, we evaluated
our model carefully on two modern network intrusion detection datasets. Fur-
thermore, we reimplemented and evaluated three state-of-the-art methods on
these datasets and compared their performance against ours. By carefully se-
lecting input parameters based on their sequential interdependence as well as
increasing model complexity in terms of depth and efficient input embedding
compared to preceding models, we are able to detect remote access attacks at a
false positive rate of 0.16%, a rate at which none of the comparison models are
able to detect any attacks reliably.

This work provides the following novel contributions:

1. We present a new and efficient contextual network flow model based on a
deep bidirectional LSTM model. It is specifically designed to detect low-
volume network access attacks, and significantly improves on current results
through selected input parameters as well as increased model depth and
efficient input embedding which enables us to detect attacks at a low false
positive rate of around 0.16%.

2. We perform a careful evaluation to avoid common failings and demonstrate
that our model is capable of both detecting attacks while remaining stable
and consistent over time, using two modern datasets.

3. We reimplement and evaluate three prominent anomaly-based intrusion de-
tection models as benchmarks as well as including a smaller and more shallow
version of our model. We perform an appropriate, discerning, and compara-
tive evaluation of their performance and conclude that none of these models
are able to detect remote access attacks reliably at the false positive rate we
achieve.

1.1 Overview

In verbal or written speech, we expect the words “I will arrive by . . . ” to be
followed by a word from a smaller set such as “car” or “bike” or “5pm”. Similarly,
on an average machine we may expect DNS lookups to be followed by outgoing
HTTP/HTTPS connections. These short-term structures in network traffic are
a reflection of the computational order of information exchange. Attacks that
exploit vulnerabilities in network communication protocols often achieve their
target by deviating from the regular computational exchange of a service, which
should be reflected in the generated network pattern.

Table 1(a) depicts a flow sequence from an XSS-attack. Initial larger flows
are followed by a long sequence of very small flows which are likely generated by
the embedded attack script trying to download multiple inaccessible locations.
Flows of this size are normally immediately followed by larger flows, as depicted
in Fig. 1, which makes the repeated occurrence of small HTTP flows in this
sequence very unusual.

Table 1(b) depicts a regluar SMB service sequence while Table 1(c) depicts
a Pass-the-hash attack via the same SMB service. As shown, the flows to port
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Src Dst DPort bytes # packets

A B 80 247956 315
A B 80 7544 13
A B 80 328 6
A B 80 2601 10
A B 80 328 6
A B 80 328 6
A B 80 380 7
A B 80 328 6

...

(a) XSS-attack, A=192.168.10.50,
B= 172.16.0.1

Src Dst DPort bytes # packets

D C N33 600 5
C D 445 77934 1482
D C N33 600 5
C D 445 5202 10

(b) Benign SMB, C=C6267,
D=C754

Src Dst DPort bytes # packets

C D 445 4106275 2830
C D 445 358305611 242847

(c) Pass-the-hash attack via SMB

Table 1: The left side depicts a flow sequence from an XSS-attack.The right
side depicts a benign SMB-sequence (top), and a sequence from a Pass-the-hash
attack via the same SMB service.

N33 necessary to trigger the communication on the SMB port are missing while
the second flow is significantly larger than any regular SMB flows due to it being
misused for exfiltration purposes.

The underlying idea of our model is to predict probabilities of connections in
a host’s traffic stream conditional on adjacent connections. The probabilities are
assigned based on the connection’s protocol, network port, direction, and size,
and the model is trained to maximise the overall predicted probabilities.

To assign probabilities, we map each connection event to two discrete sets
of states, called vocabularies, according to the protocol, the network port, and
the direction of the connection for the first, and according to number of trans-
mitted bytes for the second. The size of the vocabulary is chosen large enough
to capture meaningful structures without capturing rare events that can dete-
riorate prediction quality. We then designed a deep bidirectional LSTM (long
short-term memory) network that takes bivariate sequences of mapped events
as input to efficiently capture the conditional probabilities for each event.

1.2 Outline

The remainder of the paper is organised as follows. Section 2 discusses the current
state of network intrusion detection. Section 3 explains the methodology and
architecture of our model as well as the data preprocessing. Section 4 explains
the advantages of the datasets used in this work as well as current state of the
art models that we compare our results with. Section 5 discusses our detection
rates on attack traffic, the false positive rate on benign traffic, and compares our
results with those of the implemented comparison models. Section 6 concludes
our results.
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Fig. 1: HTTP flow size distribution overall, and if preceded by an HTTP flow
smaller than 500 bytes.

2 Related work and evaluation pitfalls

LSTM-models for web attack detection, such as by Yu et al. [19], improve de-
tection rates of simpler preceding models such as Song et al. [16]. They rely
on deep packet inspection, and are often targeted at protecting selected web-
servers rather than network-wide, due to a lack of computational scalability and
increasing traffic encryption. Methodologically, vocabularies are created from
string sequences with well-known NLP methods, while our work provides a new
vocabulary-construction method suitable for traffic metadata.

The majority of LSTM-based metadata approaches rely on labelled attack
data for classification, and do not have the scope of anomaly-based models to de-
tect previously unseen attacks. A prominent example of this comes from Kim et
al. [7], who classify flow sequences based on 41 numeric input features. Anomaly-
based approaches, such as ours, mostly rely on iterative one-step ahead forecasts,
with the forecasting error acting as the anomaly indicator. This is for instance
done in GAMPAL by Wakui et al. [18], who use flow data aggregation as nu-
merical input features, which are computationally easier to process, but cannot
encapsulate high-level information such as the used protocol, port, or direction.
These models are best used for detecting high-volume attacks. Apart from our
work, only Radford et al. [12] create event vocabularies from flow protocols and
sizes. We use a more sophisticated model in terms of stacked recurrent layers
and embeddings for more input features, which results in higher detection rates,
as demonstrated in see Sect. 2.1.

Notable work outside of network traffic includes Tiresias [15]and DeepLog
[5]. The design of Tiresias has similarities to ours, but the scope of the model is
attack forecasting rather than intrusion detection, and relies on both different
input data in the form of IDS logs as well as different evaluation metrics.

DeepLog is combined with a novel log parser to create a sequence of symbolic
log keys, which is then also modelled using one-step forecasting. The authors
achieve good detection results in regulated environments such as Hadoop with
limited variety of events (e.g., 29 events in Hadoop). Here, our model goes further
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by being applied to a much more heterogeneous data source and creating a more
than 30 times larger vocabulary.

2.1 Evaluation pitfalls

According to Nisioti et al. [10], the trustworthiness of published low volume
access attack detection rates is debatable due to evaluation shortcomings. We
designed our evaluation to avoid four common pitfalls that are regularly seen:

Outdated datasets Two datasets and their derivatives, DARPA-98 and KDD-
99, have been extensively used to benchmark network intrusion detection models
[11]. However, both datasets are now more than 20 years old and have been
pointed out as significantly flawed and prone to give overoptimistic results [17].

Lack of attack class distinction Most intrusion datasets include attack events
from both low volume access attack classes such as R2L (Remote-to-Local) and
U2R (User-to-Root) as well as attacks like DoS or port scans which generate a
large number of events. If reported detection rates do not distinguish between
different attacks or attack classes, performance metrics will be dominated and
potentially inflated by DoS and probing attacks.

Arbitrary false positive rates There is no agreed upon value for a suitable
false positive rate in network intrusion detection. This leads many authors to
report very high detection rates at the expense of having unrealistically high false
positive rates, often around 5% and above. In our evaluation, we report overall
AUC scores, which describe the separation of benign and anomalous traffic.

Lack of long-term evaluation To be effective, an intrusion detection system
has to produce a consistently low false positive rate in the presence of concept
drift. A crucial aspect when assessing the deployability of an intrusion detection
system is the long-term stability of a trained model [8], which is often neglected
in the literature. We include a dataset focused on long-term traffic evolution in
our evaluation to demonstrate the stability and deployability of our model.

3 Experiment Setting

3.1 Session construction

To order the raw network flows, we first gather all outgoing and incoming flows
for each of the hosts selected for examination according to their IP address.

The traffic a host generates is often seen as a series of session, which are
intervals of time during which the host is engaging in the same, continued, ac-
tivity [13]. In our context, flows that occur during the same session can be seen
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as having strong short-term dependencies. We therefore group flows going from
or to the same host to sessions using an established statistical approach [13]:

If a network flow starts less than α seconds after the previous flow for that
host, then it belongs to the same session; otherwise a new session is started. If
a session exceeds β events, a new session is started.

We chose the number of α = 8 seconds as we have found that on average
around 90% of flows on a host start less than 8 seconds after the previous flow,
a suitable threshold to create cohesive sessions according to Rubin-Delanchy et
al. [13]. We introduced the β parameter in order to break up long sessions that
potentially contain a small amount of malicious flows, and estimated β = 25 to
be a suitable parameter, detection rates do not seem to be very sensitive to the
exact choice of β though.

3.2 Contextual modelling

Each session is now a sequence of flows that are assumed to be interdependent.
We observed in an initial traffic analysis that the protocol, port, and direction
of a flow as well as its size are highly dependent on the surrounding flows, which
motivates their use in the modelling process. We treat flows as symbolic events
that can take different states, much like words in a language model. The state of
a flow is defined as the tuple consisting the protocol, network port, and the di-
rection of the flow. We consider only the server port numbers, which indicate the
used service, in the state-building process. We introduce the following notation:

M : number of states
C: number of host groups
S: number of size groups
N i

embed: embedding dimension
N i

hidden: LSTM layers dimension

Nj : the length of session j
xi,j : the state of flow i in session j
cj : the host group

si,j : size group of flow i in
session j

The collection of all states is called a vocabulary. For prediction, the total
size of a vocabulary directly correlates with the number of weights needed to be
inferred in an LSTM network, thus influencing the time and data volume needed
for training. Too large vocabularies also lead to decreased predictive performance
by including rare events that are hard to predict [4]. We therefore bound the total
number of states and only distinguish between the M−2 tuples of protocol, port,
and direction most commonly seen on a machine, with less popular combinations
being grouped as “Other”. Furthermore, the end of a session is treated as an
additional artificial event with its own state. The total vocabulary size is then
given by M .

Our experimentation has shown that detection rates improve when including
the size as an additional variable, especially for brute force web attacks. Rather
than making a point estimate of the size, we want to produce a probability distri-
bution for different size intervals. This provides better accuracy for situations in
which both small and large flows have a similar occurency likelihood. We group
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flows into S different size quantile intervals, with the set of all size intervals
forming a third vocabulary.

Hosts are grouped according to their functionality (Windows, Ubuntu, servers,
etc.) a distinction that can easily be performed using signals in the traffic. The
group is provided to the model as an additional input parameter and forms a
third vocabulary.

3.3 Trained architecture

We use a deep bidirectional LSTM network which process a sequence in both
forward and reverse direction to predict the state and size group of individual
flows. The architecture of the network we trained is depicted in Fig. 2. The
increased model complexity we present has not been explored in previous LSTM
applications to network intrusion detection, and enables us to boost detection
rates while lowering false positive rates, which we demonstrate in Section 2.1.

Fig. 2: Architecture of the trained bidirectional LSTM network.

Embedding First, each of the three inputs of the three vectors is fed through
an embedding layer, which assigns them a vector of size N i

embed, i ∈ {1, 2, 3}.
This embedding allows the network to project the data into a space with easier
temporal dynamics. This step significantly extends existing designs of LSTM
models for anomaly detection and allows us to project multiple input vocabu-
laries simultaneously without a large increase in the model size. By treating the
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state, the size group, and the host group as separate dictionaries, we avoid the
creation of one large vocabulary of size M ×C × S, which makes training faster
and avoids the creation of rare states [4].

LSTM-layer In the second step, the vectors are concatenated and fed to a
stacked bidirectional LSTM layer with N1

hidden hidden cells. This layer is re-
sponsible for the transport of sequential information in both directions. The
usage of bidirectional LSTM layers compared to unidirectional ones significantly
improved the prediction of events at the beginning of a session and consequently
boosted detection rates within short sessions. Increasing the number of LSTM
layers from one to two decreases false positive rates in longer sessions while
maintaining similar detection rates.

Output layer The outputs from the bidirectional LSTM layers are then con-
catenated and fed to an additional linear hidden layer of size N2

hidden with the
commonly used rectified linear activation function. We added this layer to enable
the network to learn more non-linear dependencies in a sequence. We found that
by adding this layer, we are able to capture complex and rare behaviours and
decrease false positive rates.

Finally, we use softmax output layers of size M and S, which provide us with
two probability vectors, pi,j,kx and pi,j,ls . The prediction loss for both the state is
then given by the log-likelihood;

lhj
x =

Nj∑
i=1

lhi,j
x =

M,(Nj)∑
k=1,i=1

x
(i),j
k · log(pi,j,kx )

with the size group loss being calculated in the same way. We calculate the total
loss as the sum of the state loss and the size group loss.

After the training, we use the network to determine the anomaly score of a
given input session via the average of the predicted likelihoods, as this measure
is independent of the session length:

ASj = 1−
Nj∑
i=1

(
exp(lhi,j

x ) + exp(lhi,j
s )
)
/Nj

An anomaly score close to 0 corresponds to a benign session with a very high
likelihood while a score close to 1 corresponds to an anomalous session with
events which the network would not predict in the context of previous events.

As we mentioned above, too large vocabularies can cause problems both for
model training and event prediction. We achieved the best results for M = 200
for the available data and computational resources. The size of the size group
was chosen smaller with S = 7. Host groups were determined for each dataset
individually. We trained on a quad-core CPU with 3.2 GHz, 16 GB RAM, a single
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NVIDIA Tesla V100 GPU. Training each model could be achieved in under three
hours. We chose N1

embed = 10, N2
embed = N3

embed = 5 for the embedding layers,
and N1

hidden = N2
hidden = 50 for the hidden layers, which achieve the best results

without overfitting. We trained each model for 500 epochs. The parameters of
the network are optimised to minimise the total loss in minibatches of size 30
using the ADAM optimiser. The optimal value for the learning rate was found
to be 0.0003, and decays by a factor of 2 after each ten subsequent epochs the
training set. We use a parameter weight decay of 5 × 10−4 per epoch to avoid
overfitting, and a drop-out rate of 0.5. Our implementation uses PyTorch.

4 Datasets and benchmark models

4.1 Dataset assembly

We selected two publicly available datasets that complement each other: CICIDS-
17 [14], and UGR-16 [9]. The CICIDS-17 dataset contains traffic from a variety
of modern attacks, while the UGR-16 dataset’s length is suitable for long-term
evaluation. We train models with the same hyperparameters on each dataset to
demonstrate the capability of our model to detect various attacks and perform
well in a realistic environment.

CICIDS-17 [14] This dataset, released by the Canadian Institute for Cyber-
security (CIC), contains 5 days of network traffic collected from 12 computers
with attacks that were conducted in a laboratory setting. The attack data of
this dataset is one of the most diverse among NID datasets and contains SQL-
injections, Heartbleed attacks, brute-forcing, various download infiltrations, and
cross-site scripting (XSS) attacks.

UGR-16 dataset [9] Released by the University of Grenada in 2016, this
dataset contains real-world network flows from a Spanish ISP. It contains both
clients’ access to the Internet and traffic from servers hosting a number of ser-
vices. The data contains a wide variety of real-world traffic patterns. The main
advantage of this dataset over previous ones is its usefulness for evaluating IDSs
that consider long-term evolution and traffic periodicity, as it spans from March
to August of 2016.

4.2 Detection method

We identify an individual session as malicious if it contains labelled attack traffic
from the seven remote access attacks in the CICIDs-17 dataset. We use the
the 99.9% anomaly-score quantile as a simple threshold T for our model to
distinguish between malicious and benign. By determining T from the training
data, we control the expected false positive rate in the test data. Finding an
appropriate threshold value is a compromise between higher detection rates and
lower false positive rates. Our chosen threshold would translate to about one
false alert every three days for host with an activity similar to the CICIDS-17
data, and about one false alert every seven days for hosts in the UGR-16 dataset,
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which is about 20-50 times lower than the false-positive rates that our benchmark
models were evaluated on. We additionally provide AUC-scores, a performance
measure independent of a particular threshold choice (see next Section).

4.3 Dataset split

To evaluate detection rates, we split the CICIDS-17 data into a test set and a
training set. We selected the four hosts in the data that are subject to remote
access attacks, two web servers and two personal computers. We choose our test
set to contain the known attack data while the training data should only contain
the benign data. Due to the short timespan of the dataset, we have to train on
traffic from all five days, with the test data intervals being placed around the
attack. For this reason, we evaluate temporal model consistency only on the
UGR-16 data. In total, the test set contains 14 hours of traffic for each host
while the training set contains 31 hours of traffic. We chose our training data
to contain about 10 000 sessions per host if possible. Overall, we included for
the data 24128 sessions in the training and 32414 sessions in the test set for
the CICIDS-17, whereas we included 50010 sessions in the training and 100018
sessions in the test set for the UGR-16 data.

To test long-term stability and robustness of our model against concept drift,
we split the UGR-16 data into one training set interval and two test set intervals,
for which we can compare model performance. The training set interval stretches
over the first month, with the first test set interval containing the sessions from
the following two months, and the second test set interval containing the last
two months. We then isolated traffic from five web-servers that provide a variety
of services that show behavioural evolution. Fig. 3 depicts the changes of these
servers in terms of protocol and port usage over the different intervals.
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Fig. 3: Temporal change in protocol and port usage over the different train and
test intervals across selected servers in the UGR-16 dataset.
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4.4 Benchmark comparison models

We compare our detection and false positive rates against three network anomaly
models that we have re-implemented and re-evaluated.

A recent and well cited survey by Nisioti et al. [10] identified the UNIDS
model by Casas et al. [3] as achieving the highest detection rates of remote
access attacks on the KDD-99 dataset, so we chose to include this method as
our first benchmark. The authors rely on subspace-projection and density-based
clustering (DBSCAN) for outlier detection, and achieve detection rates of access
attacks at around 80− 85% on the KDD-99 dataset with a false positive rate of
3.5%.

Niyaz et al. [6] present a more recent deep-learning model combines anomaly
detection and classification by using sparse autoencoders and detection through
reconstruction error. The authors classify individual flows and claim a detection
precision of 99% with a recall of 97.5%, even higher than the UNIDS model.

Finally, Radford et al. [12] predict sequences of individual flows between
pairs of hosts using a two-layer LSTM network. Flows are tokenised according
to their protocol and size, and the model detects 60% of the attacks at a false
positive rate of about 2% on the CICIDS-2010 dataset. This model is closest to
ours in terms of contextual anomaly detection from flow metadata, and achieves
the best results out of the three bechmark models during our evaluation. We
include it to highlight the improvements our design choices yield over other
contextual LSTM-models.

Lastly, we include a more shallow version of our model, depicted in Fig.
4, to highlight the benefits of a deeper structure. This model only contains one
LSTM-layer, and no linear layer before the output layer.

Fig. 4: Architecture of the shallow LSTM-model version we use as a benchmark.
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5 Evaluation

We demonstrate that we can build an accurate and close-fitting model of normal
behaviour with the model described in Section 3. We train models for each
dataset separately, but without any change in the selected hyperparameters, i.e.
number of hidden cells, vocabulary size, learning rate etc.

5.1 Detection rates
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Fig. 5: Score distribution for access attacks contained in the CICIDS-17 dataset.

As described above, we estimate detection rates using traffic of various remote
access attacks in the CICIDS-17 dataset. Table 3 and Fig. 5 depict anomaly score
distributions and detection rates for traffic from seven different types of attacks.

Most notable is that scores from all attacks except cross-site scripting (XSS)
are significantly higher distributed than benign traffic, with median scores lying
between 0.75 and 0.89. Detection rates with our chosen threshold of 0.77 are
highest for Heartbleed attacks (100%), followed by FTP and SSH brute-force
attacks and SQL-injections, where 91%, 74%, and 75% of all affected sessions
are detected. Detection rates are lowest for XSS and Infiltration attacks. The
overall detection rates we achieve are in a similar range as most unsupervised
methods in Nisioti et al.’s evaluation [10], but with significantly better false
positive rates.

XSS and infiltration attacks cause the victim to execute malicious code lo-
cally. Heartbleed and SQL injections on the other hand exploit vulnerabilities
in the communication protocol to gain exfiltrate information, and are thus more
likely to exhibit unusual traffic patterns, visible as completely isolated TCP-
80 flows for SQL attacks, or unusual sequences of connections initiated by the
attacked server during Heartbleed attacks.
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scores and det. rates comparison det. rates

min max median det. rate UNIDS Radford Niyaz shallow m.

Brute Force Web 0.50 0.92 0.80 0.66 0.0 0.0 0.07 0.28
FTP-Patator 0.28 1.00 0.82 0.91 0.07 0.0 0.03 0.38
Heartbleed 0.89 0.89 0.89 1.00 0.0 0.0 0.0 0.0
Infiltration 0.57 0.97 0.75 0.41 0.0 0.166 0.0 0.0
SQL-injection 0.67 1.00 0.84 0.75 0.0 0.0 0.02 0.21
SSH-Patator 0.47 0.86 0.80 0.74 0.0 0.0 0.0 0.67
XSS 0.06 0.75 0.20 0.00 0.0 0.0 0.20 0.0

Table 2: Anomaly score distributions and detection rates for malicious sessions
in the CICIDS-17 dataset, as well as detection rates for comparison models on
the right. Depicted are the minimum, maximum, and median score for sessions in
each attack class along with the rate of sessions exceeding the detection threshold
(99.9% quantile).
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Fig. 6: ROC-curves for different attack types in the CICIDS-17 dataset.

Brute-force attacks on the other hand cause longer sequences of incoming
connections to the same port of a server, in this case to port 21 for FTP, 22
for SSH, and 80 for web brute-force. Especially for port 80, such sequences are
not necessarily unusual, which explains the difference in detection rates between
web brute-force, which our model does not detect reliably, and FTP and SSH
brute-force, which are detected at a higher rate. Depending on how much benign
traffic the particular sessions are overlayed, the estimated anomaly scores can
vary. Brute-Force attacks are not low in volume, and spread over many sessions
since we introduced a maximum session length. For these types of attack, our
model therefore only has to flag a smaller percentage of malicious sessions the
attack generates to detect anomalous behaviour.
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Fig. 6 provides ROC (Receiver operating characteristic) curves for each at-
tack type. As seen, for Heartbleed, FTP brute-force, SQL injection, and infiltra-
tion attacks, our model starts detecting attacks with close to zero false positives.

Comparison models We now compare detection rates between our model and
the three models described in Section 4.4 that we chose as benchmarks.

All three models ultimately detect anomalies when an anomaly score exceeds
a threshold, which controls the balance between low false positive rates and
high detection rates and usually depends on the given data. To create a fair
comparison, we chose threshold providing similar false positive rates of 0.01%,
e.g. the 99.9% anomaly score quantile of the training data, which is necessary
for assessing suitability for real-world deployment as we have argued in Section
4.2. Table 3 depicts detection rates for each model. As seen, none of the other
models are achieving any meaningful detection rates at a false positive rate this
low.

1-AUC scores

Our model UNIDS Radford Niyaz shallow m.

Brute Force Web 0.016 0.49 0.027 0.32 0.048
FTP-Patator 0.0025 0.011 0.0048 0.16 0.0052
Heartbleed 0.0003 0.0057 0.032 0.077 0.012
Infiltration 0.046 0.033 0.35 0.15 0.11
SQL-injection 0.005 0.44 0.497 0.39 0.019
SSH-Patator 0.009 0.013 0.035 0.011 0.005
XSS 0.127 0.02 0.03 0.16 0.13

Average 0.044 0.144 0.135 0.18 0.091

Table 3: 1-AUC scores for our model and the implemented comparison models
on the CICIDS-17 dataset. Fat numbers indicate the best value for each attack.

To assess the overall separation between benign and malicious traffic for
each model, we calculated 1−AUC (Area under ROC curve) scores by varying
the thresholds for each model, and calculating the area under the ROC-curve,
depicted in Fig. 6 and Table 3.

In comparison to the other benchmark models, our shallow model is capable
of making some detection at the chosen false positive rate, but cannot reach the
levels of our deeper model. While brute-force attacks are still detected, more
nimble attacks such as Heartbleed or XSS are less distinctive from benign traffic
for the shallow model. It is remarkable that by adding the described additional
layers, we are able to more than double the overall detection power, as indicated
by the 1-AUC-scores.
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Fig. 7: Anomaly score distribution for benign sessions in the UGR-16 dataset

5.2 Benign traffic and long-term stability

We assess the performance of our model on benign traffic by looking at the
quantiles and visual distribution of sessions scores. The plots and tables in Table
4 as well as Fig. 7 depict the score distribution of benign sessions for each dataset
in the corresponding test sets.

50%q 90%q 99.9%q max score Pr(>T)

UGR-16, testset 1 0.14 0.33 0.76 0.9 0.0018

UGR-16, testset 2 0.17 0.37 0.72 0.86 0.0014

Table 4: Anomaly score quantiles for benign sessions in each testset in the UGR-
16 data, along with the maximum session score and the percentage of sessions
exceeding the detection threshold (false alerts), averaged over all hosts.

As shown, the centres of the distributions are concentrated very well in the
lower region of the [0, 1] interval, with about 50% of all sessions receiving scores
in the region between 0.1 and 0.25. High scores are rare, with only very small
percentages exceeding our chosen detection threshold of T. If we look at the hosts
in the UGR-16 data, on average less than 0.15% of all assumed-benign sessions
exceed the threshold, which would translate to fewer than ten false-alerts over
the span of four months on a host with similar activity rates.

A clear banding structure is visible in the plotted distributions, with most
session scores being very concentrated on narrow intervals. These scores rep-
resent frequently reoccurring activities that generate similar traffic sequences.
Fig. 7 shows that these banding structures remain virtually unchanged over sev-
eral months. Similarly, Score distributions remain stable over several months,
as depicted in Table 4. Although more investigations are required for definitive
conclusions, these results indicate that the identified contextual structures in
network traffic remain relatively stable over time.
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6 Conclusion

Our proposed model presents a new and promising angle to anomaly-based intru-
sion detection that significantly improves detection rates on the types of network
attacks with the lowest detection rates. We use an anomaly-based approach that
does not rely on specific notions of attack behaviours, and is therefore better
suited at detecting unknown attacks rather than regular misuse- or signature-
based systems. By assigning contextual probabilities to network events, our
model improves detection rates of low-volume remote access attacks and outper-
forms current state-of-the-art anomaly-based models in the detection of several
attacks while retaining significantly lower false positive rates. Furthermore, our
model retains low false positive rates for periods stretching several months. Our
results provide good evidence that using contextual anomaly detection may in
the future help decrease the threat of previously unseen vulnerabilities and mal-
ware aimed at acquiring unauthorised access on a host. We specifically focused
on short-term anomalies as they are often an unavoidable byproduct of an attack
thus very difficult for an attacker to avoid without preexisting control over the
victim device or other network devices.

6.1 Resilience and evasion

Evasion tactics and corresponding model resilience against them have been a
concern in the development of NIDS. We specifically focused on short-term se-
quential anomalies as they are often an unavoidable byproduct of attack se-
quences, and it is thus very difficult for an attacker to pertube attack sequences
that rely on a specific exploit without preexisting control over the victim device
or other network devices. We therefore believe that our model is relatively robust
against evasion, however we identified potential improvements for future work.

A specific evasion tactic that has been discussed extensively in the context
of machine learning is model poisoning in the training/retraining phase. As our
model uses symbolic features instead of numerical ones, there is little possibility
to introduce gradual shifts, and attempts to introduce new sequences would likely
exceed the anomaly threshold. Additionally, without control over the victim
device, the attacker can only introduce alterations in one direction. Lastly, we
showed in Section 5.2 that short-term contextual traffic patterns remain stable
over several months, which means that retraining of our model is only necessary
at a low rate and attackers will have to wait for a long time to execute successful
model poisoning.

An issue we encountered is the overlay of malicious and benign traffic. Cur-
rently, the existence of known traffic patterns in a session can deplete the overall
anomaly score of a session. A potential evasion tactic could therefore conceal an
attack behind benign communication with the victim device, an already common
approach for C&C communication. Possible improvements for this issue are a
refined notion of a session that groups related traffic better, and a better scor-
ing method that identifies smaller anomalous sequences in an otherwise normal
sequence of flows.
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