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A Locally Adaptive Bayesian Cubature Method

Abstract

Bayesian cubature (BC) is a popular infer-
ential perspective on the cubature of expen-
sive integrands, wherein the integrand is em-
ulated using a stochastic process model. Sev-
eral approaches have been put forward to en-
code sequential adaptation (i.e. dependence
on previous integrand evaluations) into this
framework. However, these proposals have
been limited to either estimating the param-
eters of a stationary covariance model or fo-
cusing computational resources on regions
where large values are taken by the integrand.
In contrast, many classical adaptive cuba-
ture methods focus computational resources
on spatial regions in which local error esti-
mates are largest. The contributions of this
work are three-fold: First, we present a theo-
retical result that suggests there does not ex-
ist a direct Bayesian analogue of the classical
adaptive trapezoidal method. Then we put
forward a novel BC method that has empiri-
cally similar behaviour to the adaptive trape-
zoidal method. Finally we present evidence
that the novel method provides improved cu-
bature performance, relative to standard BC,
in a detailed empirical assessment.

1 Introduction

In this paper we consider the numerical approximation
of the integral

I(f∗) :=

∫
D

f∗(x) dπ(x), (1)

of a continuous function f∗ : D → R with respect to
a Borel reference measure π supported on a compact
set D ⊂ Rd. In particular, we consider the case where
the evaluation of f∗ is associated with a substantial
computational cost. To control computational cost, a
cubature method should attempt to control the num-
ber of evaluations of f∗ required to obtain a desired

Preliminary work. Under review by AISTATS 2020. Do
not distribute.

level of accuracy for (1). In particular, a desirable
attribute of a cubature method is to focus integrand
evaluations on subregions of D in which the approx-
imation of f∗ is most difficult. If the user has no a
priori knowledge about the locations of such regions
then the cubature algorithm must be locally adaptive
if it is to fulfill this requirement. Furthermore, any
practical cubature method should provide an estimate
of its precision, such as an a posteriori error estimate if
the cubature method is classical, or a credible interval
if a probabilistic cubature method is used.

The Bayesian cubature (BC) method for approxima-
tion of (1) can be traced back to Larkin (1972). Here,
approximation of (1) is framed as an inferential task
where the integrand f∗ carries the status of a latent
variable to be inferred. A distinguishing feature of BC,
compared to classical approaches, is that the output of
the method is a probability distribution on R, simulta-
neously providing estimates and quantification of un-
certainty regarding the value of the integral (1). The
method finds application in machine learning (Osborne
et al., 2012), statistics (Briol et al., 2019), signal pro-
cessing (Prüher et al., 2018) and econometrics (Oet-
tershagen, 2017), most typically in situations where
evaluation of the integrand f∗ is associated with a sub-
stantial computational cost. In the context of uncer-
tainty quantification, for example, it becomes natural
and parsemonious to combine the probabilistic output
provided by BC with other probabilistic representa-
tions of uncertainty, such as measurement error and
model error.

The general framework for BC can be expressed us-
ing two ingredients, the first of which is an underly-
ing probability space (Ω,F ,P) on which a stochastic
process f : D × Ω → R is defined. This serves as
a statistical model for the latent f∗ and is endowed
with the Bayesian semantics of a priori knowledge
about the integrand. For instance, global properties,
such as periodicity or monotonicity, and local proper-
ties, such as continuity and differentiability, may be
known a priori and encoded. It is minimally required
that sample paths of f are continuous and that f ad-
mits well-defined conditional processes, denoted f |Dn,
whenever Dn = {(xi, f∗(xi))}ni=1 specifies n evalua-
tions of the integrand on which the process is condi-
tioned. Thus, in particular, the stochastic process f
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can be integrated, giving rise to a random variable

I(f) : Ω → R

ω 7→
∫
D

f(x, ω) dπ(x).

The second ingredient is an acquisition function A,
which – roughly speaking – maps a stochastic process
(such as f) to a state x ∈ D. At iteration n of a
BC method, the acquisition function is applied to the
conditional process f |Dn−1 and the output xn ∈ D
represents the location where the integrand is next
evaluated. The conditional process f |Dn can be in-
tegrated to produce a random variable I(f)|Dn on R,
whose distribution is the posterior marginal distribu-
tion for the integral (1); this is the output of the BC
method. Note that we do not mandate a stopping rule
based on an error estimate as part of a BC method; we
are motivated by problems where f∗ is associated with
a substantial computational cost, so that one cannot
practically expect to evaluate the integrand as many
times as needed to achieve a pre-specified error thresh-
old.

Through the choice of the stochastic process f and
the acquisition function A, the behaviour of the BC
method can be controlled. Here we overview existing
work on BC, in terms of the framework just set out.
Attention is limited to approaches that select the xi
according to some optimality criterion, as opposed to
a set or sequence of xi being a priori posited (for a
discussion of the latter context, which has also been
widely-studied, see Briol et al., 2019; Jagadeeswaran
and Hickernell, 2019). The symbols E, V and C are
used to denote expectation, variance and covariance
with respect to the underlying prior measure P.

Non-Adaptive BC: The earliest contributions to
this area, from Sul’din (1959, 1960); Larkin (1974); Di-
aconis (1988) and O’Hagan (1991), considered a Gaus-
sian stochastic process model f ∼ GP(m, k) for the
integrand, with mean function m(x) = E[f(x)] and
covariance function k(x, y) = C[f(x), f(y)] being a
priori specified (Rasmussen and Williams, 2006). It
can be shown that V[I(f)|Dn], the posterior variance
of the integral, depends on Dn only through the lo-
cations xi and not the actual values f∗(xi) obtained.
Thus the posterior variance can be arbitrarily small
whilst the actual error can be arbitrarily large. These
aforementioned authors proposed to select the xi in
a manner that minimises V[I(f)|Dn], and as such no
adaptation is achieved. Indeed, in those references
the {xi}ni=1 were pre-computed to globally minimise
V[I(f)|Dn] over the product space Dn, though we note
that sequential (greedy) alternatives have been stud-
ied in Oettershagen (2017); Pronzato and Zhigljavsky
(2018).

Globally Adaptive BC: Subsequent authors con-
sidered parametric families of stationary Gaussian pro-
cesses f |θ ∼ GP(mθ, kθ), where kθ has the form
kθ(x, y) = φθ(‖x − y‖), φθ : [0,∞) → R (e.g. φθ(s) =

θ21e
−s2/θ22 ), considering the parameter θ = (θ1, θ2) as

a latent variable to also be inferred. This additional
flexibility allows V[I(f)|Dn] to depend on {f∗(xi)}ni=1

and so some form of adaptivity may be achieved when,
for example, the minimum expected variance acquisi-
tion function

A(f |Dn−1) ∈ arg min
xn∈D

E[V[I(f)|D̃n]|Dn−1] (2)

is used. Here E[·|Dn−1] denotes expectation with re-
spect to f |Dn−1 and D̃n = Dn−1 ∪ {(xn, f(xn))}. In
other words, xn is selected to minimise the expecta-
tion of V[I(f)|D̃n] when the random variable f(xn) is
distributed according to its marginal under f |Dn−1.
Adaptive selection of the xi in this context was stud-
ied in Osborne (2010). The stationary (i.e. global)
nature of the covariance model φθ has the limitation
that the resulting set {xi}ni=1 tends to focus equally on
regions where the integrand is both well and not well
approximated. Indeed, inferences for the parameter θ
are principally driven by the “most difficult” part of
the integrand, even if that region is spatially localised.
Thus any stopping rule based on the posterior variance
of the integral results in unnecessary computational ef-
fort devoted to regions in which the integrand can be
easily approximated.

Locally Adaptive BC: The transformed stochastic
process model f(x, ω) = T (g(x, ω)), where T : R→ R
is a pre-specified transformation and g ∼ GP(m, k),
has been proposed to encode global properties such
as positivity (e.g. T (z) = z2) into the stochastic pro-
cess model. This was considered empirically in Gunter
et al. (2014); Chai and Garnett (2019) and theoreti-
cally in Kanagawa and Hennig (2019). Coupled with
the acquisition function (2), this construction behaves
in such a way that regions in which f∗(> 0) is large are
allocated more of the computational budget.1 Though
appropriate in some situations (in particular, compu-
tation of marginal likelihood), such behaviour is not
universally desirable (for instance, if f∗ is easily ap-
proximated in the regions where f∗ is large then such
a strategy is likely to be inefficient).

Despite this extensive research development, the basic
notion of allocating more computational resource to
regions where approximation of the integrand is most
difficult has not yet been realised in the context of
a BC method. It is emphasised that adaptivity in

1The authors proposed also an indirect but more con-
venient alternative to (2), seeking instead the x for which
the variance of f(x)|Dn−1 is greatest.



this sense is ubiquitous throughout classical numeri-
cal analysis; for instance QUADPACK (Piessens, 1983)
has been a standard integration library since its in-
ception and all but one of its integration routines are
adaptive. In addition, for sufficiently challenging inte-
gration problems it is known, both theoretically (Rit-
ter, 2000, Chap. VII.3) and empirically (Rabe-Hesketh
et al., 2002), that local adaptation is practically essen-
tial. It is therefore interesting and important to ask
whether local adaptivity can also be exhibited by a
suitably-designed BC method.

Outline: Our contributions in this paper are three-
fold: After recalling the classical adaptive trapezoidal
method in Section 2 we then present a theoretical re-
sult, in Section 3, that suggests there does not exist
a direct Bayesian analogue of this classical method.
Then, in Section 4 we put forward a novel BC method
that has empirically similar behaviour to the adaptive
trapezoidal method. Its performance is empirically as-
sessed in Section 5.

2 Background

In Section 2.1 the classical adaptive approach to cuba-
ture is briefly recalled, while standard background on
the BC method is contained in Section 2.2.

2.1 Classical Adaptive Cubature

Classical approaches to (non-adaptive, for the mo-
ment) cubature can be categorised either as non-
constructive (e.g. Monte Carlo, quasi Monte Carlo) or
constructive (e.g. Newton-Cotes rules, Gaussian cu-
bature). The latter are distinguished by the fact that
they first construct an approximation to the integrand
itself, typically an interpolant, and then exactly inte-
grate this interpolant to obtain an approximation of
(1). In either case, for a linear cubature method the
output is an approximation

Qn(f∗) :=

n∑
i=1

wif
∗(xi) ≈

∫
D

f∗(x) dπ(x) (3)

based on a set {xi}ni=1 ⊂ D that must be specified.
The point estimate Qn(f∗) is accompanied by an as-
sessment of its error, ε = |I(f∗) − Qn(f∗)|, typically
formulated as the difference ε̃ = |Qn(f∗)−Qm(f∗)| of
two cubature rules2 (though we note that more gen-
eral approaches based on extrapolation are also used;
Richardson and Gaunt, 1927).

2This can be motivated as follows: If Qn(f
∗) is provably

better than Qm(f∗), say |I(f∗) − Qn(f
∗)| ≤ 1

2
|I(f∗) −

Qm(f∗)|, then we have ε = |I(f∗) −Qn(f
∗)| ≤ |Qn(f

∗) −
Qm(f∗)| =: ε̃, so ε̃ is a genuine error bound.

The classical notion of local adaptivity is to recur-
sively partition the integration domain D = ∪Rr=1Dr

into sub-regions Dr over which local cubature rules of
the form (3) are applied. An estimate ε̃r of the er-
ror εr of these rules is produced for each region Dr

and, if the estimated error is too big, those regions
are sub-divided again until a global error tolerance∑R
r=1 ε̃r < τ is satisfied.3 Several such methods have

been proposed, see Gonnet (2012). For example, re-
call the trapezoidal rule onD = [a, b] with dπ(x) = dx,
which has the form,

Trap(f∗, a, b, n) := b−a
2n

(
f∗(a) + f∗(b) (4)

+ 2
∑n−1
i=1 f

∗(a+ i(b−a)
n

))
.

The trapezoidal rule forms the basis for the classical
locally adaptive trapezoidal method:

Algorithm 1 Adaptive Trapezium Method

1: procedure AdapTrapρ,m,k(f∗, a, b, τ)
2: Q1 ← Trap(f∗, a, b,m)
3: Q2 ← Trap(f∗, a, b, 2m)
4: ε̃← |Q2 −Q1|
5: if ε̃ < τ then
6: Î ← Q2

7: else
8: τ ′ ← ρτ

9: Î ←
∑l−1
i=0

AdapTrapρ,m,k
(f∗, a+ (b−a)i

k , a+ (b−a)(i+1)
k , τ ′)

10: return Î

The AdapTrap method is an adaptive trapezoidal rule
where the decision to subdivide into k uniform in-
tervals is determined by the difference between the
composite trapezoidal rule on 2m intervals and the
composite trapezoidal rule on m intervals. The val-
ues ε̃ thus form local error estimates and we accept
our trapezoidal approximation to the integral on the
subinterval only when ε̃ is sufficiently small. The pa-
rameter ρ controls how the error tolerance τ scales at
each recursive step of the algorithm and has natural
choice ρ = 1

k .

Generalisation of the AdapTrap algorithm is straight-
forward through the use of higher-order cubature rules
(e.g. Simpson’s rule or Gaussian quadrature) within
each step of the procedure (Davis and Rabinowitz,
1984; Kahaner and Rechard, 1987; Berntsen et al.,
1991). It is intuitively clear that any such method will
attempt to allocate computational resources to those

3This setting differs slightly to the setting in which BC
is used. Indeed, for the problems on which BC is used,
f∗ cannot in general be repeatedly evaluated until a global
error tolerance is satisfied due to its prohibitive computa-
tional cost.
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regions where approximation of f∗ is most difficult.
As argued in Section 1, this is not a feature of any
existing BC method.

2.2 Standard Bayesian Cubature

In this section we briefly recall the pertinent aspects
of the standard BC method.

Notation Let f∗X with [f∗X ]i = f∗(xi) contain evalu-
ations of the integrand on the ordered n-tuple X =
(x1, . . . , xn) ∈ Dn. For k : D × D → R and
Y = (y1, . . . , ym) ∈ Dm, the matrix KXY is defined
as [KXY ]ij := k(xi, yj). Let also KX(y) be defined as
[KX(y)]i := k(xi, y) whenever y ∈ D. The equivalent
presentations of stochastic processes f : D × Ω → R
and f(x) : Ω → R are used, so that fX where
[fX ]i = f(xi) is a random vector in Rn.

Recall that a stochastic process f is Gaussian if and
only if, for any X ∈ Dn, n ∈ N, the random vec-
tor fX is Gaussian-distributed. Thus a Gaussian pro-
cess f is completely specified by its mean function
m(x) := E[f(x)] and covariance function k(x, y) :=
C[f(x), f(y)] and we write f ∼ GP(m, k). Under mild
regularity conditions (which are beyond the scope of
this work to discuss in detail; see Bogachev, 1998)
it can be shown that the conditional stochastic pro-
cesses f |Dn are well-defined, are also Gaussian, and
have mean and covariance functions

mDn(x) = f∗>X K−1XXKX(x), (5)

kDn
(x, y) = k(x, y)−KX(x)>K−1XXKX(y). (6)

The output of the BC method is the random variable
I(f)|Dn ∼ N (µn, σ

2
n), which can be read off (5) and

(6) as a univariate marginal:

µn =
∫
D
mDn

(x) dπ(x)

= f∗>X K−1XX
∫
D
KX(x) dπ(x), (7)

σ2
n =

∫
D

∫
D
kDn

(x, y) dπ(x)dπ(y)

=
∫
D

∫
D
k(x, y) dπ(x) dπ(y) (8)

−
[∫
D
KX(x) dπ(x)

]>
K−1XX

[∫
D
KX(y) dπ(y)

]
.

The posterior mean (7) is seen to have the same form
as (3). It is natural to select the design X in such a
way that the posterior variance (8) is minimised. Since
(8) does not depend on f∗, no adaptive estimation oc-
curs in the standard BC method and the assessment
of uncertainty provided by (8) is exclusively driven by
the a priori specification of k andX. This behaviour is
unsatisfactory, as posterior variance can be arbitrarily
small whilst the actual error can be arbitrarily large.
However, this property does allow optimal designs X
to, in principle, be pre-computed (Sul’din, 1959, 1960;

O’Hagan, 1991; Minka, 2000). Strategies to ensure an-
alytic expressions for the integrals in (7) and (8) were
proposed in Briol et al. (2019); Jagadeeswaran and
Hickernell (2019). For large n, techniques have been
put forward to facilitate the efficient inversion of the
matrix KXX (Karvonen and Särkkä, 2018; Karvonen
et al., 2019; Jagadeeswaran and Hickernell, 2019).

Proposals that go beyond the standard BC method
were outlined in Section 1. The simplest route to
adaptivity is to consider a parametric family of co-
variance functions kθ and to treat the parameter θ
also as a latent variable to be inferred. For exam-
ple, if kθ(x, y) = θ21e

−‖x−y‖2/θ22 with θ = (θ1, θ2), then
estimation of θ1 corresponds (roughly speaking) to es-
timating the amplitude of the integrand, while θ2 cor-
responds to a characteristic lengthscale for the inte-
grand. This form of adaptation (which may be realised
either through full Bayesian inference for θ or as an
empirical Bayes method) was first empirically demon-
strated to produce reliable uncertainty assessment in
Larkin (1974). However, the stationary form of the
covariance model (i.e. the fact that two parameters θ1
and θ2 are required to describe the entire integrand)
precludes the focussing of computational resources on
those regions in which approximation of the integrand
is most difficult.4 As a result, for integrands involv-
ing spatially-localised variation, existing BC methods
based on a stationary covariance model can be arbi-
trarily inefficient in terms of the number of evaluations
of the integrand.

All existing work on the BC method, with the excep-
tion of the transformed stochastic process models of
Gunter et al. (2014); Chai and Garnett (2019); Kana-
gawa and Hennig (2019), have been based upon a sta-
tionary covariance model.5 Thus, in particular, no
Bayesian analogues of classical locally adaptive meth-
ods have been proposed. In the next section we es-
tablish a cautionary result on the difficulties in devel-
oping a Bayesian analogue of the adaptive trapezoidal
method. This serves as motivation for our novel pro-
posal in Section 4.

3 A Bayesian AdapTrap?

The aim of this section is to discuss how one might
naively attempt to create a direct Bayesian analogue
of AdapTrap. To this end we recall the approach of

4The use of greedy sequential strategies for function ap-
proximation under a stationary covariance model leads to
designs that are essentially space-filling (Cor. 11 of Santin
et al., 2017).

5The latter exceptions propose to focus computational
resources on regions in which f∗(> 0) is large, which in
general is not the same as focussing on regions where ap-
proximation of f∗ is most difficult.



Diaconis (1988), who took a classical cubature rule of
the form (3) and asked “for what prior does (3) arise
as the mean of the posterior marginal distribution of
the integral?”.6 Thus, in the context of creating an
analogue of AdapTrap, we can follow Diaconis and seek
a prior such that the mean of the posterior marginal
for the integral is Trap in (4). Thus we must consider
stochastic processes for which the conditional mean
is the piecewise linear interpolant (over the range of
x1, . . . , xn) of the data Dn on which it is conditioned.

Let C([a, b]) denote the set of continuous real-valued
functions on [a, b] and consider the subset Fρ,m,k,τ ⊂
C([a, b]) of integrands f∗ for which AdapTrapρ,m,k fails
to achieve its stated error tolerance τ upon termina-
tion, or for which AdapTrapρ,m,k fails to terminate at
all (this set is non-empty; e.g. Clancy et al., 2014).
From an inferential perspective, the decision to em-
ploy AdapTrapρ,m,k can be regarded as a belief that
f∗ /∈ Fρ,m,k,τ . Proposition 3.1, presented next, sug-
gests that stochastic process models giving rise to
piecewise linear interpolants are incompatible with the
use of AdapTrapρ,m,k, due to assigning non-zero prob-
ability mass to Fρ,m,k,τ whenever τ > 0. This re-
sult, whose proof is straight-forward and contained in
the supplement, can be interpreted as an average-case
analysis of AdapTrap (Ritter, 2000). Denote the error
function erf(x) := 1√

π

∫ x
−x e

−t2 dt.

Proposition 3.1. Fix a < b, ρ > 0, m ∈ N and k
a positive even integer. Let f∗ be sampled from a
centred Gaussian process on C([a, b]), whose law is
denoted P∗, such that the conditional mean f∗|Dn
is the piecewise linear interpolant (over the range
of x1, . . . , xn) of the data Dn on which it is con-
ditioned. If AdapTrap terminates, denote its error
ερ,m,k,τ (f∗) := I(f∗)− AdapTrapρ,m,k(f∗, a, b, τ), oth-
erwise set ερ,m,k,τ (f∗) :=∞. Then for every τ > 0,

P∗(|ερ,m,k,τ | > τ) > erf(cτ)
[
1− erf(

√
3cτ)

]
,

where c > 0 is a P∗-dependent constant.

Though the probability mass assigned to Fρ,m,k,τ can
be made small, the fact that it is non-zero for all τ > 0
calls into doubt whether direct Bayesian analogues of
classical adaptive methods can exist, in contrast to the
situation for non-adaptive methods (Karvonen et al.,
2018). In Appendix A.2, further average-case analy-
sis is provided, showing that for mis-specified ρ the
expected number of steps of AdapTrap can be un-
bounded. Taken together, our analyses suggest that
classical adaptive methods cannot be directly repli-
cated in BC and a different strategy is needed. In

6Paraphrased. Conversely, Cor. 2.10 of Karvonen et al.
(2018) showed that all non-adaptive cubature rules of the
form (3) arise as the posterior mean of some stochastic
process model.

Section 4 we therefore put forward a de novo BC
method, which achieves adaptivity through a flexible
non-stationary stochastic process model.

4 Adaptive Bayesian Cubature

The aim of this section is to develop a novel BC
method that is locally adaptive, in the sense of fo-
cussing integrand evaluations on spatial regions where
approximation of f∗ is most difficult. The forgoing
discussion in Sections 1-3 suggests that this should be
based on a non-stationary stochastic process model.

4.1 A Non-Stationary Process Model

Several non-stationary stochastic process models have
been developed and in principle any of these could
form the basis for a BC method. Three broad classes of
non-stationary model are those based on deformation
of the domain, partitioning of the domain, and con-
volution over the domain.7 The spatial deformation
approach considers a stochastic process of the form
f(x, ω) = g(v(x), ω), where g is a stationary stochas-
tic process on D and v is a map from D to itself. Such
models are flexible but conditioning on data in this
context can be computationally difficult. The joint es-
timation of g and v was considered in a frequentist
context in Sampson and Guttorp (1992) using thin-
plate splines; analogous Bayesian approaches were de-
veloped in Damian et al. (2001); Schmidt and O’Hagan
(2003); Damianou and Lawrence (2013). A Bayesian
partition model represents a non-stationary process us-
ing piecewise stationary processes, each fitted on one
element of a partition of D (Kim et al., 2005; Gra-
macy and Lee, 2008). The advantage of such a model
is its simplicity and ease to fit, but an unfortunate
consequence is that continuity of the process across
elements of the partition is not easily enforced. The
process convolution approach takes a collection of lo-
cal covariance models and then – roughly speaking –
convolves them to obtain a new, non-stationary global
covariance model (Higdon et al., 1999; Paciorek, 2003).
Theoretical results on the flexibility of these models
have been established (Dunlop et al., 2018).

The process convolution approach was used for the
experiments in this paper. This choice allows for sub-
stantial flexibility to incorporate a priori knowledge
and to adapt, in principle, to non-stationary features of
the integrand.8 Following Paciorek (2003), we adopted

7This discussion is not intended to be comprehensive
and work that does not naturally fall into any of the three
categories identified, such as Ba et al. (2012), is not dis-
cussed.

8Although partition models are closer in spirit to clas-
sical adaptive methods, the fact that they only provide an
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a hierarchical Gaussian process model with spatially-
dependent lengthscale field. The first part of the model
specifies that f |θ ∼ GP(mθ, kθ). The mean function
mθ = c is here taken as a constant c ∈ R and, let-
ting φ : [0,∞) → R be a positive definite radial basis
function, the covariance function has the form

kθ(x, y) =
σ2
√
`(x)`(y)√

`(x)2 + `(y)2
φ

(
‖x− y‖√
`(x)2 + `(y)2

)
.

The parameters to be jointly inferred are θ =
{c, σ, `(·)}, where σ > 0 is an amplitude parameter and
` : D → [0,∞) is a lengthscale field. The second part
of the hierarchical model specifies a prior distribution
for θ. The lengthscale `(·) was itself parametrised as
a piecewise linear and non-negative function through-
out. Specific choices for φ, the prior for θ and the
parametrisation of `(·) are deferred to Section 5.

4.2 Adaptive Selection of the Point Set

A sequential approach to selecting the xi was adopted,
based on the minimum expected variance acquisition
function (2) of Osborne (2010). This can be viewed
as a specific instance of sequential Bayesian optimal
experimental design (BOED; Chaloner and Verdinelli,
1995).9 As is typical in BOED, (2) is an intractable
global optimisation problem over D that must in prac-
tice be approximated (e.g. Overstall et al., 2018). Two
practical algorithms are now presented. In what fol-
lows we let D0 be pre-specified and let Dn ⊂ D denote
a finite set of reference points in D over which the op-
timisation (e.g. grid search) required at stage n of the
algorithm is performed; full details are reserved for Ap-
pendix D. Recall that we do not mandate a stopping
rule as part of a BC method. However, if required
then the standard deviation of I(f)|Dn can be used
to decide when the algorithm should be terminated.
For completeness we present our algorithms with an
explicit stopping rule included.

Algorithm 3, which is reserved for the supplement, uses
Markov chain Monte Carlo (MCMC) to approximate
the intractable acquisition function (2), in an idealised
approach that we call AdapBC. The computational re-
quirement of MCMC is assumed to be negligible com-
pared to the cost of evaluating the integrand. However,
the need to ensure convergence of the Markov chain
introduces practical difficulties for the user and there-
fore we focus on an empirical Bayes (EB) alternative

approximate notion of conditioning precludes their use for
rigorous uncertainty quantification in a BC method.

9Recall that all the standard notions of optimality, such
as A- andD optimality, coincide in the univariate Gaussian
context and correspond to minimising the a priori expected
variance of the quantity of interest.

Algorithm 2 (E) Adaptive Bayesian Cubature

1: procedure E-AdapBC(f∗, τ)
2: n← 1, ε̃←∞
3: while ε̃ ≥ τ do
4: θn ← arg maxθ p(Dn−1 | θ)− r(θ)
5: Sample (fm)Mm=1 ∼ f | θn,Dn−1 . M � 1
6: for each x in Dn do
7: D̃n ← Dn−1 ∪ {(x, fm(x))}
8: E(x)← E[V[I(f)|θn, D̃n]|θn,Dn−1]

9: Pick xn ∈ arg minx∈Dn
E(x)

10: Dn ← Dn−1 ∪ {(xn, f∗(xn)}
11: n← n+ 1, ε̃← V[I(f)|θn,Dn]

1
2

12: return I(f)|θn,Dn

in Algorithm 2, called E-AdapBC, wherein the parame-
ter θ is estimated rather than being marginalised. To
avoid over-confident estimation10, we regularised the
EB estimator using an additional penalty term r(θ)
specified in Appendix D. An advantage of E-AdapBC
over AdapBC is that the computation of the expected
variance in line 8 of Algorithm 2 has a closed form, vis
a vis (8). This completes the methodological develop-
ment; in the next section the proposed methods are
empirically assessed.

5 Experimental Assessment

The purpose of this section is to investigate whether
(AdapBC and) E-AdapBC provide the local adaptation
that is missing from standard BC. For the remain-
der, we use StdBC to signify the simplified version of
E-AdapBC in which the lengthscale field `(·) is simply
a constant, to be estimated. All other settings (e.g.
the choice of φ), were taken to be identical between
StdBC and E-AdapBC. All methods that we consider
incur an auxiliary computational cost that is orders
of magnitude larger than that which would be associ-
ated with a classical cubature method. BC methods
are motivated by situations where evaluation of f∗ is
associated with a substantial computational cost (an
explicit example is provided in Section 5.3), so that
such auxiliary computation can be justified. For this
reason, computational cost is quantified in the results
that follow only through the number of evaluations of
the integrand.

A BC method is considered to perform well if, loosely
speaking, the posterior mean µn(f∗) := E[I(f)|θn,Dn]
provides an accurate point estimate of (1) and the
posterior spread σn(f∗) := V[I(f)|θn,Dn]

1
2 is well-

10The use of EB in the context of the BC method was
shown to result in over-confident estimation at small n in
Briol et al. (2019).
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Figure 1: Comparison of AdapTrap, StdBC and E-AdapBC. [Here represents the true integrand f∗,
represents the mean of the conditional process f |Dn and represents pointwise credible intervals. The tick
marks indicate where the integrand was evaluated. For StdBC and E-AdapBC the error ε := |µn(f∗)−I(f∗)|,
the z-score [µn(f∗)− I(f∗)]/σn(f∗) and the number of integrand evaluations n are reported. For AdapTrap the
error ε, the global error tolerance τ , the estimated error ε̃ :=

∑
r ε̃r and the number of integrand evaluations n

are reported. Inset panels compare the true value I(f∗) ≈ 0.011 to the distribution I(f)|θn,Dn. Settings for all
methods are detailed in Appendix E.]

calibrated as an indicator of the true error |µn(f∗) −
I(f∗)|; in this paper calibratedness is quantified by
Zn(f∗) := µn(f

∗)−I(f∗)
σn(f∗)

whose values should be plau-
sible as samples from N (0, 1) when the BC method
is well-calibrated (Briol et al., 2019). The ideas are
illustrated next in Section 5.1. In Section 5.2 the re-
sults of detailed synthetic assessment are presented
and in Section 5.3 we report results based on a re-
alistic integration task involving trajectories of an au-
tonomous robot. All results in this paper can be re-
produced in Python using code available at github.
com/[anonymised].

5.1 Illustration of Adaptation

Figure 1 compares the performance of AdapTrap (top),
StdBC (middle) and E-AdapBC (bottom) on a toy in-
tegrand f∗ in dimension d = 1. Full details of the
specific settings used for all methods are reserved for
Appendix E.1. Theoretical analysis of StdBC indicates
that the points X at which the integrand is evaluated
are essentially space-filling (Cor. 11 of Santin et al.,
2017). In contrast, both AdapTrap and E-AdapBC de-
ploy their computational resources in the region where
f∗ is varying the most. AdapTrap provides an accurate
point estimate for (1) and a deterministic error esti-

mate ε̃. In each case ε < τ , i.e. the true error has been
controlled succesfully by AdapTrap. In contrast, both
BC methods provide distributional output whose un-
certainty is well-calibrated once n is large enough that
the regions of highest variation have been found. Of
course, Figure 1 studies a single integrand and a more
systematic assessment is performed next.

5.2 Synthetic Assessment

To assess the proposed methods on a wider range of
test problems, we automatically generated integrands
f∗i , i = 1, . . . , 100, in a manner described in Ap-
pendix E.2. The negligible cost of evaluating the syn-
thetic f∗i ensures that their integrals I(f∗i ) can be ac-
curately approximated using a classical method, pro-
viding a gold-standard for assessment. The methods
AdapBC and E-AdapBC were compared to StdBC.11 Fig-
ure 2 (top row) displays the mean of the relative er-
rors

∣∣∣µn(f
∗
i )−I(f

∗
i )

I(f∗i )

∣∣∣ for StdBC and E-AdapBC. Results
are reported for the case dπ(x) = dx and in dimension
d = 1 (left) and d = 3 (right). It can be seen that
the conclusions of Figure 1 hold in broad terms over

11The f∗i can take both positive and negative values, so
the methods of Gunter et al. (2014); Chai and Garnett
(2019) cannot be directly applied.
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Figure 2: Synthetic assessment in (a) d = 1 and (b)
d = 3 for StdBC ( ) and E-AdapBC ( ), where 100
integrands were randomly generated. Top row: the
mean relative error against the number of evaluations
n. Bottom row: the coverage frequencies for 95% cred-
ible intervals for each method. The notional coverage
( ) is indicated. [Standard errors displayed.]

an ensemble of integrands, though of course there ex-
ist particular integrands for which StdBC happens due
to chance to outperform E-AdapBC. The bottom row
of Figure 2 reports coverage frequencies for the 95%
highest-posterior density interval. Over-confidence is
apparent at small values of n, especially for StdBC and
for d = 3, but for larger n (when the most variable
regions of the integrand are discovered) the methods
are better calibrated. The impact of the choice of ra-
dial basis function φ(·) and the parametrisation of the
lengthscale field `(·) was investigated in Appendix E.3.
Results for AdapBC were broadly similar to E-AdapBC
after manual tuning of the MCMC and these are de-
ferred to Appendix E.4.

5.3 Autonomous Robot Assessment

The final experiment concerns an application of
E-AdapBC to autonomous robotics (Chrono, 2019a).
Here x ∈ R3 represents parameters that describe the
performance of a set of actuators in an autonomous
walking robot. The notional value and actual value
of x will not be equal in general and there is inter-
est in understanding the effect of parameter variabil-
ity on the actual trajectory of the robot; see Figure 3a.
Let (z1(x), z2(x)) denote the spatial coordinates of the
robot after a fixed sequence of commands have been
completed. Conceptually, the variability in the pa-
rameters can be represented (after re-parametrisation)
as x ∼ N (0, I3×3) and there is interest in evaluating
moments I(f∗) where f∗ ∈ {z1, z2, z21 , z22}. The situ-
ation typifies instances where f∗ is associated with a
substantial computational cost, since simulation of the
robot moving requires the numerical solution of a sys-

(a)

Mean Sq. Error (9)
f∗ StdBC E-AdapBC
z1 0.895

±0.07
0.293
±0.03

z2 14.3
±2.05

2.28
±0.26

z21 0.884
±0.11

0.336
±0.07

z22 1527
±268.13

132.13
±11.13

(b)

Figure 3: Autonomous robot assessment. (a) Trajec-
tories produced by the robot. (b) Error as quantified
in (9), for each of integrand f∗ relating to the final
position of the robot. [Standard errors displayed.]

tem of ordinary differential equations. The methods
StdBC and E-AdapBC were each applied to this task,
with full details contained in Appendix E.5. The in-
tractability of the true integrals I(f∗) precludes a di-
rect assessment as in Section 5.2. Instead, we focus on
estimation accuracy (only) and report an approximate
bound based on Jensen’s inequality and Monte Carlo:

E[(I(f)− I(f∗))2|θn,Dn] ≤ E[I((f − f∗)2)|θn,Dn]

=
∫
D
E[(f(x)− f∗(x))2|θn,Dn]dπ(x)

≈ 1
m

∑m
i=1 E[(f(yi)− f∗(yi))2|θn,Dn] (9)

where yi
iid∼ N (0, Id×d) and m = 264. For each inte-

grand, E-AdapBC outperformed StdBC as quantified by
(9); see Figure 3b.

6 Conclusion

This paper highlighted the important issue of local
adaptivity in the context of BC methods and dis-
cussed why naive constructions based on lifting classi-
cal adaptive methods to the Bayesian framework can
fail. To address these issues, a novel locally adaptive
BC method was proposed and demonstrated to per-
form well in both a synthetic and realistic empirical
assessment. The construction was quite general, in the
sense that essentially any sufficiently flexible Bayesian
regression model can be used, and investigation of al-
ternative regression models can form the basis of fur-
ther work. Also of interest, non-myopic alternatives to
(2) have been proposed for BC (Jiang et al., 2019) and
these could also be investigated.

Our focus was on cubature, but local adaptation can
be considered in the context of other probabilistic nu-
merical methods (Hennig et al., 2015). For exam-
ple, adaptive time-stepping has recently received at-
tention in the probabilistic numerical solution of ordi-
nary differential equations (Chkrebtii and Campbell,
2019) and analogous methods for partial differential
equations have yet to be developed.
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