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Evaluating Cognitive Load of Text-To-Speech (TTS) synthesis
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Abstract
Current evaluation methods for text-to-speech (TTS) synthesis rely solely on subjective rating scores. These
tests typically account mostly for how natural or intelligible the voice is. With state-of-the-art systems, these
measures are approaching ceiling and therefore alternative measures such as the cognitive load may become
more meaningful. To our knowledge, there is little or no recent work evaluating the cognitive load of state-
of- the-art text-to-speech systems. We use pupillometry as a measure of cognitive load. The pupil has been
found to dilate upon increased cognitive effort when carrying out a listening task. Currently we are evaluating
speech generated by a Deep Neural Network TTS synthesiser. In our method, we generate stimuli that step
incrementally from natural speech to synthesized speech by changing only a single feature at a time. Stimuli are
presented to listeners in speech-shaped noise conditions.
Keywords: text-to-speech, evaluation, cognitive load

1 INTRODUCTION
Text-to-speech (TTS) is artificial speech that is generated using a computer when a transcript is provided as
input and the corresponding speech waveform is the output. Many real-world applications today, like voice-
assistants such as Alexa and Google Home, speak using TTS. As these applications become more popular, the
impact that such technology has on the end-user becomes important. Some studies have lead us to believe
that whilst listening to synthetic speech our human cognitive processing system is placed under greater demand
than listening to human speech. Therefore, if the quality of synthetic speech is not as high as natural speech
this could lead to negative implications such as fatigue. Current evaluation methods for text-to-speech synthesis
is limited and often does not include any measurement of cognitive load. Cognitive load was last measured
for TTS when rule-based systems existed and therefore have become outdated. Cognitive load has yet to be
measured on state-of-the-art TTS systems. Therefore, the aim of this work is to measure cognitive load of
Deep Neural Network (DNN)-based TTS and understand the shortfalls in comparison to natural speech that
lead to an increased cognitive load.

2 METHODOLOGY
2.1 Cognitive load measurement
Initial studies in the 1960’s [5] measured pupil size while observers made pitch judgments. Results showed that
a substantial dilation occurs immediately after the presentation of the comparison tone. Also, the size of the
response was found to be closely correlated to the difficulty of the discrimination task. These results provided
support for using pupillometry as an index of cognitive load. Recently, pupillometry has become popular in
measuring cognitive load in speech understanding. It is typically referred to as listening effort [7, 6, 11].
Findings suggest listening effort correlates (positively) with pupil dilation. The more effort utilized, the larger
the pupil dilates. These studies investigated listening effort of natural speech in the presence of noise which
is intuitively more effortful. Therefore, following a similar approach we developed a pupillometry paradigm to
measure the cognitive load of synthetic speech that was presented in [2] and is used in this work.
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Figure 1. Architecture of a conventional DNN-speech synthesis system

2.2 Conventional DNN-speech synthesis
The architecture of a DNN-speech synthesis system is illustrated in Figure 2. In a conventional DNN system,
text and audio pairs are used to train the models. Text is first processed using a front-end (eg., Festival in [1]).
The objective of the front-end is to create a linguistic specification which captures important textual features
like pronunciation, contextual features, stress patterns, part-of-speech etc. In the feature extraction block, the
vocoder (eg., WORLD vocoder in [8]) extracts acoustic speech parameters from natural speech. Following
the standard "build your own voice" recipe in Merlin [10], the features extracted are mel-cepstral coefficients
(MCC), logarithmic fundamental frequency (F0) and band-aperiodicities (BAP). Before training the duration
model, forced alignment is performed to get frame-by-frame time-aligned labels. These time-aligned labels
are used to train the duration model. The acoustic model is then trained frame-by-frame using the linguistic
features as input and the acoustic features as output. At synthesis time, duration predicted by the duration
model are used by the acoustic model to generate the acoustic speech parameters features frame-by-frame.
These parameters are then passed to the vocoder which the generates the waveform.

2.3 Experimental Conditions
The conditions evaluated consist of varying configurations of a DNN-based speech synthesis that steps gradually
from natural to synthetic speech by changing only one acoustic speech parameter (described in Section 2.2) at
a time. To do this, a full DNN TTS system was first trained. Then, to construct the intermediate configurations
(A and B) we swapped the predicted mel-cepstral coefficients with the mel-cepstral coefficients extracted from
natural speech. In the same manner we swapped the fundamental frequency speech parameters. Thereby creating
mixtures of synthetic spectral features and "perfect" F0 features and vice versa. In another configuration (C), we
generated acoustic features using natural duration as opposed to using the duration model. In addition, natural
speech, vocoded speech and full TTS were included in the evaluation. In total 6 conditions were evaluated.

2.4 Experimental set-up
Our pupillometry experimental set-up comprises an SR-Eyelink eye-tracker that collects pupil measurements at
500Hz. Participants are recruited and the experiment lasts 30-45 minutes. The task of the listener is to fixate on
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Figure 2. Pupil dilations when listening in -1dB, -3dB, -5dB, Dur: Duration)

a black cross shown in the centre of the screen whilst listening to sentences through headphones. To confirm
the listener is listening and paying full attention they are expected to repeat the sentence. This is also used
to calculate recall accuracy. The experiment is divided into blocks each containing one of the TTS system
configurations evaluated. After each block, the listener is asked to rate their: difficulty in listening, perception
of how natural the voice sounded and motivation to pay attention.

2.5 Stimuli
For each condition, 100 sentences from the Glasglow Herald Newspaper were synthesised. Each synthesised
sentence was mixed with speech shaped noise at signal-to-noise-ratios of -1dB, -3dB and -5dB. 54 Native
English participants were recruited and divided equally in each of the three experiments: -1dB, -3dB and -5dB.

3 RESULTS AND DISCUSSION
All pupil data collected was first processed prior to analysis which includes: Trial exclusion, deblinking and
downsampling. Figure 2 presents the average of all remaining trials across all participants for each condition
evaluated. Pupil dilation is presented as the event related pupil dilation (ERPD) % change from the baseline
which is calculated as follows:

ERPD% = (pupil_size−baseline)
100

baseline
(1)

where pupil_size is a single pupil size sample in the trial and the baseline is the average of all pupil size
samples that falls in a 1 second window prior to the onset of the sentence (illustrated by the black line in
Figure 2. This equation is applied to each sample from the onset on the sentence until the verbal response.
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In all conditions we observe that the ERPD is the lowest when listening in noise at -1dB SNR. This is in line
we what we expect, if the task is easy then pupil dilation should be low. For Natural speech and configuration
C we observe that the ERPD remains the same even in the -3dB condition. For these two conditions, this
suggests that the listening effort remained the same even though the SNR level was more challenging. Only
in the most difficult SNR level at -5dB, an increase in pupil response was observed. For Vocoded speech, we
observe that in both -3dB and -5dB they pupil response remains the same. This suggests that listeners found it
equally effortful at -3dB and -5dB. The ERPD evoked at -3dB for Vocoded speech was the same height as that
for -5dB in Natural speech. Therefore, this suggests that listeners reached ceiling for Vocoded speech already at
the easier SNR of -3dB. For the remaining three configurations A and B and Full DNN TTS, we observe that at
the -5dB SNR, the evoked pupil response was lower than -3dB. A possible explanation for this finding is that
listeners could not cope when listening in -5dB SNR level. As consequence, the pupil response reflects fatigue.
This result was also found in [9]. Two out of the three systems that struggle in the -5dB SNR comprise of
spectral features that have been predicted from the text. Configuration C, which performed the best differs only
to Synthetic speech in duration. Therefore, the key findings of this work is that poor spectral prediction and
poor duration prediction contribute to an increased cognitive load.

(All pupil data was statistically analysed using growth curve analysis and presented in [3] together with a more
detailed discussion of the findings.)

4 CONCLUSION
The work described here is one of many experiments that have been conducted towards measuring the cognitive
load of text-to-speech synthesis [2, 4, 3]. The main contributions of cognitive load we have discovered thus
far include poor spectral and duration prediction. Ongoing work aims to discover the influence of the vocoder
itself by making comparisons with state-of-the-art phase and neural vocoders as opposed to the conventional
source-filter vocoders used in this work.
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