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Abstract

HIV infection can be cleared with antiretroviral drugs if they are administered before expo-

sure, where exposure occurs at low viral doses which infect one or few cells. However, infec-

tion clearance does not happen once infection is established, and this may be because of

the very early formation of a reservoir of latently infected cells. Here we investigated whether

initial low dose infection could be cleared with sub-optimal drug inhibition which allows ongo-

ing viral replication, and hence does not require latency for viral persistence. We derived a

model for infection clearance with inputs being drug effects on ongoing viral replication and

initial number of infected cells. We experimentally tested the model by inhibiting low dose

infection with the drug tenofovir, which interferes with initial infection, and atazanavir, which

reduces the cellular virion burst size and hence inhibits replication only after initial infection.

Drugs were used at concentrations which allowed infection to expand. Under these condi-

tions, tenofovir dramatically increased clearance while atazanavir did not. Addition of

latency to the model resulted in a minor decrease in clearance probability if the drug inhib-

ited initial infection. If not, latency strongly decreased clearance even at low latent cell fre-

quencies. Therefore, the ability of drugs to clear initial but not established infection can be

recapitulated without latency and depends only on the ability to target initial infection. The

presence of latency can dramatically decrease infection clearance, but only if the drug is

unable to interfere with infection of the first cells.

Author summary

A feature of viral infections such as HIV is that successful transmission occurs with low

probability and is preventable by administration of drugs before exposure to the virus.

Yet, once established, the infection is difficult or impossible to eradicate within its host. In

the case of HIV, this may be explained by the establishment of a latent reservoir of infected

cells insensitive to antiretroviral drugs. Here we use a combined modelling and experi-

mental approach to determine whether low dose HIV infection can be cleared at drug

concentrations which allow the expansion of HIV infection once established. We show
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that such sub-optimal drug levels are effective at clearing infection, provided they target

the virus before it infects the first set of cells. The difference in the effect of drugs before

and after the initial cells are infected does not require the establishment of viral latency.

Rather, it is a quantitative effect, where the low infection dose can be cleared before ampli-

fying viral numbers by infecting the first cells.

Introduction

HIV can be suppressed with antiretroviral therapy (ART) to clinically undetectable levels in

the blood. However, established HIV infection cannot be cleared with ART, and generally

rebounds several week after ART interruption. This persistence is driven by a reservoir of

infected cells which decays minimally in the face of ART [1, 2]. There is extensive evidence

that a key component of the HIV reservoir is a population of latently infected cells: cells where

functional proviral HIV DNA is integrated into the cellular genome but is not expressed [3–6].

Such cells may start producing virus when they are activated [7, 8] and due to stochastic fluctu-

ations in HIV Tat protein production, initiating a positive feedback loop in HIV gene expres-

sion [9, 10].

The exception to the failure of ART to clear infection occurs when ART is present during

or immediately after an infection attempt. An approach termed pre-exposure prophylaxis

(PrEP) aims to administer ART to uninfected, at risk individuals to take advantage of this fact.

The majority of clinical studies have shown that PrEP is effective in a variety of populations,

transmission modes, and drug delivery modalities [11–19].

The shift from an infection which can be cleared with ART to one which cannot is generally

attributed to the formation of the latent reservoir. The early formation of a reservoir of infected

cells in the face of ART has been demonstrated in a non-human primate model [20] and

latency has been proposed to be a key driver in the initial establishment of HIV infection [21].

While this mechanism is consistent with the very early transition to irreversible infection, it

relies on the assumption that ART regimens completely inhibit viral replication in the mucosal

tissues of the genital and rectal tracts, the initial HIV infection sites, and that the infection

becomes irreversible if the latent reservoir is established before this complete inhibition takes

place.

It may be important to consider whether a mechanism which does not rely on the assump-

tion of complete suppression of viral replication in the mucosa with ART, and therefore the

rapid formation of a latent reservoir, can lead to this observed behavior of HIV infection.

There are several reasons to consider such an alternate: 1) While there is strong evidence that

ART levels as measured in the blood are more than sufficient to completely suppress HIV rep-

lication [22], drug penetration may be lower in the mucosa. Therefore, whether inhibition is

complete in this compartment is less clear [23]; 2) a challenge in PrEP is to maintain adher-

ence to the treatment, as it is administered to uninfected individuals [11–14, 24–26]. If

adherence to PrEP is variable, sub-optimal ART concentrations should occur in at least a

subset of treated individuals. PrEP was shown to be effective in a non-human primate model

of low dose infection even when dosing was intermittent [27], suggesting it may still be

effective under conditions of sub-optimal drug; 3) incomplete suppression of viral replication

may be relevant to future PrEP approaches [28] which may use agents that have advantages

such as long half-lives but do not completely inhibit HIV replication; 4) it may be relevant to

understanding basic principles of initial viral infection by using the well characterized HIV

Blocking initial HIV cellular infection is essential for clearance at sub-optimal drug
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infection system which has as a toolkit antiretroviral drugs with different mechanisms of

action.

An alternative mechanism would need to explain why, if infection can expand, ART can

nevertheless inhibit infection if administered very early after exposure. The alternative hypoth-

esis we propose is that if the initial number of infected cells is small (*1), it is possible to clear

initial infection at sub-optimal inhibitor levels, where such sub-optimal levels would allow

infection to expand if the number of initial infected cells was larger. The key conditions are a

low initial number of infected cells and an inhibitor which acts before the first cell is infected.

The basic reasoning is that under these conditions, the first infected cell is either present or

absent. If the inhibitor succeeds in eliminating that infected cell, the infection is cleared

regardless of the fact that the infected cell could initiate an expanding infection.

The evidence that a low number of initial infected cells is in fact the physiological condition

in vivo is that the probability for an individual exposed to HIV by sexual contact to become

infected does not exceed 0.02 per sexual act under any set of conditions and is usually much

lower [29, 30]. Moreover, infection is established most often with a single viral founder clone

[31, 32], and experimental infection with SIV in non-human primates shows the existence of

an infection bottleneck at initial infection [33, 34]. These observations indicate that initial

transmission is at a low viral dose, sufficient to infect at most one or few cells. This may also be

consistent with initial HIV transmission occurring by cell-free HIV infection, where cell-free

virions rely on diffusion to reach an infectable cell and therefore have a low probability to

infect [35–51]. In contrast, an infected cell is likely to deliver considerable numbers of virions

(103 to 104 virions are produced per cell [52, 53]) if it is at close range.

To test whether it is necessary to inhibit before the first infected cells for sub-optimal

inhibition to be effective, it is possible to use antiretroviral drugs with different mechanisms

of action. HIV reverse transcriptase inhibitors (RTI) such as tenofovir (TFV) prevent the

initial infection of the cell but do not interfere with viral production from an already

infected cell. That is, they decrease infection frequency. Protease inhibitors (PI) such as ata-

zanavir (ATV) do not interfere with cellular infection but reduce the number of viable

mature virions an infected cell produces—the burst size per cell of viable virions. The effect

of decreasing infection frequency or viral burst size should be symmetrical at a high viral

dose: The number of successful infections will be decreased if fewer virions successfully

infect cells or if the ability of infected cells to produce viable virions is reduced (Fig 1, left

panel). However, these effects may not be symmetrical at an initial low viral dose (Fig 1,

right panel). Since PIs act with a delay—protease mediated cleavage occurs in the virion dur-

ing budding from an already infected cell—they can be used to study the effects of the delay

on the probability of infection clearance with drug when the initial viral dose is only suffi-

cient to infect one or few cells.

Here we tested the hypothesis that the probability of HIV infection clearance with drug lev-

els which allow for viral replication in established infection depends on preventing initial

infection of the first one or few cells. We modeled HIV infection as a function of the measur-

able initial number of infected cells (N0) and the basic reproductive ratio (R0)—the number of

cells infected on average by one infected cell when infectable cells are not limiting. We then

performed experiments with low N0 and two types of inhibition: reduction of infection fre-

quency by TFV and reduction of viral burst size per cell by ATV. With both drugs, we used a

drug concentrations where R0 > 1 in the presence of drug. That is, infection could expand. We

observed that while both drugs reduced R0 to a similar extent at the concentrations used, only

TFV, which prevented successful infection of the first set of cells, was effective at clearing

infection.

Blocking initial HIV cellular infection is essential for clearance at sub-optimal drug
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Materials and methods

Ethics statement

The study protocol for blood collection from healthy donors was approved by the University

of KwaZulu-Natal Institutional Review Board (approval BE083/18). Blood was obtained with

informed written consent from each donor.

Inhibitors, viruses and cells

The following reagents were obtained through the AIDS Research and Reference Reagent Pro-

gram, National Institute of Allergy and Infectious Diseases, National Institutes of Health: the

antiretroviral drugs ATV and TFV; RevCEM cells from Y. Wu and J. Marsh; HIV-1 NL4-3

CCR5 tropic infectious molecular clone (pNL(AD8)) from E. Freed; pBABE.CCR5, from N.

Landau. Cell-free virus was produced by transfection of HEK293 cells with pNL(AD8) using

TransIT-LT1 (Mirus) transfection reagent. Supernatant containing released virus was har-

vested two days post-transfection and filtered through a 0.45 micron filter (GVS). The number

of HIV RNA genomes in viral stocks was determined using the RealTime HIV-1 viral load test

(Abbott Diagnostics). The RevCEM HIV infection GFP indicator cell line was modified as fol-

lows for experiments with the CCR5 tropic virus: The E7 clone was generated from RevCEM

cells as described in [36]. Briefly, the RevCEM cell line was sub-cloned by limiting dilution.

Fig 1. Low dose HIV transmission is vulnerable to clearance before infection of the first cells. Illustrated is partial

inhibition of infection (R0 * 2 with drug) with drugs such as a reverse transcriptase inhibitor (RTI), which acts before

HIV integrates into the cellular genome, and a protease inhibitor (PI), which acts after the infection of the first cells by

interfering with HIV maturation. Left panel shows high dose transmission between individuals, inhibited by drugs at

levels where infection is still able to replicate. Here, the effects of the RTI and PI are symmetrical and neither clears

infection. Right panel shows low dose transmission between individuals inhibited at the same drug levels. While the

RTI may not clear every infection attempt, it may be successful at clearing infection if the number of infection attempts

are few. In contrast, once the first cells are infected, as would occur with the PI, this advantage is lost. In the event R0 ⪅
1 with drug, both drug mechanisms can clear infection.

https://doi.org/10.1371/journal.pcbi.1007482.g001
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Clones derived from single cells were expanded into duplicate 96-well plates, one optical and

one standard tissue culture for continued growth. The optical plate was infected with HIV

strain NL4-3 virus and optical wells were scanned by microscopy to select clones with highest

infection percentage by GFP expression. The clone E7 was selected based on greater than 70

percent GFP positive cells upon infection, expanded from the uninfected replicate plate and

frozen. To generate the CCR5 expressing B8 reporter clone, RevCEM-E7 cells were infected

with the pBABE.CCR5 retroviral vector which stably expressed CCR5 under the LTR pro-

moter. Cells were sub-cloned by limiting dilution. Clones derived from single cells were

expanded into duplicate 96-well plates, one optical and one standard tissue culture for contin-

ued growth. The optical plate was infected with HIV strain NL(AD8) CCR5 tropic HIV and

wells were scanned by microscopy to select clones which maintained similar GFP expression

to the parental RevCEM-E7 clonal cell line. The clone RevCEM-B8 was selected based on

greater than 70 percent GFP positive cells upon infection, expanded from the uninfected repli-

cate plate, and frozen. Cell culture medium was complete RPMI 1640 supplemented with

L-Glutamine, sodium pyruvate, HEPES, non-essential amino acids (Lonza), and 10 percent

heat-inactivated FBS (Hyclone).

Infection and flow cytometry

For determination of drug effect on R0 and N0, cells were infected with 2.5 × 107 viral RNA

copies in 2ml of cell culture containing 5 × 105 cells/ml. The number of infected cells was

acquired every 2 days with a FACSCalibur machine (BD Biosciences) using the 488nm laser

line. Flow rate on the machine was measured at each time-point, and acquisition time was

multiplied by the inverse of the flow rate to obtain the number of infected cells per milliliter.

For experiments measuring Pdrug
c , 200 μl of cells at a density of 5 × 105 cells/ml were infected

with 6.3 × 103 viral RNA copies. Results were analyzed using FlowJo 10.0.8 software. The back-

ground frequency of positive cells was determined by acquiring uninfected samples (n = 17

from 4 independent experiments). A sample was scored as infected if the number of GFP posi-

tive cells was greater than that in the highest background samples (0.01% positive cells).

Passaging of infected cell cultures

For determination of drug effect on R0 and N0, the uninfected and drug treated cell cultures

were passaged at a split ratio of 1:2 every 2 days, where half the cell culture was removed and

fresh media with drug (for TFV and ATV) or without drug (for uninfected cells) was added.

Proliferation of uninfected cells was sufficient to maintain uninfected cell numbers, and infec-

tion was below 5 percent for both drug conditions at all time-points, ensuring target cells were

not limiting. For the no drug condition, the infection expanded much more rapidly. Therefore,

the infected cell culture was passaged by diluting the infected cells 1:100 every 2 days into

uninfected cells. Hence, 20μl infected cells were added to 2ml of fresh, uninfected cells at

5 × 105 cells/ml. The removed fraction of cells was used to detect infection by flow cytometry.

For experiments measuring Pdrug
c , cell cultures with either no infection or containing ATV or

TFV, passaging conditions were the same as for the experiments used to determine drug effect

on R0 except that no culture was removed. Instead, new media with drug was added for the

TFV and ATV conditions, and new media with no drug was added for the uninfected condi-

tion. The infection volume therefore doubled every 2 days, and the cell culture was transferred

to larger volume wells to preserve a constant surface to volume ratio. After 8 days (4 passages),

cells were spun down, washed once in medium with no drug, and resuspended at 5 × 105 cells/

ml in fresh medium with no drug. Cells were then further passaged in the absence of drug for

6 days (3 passages) using a 1:2 dilution every 2 days to amplify any infection in the culture. For

Blocking initial HIV cellular infection is essential for clearance at sub-optimal drug
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infection in the absence of drug, cells were passaged for 6 days (3 passages) using a 1:2 dilution

every 2 days with fresh medium without removing any of the cell culture. The number of

infected cells was acquired at the end of the experiment (14 days post-infection for the unin-

fected, TFV, and ATV conditions, and 6 days for the no drug infection condition) with a

FACSCalibur machine as above.

Measurement of infected cell half-life

For determination of the half-life of infected cells in the presence of ATV, RevCEM-B8 cells

were pre-incubated with 16 nM ATV for 48h. 106 cells/ml were then infected with NL(AD8)

in the presence of ATV to obtain saturating infection (approximately 70 percent GFP positive

resulting from 109 viral RNA copies) so that the population of uninfected cells was small and

reduction in infected cell number due to cell death could be tracked without the confounding

effect of new infections. The cells were maintained with ATV and the number of live infected

cells was tracked 2, 4 and 6 days post-infection by pulsing cells with 4 μg/ml of the death detec-

tion dye propidium iodide (Sigma-Aldrich) and acquiring for 1 minute with a FACSCalibur

machine.

Measurement of infection clearance in peripheral blood mononuclear cells

Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation

using Histopaque 1077 (Sigma-Aldrich) and cultured at 2 × 106 cells/ml in complete RPMI

1640 medium supplemented with L-glutamine, sodium pyruvate, HEPES, and non-essential

amino acids (Lonza), 10 percent heat-inactivated FBS (GE Healthcare), and IL-2 at 5 ng/ml

(PeproTech). Phytohemagglutinin at 12 μg/ml (Sigma-Aldrich) was added for 1 day to activate

cells. For cell-free infection, PBMCs were pretreated with either TFV, ATV or no drug for 48

hours after activation and before infection. Cells were then infected with 2 × 108 viral RNA

copies of NL(AD8) in 1ml of culture. 2 days post-infection, the number of infected cells was

determined by fixing and permeabilizing PBMCs using the BD Cytofix/Cytoperm Fixation/

Permeabilization kit (BD Biosciences) according to the manufacturer’s instructions. Cells were

then stained with anti-HIV p24 FITC conjugated antibody (KC57-FITC, Beckman Coulter,

Brea, CA) to detect the presence of intracellular HIV Gag protein. For coculture infection,

PBMCs were activated as above. After activation, cells were split into two fractions: donor cells

infected with cell-free virus, and target cells to be infected by the addition of the infected donor

cells. Donor cells were infected in the absence of drug with 2 × 109 viral RNA copies of NL

(AD8) in 2ml of culture. Target cells were incubated with TFV or ATV. 1 day post-donor cell

infection, TFV or ATV was added to donor cells. 2 days post-donor cell infection, infected

donor cells were stained with carboxyfluorescein succinimidyl ester at 1.5μM (CFSE, Thermo

Fisher Scientific) vital stain to differentiate them from target cells, and added to target cells at

1:300 p24-positive infected donor to uninfected target cell ratio. 2 days post target infection,

the number of HIV infected, CFSE-negative target cells was quantified by fixing and permeabi-

lizing as for cell-free infection and staining with anti-HIV p24 PE conjugated antibody

(KC57-PE, Beckman Coulter, Brea, CA). For determination of clearance probability, 0.5ml of

PBMCs at 106 cells/ml were activated as above and pre-incubated with drug for 48h, then

infected with 2.5 × 105 viral RNA copies of cell-free NL(AD8). After 2 days, cells were spun

down and resuspended into new growth media with drug. After 4 days, cells were washed in

2ml growth media, then resuspended in 0.5 ml media without drug and added to 1.5ml

RevCEM-B8 cells at 0.7 × 106 cells/ml to amplify infection. 4 days after addition of PBMCs to

RevCEM-B8 cells, the number of infected, GFP positive RevCEM-B8 cells was acquired with a

FACSCalibur machine. A sample was scored as infected if the number of GFP positive cells was

Blocking initial HIV cellular infection is essential for clearance at sub-optimal drug
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greater than that in the highest background samples (0.01% positive cells). To approximate N0

in PBMCs with 2.5 × 105 viral RNA copies, 0.5 ml of PBMC cultured at 106 cells/ml was infected

at four virus stock dilutions in triplicate: 1.3 × 107, 6.3 × 106, 3.2 × 106, 1.6 × 106 RNA copies.

The number of infected PBMCs was measured after 2 days by flow cytometry using anti-HIV

p24 FITC conjugated antibody staining. Infected cell numbers at the viral stock dilutions above

were (mean±std): 1.4 ± 0.08 × 103, 6.6 ± 1.9 × 102, 4.7 ± 0.2 × 102, 2.2 ± 0.9 × 102. Data was fit

using linear regression to determine N0, calculated to be approximately 29 infected cells.

Results

A model for infection clearance

We first set out to model the effect of drugs on the probability to clear infection (Pc). Let Ni be

the number of infected cells in the i-th transmission step within the newly infected host. The

sequence Ni, i = 0, 1, 2, . . . is a Markov chain, or, more specifically, a branching process [54]

with the random number Ni+1 of infected cells at the (i + 1)-st infection step determined from

the number Ni of infected cells in the previous infection step by the formula

Niþ1 ¼
XNi

c¼1

Ic: ð1Þ

Here Ic are independent identically distributed random variables denoting the number of

new cells infected by each infected cell in step i. We note that in the case where host cells are

not limiting, as occurs in the initial stages of infection, infection chains originating from indi-

vidual infected cells are independent of each other. The infection is cleared if the number of

infected cells Ni becomes zero at any point.

Infection starts with a number of infected cells N0 as a result of exposure to HIV from an

infected individual, where N0� 0. N0 is expected to depend on several factors, among which is

the transmitted viral dose during exposure and the cellular infection frequency per virion. Ni,

where i� 1, would then depend on N0 and the basic reproductive ratio (R0), the number of

cells infected on average by one infected cell in the initial stages of HIV infection, where host

cells are not limiting. R0 depends on both the viral replication rate and the half-life of the

infected cells [55, 56] and is approximately 10 in vivo [55]. Eventual infection clearance is cer-

tain for R0� 1. For R0 > 1, infection may still be cleared if, at any point in the infection chain,

the number of infected cells is zero.

To infect new cells, an infected cell produces a burst of κ virions, where κ is on the order of

103 to 104 [52, 53], and each virion can infect a cell independently with probability r. The num-

ber of cells infected by a single infected cell in one transmission step has a binomial distribu-

tion with mean R0 = rκ [56]. In the biologically relevant case where κ is large and r is small,

with R0 = rκ finite, this binomial distribution can be replaced by the simpler Poisson distribu-

tion with mean R0 [57]. That is, the probability that a single infected cell infects m cells (proge-

nies) in one step is Pm ¼ Rm
0
e� R0=m!.

We denote by q the probability that an infection starting from exactly one infected cell is

cleared. In this case, it is required that all m identical progenies originating from the original

infected cell are cleared. Since each progeny is cleared with the same probability q, all proge-

nies are cleared with probability qm, assuming independence of progenies. Therefore:

q ¼
X

m�0

qmPm: ð2Þ

Blocking initial HIV cellular infection is essential for clearance at sub-optimal drug
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Note that the right hand side of Eq (2) is called the generating function, in this case, of the

number of progenies of a single infected cell [54].

Replacing Pm with the Poisson distribution with mean R0 as described above and using the

Taylor series of the exponential function ∑m�0 xm/m! = ex, we find:

q ¼
X

m�0

qmRm
0
e� R0

m!
¼ eR0ðq� 1Þ: ð3Þ

The (smallest non-negative [57]) solution of the above equation gives the probability of

clearing the infection for a single initial infected cell:

q ¼ � R� 1
0
Wð� R0e� R0Þ: ð4Þ

Here, W is the Lambert W–function [58], the inverse of the function x 7! xex. The relation-

ship between q and R0 is graphed in S1 Fig, which shows that q = 1 for R0� 1 and q! 0 at

R0� 1.

Eq (4) derived the probability of infection clearance for exactly one infected cell. The initial

number of infected cells may not be one, but may be described as a random variable [21]. We

choose it to be a Poisson random variable with mean N0 which is a biologically relevant distri-

bution in viral infection. Therefore, the probability that the initial number of infected cells is n
has probability �n ¼ Nn

0
e� N0=n!. For a fixed number n of initial infected cells the infection is

cleared with probability qn, assuming infections originating in individual infected cells are

independent. To find the probability of infection clearance Pc for a random number of initial

infected cells, we take the average over n:

Pc ¼
X

n�0

qn�n ¼
X

n�0

qnNn
0
e� N0

n!
¼ eN0ðq� 1Þ: ð5Þ

This is the probability that an infection starting from a Poisson distributed random number

of infected cell is cleared, where q is given by Eq (4).

We now consider the effect of the antiretroviral drug mechanism on N0 and q. We note

that antiretroviral drugs reduce either infection frequency r or burst size κ. For drugs which

reduce infection frequency, r! d1r, and for drugs which reduce viral burst size, κ! d2κ,

where 0� d1, d2� 1. The no drug case is recovered for d1 = d2 = 1. Given R0 = rκ and therefore

R0! R0d1d2, the effects of the drug mechanisms are symmetrical on q

qdrug ¼ � ðR0d1d2Þ
� 1Wð� R0d1d2e� R0d1d2Þ: ð6Þ

Hence, if the drugs decrease R0 to a similar extent, their effect on q will also be similar.

However, given an initial transmission with cell-free virus, only the drug mechanism that

decreases infection frequency will reduce the mean initial number of infected cells N0. The

mechanism which reduces burst size will only affect the success of the next transmission cycle.

Therefore, the probability to clear infection with drugs becomes

Pdrug
c ¼ eN0d1ðqdrug � 1Þ: ð7Þ

Here qdrug is determined by Eq (6). The limits for Eq (7) for R0� 1 and R0� 1 with drug

are 1 and e� N0d1 . At the upper limit for R0, infection clearance is simply determined by the

probability of obtaining n = 0 initial infected cells, where the probability to obtain n infected

cells is a random number from a Poisson distribution with mean N0d1. What constitutes a

high value for R0, at which Pdrug
c only depends on N0d1, is discussed below.

Blocking initial HIV cellular infection is essential for clearance at sub-optimal drug
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To visualize the effects of decreasing R0 versus N0, we plotted Eq (5) for a range of parame-

ter values (Fig 2A). It can be observed that for R0� 1, infection terminates. At R0 > 1.5, infec-

tion is not strongly sensitive to the exact R0 value provided N0 ⪆ 3. However at all R0 > 1

values, the probability of infection clearance is very sensitive to N0, provided N0 is small. This

sensitivity is greatly reduced when N0 ⪆ 3.

To examine the effects of drug mechanism, we plotted infection clearance according to

Eq (7) at two conditions of R0 and N0 relative to d1 and d2 (Fig 2B). In the first condition, R0

was sufficiently small to be decreased below 1 by the drugs in the inhibition range used, while

N0 was large (Fig 2B, top panel). In the second condition, R0 was large while N0 was small (Fig

2B, bottom panel). In the first condition, both drug mechanisms had a similar effect on infec-

tion clearance, and Pc = 1 when the effect of either drug reduced R0 below 1. In the second con-

dition, only d1, which decreased infection frequency, substantially increased Pc. d2, which

acted on burst size, had a minimal effect. We note that based on observations of R0� 10 in
vivo [55] and a probability of infection of at most 0.02 per exposure in the absence of PrEP [29,

30], the second condition likely reflects the physiological situation.

Experimental determination of the probability of infection clearance with

drug

We examined experimentally whether Eq (7) predicts Pc for different drug mechanisms after

infection with a low HIV dose, the likely in vivo condition for transmission. We used the anti-

retroviral drugs TFV and ATV to inhibit infection initiating as cell-free HIV. We measured

the effect of each drug on the initial number of infected cells N0 resulting from the initial input

of cell-free HIV virions. After this initial cycle of infection, the initial number of infected cells

was cultured with uninfected target cells (coculture infection). We define established infection

as infection where infected cells are present and can infect new cells using both the cell-free

infection route and by cell-to-cell spread [59]. R0 was measured during this phase of infection.

Fig 2. Effects of the initial infected cell number N0 and R0 on the probability of infection clearance Pc. (A) Pc
according to Eq (5) at different parameter values for N0 and R0. (B) Pc according to Eq (7) when a drug attenuating

infection frequency (d1, blue line) or burst size (d2, orange line) acts on N0 and R0. Top panel shows the case where

R0 = 5, N0 = 20, while bottom panel shows the case where R0 = 20, N0 = 2. X-axis is drug strength as 1/d, y-axis is Pc.

https://doi.org/10.1371/journal.pcbi.1007482.g002
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For virus, we used HIV NL(AD8), an HIV strain with a CCR5 tropic envelope protein.

CCR5 tropism has been shown to be the predominant transmitted form between individuals

[31]. As target cells for infection, we used a clone of the RevCEM infection indicator cell line

[60] which we first subcloned to increase detection efficiency [36] then modified to express the

CCR5 receptor (Materials and methods). Detection of infected cells was done by quantifying

the number of GFP positive cells using flow cytometry.

We titrated TFV and ATV to obtain a similar effect on ongoing coculture infection. This

occurred at 60μM TFV and 16nM ATV. To maintain nutrients for cell growth and prevent

uninfected cell depletion, we passaged cells every two days (Materials and methods). Such pas-

saging is necessary to maintain conditions where uninfected cells are not limiting in an

expanding infection over multiple cell division and viral replication cycles [35].

Despite the use of the same HIV cell-free input dose, there were pronounced differences at

day 2 between TFV and ATV (Fig 3A). This time-point reflects the results of the initial cell-

free infection given an approximately 2 day viral cycle [61]. Cell-free infection was strongly

inhibited by TFV relative to no drug. As expected, the effect of ATV on cell-free infection was

much weaker since cell-free virus produced in a cell not exposed to a protease inhibitor is

already mature. After the day 2 time-point, infection expanded with similar dynamics for both

drug conditions, and much more rapidly when no drug was present.

We plotted the total number of infected cells, corrected for cells removed during passaging,

versus time (Fig 3B). We then calculated the effect of drug on R0 over a two day cycle

(Table 1). R0 values showed that infection expanded at a similar rate for the TFV and ATV

conditions. We then measured the effect of the drugs on N0 after the first cycle of infection

(day 0 to day 2), and compared the results to infection in the absence of drug. N0 in the pres-

ence of drug divided by N0 for the no drug condition (Nnorm
0

) was 0.027 ± 0.014 for TFV and

0.88 ± 0.16 for ATV, (Fig 3C, Table 1). The decrease in N0 for TFV versus ATV was significant

(p = 6 × 10−14, t-test).

We then set out to investigate whether TFV and ATV could increase the probability of

clearance of low dose infection, corresponding to in vivo exposure. We used 6.3 × 103 viral

copies (Materials and methods), predicted to result in approximately 3 initial infected cells

based on a regression of the number of infected cells versus input viral load (Fig 4A). Infection

was initiated with the same cell-free viral dose for all conditions, and infected cells were cul-

tured for 8 days in the presence of drugs. Any infection present was then amplified for detec-

tion by culturing cells in the absence of drug. After amplification, infection was either clearly

visible or absent (Fig 4B).

We did not experimentally observe clearance of infection in the absence of drug. In the

presence of TFV, clearance rose dramatically, with approximately three quarters of infections

extinguished. In contrast, only a minor increase of infection clearance was observed with ATV

(Fig 4C, red bars). Clearance with TFV was significantly higher relative to no drug and ATV

(p = 9 × 10−8 and p = 5 × 10−9 by Fisher’s exact test, respectively), while ATV was not signifi-

cantly different from no drug. Calculation of Pdrug
c based on Eq (7) using the measured values

for N0 and R0 for each drug condition replicated an essential feature of the experimental

results: treatment with TFV was predicted to result in a much higher clearance probability rel-

ative to treatment with ATV (Fig 4C, grey bars). If no effect of drug on N0 was included in the

model, TFV and ATV were predicted to have similar, and small, effects on Pdrug
c (Fig 4C, yellow

bars). Hence, Eq (7) was able to predict the relative effectiveness of each drug to terminate

infection.

One explanation for the difference between TFV and ATV clearance frequencies is that the

initially infected cells in the presence of ATV were still present at the end of drug treatment

Blocking initial HIV cellular infection is essential for clearance at sub-optimal drug
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Fig 3. Experimental measurement of drug effect on R0 and the initial number of infected cells N0. (A) Flow

cytometry plots of the fraction of infected cells at different days post infection in the absence of drug or presence of 60

μM TFV or 16 nM ATV. Day 2 is the first time-point after the initial cell-free infection, corresponding to approximately

one viral cycle. X-axis is GFP fluorescence, y-axis is autofluorescence, with the fraction of infected cells corresponding

to the cells within the area outlined in yellow. Infected cell cultures in the presence of either drug were diluted 1:2 every

2 days. Infected cultures in the absence of drug were diluted 1:100 into uninfected cells every 2 days. (B) Measurement

of R0 in the absence and presence of drug. The number of infected cells at each time-point is normalized by the number

of infected cells at day 2 and corrected for the dilution factor used in each infection cycle. 3 independent experiment

were performed, with each point denoting the mean ± std of 3 experimental replicates per experiment. Infection in the

absence of drug is shown as red circles, TFV as blue triangles, and ATV as green squares. (C) Effect of drug on N0.

For each drug condition N0 was measured 2 days after cell-free HIV infection and normalized by N0 for no drug.

Mean ± std of 3 independent experiments, where normalization was with N0 in the absence of drug as measured in the

same experiment. Raw numbers of infected cells averaged over all experiments were 1.3 × 104 ± 1.5 × 103 for no drug

infection, 3.4 × 102 ± 1.3 × 102 for TFV and 1.1 × 104 ± 7.4 × 103 for ATV (mean ± std). The difference between TFV

and ATV was significant (p = 6 × 10−14 by t-test).

https://doi.org/10.1371/journal.pcbi.1007482.g003
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due to lack of cell death and gave rise to the infected cell population when ATV was removed.

We therefore measured the half-life of cells in the presence of ATV. We observed a half-life of

approximately 1 day (S2 Fig). Hence, less than one-tenth of the initially infected cells are

expected to survive to the end of drug treatment, making infection persistence with ATV due

to a long half-life unlikely.

Table 1. Measured parameter values.

Treatment Nnorm
0

� R0

No drug 1 143 ± 15

60μM TFV 0.027 ± 0.014 4.2 ± 0.73

16nM ATV 0.88 ± 0.16 3.2 ± 0.088

� N0 normalized by N0 no drug.

https://doi.org/10.1371/journal.pcbi.1007482.t001

Fig 4. Probability of infection clearance depends on drug mechanism. (A) Determination of N0. The number of

infected cells was measured using flow cytometry as a function of cell-free HIV RNA copies for four virus stock

dilutions after one infection cycle (2 days). Data was fit using linear regression to determine the input viral dose for 3

infected cells. Mean ± std of 5 independent experiments. Dashed line is limit of detection. Green arrow marks number

of HIV RNA copies used in the experiments. (B) Representative flow cytometry plots after 8 days of infection with the

input cell-free virus in the presence of TFV or ATV and further 6 days amplification in the absence of drug. Each plot

represents one independently cultured replicate of the experiment. Uninfected samples are shown in the left column,

and infection in the presence of TFV or ATV is shown in the middle and right columns respectively. X-axis is GFP

fluorescence, y-axis is autofluorescence. The fraction of infected cells corresponds to the cells within the area outlined

in green or red, with green indicating background GFP signal level as determined using the uninfected samples, and

red indicating above background signal. (C) Pdrug
c as experimentally measured (red bars), and as predicted by Eq (7)

(gray bars) based on the measured drug effects on R0 and N0. Presence of infection was assayed in 26 (no drug) or 27

(TFV and ATV) cell-free virus infections from 4 independent experiments. Observed PTFV
c was significantly higher

than PATV
c and PNodrug

c (p = 9 × 10−8 and p = 5 × 10−9 by Fisher’s exact test, respectively). PATV
c and PNodrug

c were not

significantly different. Yellow bars show predicted Pdrug
c if both drugs act on R0 only. That is, Pdrug

c ¼ eN0ðqdrug � 1Þ.

https://doi.org/10.1371/journal.pcbi.1007482.g004
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To examine whether the qualitative pattern of the results obtained for the cell line would

also be obtained in primary cells, we repeated the experiment in peripheral blood mononuclear

cells (PBMCs) from an HIV uninfected blood donor. PBMCs were infected with a low dose of

NL(AD8) strain HIV in the presence of TFV and ATV (Materials and methods). Drug concen-

trations used were 40 μM for TFV and 24 nM for ATV. At these drug concentrations, both

drugs reduced infection by approximately one order of magnitude when infection was by

coculture of infected with uninfected cells (S3A–S3C Fig), as occurs in established infection.

When the infection source was cell-free virus, TFV reduced infection by two orders of magni-

tude while ATV reduced infection 3-fold (S3D Fig). The reduction with ATV of cell-free infec-

tion is consistent with a previous report showing some effect of protease inhibitors on cell-free

infection [62], while the greater effect of TFV on cell-free versus coculture infection is consis-

tent with multiple previous studies [35–37, 39, 40, 43, 46, 51]. When infection was with low

dose cell-free virus, TFV led to almost complete infection clearance, with no clearance detected

for the ATV and no drug conditions (S2E Fig). These results validate the observed behavior of

the cell-line infection in primary human cells.

Effects of latency on the probability of infection clearance

The results above showed that at sub-optimal drug concentrations where HIV infection can

replicate, infection can still be cleared if the initial number of infected cells is low and the drug

decreases infection frequency before the first cells are infected. This effect does not presuppose

the existence of latency. However, given the strong evidence for latency, we investigated the

expected effect of latency on infection clearance.

We introduce a probability of a cell to become latent Plat [21]. Estimates for Plat vary

between approximately 0.5 in in vitro infections and modelling [10, 63, 64], to 10−4 in vivo,

based on the frequency of intact HIV DNA in the face of ART in CD4+ T cells in the periph-

eral blood compartment [65, 66], and 10−3, based on total HIV DNA copies in rectal CD4+ T

cells of individuals on ART [67]. The latter values do not measure the ability of the HIV DNA

to produce infectious virus, and therefore the frequency of latent cells containing inducible

infectious virus may be lower. However, the value of Plat at initial infection is difficult to deter-

mine, and therefore values in the upper part of the range cannot be ruled out.

Once a latent cell is produced, the infection may no longer be cleared, since latently infected

cells may maintain the reservoir by homeostatic latent cell proliferation as opposed to new

rounds of infection [68]. Therefore, infection can persist even if R0� 1, provided a latent cell

is present.

Infection originating in exactly one initial infected cell clears if it both stays non-latent with

probability 1 − Plat and independently if all of its progenies clear, which occurs for each of

them, again independently, with probability q:

q ¼ ð1 � PlatÞ
X

m�0

qmPm ¼ ð1 � PlatÞe
R0ðq� 1Þ: ð8Þ

The solution for q of Eq (8) is:

qlat ¼ � R� 1
0
Wð� R0ð1 � PlatÞe� R0Þ: ð9Þ

To account for latency, we simply use qlat instead of q in Eq (7) to calculate Pc.
We visualize Eq (9) as the probability to clear infection in the face of increasing drug

strength under conditions where the initial number of infected cells is small, while R0 is within

the in vivo range for initial infection (N0 = 2, R0 = 10, [55]). Therefore, at drug level 1/d> 10,

Rdrug
0 < 1 (Fig 5A, horizontal green lines in each graph). We examined clearance with Plat
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ranging from 0 to 0.5 (Fig 5A). We compared the effects on clearance of drug mechanism d2

which decreases viral burst size, versus d1 which decreases infection frequency. In the case

where Plat = 0, Pc = 1 at Rdrug
0 � 1. As previously described, clearance was lower with mecha-

nism d2 relative to d1 at drug levels where Rdrug
0 > 1 and the difference decreased as Rdrug

0 ! 1.

Even at a relatively low frequency of latent cells (Plat = 0.01), latency had a visible effect on

clearance probability with drug mechanism d2 (Fig 5A, orange lines). This effect became more

pronounced as the frequency of latent cells increased. At Plat = 0.5, less than a quarter of infec-

tion attempts were cleared at the d2 drug strength where Rdrug
0 ¼ 1. In comparison, all infection

attempts are cleared at this drug strength without latency. Interestingly, increasing d2 further

increased clearance. This reflects the fact that at higher drug strength, the number of transmis-

sion events between cells becomes smaller before the infection terminates. Therefore, the prob-

ability of forming a latent cell and hence making infection unclearable becomes lower.

We next examined the sensitivity of drug mechanism d1 to latency. Unlike with drug d2, it

was difficult to discern the effect of latency on probability of clearance with drug d1 (Fig 5A,

blue lines). We therefore calculated the drug strength necessary to clear 50% or 75% of infec-

tion attempts (Fig 5A, dashed lines). Drug strength of drug d1 required for clearance of 50% of

infection attempts was almost unchanged across the range of latent cell frequencies, while

drug strength required for 75% clearance increased slightly (Fig 5B). Therefore, in contrast to

d2, drug mechanism d1 was far less sensitive to the presence of latency, even at the highest fre-

quency of latent cells.

Discussion

In this study we modeled and experimentally measured the clearance probability of HIV infec-

tion as a function of the effect of drug on the basic reproductive ratio of infection R0 and the

number of initial cells N0 infected by the viral input dose. We chose drug concentrations

Fig 5. Effect of latency on the probability of infection clearance. (A) Pc was calculated as a function of increasing

drug strength (1/d) with N0 = 2 and R0 = 10. Therefore, at 1/d> 10 (denoted by green line), Rdrug
0 < 1. Drug d1 (blue

line) decreases infection frequency and d2 (orange line) decreases burst size from an already infected cell. The

probability of an infected cell to become latent was Plat, and the graphs show calculated Pc at the different Plat values

indicated above each panel. Drug strength for drug d1 required to clear 50% and 75% of infection attempts are shown

by dashed lines. 1/d50 is indicated in the first panel. (B) Drug strength for drug d1 required to clear 50% (purple line)

and 75% (gray line) of infection attempts as a function of Plat.

https://doi.org/10.1371/journal.pcbi.1007482.g005
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where HIV infection was able to expand to investigate the effect of sub-optimal HIV inhibi-

tion. The reasons to consider sub-optimal drug concentrations are that ART penetration may

be lower in the mucosa where the infection takes place, that it is challenging to maintain

adherence in healthy individuals on PrEP, and that it is useful to future approaches to under-

stand the basic principles of initial viral infection.

We have shown analytically and experimentally that, under conditions where drugs do not

completely inhibit expansion of established infection, it is still possible to clear initial infection

provided the number of initial infected cells per infection attempt is low. We derive the clear-

ance probability in Eq (7) and show that clearance is dependent on using a drug which is able

to decrease infection frequency and therefore act before the generation of the first infected

cells. The intuition is that if R0 of infection is relatively large despite the drug, termination of

infection originating in an initially infected cell becomes unlikely. However, either an initially

infected cell is present, or it is not, and the probability of this depends on N0. If N0 is low, a

drug which can decrease it further will have a strong effect on the probability of infection clear-

ance regardless of its effect downstream of the first infection.

The model output using the measured values for N0 and R0 resulted in predicted probabili-

ties of infection clearance which were higher than the experimentally observed clearance fre-

quencies for all conditions. We speculate that this is due to an underestimation of the input

number of infected cells N0. We measured N0 one viral cycle after cell-free infection. If GFP

expression in an infected cell was below threshold of detection at that time, the infected cell

would not be detected, yet still amplify infection. Despite this, the relative effectiveness of each

drug mechanism was clearly predicted by the model.

Factors in vivo which may lead to deviations from model predictions include transmission

by cell-to-cell spread [35–51]. Cell-to-cell spread of HIV should reduce the effectiveness of

PrEP since the drugs would only act on R0 and not on N0. If the initial exposure is indeed to

cell-free virus, the higher efficiency of cell-to-cell spread which results in lower drug sensitivity

would make sub-optimal levels of ARVs even less likely to be able to clear infection once initial

cellular infection has taken place.

In our analysis we assumed that once the first cells are infected, infection proceeds without

further bottlenecks and essentially depends on the value of R0 in the presence of drug. We fur-

ther considered that a small number of initially infected cells is the physiological situation.

Intravaginal SIV infection of rhesus macaques supports the view that the major bottleneck to

the establishment of infection is infection of the initial cells. It was observed that even with

exposure to a large dose of virus, most of the inoculum was lost at the initial infection stage,

and the rest gave rise to few infected cells [33]. Other bottlenecks to systemic infection spread

may exist, and establishment of infection may be a two-step process [21], where resting

CD4+ T cells are initially infected in the mucosa [33, 69]. HIV is then transmitted with a delay

from the mucosa to lymph nodes, a process which may involve transmission of virions on den-

dritic cells homing to the lymph nodes to present antigen [34, 70]. Therefore, a relatively large

number of initially infected cells in the mucosa may decay to one or few infected cells which

initiate systemic infection [21]. In this case, it has been shown that the probability to establish

infection is*N0Pestab, where Pestab is the probability for one initially infected cell to establish

infection [21]. Hence, even in a two-step infection process, the sensitivity to N0 still holds.

HIV has been observed to rapidly seed a latent reservoir of infected cells [20]. We therefore

examined the effect of latency on the probability to clear infection as a function of drug

strength. Interestingly, for a drug which could target initial infection, clearance probability was

similar regardless of whether latency was present or absent. In contrast, latency had a far stron-

ger effect on the probability of infection clearance if the inhibitor used could not interfere with
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initial infection, even when R0 < 1. The latter observation is consistent with a critical role for

latency in infection establishment under unfavourable conditions for viral replication [21].

The current study shows that sub-optimal drug inhibition can clear HIV infection before it

is established, provided the number of initial HIV infected cells is low, and the drug is able to

target initial infection. In this situation, the presence or absence of latency has a weak impact

on the outcome. More generally, it indicates that in diseases which involve transmission of low

pathogen numbers upon exposure, but have robust replication when established, a possibility

to clear infection should exist even with relatively weak inhibition if initial infection is

targeted.

Conclusion

We investigated why initial HIV infection can be cleared with inhibitors before it is established

but not after. We modelled infection with a branching process and used in vitro experimenta-

tion to test the model. We examined two drug mechanisms: inhibition of infection frequency,

and reduction of the burst size of viable virions from an already infected cell. We found that

the small difference in timing between the two mechanisms is critical in clearing of low dose

HIV transmission. Despite similar effects of both drug mechanisms on HIV replication, only

the drug mechanism reducing infection frequency, which could act before the first cells were

infected, was able to clear infection. We conclude that the difference may not require the pres-

ence of a latent reservoir, but is rather a numbers game: while an imperfect drug may not clear

every infection attempt, it may be successful at clearing infection if the number of cellular

infection attempts are few.

Supporting information

S1 Fig. q as a function of R0.

(TIF)

S2 Fig. Estimation of the half-life of infected cells in the presence of ATV. Half-life of

infected cells was estimated using the fraction of live infected cells over time in the presence of

ATV after saturating infection. Shown are the means and standard deviations of the number

of live infected cells normalized by the number at the first time-point measured. Line is the fit

to y = ert+b, with r = -0.66/day. Half-life was 1.05 days.

(TIF)

S3 Fig. Infection clearance with drugs in primary cells. (A) Gating strategy to detect the

number of infected cells in coculture infection. Cells were first infected with cell-free HIV and

used as the infecting (donor) cells for coculture infection. Donor cells were labelled with CFSE

and added to uninfected target cells (Materials and methods). To quantify the number of

infected target cells, the lymphocyte population was selected using forward scatter (FSC) and

side scatter (SSC) and donor cells were gated out by selecting the CFSE negative population.

(B) Fraction of infected target cells in coculture infection. X-axis shows infection as detected

using a stain for intracellular HIV Gag protein, y-axis is CFSE fluorescence. First plot shows

uninfected cells, second plot shows infection in the absence of drug, third plot shows infection

with 24 nM ATV, and forth plot is infection with 40 μM TFV. (C) Decrease in coculture

infected target cells with drug relative to no drug with 40 μM TFV or 24 nM ATV. Tx = (num-

ber infected cells with drug)/(number infected cells without drug). Mean and standard devia-

tion of 3 replicates from two independent experiments. (D) Decrease in the number of cell-

free infected cells with drug relative to no drug (Tx, equivalent here to Nnorm
0

) with 40 μM TFV

or 24 nM ATV. (E) Probability of infection clearance with 40 μM TFV or 24 nM ATV. Pooled
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data from 5 independent experiments, n = 45 samples each for no drug, TFV, and ATV. None

of the infection attempts with no drug or ATV were cleared, while all but 2 of the infection

attempts were cleared with TFV. Difference between TFV and the other two conditions was

significant (p = 2 × 10−23 by Fisher’s exact test).

(TIF)
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