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UAV Swarm-Enabled Localization in Isolated Region: A
Rigidity-constrained Deployment Perspective

Qirui Liu, Rongke Liu, Senior Member, IEEE, Zijie Wang and John S. Thompson, Fellow, IEEE

Abstract—In isolated regions, utilizing the unmanned aerial
vehicle (UAV) as an aerial anchor node is a promising technique
to enable location awareness of ground terminals (GTs). In
this letter, considering a UAV swarm-enabled localization for a
group of distributed GTs, we aim to minimize the maximum
Cramer-Rao lower bound (CRLB) for position estimates with
anchor uncertainty. Then, an efficient differential evolution (DE)-
based method is proposed to find a sub-optimal solution. In
particular, the rigidity of the UAV swarm is recognized as a
critical constraint in the problem formulation to provide a unique
swarm coordinate configuration and to maintain a prescribed
flight formation. A gradient-based local optimization for rigidity
is then proposed and embedded in the DE algorithm. Numerical
results demonstrate that our proposed designs can reach better
performance in localization accuracy while ensuring the rigidity
of the UAV swarm, as compared with a random approach.

Index Terms—Unmanned aerial vehicle (UAV) swarm, isolated
region, localization, Cramer-Rao lower bound (CRLB), rigidity.

I. INTRODUCTION

LOCALIZATION of ground terminals (GTs) such as mo-
bile phones and wireless sensors has generally been

recognized as an enabling technology in various applications
(e.g., search and surveillance) [1]. Unfortunately, in some
typical isolated regions, positioning signals to GTs from
conventional terrestrial base stations (BSs) and satellites are
easy to be blocked or severely degraded, making satisfactory
localization service no longer available [2], [3]. In this case,
unmanned aerial vehicles (UAV) deployed inside the isolated
region have the potential to provide a solution for both GTs
localization and network services through the air-to-ground
(A2G) channel [4], [5]. Research in [6] optimized the UAV
trajectory to provide a favorable anchor geometry and reduce
the localization error. However, these studies only consider a
single UAV with a known precise location, which has limi-
tations in isolated regions. Firstly, the terrestrial networks or
the global navigation satellite systems (GNSS) are susceptible
to blockage and jamming, which makes it hard to locate the
UAV. Moreover, the GTs are served sequentially since the UAV
having to move around and communicate with each GT in turn,
which may cause severe delay on the time to first fix (TTFF).

These considerations prompt us to consider a UAV swarm-
enabled localization system in isolated regions, where the
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Fig. 1. UAV swarm-enabled localization in an isolated region supports a set
K of GTs.

UAVs need to be firstly self-localized to obtain its location
information, and then locate the GTs simultaneously. Here
range-based network localization can help to locate the UAVs
by successive propagation and update of positions from the
reference nodes outside the isolated region. In this case,
however, utilizing the UAVs as the anchors would inevitably
introduce errors in the position estimation of the GTs caused
by inaccurate anchor position information [7], which needs
to be specifically considered. To further motivate this inves-
tigation, we shall focus particularly on the rigidity of the
swarming UAVs, which represents a necessary condition for
estimating positions using only relative distance measurements
and the UAVs’ ability to maintain a prescribed formation [8].
For simplicity, we denote the rigidity of the UAV swarm also
as swarm rigidity in the following paper. The rigid property
is vitally important for the UAV swarm-enabled localization
system, since a better self-localization performance provided
by the rigidity of the aerial anchors could significantly improve
the localization accuracy of the GTs. In a broader context,
rigidity is also an important architectural property, which can
benefit sensor fusion, exploration and other mission-critical
applications of many multi-agent systems [9].

In this letter, as shown in Fig. 1, we propose a generic
analytical framework that includes a UAV swarm to localize a
set of GTs simultaneously. Different from the research in [4],
[6], the UAVs need to be self-localized before providing local-
ization service, which make the rigid property of the swarm
a critical requirement. Therefore, the aim is to minimize the
maximum Cramer-Rao lower bound (CRLB) while ensuring
the rigidity of the UAV swarm. This design is formulated
as an optimization problem of the UAV deployment, which
is complicated. In order to find a sub-optimal solution effi-
ciently, this design is solved by a differential evolution (DE)-
based method with an embedded local optimization for swarm
rigidity. Extensive simulations demonstrate the effectiveness
and superiority of the proposed method. To the best of our
knowledge, this is the first work to enable simultaneous
localization via multiple UAVs under the constraint of rigidity.
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II. SYSTEM MODEL

We consider an isolated region as shown in Fig. 1, where
a swarm of N UAVs are employed as aerial anchors to
provide time-of-arrival (ToA) localization service for K GTs.
ToA localization could achieve relatively high accuracy under
line-of-sight (LoS) conditions [10], while the LoS probability
generally increases significantly in the A2G channel as the
elevation between the aerial anchor and the GT increases [11].
For convenience, we assume the synchronization error could
be mitigated with some mature schemes [12]. The locations
of GT k and UAV n are denoted by uk =

[
ukx, u

k
y , HG

]T ∈
R3×1, k ∈ K and vn =

[
vnx , v

n
y , HA

]T ∈ R3×1, n ∈ V . We
assume that all GTs and UAVs have the same altitude HG

and HA, which can be accurately measured with some mature
equipment like barometers [13], while our results can be easily
extended to a more general case with different altitudes and
the corresponding errors. Besides, we assume the UAVs in
the swarm and the aerial reference stations (ARS) are both
quadrotor platforms and hover at a fixed altitude HA to provide
a relatively stable anchor location during the ranging process.

The operation process of the proposed system is described
as the follows. Preliminaries: The UAVs/ARS are capable of
transmitting/receiving the positioning reference signal (PRS)
and the GTs are capable of receiving the PRS, which is a
dedicated signal for localization purposes [14]. Step 1: By
exploiting the PRS for time delay estimation through the air-
to-air (A2A) channel [11], range-based self-localization of
the UAV swarm is firstly realized by absolute measurements
with a set M of ARS outside the isolated region and relative
measurements between the UAVs. Step 2: The GT estimates
the time delay through the A2G channel [11] using the
PRS received from different aerial anchors and then uses a
trilateration technique to estimate its position with the location
information obtained in Step 1.

A. CRLB with Anchor Position Uncertainty

In this subsection, we firstly derive the expression of the
anchor position uncertainty introduced by the self-localization
of the UAV swarm, which is represented by the lower bound on
the error covariance for the unbiased UAV position estimates,
and then the CRLB for GT’s position estimates with the
obtained anchor position uncertainty in Step 1 is derived.

We denote the Euclidean distance between UAV i and j as
di,j = ‖vi − vj‖2, and we define the effective measurement
threshold δUAV

thr to judge whether a range measurement will be
included in the observation vector of the UAV self-localization.
Here we assume that δUAV

thr can be known a priori based
on the UAV transmitting power and the basic requirement
of measurement accuracy. If di,j 6 δUAV

thr , the correspond-
ing range measurement will be confirmed and included in
the observations; otherwise, it will be abandoned. Thus, the
associative observation vector of the UAV self-localization
G (θ) =

[
dV,dR

]T ∈ R(GV+GR)×1 is formed by stacking the
confirmed range measurements, where dV ∈ RGV×1 and
dR ∈ RGR×1 denotes the UAV-UAV and UAV-ARS measure-
ments, respectively. In the self-localization of the UAV swarm,
the parameter vector of interest consists of the coordinates

of the UAVs given by θ=
[
v1x, v

1
y, . . . , v

N
x , v

N
y

]T ∈ R2N×1.
According to [15], for any unbiased, non-Bayesian estimator
of θ satisfies

Cov(θ̂)�F−1(θ) = QV (1)

where Cov(θ̂) is the error covariance matrix, and F(θ) is
the Fisher Information Matrix (FIM); the matrix inequality
Cov(θ̂)�F−1(θ) denotes that Cov(θ̂) − F−1(θ) is a posi-
tive semidefinite matrix, and the CRLB of the UAV self-
localization is denoted as QV ∈ R2N×2N . The FIM can be
calculated using the standard formula

F(θ) =
{
−EG(θ)|θ

[
∇θ(∇θ ln f (G (θ) |θ ))

T
]}

(2)

where E[·] denotes the expectation operator; f (G (θ) |θ )
is the joint probability density function (PDF) of G (θ)
parametrized with respect to θ, and ∇θ indicates the gradi-
ent with respect to θ. For simplicity, we assume the range
measurements between the UAVs and ARS through the A2A
channel are zero-mean Gaussian distributed with a standard
deviation of σA2A, while the numerical value of σA2A will be
set as a relatively large value relative to the normal A2A chan-
nel. The reason of this conservative assumption is that even in
hovering state, UAVs would possibly be adversely affected by
its own jitter and air flow [16], resulting in a relatively large
uncertainty in the range measurements. Therefore, QV can be
calculated as

QV =
{(
σ2

A2A

)−1
[g (θ)]

T
[g (θ)]

}−1
(3)

where g (θ) = ∇θG (θ) ∈ R(GV+GR)×2N can be recognized
as the “pattern” of anchor position uncertainty in the localiza-
tion of multi-GTs.

The above analysis corresponds to Step 1 of the proposed
system. During the operation of Step 2, each GT utilizes L
anchors with the largest elevations to minimize the chances
of a non-line-of-sight (NLoS) link [1]. The anchor set of
GT k is denoted as Vk = {k1, . . . , kL} , kl ∈ {V,M}, and
its anchor uncertainty matrix QVkV is formed by stacking the
corresponding elements in (3). Since the ARS are assumed
to have precise location knowledge, the mn-th sub-matrix in
QVkV follows σ2

km,kn
=0,∃m,n ∈M. The range measurement

between GT k and anchor kl is rk,kl
= dk,kl

+ εk,kl
, kl ∈

Vk, where dk,kl
=‖uk - vkl

‖2 is the Euclidean distance and
εk,kl

∼ N (0, σ2
k,kl

) is the additive noise, and σ2
k,kl

is cal-
culated according to the bandwidth and signal-to-noise-ratio
(SNR) of the received PRS through the A2G channel between
the GT and its aerial anchors [6], [14]. Thus, the ranging error
covariance matrix is Qrk

= diag(σ2
k,k1

, . . . , σ2
k,kL

). In this
way, the joint likelihood function of the range measurements
and the noise-corrupted anchor locations is given by [7]

p
(
bk

∣∣ṽT
k1
, . . . , ṽT

kL
, ũT

k

)
=N (bk;µk,Qk) (4)

where bk = [rk,k1
, . . . , rk,kL

, ṽT
k1
, . . . , ṽT

kL
]T ∈ R3L×1 stands

for the observation vector; N (bk;µk,Qk) denotes the Gaus-
sian density function with the mean µk and covariance Qk,
where µk=

[
‖uk - vk1

‖2, . . . , ‖uk - vkL
‖2,vT

k1
, . . . ,vT

kL

]T
is the noise-free parameter vector; Qk = blkdiag(Qrk ,Q

Vk
V )

and blkdiag (·) indicates the block diagonal matrix. Therefore,
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the CRLBs for position estimates with anchor uncertainty are
given by the diagonal elements of the following matrix

CRLBk=
(
HT

kQ
−1
k Hk

)−1 ∈ R(2L + 2)×(2L + 2) (5)

where Hk = [Hrk ,H
Vk
V ] is the Jacobian matrix of the obser-

vations; Hr ∈ RL×(2L + 2) and HVkV ∈ R2L×(2L + 2) denote
the Jacobian of the range measurements and the anchor posi-
tions in Vk, respectively. Finally, the CRLB for the position
estimates of GT k is calculated as

∑L+2
i=L+1 CRLB

k
i,i, which

is the sum of the last two diagonal elements of CRLBk.
B. Rigidity of the UAV Swarm

In this letter, the infinitesimally rigid property is utilized to
measure the rigidity of the UAV swarm [8], which is required
for maintaining swarm rigidity at all times while operating crit-
ical missions in isolated regions [9]. In the study of rigidity, we
transform the UAV swarm into a framework (G,V) to analyze
its rigidity-related properties, where G= (V, E) represents the
corresponding abstract graph; V is the set of UAV vertices;
E =

{
{i, j}

∣∣i, j ∈ V, di,j 6 δUAV
thr

}
is the edge set generated

according to the effective measurement threshold δUAV
thr as

introduced in Section II.A, where an effective measurement
link in the self-localization process equals to an edge in graph
G; vertices i, j are called neighbors (i ∼ j) if {i, j} ∈ E ;
V=[v1, . . . ,vN ]

T ∈ R|V|×2 is the coordinates of vertices in
G. Then, the edge function fG : R2|V| → R|E| is defined as

fG (V) = (. . . ,
∥∥vi − vj

∥∥2
2
, . . .)T , {i, j} ∈ E . (6)

Using the theorem in the Section III in [8], (G,V) is infinites-
imally rigid if and only if rank(ḟG) = 2 |V| − 3, where ḟG
is defined as the rigidity matrix RG (V) =̇∂fG (V) /∂V ∈
R|E|×2|V|. Research in [9] further extended the above rank
condition in terms of the eigenvalues of a symmetric and pos-
itive semidefinite matrix RG=̇RG(V)

T
RG (V) ∈ R2|V|×2|V|

with a immediate consequence: rank (RG (V)) = rank (RG).
The eigenvalues of RG are denoted as λ1 6 λ2 6 . . . 6 λ2|V|,
and the infinitesimal rigidity of (G,V) is equivalent to λ1 =
λ2 = λ3 = 0 and λ4 > 0. Therefore, λ4 becomes a effective
measure of infinitesimal rigidity, i.e., the rigidity eigenvalue,
which can be expressed as

λ4 = αT
4RGα4 =

∑
i∼j

[(
vix − vjx

)2(
αi
x − αj

x

)2
+

(
viy − vjy

)2(
αi
y − αj

y

)2
+

2
(
vix − vjx

) (
viy − vjy

) (
αi
x − αj

x

) (
αi
y − αj

y

)] (7)

where α4 =
[
αT
x , α

T
y

]T
is the normalized rigidity eigenvector

associated with λ4.
III. PROBLEM FORMULATION

In this letter, we aim to minimize the maximum CRLB of
GTs by optimizing the UAV swarm deployment. Furthermore,
to provide the fundamental ability to control the swarm forma-
tion, swarm rigidity is also recognized as a critical constraint.
Thus, the problem of interest is formulated as

(P1) : min
V

max
k∈K

∑L+2

i=L+1
CRLBk

i,i (8)

s.t. C1: vmin 6 vix,y 6 vmax,∀i ∈ V (9)

C2: ‖vi − vj‖ 6 δUAV
thr ,∀ {i, j} ∈ E (10)

C3: ‖vi − vj‖ > δsafe
thr ,∀i, j ∈ V (11)

C4: λ4 (V) > λrigid
thr (12)

where G= (V, E) is the corresponding graph of V; vmin and
vmax are the boundaries of the UAV deployment; δUAV

thr is the
maximum effective measurement range for the UAVs; δsafe

thr de-
notes the minimum distance between UAVs for safety reasons;
λrigid

thr > 0 is the minimum threshold for the rigidity eigenvalue
λ4 (V) to prevent the swarm becoming infinitesimally flexible,
which is the opposite state to the desired infinitesimally rigid
condition, causing ambiguity in the network localization and
posing a threat to formation control [9].

IV. PROPOSED METHOD

Problem (P1) is a non-convex problem, and there is no
closed-form expression for the CRLB in the objective function,
which makes this problem complicated. Differential evolution
(DE) has generally been recognized as one of the most
powerful derivative-free optimization algorithms in current
use, which is suitable for solving this problem [6], [17]. There-
fore, a DE-based optimization method is proposed to obtain
an efficient sub-optimal solution. In our proposed DE-based
method, the a-th individual in the l-th iteration represents
the UAV swarm deployment Vl,a ∈ R|V|×2. According to
problem (P1), the fitness function used for evaluating the
individual solutions is defined as

fit (Vl,a) = (αLocβLoc + αSafeβSafe + αRigβRig)
−1 (13)

where βLoc is the maximum CRLB of the GTs corresponding
to Vl,a; βSafe and βRig are the penalty terms of C3 and
C4, respectively. Once Vl,a fails to guarantee the safety and
rigidity constraint of the swarm, we set βSafe = 1 and βRig = 1,
otherwise, both values are set to zero. The values of weights
αSafe and αRig should be much larger than that of αLocβLoc to
punish an unfeasible solution, which will be eliminated during
the iterations. Note that constraint (9) and (10) will be satisfied
when generating individuals and calculating the CRLB and
the rigidity eigenvalue, respectively. The proposed DE-based
optimization method is shown in Algorithm 1.

It should be noted that an individual Vl,a with a good
CRLB may be punished by a very low fitness value and
eliminated during the iterations if λ4 (Vl,a) is a little bit lower
than the rigidity threshold λrigid

thr , which is a harsh criterion.
Thus, we design a local optimization of swarm rigidity for
each individual to improve λ4 (Vl,a) before the calculation
of the fitness value and the selection operation of the DE
algorithm, as shown in steps 5-6 in Algorithm 1. The proposed
local optimization method is summarized in Algorithm 2.
Here we aim to find a local optimal solution of the rigidity
eigenvalue near Vl,a using its gradient with respect to the
UAVs’ locations, which is calculated as

∂λ4 (Vl,a)

∂vix,l,a
= 2

∑
i∼j

(
(vix,l,a − v

j
x,l,a)(αi

x,l,a − α
j
x,l,a)

2
+

(viy,l,a − v
j
y,l,a)(αi

x,l,a − α
j
x,l,a)(αi

y,l,a − α
j
y,l,a)

)
(14)
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Algorithm 1 Proposed DE-Based Optimization Method
Input: Number of individuals Np, maximal iterations lmax.
Output: Optimal UAV swarm deployment V∗.
1: Randomly generate initial population P0,{ V0,1,...,V0,Np} .
2: for l = 0; l < lmax; l = l + 1 do
3: Calculate the fitness of the individuals in Pl using (13);
4: Generate a temporary population Ṗl,{ V̇l,1,...,V̇l,Np}

according to the mutation and crossover processes of
the DE algorithm [6];

5: Find the local optimal swarm rigidity for each individ-
ual in Ṗl using Algorithm 2, and the obtained local
optimal solution P̈l is regarded as the trial population;

6: Calculate the fitness of the individuals in P̈l using (13);
7: Generate a new population Pl + 1 from Pl and P̈l with

the selection process in the DE algorithm [6];
8: Select the optimal solution V∗=Vl + 1,i∗ , where i∗ =

arg max
i∈{1,...,Np}

fit(Vl + 1,i);

9: end for

Algorithm 2 Local Optimization for Swarm Rigidity

Input: Rigidity threshold λrigid
thr , step size ∆t, tolerance κ2 �

κ1 > 0, Ṗl generated in the step 4 of Algorithm 1.
Output: Local optimal solution P̈l for swarm rigidity.
1: for each V̇l,a ∈ Ṗl do
2: if 0 < λ4(V̇l,a (G, p)) < λrigid

thr then
3: for c = 0; c < cmax&|∆λ4| > κ1; c = c+ 1 do
4: Optimize λ4 (Vl,a) with its gradient: V̇c+1

l,a =

V̇c
l,a −∆t · (∂λ4(V̇c

l,a)/∂V̇c
l,a);

5: Calculate the fractional increase of the rigidity
eigenvalue ∆λ = λ4(V̇c+1

l,a )− λ4(V̇c
l,a);

6: if ∆λ < −κ2 then
7: Return to the previous solution V̇c

l,a and break;
8: end if
9: end for

10: V̈l,a ← V̇cbreak

l,a , P̈l = {V̈l,1, . . . , V̈l,a}
11: else
12: V̈l,a ← V̇l,a, P̈l = {V̈l,1, . . . , V̈l,a}
13: end if
14: end for
∂λ4 (Vl,a)

∂viy,l,a
= 2

∑
i∼j

(
(viy,l,a − v

j
y,l,a)(αi

y,l,a − α
j
y,l,a)

2
+

(vix,l,a − v
j
x,l,a)(αi

x,l,a − α
j
x,l,a)(αi

y,l,a − α
j
y,l,a)

)
. (15)

In particular, the optimization of the rigidity eigenvalue may
cause the creation or disconnection of measurement links
in (G,V) due to the the maximum effective measurement
threshold δUAV

thr . Hence, there should be an insurance strategy
to avoid a sharp deterioration of the swarm rigidity, which is
summarized in steps 6-8 of Algorithm 2.

V. SIMULATION RESULTS AND DISCUSSION

In this section, a series of numerical simulations are con-
ducted to evaluate the validity and performance of the pro-
posed design. We consider a system with N= |V| = 15 UAVs,
M = 6 ARS, and K = 10 GTs located in an isolated circular
region where the radius is 800m and the center is the origin

(c) Optimized UAV swarm deployment (b) Application example of Algorithm 2

(a) Application example of Algorithm 1

x(m)

y
(m

)

c

l

Fig. 2. Application examples of the proposed methods and corresponding
optimization results.

(0, 0, 0). The ARS are evenly distributed on the circumference
with a radius of 1km and remain stationary during the opti-
mization of the UAV deployment. The bandwidth is 10MHz
and the main frequency is 2.4GHz, where ideal muting is
considered for the interference modeling [14]. The transmit
power of the UAV is 23dBm. The additive white Gaussian
noise (AWGN) power spectral density N0 = −174dBm/Hz,
and the noise figure of the GTs is set as 9dB. The number of
anchors associated with each GT L = 5 and the parameters
of the proposed method are: Np = 10, lmax = 100, αLoc = 1,
αSafe = αRig = 10, cmax = 30, κ1 = 1e3, κ2 = 1e4, and
∆t = 0.1. Furthermore, we set δUAV

thr = 800m, δsafe
thr = 100m,

λrigid
thr = 2e5, HG = 1.5m, HA = 200m, vmax = −vmin = 800

and σA2A = 5m. The results obtained are based on one random
realization of the GT locations as shown in Fig. 2(c). Fig.
2(a) demonstrates the effects of using the proposed DE-based
method in Algorithm 1, where the best (i.e., the minimum)
and the average localization error σ (V) =

√∑L+2
i=L+1 CRLBk

i,i

in meter (m) of Np individuals in the population decrease con-
stantly as the iteration number increases. The final optimized
UAV deployment V∗ improves the localization accuracy of
the proposed system by about 44.3% compared with the best
individual V0,best in the unoptimized random population P0.
An application example of the proposed local optimization
method for swarm rigidity in Algorithm 2 is shown in Fig.
2(b), where the swarm rigidity of a single individual is better
satisfied when it equals 5.06e5 rather than 1.78e5 following
the gradient of the rigidity eigenvalue in (7). The optimized
UAV deployment V∗ obtained by the proposed method is also
shown in Fig. 2(c), where the maximum localization error of
the GTs is 2.52m, and the minimum distance between the
UAVs is 142.35m, while λ4(V∗) = 3.80e5.

It should be noted that Fig. 2 shows an application example
for a single simulation run. In order to make a statistical eval-
uation of the proposed design, 100 Monte-Carlo simulations
are implemented, and the results obtained are shown in Fig.
3 and Fig. 4. In this letter, the benchmark comparison is
selected as a random approach according to some specific
constraints, which is a common strategy in anchor deployment
[18]. Specifically, a solution Vrandom generated with the
random approach follows three constraints: 1) the relaxed
rigidity constraint λ4 (Vrandom) > 0; 2) the availability of
localization σ (VRandom) < +∞; 3) the boundaries of the
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Fig. 3. Statistical results: (a) the localization accuracy of the optimized
solutions using the proposed DE-based method, and (b) the improvement ratio
of the localization accuracy compared with the random benchmark approach.
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Fig. 4. Statistical results: the rigidity eigenvalue of the solutions realized by
1) the random benchmark approach and 2) the proposed DE-based method.

UAV deployment, which is the same setting as C1 in problem
(P1). Here, we compare the optimal solution of each Monte
Carlo simulation of the proposed DE-based method and the
random benchmark method. The probability density function
(PDF) of the localization error σ (V∗) obtained by the pro-
posed DE-based method and the improvement relative to the
benchmark method are shown in Fig. 3(a) and (b), where the
improvement ranges from 15.7% to 46.3%. The PDFs of the
corresponding rigidity eigenvalues λ4 (Vrandom) and λ4 (V∗)
are shown in Fig. 4, where all values of λ4 (Vrandom) are
larger than the pre-defined rigidity threshold λrigid

thr . However,
the rigidity eigenvalues of the benchmark approach demon-
strated by the purple bars are relatively small, where only
25% of them have reached λrigid

thr , and 34% of them are nearly
zero. The complementary cumulative distribution functions
(CCDF) are demonstrated by dash-dotted lines in Fig. 3 and
4, which can be interpreted as: the probability of increasing
the location accuracy by more than 29.8% is 50%, and half of
the corresponding rigidity eigenvalues are larger than 2.61e5.

VI. CONCLUSION

This letter proposes a generic analytical framework for UAV
swarm-enabled localization in isolated regions from a rigidity-
constrained deployment optimization perspective, where the
UAVs have a mission of locating the GTs while maintaining a
target quality-of-rigidity for formation control. Specifically, we
formulated the deployment optimization problem to minimize
the maximum CRLB, subject to a minimum rigidity constraint.
We proposed a DE-based method with a local optimization
of the swarm rigidity for finding a sub-optimal solution
efficiently. Numerical results demonstrate the feasibility of our

design and the proposed optimization method could further
improve the localization accuracy by around 30% compared
with a random approach. Consequently, we foresee that the
UAV is likely to play a critical role in future localization
system and especially in isolated regions.
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“Height measurement in seamless indoor/outdoor infrastructure-free
navigation,” IEEE Transactions on Instrumentation and Measurement,
vol. 68, no. 4, pp. 1199–1209, 2019.

[14] J. A. del Peral-Rosado, J. A. López-Salcedo, G. Seco-Granados,
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