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Abstract 

Vehicle automation and assistance technologies have been touted as a means by which to 

reduce traffic collisions by minimizing or eliminating “error-prone” and inefficient human 

operators. In concept, automation exists on a continuum that includes engaged driving by a 

human operator augmented by automated support features, vigilant driver monitoring of vehicle 

behavior with the possibility of driver take-over, to full automation with no active monitoring by a 

human operator. Moreover, the degree of automation varies by vehicle features (e.g., lane 

centering, emergency braking, adaptive cruise control, parking), by setting, meaning that 

automated features may or may not be available depending on specific attributes of the traffic 

environment (e.g., traffic volume, road geometry, etc), and by implementation (e.g., haptic vs 

auditory warnings). Thus, these automotive “transportation tools” are highly heterogeneous and 

pose unique challenges and opportunities for driver training. In this paper, we report the results 

of an experimental study (n=36) to determine if enhanced vehicle feedback influences driver 

trust, effort, frustration, and performance (indexed by reaction time) in a virtual driving 

environment. Results are contextualized in the extant literature on learning to operate motor 

vehicles and outline key research questions essential for understanding the processes by which 

skilled performance develops with respect to a real-world practical tool: the increasingly 

automated automobile. 
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Tools for transport: Driven to learn with connected vehicles 

The automobile is a tool like no other. The early 1900s saw mass production of the Ford Model 

T, which had wide-ranging effects on the transportation of people, goods, and services that has 

fundamentally changed nearly every aspect of human life. While vehicle technology has evolved 

over time, the disruptive force of autonomous passenger vehicles cannot be understated. The 

automation of passenger vehicles has been touted as a means by which to reduce traffic 

collisions by minimizing, or completely eliminating, “error-prone” and inefficient human 

operators. In concept, automation exists on a continuum that includes engaged driving by a 

human operator augmented by automated support features, vigilant driver monitoring of vehicle 

behavior with the possibility of driver take-over, to full automation with no active monitoring by a 

human operator. Moreover, the degree of automation varies by vehicle features (e.g., lane 

centering, emergency braking, adaptive cruise control, parking), by setting, meaning that 

automated features may or may not be available depending on specific attributes of the traffic 

environment (e.g., traffic volume, road geometry, etc.), and by implementation (e.g., haptic vs 

auditory warnings). Thus, these automotive “transportation tools” are highly heterogeneous and 

pose unique challenges and opportunities for driver training. In this paper, using a cognitive 

science perspective, we outline the extant literature on learning to operate a motor vehicle and 

then critically review the emerging literature on learning to operate vehicles with automated 

features – advanced driver assistance systems (ADAS). Then, using exemplar data extracted 

from an experimental study conducted using a virtual reality driving paradigm, we illustrate how 

enhanced collision warnings can affect driver performance. These results are then discussed in 

the greater context of tool use and skilled learning focusing on the adoption and utilization of 

mental models. 

In the broadest sense, operating a motor vehicle is simply using a machine to get from one 

location to another. The automobile itself (i.e., one large tool) consists of a variety of sub-tools, 
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including the steering wheel, gearshift, dashboard displays, and signaling apparatus to name 

just a few examples. Indicators of driver performance are commonly conceptualized as 

behavioral errors, regulatory violations, self-reported attentional lapses, and judgment errors (de 

Winter & Dodou, 2010; Michon, 1985). Cognitive indicators of performance largely are derived 

from behavioral and eye tracking studies that measure drivers’ responses to hazards through 

button presses, hard braking, and eye glance fixations (e.g., response latencies, errors) 

(Crundall, 2016; McDonald et al., 2015; Underwood et al., 2002). More recently, naturalistic 

driving studies utilizing continuous or semi-continuous data recorders have been used to 

measure vehicle kinematics (Dingus et al., 2016). Crash-involvement and associated risk 

factors can be ascertained by all of these approaches with the addition of administrative data 

sources (e.g., police reports, hospital admissions) (Curry et al., 2019; Montella et al., 2013).  

Most of the research on learning to drive is conducted with young people who are seeking 

licensure for personal transportation purposes. Evidence is clear that young, novice drivers are 

overrepresented in crash databases and traffic injury is a leading cause of death for this age 

group (WISQARS, 2020). Professional drivers (e.g., motorsport) or commercial drivers (e.g., taxi 

drivers) already know how to drive prior to taking up a driving related profession. The research 

on young drivers indicates that population-level crash rates are highest immediately following 

licensure, then decreases rapidly over the first 6 months with younger age being associated with 

higher peak rates at the point of licensure (Curry et al., 2015). Learner drivers appear to acquire 

the physical mechanics (i.e., maneuvering and basic perceptual awareness) necessary for 

operating a vehicle relatively quickly, but some continue to have difficulty with more dynamic 

traffic scenarios. For example, a systematic on-road observational study found that learner 

young drivers made more basic vehicle operation errors (e.g., changing lanes, turning) than 

licensed adult drivers, but overall vehicle operation errors were uncommon, accounting for less 

than 10% of errors in both groups of drivers (Durbin et al., 2014). Notably, in this same study, 
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54% of learner young drivers made at least one critical error compared to only 5% of adult 

drivers. The most common critical error was unsafely entering oncoming traffic for drivers of 

both groups. This experience pattern is consistent with analyses of crash databases; crash 

scenarios of young drivers mirror those of adults (e.g., recognition errors) (McDonald et al., 

2014) suggesting that when people of different age groups crash they do so for largely similar 

reasons, but younger drivers crash more frequently per mile driven. 

ADAS are an engineering solution to the driver error problem, and are designed to prevent 

drivers from making errors that can increase their crash risk through advanced warnings (e.g., 

auditory or haptic feedback of an approaching or potential hazard), or by taking control of the 

vehicle (e.g., mechanical lane keeping assist). Notably, some ADAS features best serve driver 

comfort (e.g., adaptive cruise control or ACC) rather than safety (Viti et al., 2008). The spectrum 

from fully manual to fully automated has been defined by SAE International to segment the 

functions and layers of features of automated systems into 6 levels (SAE Standard, 2018). From 

manual driving (Level 0), the general progression from 1 to 5 allows the driver to drive feet-off 

with the help of ACC (Level 1), hands-off with the help of a lane keep assist (Level 2), eyes-off 

with a more advanced automated driving system (Level 3), mind-off with a highly automated 

driving system (Level 4), and finally driverless with a fully autonomous system (Level 5). Overly 

publicized demonstrations aside, there are currently no vehicles available on the market above 

SAE level 2 (Teoh, 2020).  

Introduction of ADAS-equipped vehicles will not serve as an immediate panacea. While ADAS 

features were available on 92.7% of 2018 new vehicles in the U.S., these features were not 

universally offered as standard, with features such as automatic emergency braking costing on 

average an additional cost of $1,896 and as much as $6,000 (AAA, 2019). Such safety 

“premiums” may be cost-prohibitive for some of the most at-risk drivers should they be able to 

purchase a new car. Often drivers have used vehicles that do not have the most recent safety 
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features and technologies onboard (Eichelberger et al., 2015). An examination of fatal crash 

data from 2019 reveals that 55% of the vehicles were 11 or more years old, with 13% being 21 

years or older (Fatality Analysis Reporting System (FARS), 2020). The situation is more 

concerning in examining young (i.e., 15-20 years old) driver-involved fatal crashes, revealing 

59% of the vehicles involved were 11 or more years old (FARS, 2020). Given the lag in 

standard features and slow vehicle turnover, it may take decades for full market penetration to 

personal vehicles, with introduction to commercial fleets first and followed by higher-end 

personal vehicles.  

How drivers learn to operate an ADAS-equipped vehicle is an emerging and important literature 

(Jenness et al., 2019). This issue is most relevant for situations when the driver must continue 

to monitor the traffic environment for safety threats (Kaber, 2018). Drivers’ mental models, that 

is, their ideas about how the ADAS functions, influence their ability to use ADAS properly 

(Pradhan et al., 2020). ADAS misuse can include failure to interpret the meaning of notifications, 

not being aware of notifications, and more critically not knowing when to override it (Onnasch et 

al., 2014; Victor et al., 2018). Relatedly, the extent to which operators trust the system will also 

influence their ability to use it effectively (Hancock et al., 2020). 

The limited literature on learning to use ADAS is predominantly survey-based (Abraham et al., 

2018); however, behavioral studies are increasing. These studies have indicated that although 

benefits of ADAS are observable such as with crash avoidance systems (Jermakian, 2011), so 

are opportunities for misuse, especially among younger drivers with comparatively little practical 

driving experience (Bao et al., 2020). Misuse, in part, appears to stem from a lack of an 

accurate mental model (Endsley, 2000). Inaccurate mental models of ADAS technology may be 

exacerbated by lack of driving experience, specifically when a large subset of ADAS functions 

requires an accurate understanding of the driving task environment. Alternatively, novices’ 

“blank canvas” might facilitate uptake of ADAS functionality, as there is no prior mental model 
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that it has to compete with, avoiding interference or negative transfer effects. Experimental 

research that involved providing different types of instruction (e.g., written, multimedia) has not 

reliably been shown to be successful towards increasing the accuracy of mental models or 

reducing ADAS misuse among adult experienced drivers (Noble et al., 2019). Further, drivers’ 

perceptions about the amount of effort to use ADAS and their subjective experience of its use 

(e.g., degree of frustration) will all influence uptake of ADAS-equipped vehicles. The degree of 

overlap between the functions of the ADAS and the properties of the driving environment, along 

with their downstream effects on mental workload, should determine whether driving experience 

affects ADAS comprehension. 

To study this issue further we re-analyzed data from a previously conducted evaluation of 

connected vehicles technology (Jenness et al, 2014) to determine how ADAS can affect driver 

performance and their subjective experience. Our purpose was to determine if vehicle-provided 

feedback could indicate to the driver that a threat was present and that it has ceased to be a 

potential danger (i.e., it has been resolved). Other research on adaptive cruise control has 

demonstrated that repeated trials with accurate feedback have improved mental models and 

trust in the automation (Beggiato et al., 2015; Beggiato & Krems, 2013) along with aspects of 

behavioral performance (Forster et al., 2019) in longitudinal studies. Event resolution feedback 

may be particularly useful in situations where an initial warning was provided, but through no act 

of the driver, it was resolved. These resolutions could happen when another motorist resolves 

the threat on their own for just one example. Such scenarios could be confusing to the driver 

because they a) took no action to resolve the threat and/or b) may not have seen the threat to 

begin with, despite the warning, and thus mistakenly interpret the initial warning as a false 

alarm. Without a resolution notification, drivers may learn to expect similar “faux false alarms” 

which may lead to slowed responses (e.g., braking, steering) to subsequent warnings, and 

increased frustration and effort, reduced trust, and an inaccurate mental model.  
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Overall Design Summary 

A between-group experimental study design determined if an enhanced vehicle notification 

system improved drivers’ safety behaviors without reducing trust and without increasing effort 

and frustration. The secondary study objective was to determine if there was effect modification 

based on driver experience. Participants were randomly assigned to one of two simulated 

driving conditions, Threat Resolution, within which drivers drove a vehicle and received collision 

threat warnings followed by threat resolution notifications, and Warning Only, within which 

drivers received only collision threat warnings and no resolution notifications. Thus, the 

independent variable was notification type (warning only or warning plus threat resolution) and 

the four dependent variables for this analysis were drivers’ time to first response following the 

threat warning (response time), self-reported effort, frustration, and system trust.  

We hypothesized that the threat resolution group would demonstrate: (1) safer driving 

performance as indexed by response time (RT) (e.g., quicker RTs) and (2) higher levels of trust. 

We made no a priori hypothesis about effort and frustration; these analyses should be 

considered exploratory. Similarly, for the second objective concerning effect modification by 

driver experience, we made no a priori hypothesis.  

Participants 

Thirty-six participants (18 males and 18 females) between the ages of 18 to 30 years old (M = 

24.1, SD = 3.6) were recruited to participate in this four session study using convenience 

sampling methods. Participants were screened to ensure they had at least two years of licensed 

driving experience (minimum of 4,000 miles driven per year), normal or corrected-to-normal 

vision (20/40 or better), normal color vision, no apparent cognitive limitations, and no history of 

motion sickness. The years since licensure ranged from 2 to 16 years (M = 7.9, SD = 3.6) 

across all participants. The sociodemographic characteristics of the sample were Threat 
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Resolution: Gender: 8 female, 10 male; Age: M = 23.56 (SD = 3.6); Years Licensed: M = 7.1 

(SD = 3.4) and Warning Only: Gender: 9 female, 9 male; Age: M = 24.56 (SD = 3.5); Years 

Licensed M = 8.6 (SD = 3.9). 

The participants were categorized based on the number of years licensed in order to explore 

effects related to experience. Participants who had 2 to 6 years as a licensed driver were in a 

lower experience (novice) category (n = 15), those with 7 to 11 years of experience as a 

licensed driver were in an intermediate experience category (n = 15), and those with 12 to 16 

years of experience were in a higher experience (experienced) category (n = 6).   

Materials and Measures 

The study was conducted in a partial motion-based driving simulator manufactured by Realtime 

Technologies, Inc. The simulator consisted of a 2002 Saturn SC2 full vehicle cab featuring 

realistic control operation and instrumentation including power assist for the brakes and force 

feedback for the steering. Haptic feedback was provided by car body vibration and a three-axis 

electric motion system producing roll, pitch and yaw motion within a limited range of movement. 

Auditory feedback was provided by a 3D surround sound system. The driving environment in 

this simulator was projected to a five-channel, 210-degree forward visual field screen (2.5 arc-

minutes per pixel) with rear and side mirror views provided by a rear screen and vehicle-

mounted LCD panels, respectively.  

The simulated worlds consisted of an urban, relatively cluttered environment with storefronts, 

office buildings, and parked and moving distractor vehicles. The urban world featured two- and 

four-lane streets with multiple signalized and unsignalized intersections. Each urban world 

consisted of twenty-five 200 meter blocks (via four lane streets) and twenty 100 meter blocks 

(via two lane streets) and was composed of approximately 44 intersections and two turns. The 

critical events were created such that they afforded a high level of face-validity. 
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All drivers were presented with warnings for various scenarios in which a critical situation either 

resolved (i.e. no crash must be avoided) or occurred (i.e. were visually verifiable and a crash 

must be avoided). Resolved events were either visually verifiable (i.e. the driver saw the reason 

for the warning) or non-verifiable (i.e. drivers did not see the reason for the warning). Examples 

of the scenarios are shown in Table 1.  

Table 1. Event scenarios  

 

Event 

Description 

Critical Event Type 

Occurred: Visually 

Verifiable    

Resolved: Visually 

Verifiable 

Resolved: Non-verifiable 

Frontal 

Conflict at 

intersection 

   

Frontal 

Conflict at 

Alleyway 

   

Frontal 

Collision 

head-on    
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Note: The salient green and gold cars indicate the participant’s vehicle and potential threat vehicle, respectively, at the event 

start. The faded gold and gray cars indicate the threat vehicle’s progression through the event. Gray cars denote non-threat 

vehicles. The red “x” indicates where a collision or near collision is likely to occur.  

Collision Notification 

The initial warning tone for both groups consisted of an audio warning that was produced 

through a sound server attached to a 3-D enhanced sound system, such that a warning sound 

appeared to originate from the direction of the conflict vehicle (e.g., left). The sound was 

identical to Sound #8 in the CAMP project (Kiefer et al., 1999). This was a 2.1 second tone with 

peaks at 2500, 8000 and 12000 Hz. The audio warning was presented at 83 dB, while the 

ambient traffic measured 77.5 dB maximum. The visual warning was provided by three sets of 

red LED lights placed at different locations within the vehicle (see Figure 1). When activated, the 

LEDs flashed at 4-Hz rate with a 50% duty cycle (125 ms on, 125 ms off), for a total duration of 

2.125 seconds.  

Insert Figure 1 Here 

Both audio and visual components were directional, i.e., only one side of the interior speakers 

sounded and only one set of the LEDs flashed indicating the direction from which the conflict 

vehicle was arriving. The tone and LEDs were presented for 1.7 sec.  

Threat Resolution Notification 

In the Threat Resolution condition, the tone was suspended for .034 sec., resumed at a lower 

intensity, then rapidly decreased for .130 sec., and decreased at a slower rate for 1.65 sec., 

lasting a total of 1.8 sec. (see Figure 2 for a visual depiction of the waveform); the resolution 

signal was uni-modal (i.e. auditory only). 

Insert Figure 2 Here 
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Procedures 

Following informed consent and randomization, participants completed two 6-minute practice 

drives to become familiar with the simulator, driving tasks, warnings (and resolution feedback, if 

applicable) and were presented with three seen non-critical conflict events with warnings. Next, 

they were instructed to drive through a simulated urban environment over the course of 4 

sequential driving sessions. Each session had two drives, each lasting 10 minutes. Within each 

drive, participants were presented with an average of 5 warning events (i.e., 4 to 6 events) 

throughout each drive of each session (i.e., 10 total events presented in each session). The 

events were presented in fixed order and contained a balance of right angle, head-on, and rear-

end crashes or near-crashes across each session. For the purpose of the current study, only 

the first drive was relevant for the stated hypotheses.  

Participants were told to observe the speed limit (i.e. 30 mph), complete the route in a safe and 

timely manner, and avoid potential collisions. Threat warnings presented to drivers coincided 

with one of three conflict events: a colliding vehicle (occurred, visually verifiable event), a 

critically approaching vehicle which halts in the view of the driver (resolved, visually verifiable 

event), and a halting vehicle out of the view of the driver (resolved, visually unverifiable event).      

The proportion of these events varied across the four sessions as follows: Session 1: 100% 

occurred: visually verifiable; Session 2: 60% occurred: visually verifiable, 40% resolved: visually 

verifiable; Session 3: 33% occurred: visually verifiable, 33% resolved: visually verifiable, and 

33% resolved: non-visually verifiable; and Session 4: 20% occurred: visually verifiable, 20% 

resolved: visually verifiable, 60% resolved: non-visually verifiable. See Table 1 for reference of 

event types. 

Dependent Variables 
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Reaction time was measured in seconds from the warning onset to the first initiation of a braking 

or steering response within a 3.5 sec window. Anticipatory responses (i.e., less than 250 ms 

from the initiation of the critical action of the threat vehicle) were excluded from the analyses. 

Trust, effort, and frustration were measured at the conclusion of each session. Trust was 

measured by System Trust Questionnaire with four categories, each an average of two scales, 

identified by Lee and Moray (1992). The trust scales measured perceptions of Performance 

(i.e., expectation of consistent/desirable performance), Process (i.e., qualities governing 

system), Purpose (i.e., underlying system motives), and Foundation (i.e., system’s adherence to 

social order), see Rakauskas et al., (2003). Measures of effort and frustration were derived from 

two of six individual scales from the NASA-RTLX (Byers et al., 1989).  

Participants were remunerated for their participation at a rate of $20/hour. The total time to 

complete the study was approximately four hours. The study protocol was approved by the 

University of Minnesota Institutional Review Board under study number 1206S16365. 

Analysis Plan 

To evaluate our primary and secondary objectives we fit a multilevel model for first reaction time 

with fixed effects of Experience (lower, intermediate, higher), Condition (warning only, warning 

and threat resolution), and Session (1, 2, 3, 4) (experience and session were treated as 

categorical factors), and by-subject random intercepts and session slopes. Degrees of freedom 

for fixed effect estimates were based on Satterthwaite approximation.  

 

Results 

A main effect for condition was observed such that drivers who received the warning and 

resolution indicators had faster reaction times than drivers in the warning only condition: 

Estimate -0.12, SE = 0.052, t(35.5) = 2.34, p = 0.025 (Figure 3). There was no main effect or 
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interaction by driver experience on reaction time. Effects of experience were not significant 

based on model comparisons, i.e., did not improve model fit (main effect: 2(2)=1.04, p>0.5; 

2(2)=1.04, p>0.5; interaction: 2(2)=1.25, p>0.5; 2(2)=1.25, p>0.5). Further, there was no main 

effect of condition (all p>0.15) and no interactions between session and condition (all p>0.15) on 

any of the measures of trust, frustration and effort.  

 

There was a main effect for Session for Trust Process (2(3)=17.5, p<0.001), Trust Purpose 

(2(3)=17.8, p<0.001), Effort (2(3)=34.0, p<0.0001), and Frustration (2(3)=33.7, p<0.0001) 

such that Frustration was higher in earlier sessions and both measures of Trust were higher in 

later sessions; please see Table 2 and Figure 4. A correlation matrix is presented in Table 3 

illustrating the relationships among the dependent variables (e.g., negative associations 

between frustration and trust).  

 

Exploratory data visualizations were generated to examine patterns in session 4 trust by 

condition and experience (Figure 5). Session 4 was selected because participants in both 

groups would have had maximum exposure to all the critical events and have full experience 

with the warning system(s). The groupings were as follows (Threat resolution: novice = 9, 

intermediate = 7 and experienced = 2; warning only condition: novice = 6 intermediate = 8 and 

experienced = 4). 

 

Insert Figure 3 Here 

Insert Figure 4 Here 

Insert Figure 5 Here 
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Table 2. Average [Mean(SD)] Self-reported effort, frustration and trust by condition and session 

 Session Effort Frustration Trust 
Foundation 

Trust  
Performance 

Trust 
 Process 

Trust 
 Purpose 

Resolution 1 68.89 (17.65) 54.06 (24.21) 76.47 (14.51) 67.33 (16.79) 64.36 (20.39) 74.75 (13.98) 

Warning Only 1 62.78 (17.50) 54.44 (24.95) 78.50 (10.71) 68.14(20.93) 76.39 (16.87) 79.56 (15.11) 

Resolution 2 57.72 (22.53) 37.67 (19.59) 77.75 (12.36) 66.94 (19.08) 73.53 (13.00) 75.11 (15.29) 

Warning Only 2 53.56 (20.09) 37.17 (20.89) 78.53 (13.35) 67.28 (17.76) 77.92 (12.82) 77.69 (15.09) 

Resolution 3 47.89 (28.02) 33.50 (22.46) 79.75 (13.46) 67.42 (21.92) 74.53 (18.25) 76.50 (15.28) 

Warning Only 3 44.39 (24.13) 37.72 (26.19) 79.58 (10.36) 64.06 (20.60) 78.94 (13.49) 82.22 (11.69) 

Resolution 4 49.22 (28.55) 30.89 (24.29) 80.50 (11.12) 70.58 (23.69) 78.67 (15.77) 81.47 (13.92) 

Warning Only 4 43.06 (25.36) 33.78 (29.36) 79.97 (13.20) 68.33 (21.10) 81.56 (13.31) 86.08   (9.65) 

Note: Resolution = Threat Resolution 
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Table 3. Correlation matrix of dependent variables. 

 First RT Effort Frustration Trust 

Foundation 

Trust 

Performance 

Trust 

Process 

Trust 

Purpose 

First RT -       

Effort .024 -      

Frustration .054* .639*** -     

Trust Foundation -.004 -.174*** -.023 -    

Trust Performance -.030 .067* -.090*** .408*** -   

Trust Process -.067** -.090** -.063* .571*** .702*** -  

Trust Purpose -.054* -.115*** -.154*** .557*** .517*** .607*** - 

Note. Pearson r correlations, controlling for subject. Analyzes all events. * < .05, ** <.010, *** < .001 
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Discussion 
 

In the present study, we evaluated how a resolution tone in conjunction with a collision warning 

compared with a collision warning only condition on driver performance, effort, frustration, and 

trust. Then, we evaluated if these associations differed by driver experience. The results 

indicated that the enhanced ADAS condition with the resolution tone was associated with faster 

reaction times. This main effect did not differ in strength according to driver experience 

suggesting that the enhanced warning and resolution system was equally beneficial irrespective 

of the amount of experience drivers’ had acquired previously; however, the study was not 

powered to test interactions between experience and condition. Further, there was not strong 

evidence that the resolution warning by itself adversely affected drivers’ subjective experiences 

related to their trust of the system, their experience of frustration, or their perception of effort.  

Although the results showed no main effect for experience on reaction time, we further explored 

the question of experience as it relates to trust by plotting drivers’ session four ratings of trust, 

by condition and by level of driving experience.  Our rational for focusing on session four ratings 

of trust was that participants would have had full exposure to the ADAS across the maximum 

number of simulated critical events and because it had the greatest number of non-visually 

verifiable, but resolved, critical events (60%). Visual inspection of these data indicated an 

emerging pattern. Ratings of trust performance and trust process, and to a lesser extent trust 

purpose, showed that experienced drivers in the resolution notification condition reported 

stronger trust (performance, process) compared with experienced drivers in the warning only 

condition, but the opposite pattern was observed for novice drivers. Ratings of trust foundation 

were equivalent among novices in both conditions but higher among experienced drivers in the 

resolution condition compared with the warning only condition.  
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These results suggest the potential for there being an interaction between driver experience, 

warning type, and some dimensions of trust, in particular drivers’ expectations of consistent and 

desirable performance and trust in the underlying qualities governing the system. It seems that 

the resolution tone may have helped experienced drivers understand that an unseen event was 

resolved (i.e., it made an unknown hazard a known and resolved hazard).  For this cognitive 

process to work effectively, it may require a more sophisticated understanding of the traffic 

environment such that experienced drivers: a) are not just focusing on what is directly 

observable to them, b) understand that their perspective is fallible and limited in certain contexts 

and situations, and c) have developed a more advanced “transportation theory of mind” so that 

they understand that other road users are capable of having a different perspectives and 

knowledge states than the driver’s own (i.e., another road user might perceive a hazard and 

resolve it before the novice driver perceives the same hazard and/or resolves it).    

Critically, our study was not powered to evaluate these interactions statistically so these results 

should be interpreted with caution and only in the context of informing avenues for future 

research in order to establish the robustness and size of these effects. Indeed, prior research, 

albeit using different methodology, found that novices demonstrated difficulty with ADAS (Bao et 

al., 2020). It is our interpretation that this overall pattern of data is indicative of the acquisition of 

a more accurate mental model of how the ADAS functions facilitated by the warning resolution 

system, but that prior experience may affect drivers’ trust in new systems. Notably, sessions 

varied by both their order and the composition of event types, and thus future research should 

be conducted to unpack the relative contributions of practice quantity (i.e., greater exposure 

overall) and practice diversity (e.g., exposure to a variety of events) towards performance and 

trust over time.  

Outside of the ADAS literature, the individual-level psychological and behavioral 

countermeasures with the strongest potential for crash reduction among novice drivers is direct 
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or indirect facilitation of the acquisition of cognitive strategies for reducing risk, improved visual 

search being one such strategy (Fisher et al., 2006). Mechanistically, strategy acquisition (i.e., 

implicit or explicit adoption of an action-motor plan to reduce crash risk) likely happens quickly 

and non-linearly through phase transitions due to person-environment interactions (Mirman, 

2019; Mirman et al., 2019). Although the phase transition framework is consistent with other 

research on skilled behavioral performance (Gray & Lindstedt, 2017), it departs from the widely 

held but not empirically supported view that young drivers’ post-license reductions in crash risk, 

and hence learning to drive, happens gradually (McCartt et al., 2003; Simons-Morton & Ehsani, 

2016).  

A thorough review of the learning to drive literature in conjunction with a computational cognitive 

modeling analysis of two rigorous field trials and over 10 million crash-involved young drivers 

from three different countries did not find empirical support for gradual learning processes. It did 

provide support for discontinuity in learning to drive processes with phase transition timings and 

antecedents differing across drivers (Mirman et al., 2019). Evidence is also accumulating that 

diversity of learner drivers’ experience also appears to be a crucial component for facilitating 

drivers’ safe and appropriate vehicle use. An experimental study found that practice diversity is 

feasible to change through intervention and that greater diversity protected novices from making 

critical driving errors (Mirman et al., 2014). Observational studies have also indicated the 

potential benefit of distributed practice (Ehsani et al., 2020), but suffer from self-selection bias 

and lack of comparison conditions.  

Research connecting these two bodies of literature together, ADAS and learning to drive, is still 

in its infancy. Using a phase transition framework may be one avenue for bridging them. In so 

much that having an accurate mental model is critical for appropriate ADAS use, it will be 

essential to know how to expedite drivers’ acquisition of those models. The Phase Transition 

Framework for learning to drive can be applied for this purpose. The PTF has three core 
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postulates focused on changes in crash risk: (1) changes in crash risk are abrupt, and occur at 

different times for different drivers; (2) person-environment interactions can cause an immediate 

phase transition, or increase the probability of a future phase transition; and (3) there is 

substantial heterogeneity of risk in the population (Mirman, 2019). Adapted for ADAS mental 

models, the acquisition of mental models could be substituted for crash risk such that (1) 

acquisition of the mental models and their constituent parts is abrupt and not gradual; (2) 

person-environment interactions can cause rapid adoption of a mental model or the probability 

of its adoption, and (3) there is substantial heterogeneity in drivers’ ADAS-related mental 

models. A new extension would postulate (4) that a partial mental model would be insufficient 

for consistently safe and effective ADAS use.  

With respect to this final postulate, (i.e., the importance of knowing if a mental model is 

constructed gradually or incrementally) it is useful to recall that an incremental model of learning 

to drive has historically been the dominant view of how drivers learn. That is that drivers 

gradually accumulate an experience library, access of which is automatized through repetition 

(Simons-Morton & Ehsani, 2016). It is also useful to note that although this is an intuitive theory 

there is a lack of direct empirical evidence that this is the case among learning drivers with 

respect to any type of driver performance (e.g., crash rates, proxies of risky driving) (Mirman et 

al., 2019). If using a tool correctly is dependent on an accurate mental model of how that tool 

works, it is crucial then for understanding if mental models are constructed and accessed 

gradually or in a phased manner. In the context of mental model acquisition at its simplest level, 

we are considering if drivers build their mental model bit by bit and ADAS use becomes 

incrementally better in lockstep or they have a fuzzy, or otherwise incomplete understanding 

until a phase transition happens and the model’s boundaries and attributes rapidly come into 

focus. With respect to use of a mental model, it may be that an 80% accurate mental model is 

enough to use ADAS correctly, but a 79% accurate mental model is not (quantities were chosen 



 

5 
 

arbitrarily for illustration purposes). Further, the content of the particular inaccuracy may also be 

relevant. If the inaccuracy involves a rarely encountered use case it might not matter that often if 

the mental model is insufficiently complete; however, it if is a frequently encountered use case 

that missing detail might be devastating.  

The extent to which learning to use ADAS systems corresponds to a power law model of 

learning has been explored in a few studies focused on evaluating how drivers learn adaptive 

cruise control (ACC).  Self-reported trust, acceptance and self-reported learning of ACC 

functionality were evaluated in an experimental study over 10 trials and showed some support 

for a power law learning pattern (Beggiato et al., 2015). However, goodness of fit metrics for the 

power law function were not consistent or strong and ranged from a high of only R2=.73 for 

“knowing what the ACC messages mean” to a low of R2 =.13 for “knowing overall ACC 

functionality.” Similarly, model fit statistics for Acceptance was only R2 =.15 and Trust only 

R2=.44. These same patterns held for the disaggregated, individual-level data. Of note, 

Beggiato et al., 2015 also described the data as “stabilizing” and in the case of “overall 

functionality” as being high immediately after an initial training. Neither of these observations are 

consistent with a power law of learning: a) learning rates slow, but they do not stop; and b) 

learning rates are faster initially but do not jump qualitatively higher after an initial training and 

would not differ in their timing of learning onset for one facet of learning but not for another. Both 

leaps/phase changes, differences in learning onset, and stabilization are consistent with phase 

transition models of change (Gray & Lindstedt, 2017; Mirman, 2019). While evidence for mental 

model development (i.e., increase in accuracy) was found as experience with the ACC system 

increased, these data were collected at fewer, unequally spaced intervals and not subjected to a 

model fit evaluation for power-law processes as were the trust, acceptance, and self-reported 

learning data (see Beggiato et al., 2015). Another study, albeit with only 6 trials, found much 

stronger fits with power law functions R2>.97 for ACC learning indexed by gaze transitions to 
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critical regions of interest (i.e., scanning efficiency) and self-report (Forster et al., 2019). Similar 

to the Beggiato et al., 2015 study, mental model change data were presented to illustrate that 

task experience increases mental model accuracy, but were not evaluated with a power law 

function (or any learning model) and the authors noted a learning plateau, which is not 

consistent with a power law of learning model.  

Adjudicating between learning frameworks will be a useful path forward because it can improve 

basic theory about learning to use tools, and ADAS in particular, which can then lead to 

improved ADAS design and ADAS training programs. For example, under a power law of 

learning model one would be focused on expediting learning rates and providing a greater 

number of safe training opportunities as opposed to trying to manipulate phase transition timing, 

perhaps by changing the salience of stimuli in the environment.  

With respect to our study on threat warnings and resolution notifications, future research can be 

conducted to independently manipulate quantity and diversity of event exposures to determine if 

and how they contribute to the development of mental models, how those models are 

constructed and used (i.e., if they follow a power law or phase transition pattern), if they lead to 

appropriate ADAS use, and consequently affect driver safety. Practically, it is not possible to 

discriminate between a power law of learning function and the beginning of a phase transition 

function (e.g., evaluated with a sigmoid for example) without many more units of observation 

than included in any of these studies; see Mirman 2019 for a detailed description of how to 

evaluate phase transition claims with respect to driver behavior and learning. Therefore, study 

designs need to be thoughtfully developed with the understanding that there is not one universal 

model of tool learning and further that different types of ADAS might follow different types of 

learning models and frameworks.  
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Finally, in our study we did not find strong support for differences in ADAS effectiveness based 

on prior driving experience. It could be that we needed a bigger sample and range of experience 

or that the richness and accuracy of the driving mental model did not really inform the 

participant about the functioning of the ADAS. Put another way, it is still unclear how much a 

driver really needs to know about driving to know that one sound means the ADAS thinks a 

collision is imminent and a resolution sound means everything is okay. We did observe some 

initial evidence that instances of unseen but resolved hazards may be harder to understand for 

novices than for experienced drivers. An addition of a resolution indicator may be especially 

useful to help drivers discriminate between a false alarm and an unseen but resolved event with 

the caveat that novices might need additional support interpolating information about unseen 

hazards and understanding system notifications.  Collectively, these results indicate that the 

warning and resolution system increased appropriate “tool use”, resulting in safer driver 

behavior as indexed by faster reaction times for all driver types. 

Automation that is more complex may really require deep understanding of the task 

environment to develop a fully accurate mental model of the automated system. More highly 

automated systems of the future (i.e., SAE level 3/4) may meet similar issues of loss due to 

poor mental models if systems are designed to conservatively cue the driver to resume manual 

control well ahead of a necessary handoff, and these may be particularly problematic for 

novices. Such cuing may not be met with an actual handoff (i.e., critical situation resolved) and 

thus may be perceived as a system malfunction followed by slower response times. These two 

domains (driving and the collision warning/threat resolution ADAS) may be mostly independent; 

thus future research should consider how models develop based on driver experience in greater 

specificity. 
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